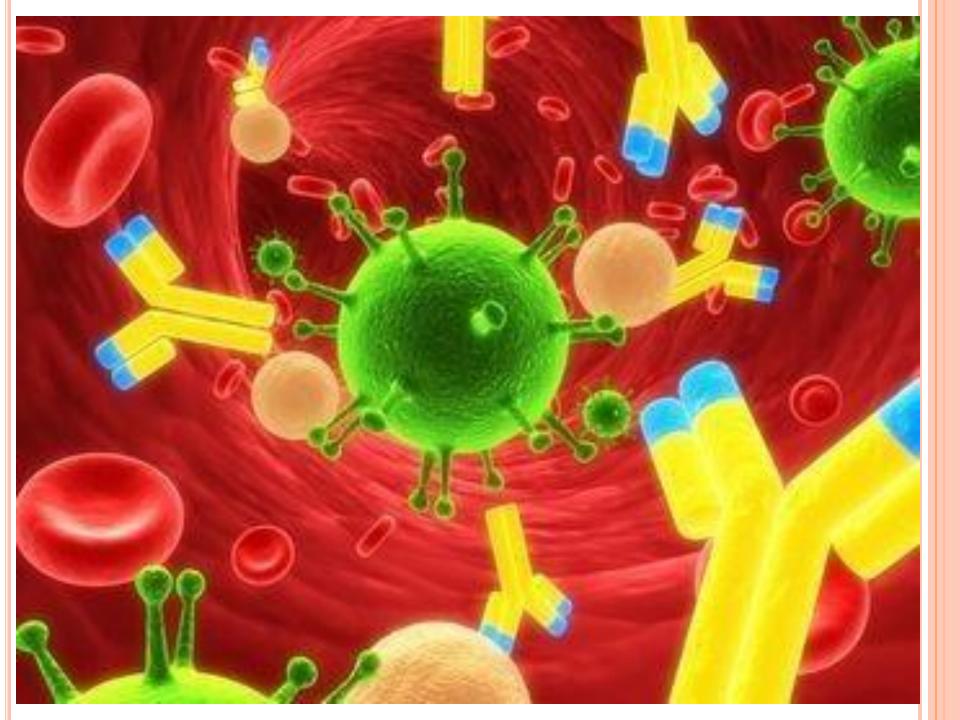
IMMUNO-MODULATING DRUGS


INTRODUCTION/CLASSIFICATION

DR SHAMS SULEMAN

LEARNING OBJECTIVES

 Identify the cellular and molecular targets in the immune system for the purpose of pharmacological interventions

Classify the Immuno-modulating drugs

INTRODUCTION

- o Definition
- o Types :

Natural

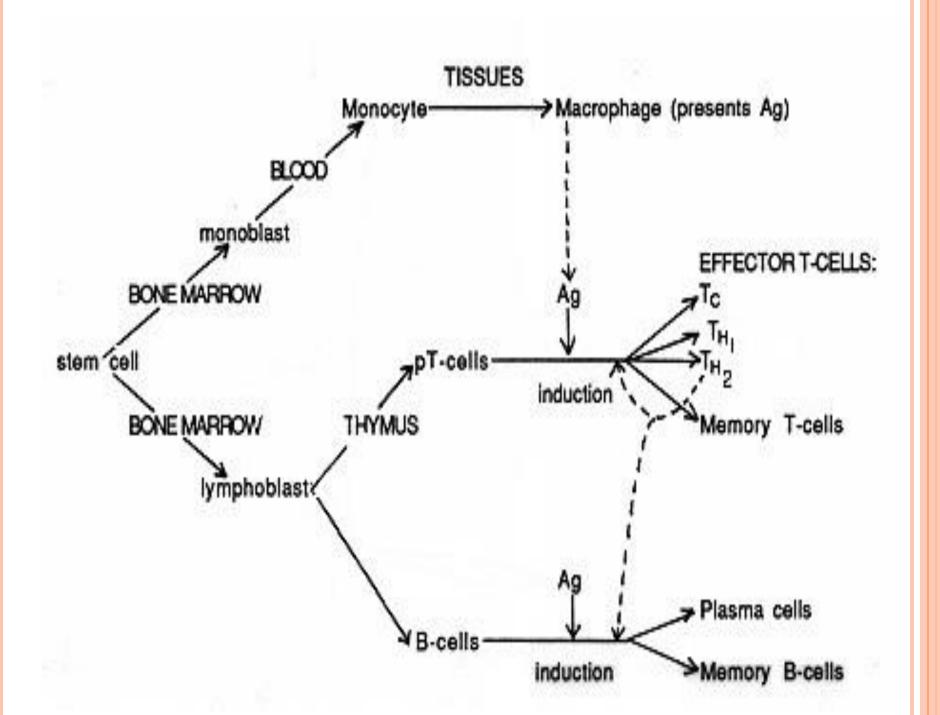
Acquired

• Natural immunity:

