Cell and molecular biology

By Dr Riffat Sultana
Professor Physiology KGMC.
Topics included in cell and general physiology

• Functional organization of human body.
• Homeostasis.
• Control system in the body.
• Cell membrane and its function.
• Intracellular connections
• Cell organelles.
• Transport through cell membrane.
• Membrane transport including active transport, passive transport, simple and facilitated diffusion.
• Types of particles in solution.
• Importance of selective permeable membrane, osmosis and osmotic pressure, surface tension, viscosity also in relation to body fluids.
• Abnormalities of cell and its organelles (apoptosis, mutation, cancer and aging.)
• Wonders in the world of cell never ceases
Cell membrane

- Gate way to the cell
- It separates living from non living surrounding.
- Controls traffic in and out of the cell.
- Maintain the cell potential, cell movement, cell recognition.
- Movements of substances across the membrane-channels, pumps, transporters.
- Provide anchoring sites for filaments of cytoskeleton.
- Provides a binding sites for enzymes and receptors for chemicals and drugs.
- Interlocking surface bind cell together (junctions).
- Thin about 7 nm.
- At high magnification it can be seen to have three layers described as Trilaminar appearance.
Cell membrane

- A dynamic structure, semipermeable, made up of lipids and proteins.
- Allows a selective permeability.
- Major macromolecules in membrane are lipids, proteins and some carbohydrates.
- Basic structure made up a lipid bi layer in which proteins are scattered.
- The function of membrane protein is transporter, enzyme action, cell surface receptor, cell surface identity marker, cell surface adhesions, attachment to cytoskeleton.
- Are impermeable to fat soluble substances.
- In some tissues permit permits transport of glucose at a greater rate in the presence of insulin.
- Are not changed throughout the life.
Lipids of cell membrane.

• Main lipid are phospholipids (most common) and cholesterol.
• Structure of phospholipids molecules is such that head end has phosphate part and soluble in water i.e polar hydrophilic.
• Tail end made up of fatty acids and is water insoluble water insoluble i.e non polar, hydrophobic.
• Hydrophilic ends face interior and exterior of membrane with aqueous environment. Hydrophobic end meet in center of membrane.
Cell membrane.

**Figure of a Phospholipid**

- **Bi-layer**
  - "Bi" refers to the double layer of hydrophilic heads and hydrophobic tails.

- **One phospholipid**
  - Hydrophilic (water attracting) Phosphate Head + polar
  - Hydrophobic (water repellant) tails made of fatty acids + nonpolar
1.2.1 Simplified structure of lipid bilayer and phospholipids
Triglyceride

Glycerol

3 fatty acid chains

H
C
O
H
C
O
H
C
O
H
C
O
H
C
O
H
C
O
H
C
O

O
C
CH₂
CH₂
CH₃
Movements in cell membrane.

- Phospholipids are not attached to any structure and each molecules is free to move.
- This allows random lateral movement of both lipids and proteins of the cell. (Lateral movement of its component indicates the fluidity of the membrane).
- Fluidity enables the membrane to perform endocytosis and exocytosis.
- Lipid bilayer is highly flexible fluid in nature. This allows considerable alterations in cell shape.
- However the components do not freely move from inner to outer layer or outer to inner layer (flip flop movement is restricted). During Apoptosis (programmed cell death) flip flop movement occurs.
(a) Movement of phospholipids. Lipids move laterally in a membrane, but flip-flopping across the membrane is quite rare.

(b) Membrane fluidity. Unsaturated hydrocarbon tails of phospholipids have kinks that keep the molecules from packing together, enhancing membrane fluidity.
Decreases the fluidity of the membrane due to close packing of hydrocarbon chain.

- The nature of the fatty acids also affects the fluidity of the membrane, the more unsaturated cis fatty acids increases the fluidity.
- The fluidity of the membrane is maintained by the length of hydrocarbon chain, degree of unsaturation and nature of polar head group.
- Trans fatty acid decrease the fluidity of the membrane due to close packing of hydrocarbon chain.
- Increase fluidity of membrane favors the binding of insulin to its receptors, a transmembrane protein.
Membrane is permeable to lipid soluble substances like O2, CO2, alcohol etc while water soluble substances cross it via channels, pumps, or with the help of carrier proteins.
BILIPID LAYER BEHAVIOUR

• At a given temp, short tail lipid --- more fluidity
• Longer tailed lipid have more area over which to interact--- increasing the strength of this interaction ----decreasing lipid mobility.
• Unsaturated double bond can produce a kink in the alkane chain --- disrupting the lipid packing--- this disruption creates extra free space within the bilayer that allows additional flexibility in the adjacent chain.
Structure of a Phospholipid
Saturated fatty acids

Mixture of saturated and unsaturated fatty acids
Saturated lipids only

Mixed saturated and unsaturated

Saturated

Double bond

Monounsaturated
Kinks change the fluidity and permeability of membranes.