Innate

Adaptative

• Acquired immunity :


Active

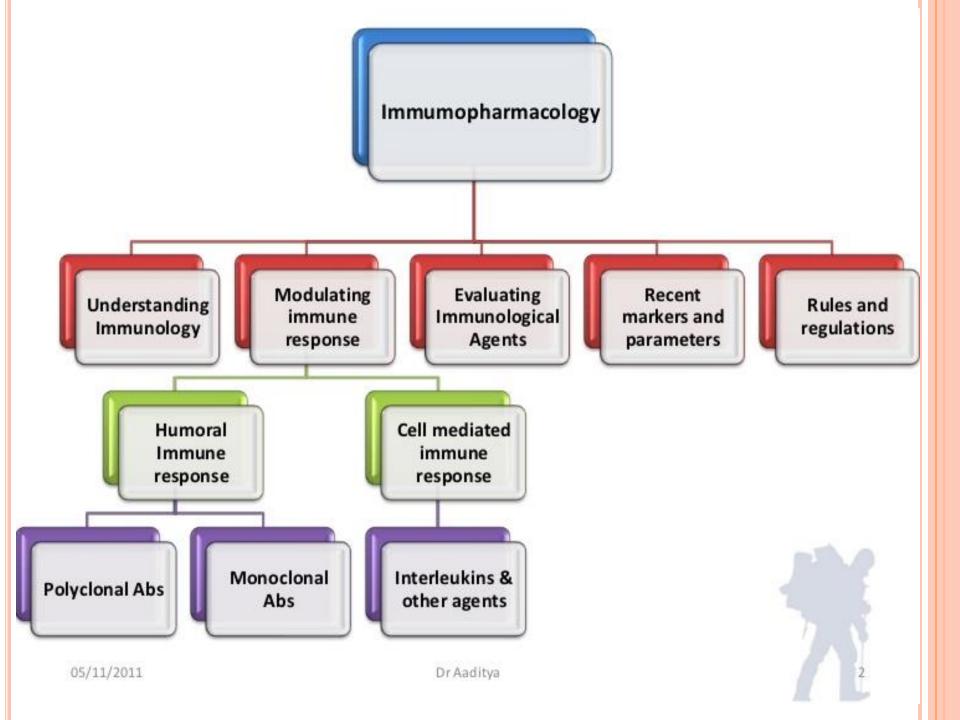
Passive

THE IMMUNO SYSTEM

IMMUNITY:

It is the ability of the living body or the process to resist various types of organisms or toxins that tend to damage the tissue and organs.

Why are involved?


- Innate
 - Complement
 - Granulocytes
 - Monocytes/macrophages
 - NK cells
 - Mast cells
 - Basophils

- Adaptive:
 - B and T lymphocytes
 - B: antibodies
 - T; helper, cytolytic, suppressor.

DEFINITION:

- A branch of pharmacology concerned with the application of immunological techniques and theory to the study of the effects of drugs especially on the immune system.
- Immune system: Is an organization of organs, tissues, cells and molecules with specialized roles in defending against microorganisms, viruses and cancer cells.
- The cells of immune system are present throughout the host's body.

IMMUNOPHARMACOLOGY

- 2 major components of the immune system:
 - INNATE
 - Physical skin, mucus membrane
- Biochemical complement, lyzosyme
 - Cellular macrophages, neutrophils
 - ADAPTIVE
 - Antibodies HUMORAL immunity
 - ➤ T-lymphocyte CELL MEDIATED immunity

Species immunity

Racial immunity

Individual immunity

- Resistance to infection varies with species.
- **Eg**: Humans are susceptible to measles infection, whereas dogs are resistant.
- Within a species, different races exhibit differences in their resistance, due to genetic factors.
- <u>Eg</u>: Africans are resistant to malarial infections.
- Different individuals in a race exhibit differences in innate immunity.
- Combination of nonspecific and specific resistance. Eg: cold attacks in winter.