Lipid bilayer with no unsaturated fatty acids  →  Low fluidity  Low permeability

Lipid bilayer with many unsaturated fatty acids  →  High fluidity  High permeability
Cell membrane.
Role of cholesterol in cell membrane.

- Cholesterol is dispersed throughout the cell membrane, in the irregular spaces between the hydrophobic tails of the membrane lipids. It gives the membrane stiffness and gives it strength.
- Cholesterol content of the membrane alters the fluidity of the membrane.
- Regulate the activity of certain integral membrane protein.
- Decreases the permeability of the membrane.
Role of cholesterol in cell membrane.

• When cholesterol is high the membrane become less fluid on the outer surface but more fluid in the hydrophobic core.

• The effect of cholesterol on membrane fluidity is different at different temperatures. At temp below the Tm cholesterol increases fluidity and there by permeability of membrane. At temp above the Tm cholesterol decreases fluidity.

• Cholesterol also increases flexibility and stability of membrane. Without it membrane break up.
Most protein molecules float about in the phospholipid bilayer forming a fluid mosaic pattern.
The possession of both hydrophilic and hydrophobic properties make the lipid an amphipathic molecule.
Proteins

- The amount of protein varies significantly with the function of the membrane but makes up on average 50% of the mass of the membrane. Two types of proteins in cell membrane.
- **Peripheral proteins** that are attached to inside or outside of lipid bilayer.
- **Integral proteins** that cross the whole thickness of lipid bilayer.
- **Functionally**-- these proteins are divided into various groups they form cell adhesion molecules that join cell together.
- Pump ions across the cell membrane
- Carriers that carry substances across the cell membrane.
- Ion channels through which ions move.
- Receptors for chemicals, hormones and drugs.
- Enzymes that catalyze chemical reactions.
- Other protein are lipitated , that is they have specific lipids attached to them.
Most protein molecule float about in the phospholipid bilayer forming a fluid mosaic pattern.
Carbohydrates (glycocalyx)

- On external surface of cell membrane, membrane proteins and lipids are conjugated with short chains of polysaccharides. The carbohydrates are present as Glycoproteins or Glycolipids.
- This layer formed is called Glycocalyx and is involved in cell recognition phenomenon, formation of intracellular adhesions, adsorption of molecules to the surface.
Most protein molecule float about in the phospholipid bilayer forming a fluid mosaic pattern.
A mosaic is a work of art made of individual tiles or other pieces assembled to form a picture or design.
Answer Key

1) CHANNEL PROTEIN  6) PHOSPHOLIPID BILAYER  11) CYTOSKELETON FILAMENTS
2) GLOBULAR PROTEIN  7) PHOSPHOLIPID MOLECULE  12) INTEGRAL PROTEIN
3) GLYCOPROTEIN    8) HYDROPHOBIC TAILS  13) PERIPHERAL PROTEIN
4) CARBOHYDRATE   9) ALPHA-HELIX PROTEIN  14) GLYCOLIPID
5) HYDROPHILIC HEADS  10) SURFACE PROTEIN  15) CHOLESTEROL

Copyright© 2016 Howell
Transport across membrane.

### How Molecules Cross the Membrane

<table>
<thead>
<tr>
<th>Method</th>
<th>Active/Passive</th>
<th>Molecules that Move</th>
<th>Direction</th>
<th>Energy Needed?</th>
<th>Protein Needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion</td>
<td>Passive</td>
<td>small, hydrophobic</td>
<td>down gradient (toward low conc.)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Osmosis</td>
<td>Passive</td>
<td>water</td>
<td>toward high conc. of solutes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Facilitated Diffusion</td>
<td>Passive</td>
<td>any (specific transporter)</td>
<td>down gradient (toward low cons.)</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Active Transport</td>
<td>Active</td>
<td>any (specific transporter)</td>
<td>specific: in or out, dep. on transporter</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Transport across membrane.
Transport across membrane.

• The factors affecting the rate at which molecules cross cell membrane by diffusion are summarised in Ficks law. This states that the rate is proportional to Surface area of membrane multiply difference in concentration across the membrane divided by thickness of membrane.