INNATE IMMUNITY

- Skin/mucous membranes
- Complement proteins

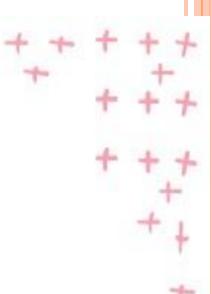
Opsonins: C3a

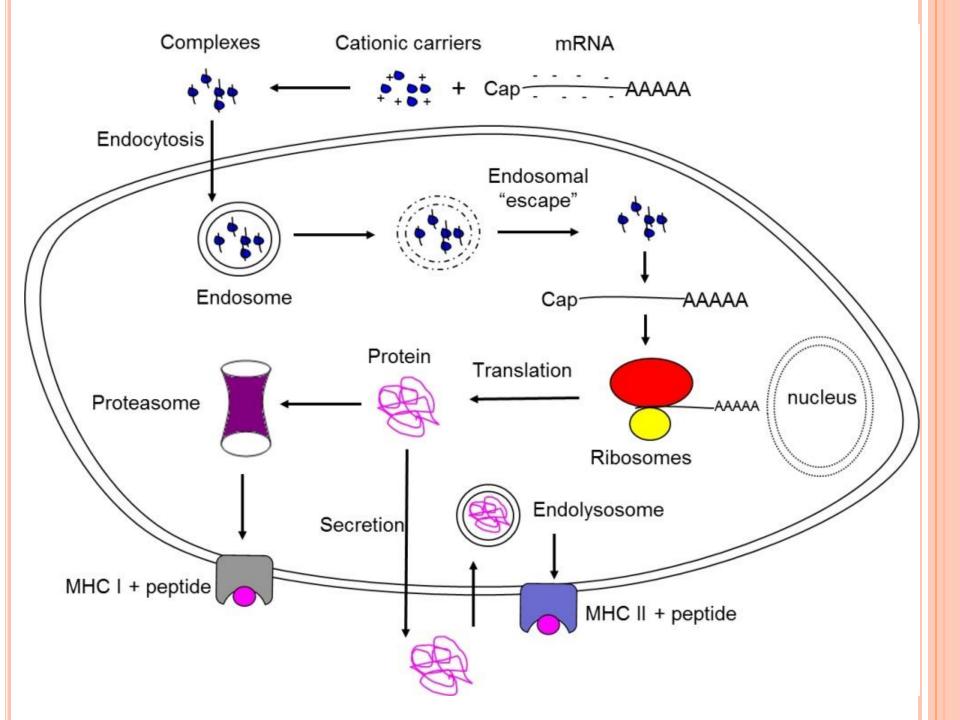
Chemoattractants: C3a, C5a

Membrane Attack Complex: C5....9

- Lysosomes
- Interferons
- Cells: Neutrophils, Monocytes, Macrophages

IMMUNOPHARMACOLOGY


COMPLEMENTS in Innate Immunity:

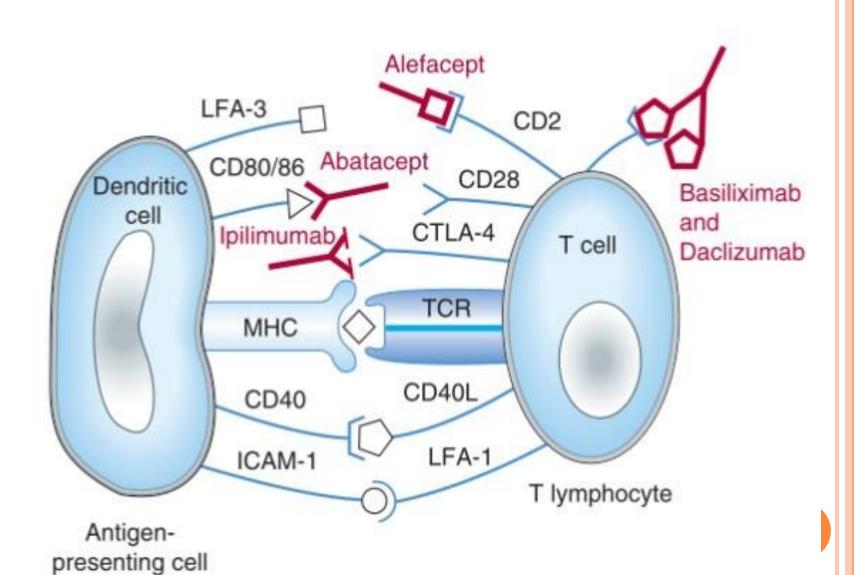

- 1. C3a, C5a → chemotaxis
- 2. C3b \rightarrow opsonization
- 3. C5b, C6, C7, C8, C9 → MAC

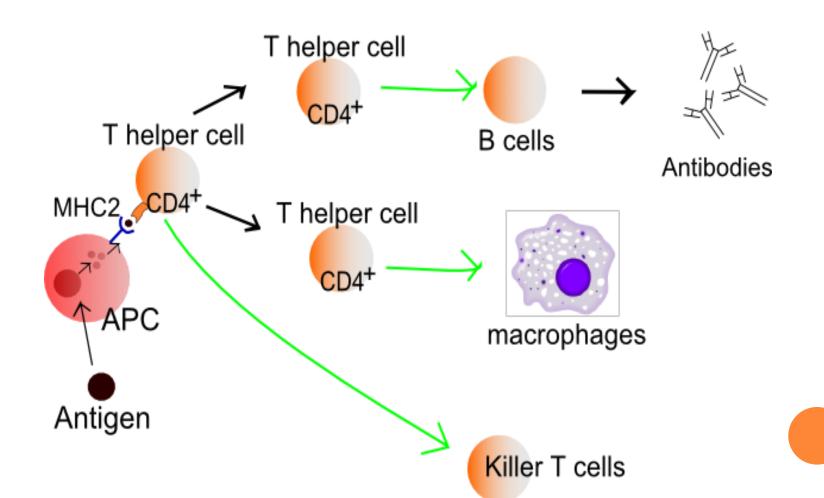
Pattern Recognition Receptors (PRRs)

Principle functions of PRRs

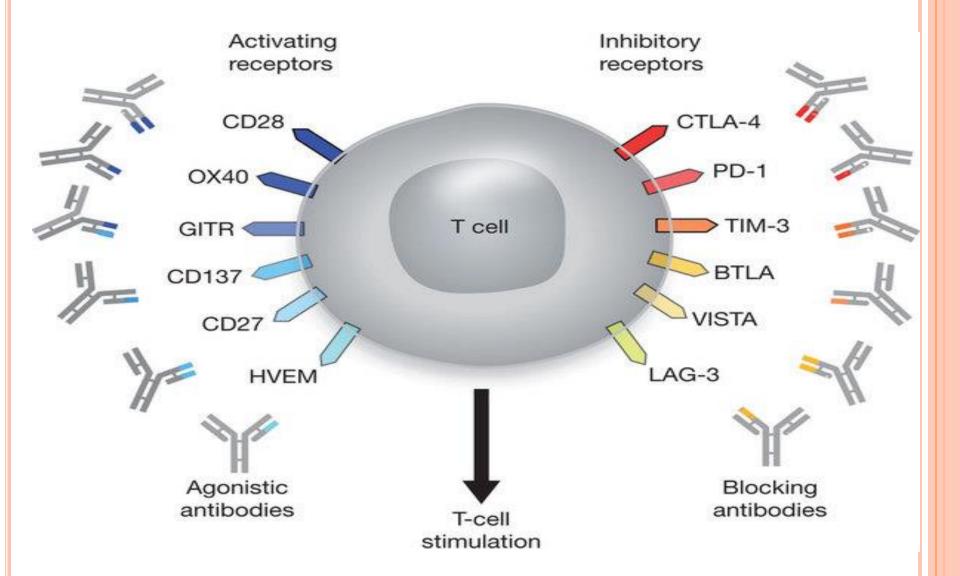
- 1.) Opsonization
- 2.) Activation of complement
- 3.) Phagocytosis
- 4.) Activation of proinflammatory signaling pathways
- 5.) Induction of apoptosis

INNATE IMMUNITY....


Major Histocompatibility Complex (MHC)


MHC 1:

- All cells
- Cytotoxic T cells
- Cell mediated immunity
- Viricidal, tumoricidal.
- Interplays with IL2, TNF, INF


MHC II

- Only present on APCs; involves costimulatory molecules
- Signal I = Interaction of APC with helper T cells
- Signal II = CD80/86 interacts with CD28
- Autoregulation = CTLA4 binds to CD28 setting CD80/86 free again

CO-STIMULATORY MOLECULES

TYPES OF ACQUIRED IMMUNITY:

Actively acquired immunity

(adaptive immunity)

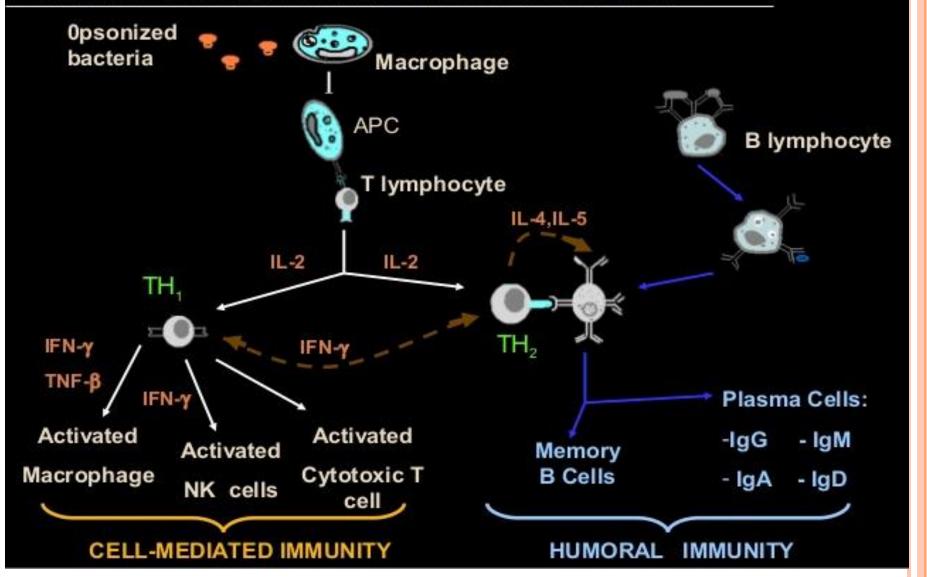
- When an individual is exposed to infections or antigens → stimulation of immune response
- Long lasting,.
- · Induces immunological memory.

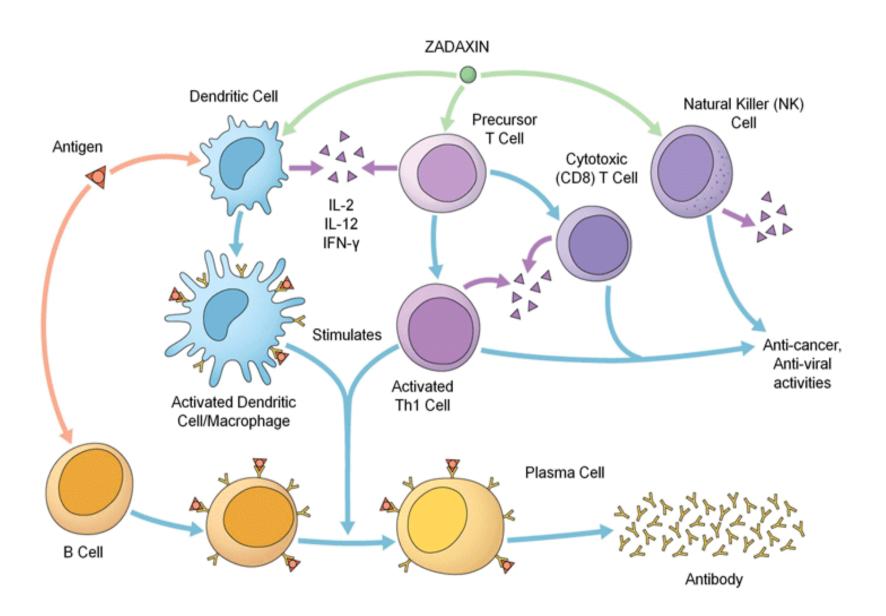
Passively acquired immunity

- There are certain individuals whose immune system does not respond and produce antibodies to foreign antigens.
- So such individuals are immunized.

ADAPTATIVE IMMUNITY

- LAK (Leukocyte Activated Killer) cells
- CD8 Cytotoxic T cells
- APC (Antigen Presenting Cells)
- Helper T cells: TH1, TH2


<u>TH1</u>


- Produce INFγ, IL2, TNF β
- Cell mediated immunity
- Interact with intracellular Ag
- Inhibited by IL 10.

<u>TH2</u>

- B cell proliferation
- Interact with extracellular Ag
- Inhibited by INF γ.

IMMUNOPHARMACOLOGY

ADAPTATIVE IMMUNITY...

Cytokines

- IL124
- IL27.....32
- INF α, β, γ
- **-** TNF α, β
- G.CSF
- GM.CSF
- Erythropoietin
- TNF

Comparative features of innate and adaptive immunity

Attribute	Innate immunity	Adaptive immunity +
Response time	Immediate responses and do not require prior exposure to microbe.	Several days as clones of antigen- specific lymphocytes
Diversity	No appreciable change in quality or magnitude of repeated exposure (exception NK cell)	Repeated exposure to a microbe enhances rapidity, magnitude, and effectiveness
Number & Type of receptor	Recognizes only about 1000 products of microbes and damaged cells.	Recognize millions of different microbial antigens, and can also recognize non microbial environmental Ag
Memory response	No memory cell or Trained immunity	Memory cell

Abbas_Cellular and Molecular Immunology, 9th ed

APPLIED IMMUNOLOGY <u>Therapeutic uses</u>

Transplant rejection, acute and chronic cases:

(NOT IN HYPERACUTE AND ACCELERATED)

- Autograft
- Isograft
- Allograft
- Xenograft
- Autoimmune disorders.
- Malignancies .
- Proliferative disorders.

APPLIED IMMUNOLOGY

SOURCES

- Monoclonal/polyclonal antibodies; obtained by Inoculation Hybridoma DNA recombinant (Chimeric, Humanized)
- Monoclonal = specific, homogenous, expensive
- Polyclonal = nonspecific, variable, inexpensive

HYBRIDOMA

- Hybridoma = Milstein & Kohler in 1975.
- Hybridomas

Antibody-forming cells == fused to immortal Plasmacytoma cells.

APPLIED IMMUNOLOGY NOMENCLATURE

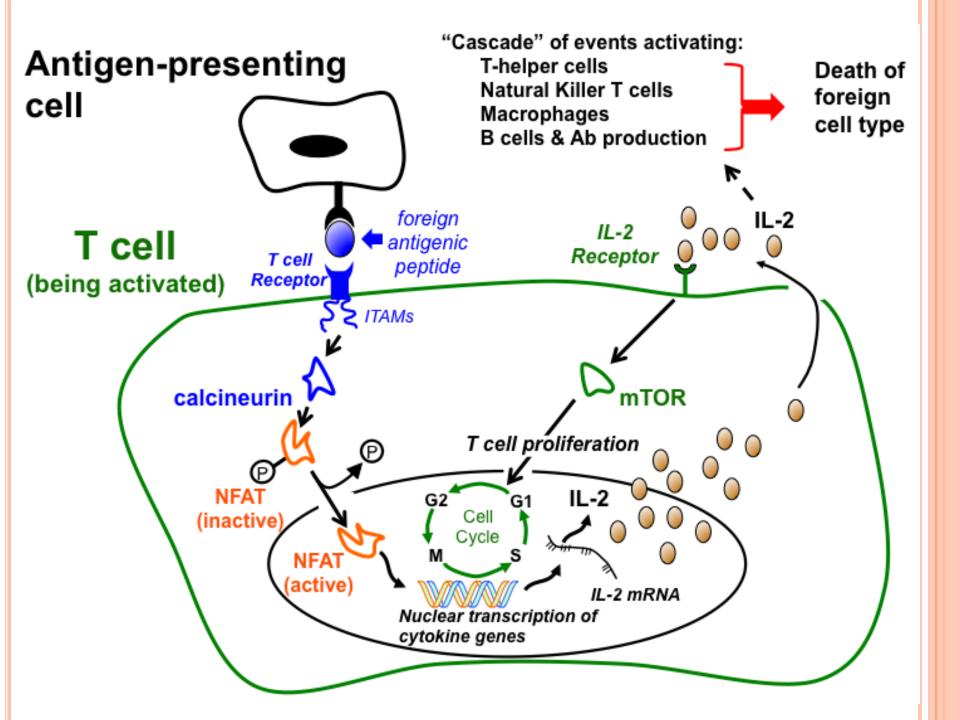
- Muro = Murine/Mouce source
- XI or IZ = Human source
- UMAB/ZUMAB = Humanized
- IMAB/XIMAB = Chimeric

BASIC PHARMACOLOGY

IMMUNOMODULATORS

- Immunosuppressants
- Immunostimulants

IMMUNOSTIMULANTS


- Aldesleukin: Recombinant IL 2
- o Interferon: α, β, γ
- BCG (Bacille Calmette Guerrian):
 TB, In-situ Carcinoma Urinary bladder
- Recombinant TNF α
- Thalidomide: Erythema Nodosum Leprosum, M Myeloma
- Levamisole: Colorectal carcinoma, R . A, Hodgkin lymphoma
- Lipopolysaccharides; Gram negative endotoxins

CLASSIFICATION

A:-Corticosteroids

- Methylprednisolone
- Prednisolone
- Prednisone

- B:-Immunophilin ligands: Antibiotics
 - Cyclosporine A (CsA)
 - Tacrolimus (TAC)
 - Pimecrolimus
 - Mammalian target of rapamycin (MTOR) inhibitors
 - Sirolimus (SIR)
 - □(Rapalogs) of SIR
 - Evorilimus
 - Temsirolimus
 - Fingolimod

- C:-Enzyme inhibitors
 - Mycophenolate Mofetil (MMF)
 - Mycophenolate sodium(MMS)
 - Mizoribine
 - Leflunamide
 - Pentostatin (ADA inhibitor)

- D:- Cytotoxic agents
 - Azathioprine (AZT)
 - 6 Mercaptopurine (6 MP)
 - Cyclophosphamide
 - Hydroxychloroquine
 - Methotrexate
 - Thalidomide
 - (Immunomodulatory derivatives of thalidomide (IMIDS)
 - Lenalidomide
 - Pomalidomide)

IMMUNOSUPPRESSANTS

D:-Cytotoxic agents

- Sulphasalazine
- Cytosine Arabinoside (Cytarabine)
- Dactinomycin
- Leflunomide/ FK778
- Vincristine
- Vinblastine
- Pentostatin
- Fingolimod
- D Penicillamine (cysteine analogue)

IMMUNOSUPPRESSANTS

E:- Immunosuppressive antibodies

- Anti thymocyte globulin (ATG / ALG)
- Muromonab CD3 (OK3)
- Polyclonal Intra Venous Immuno Globulins (IVIG)
- Hyper immune Globulin
 - HBV,
 - Rabies
 - Tetanus,
 - Digoxin
- Rho (D) immune Globulins.

IMMUNOSUPPRESSANTS

F:- MONOCLONAL ANTIBODIES (MAB)

4 1:- Antitumor MAB

- Alemtuzumab; anti CD 52.
- Bevacizumab ; VEGF.
- Cetuximab ; VEGF.
- Gemtuzumab ; CD3
- Rituximab ; CD20
- Trastuzumab ; HER-2/ neu
- Imatinib ; Tyrosine kinase.
- Geftinib (iressa); Tyrosine kinase.
- Erlotinib ; Tyrosine kinase.

2:- Isotopes for tumors (scan/ destroy)

Acritumomab ; C E A.

Capromab penditide; PSA.

Ibritumomab ; CD20.

Nofetumomab ; oat cell carcinoma

Tositumomab ; CD20.

3:- Anti inflammatory/immune MAB

- Anti IL 6
 - Tocilizumab (IL 6 Receptor antibody)
 - Sarilumab (IL 6 Receptor antibody)
 - Siltuximab (IL 6 neutralizing antibody)
- Anti TNFα
 - Adalimumab
 - Etanercept
 - Infliximab
- Anti CTLA-4
- Iplimumab

- □ Anti CD28
 - Abatacept ;CD80/86
- Anti LFA 3
 - Alefacept ; CD2
- IL2 antagonist
 - Basiliximab
 - Daclizumab

IL 1 antagonists

Anakinra

Anti LFA-1Efalizumab ;ICAM 1

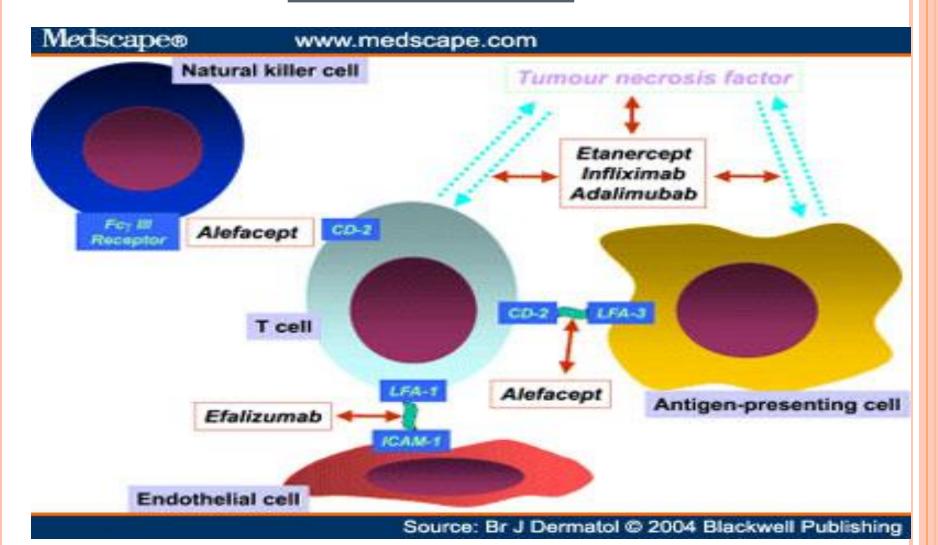
Anti IgE antibodiesOmalizumab

- Miscellaneous anti inflammatory MABs
 - Abciximab
 - Palivizumab
 - Immunomodulators for HIV:

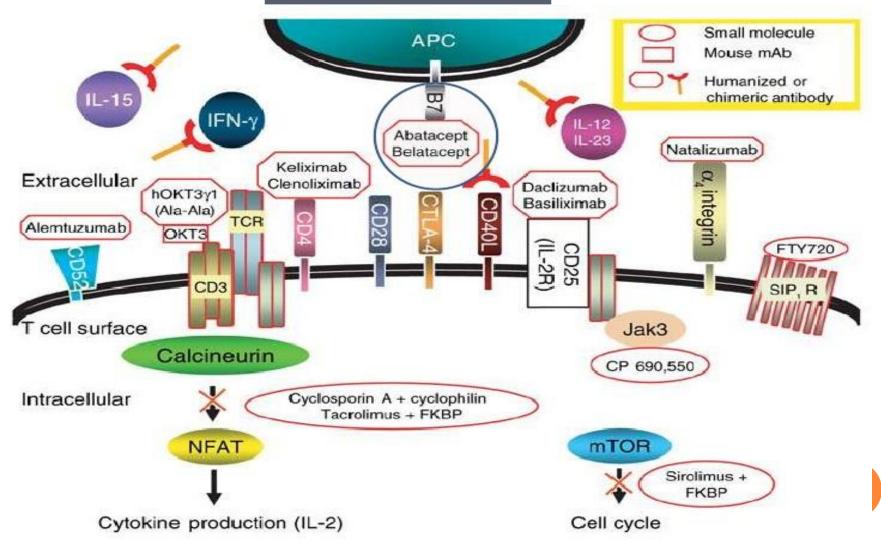
Inosiplex

DTC (Diethyl Carbamate)

 Immunomodulators for DiGeorge Syndrome Thymosin


FLOW CHART:

<u>INTERACTIONS</u>


ACTION OF IMMUNOSUPPRESSANTS

	DRUG	ACTION	ADVERSE EFFECTS
Antigen	Alemtuzumab Antithymocyte globulins	Depletion of T lymphocytes Destruction of T lymphocytes	Cytokine release syndrome; neutropenic, pancytopenia Profound immunosuppression
	Muromonab-CD3	Destruction of T lymphocytes	Cytokine release syndrome
T-cell receptor	Cyclosporine	Blocks calcineurin and inhibits IL-2 synthesis	Nephrotoxicity, neurotoxicity, hepatotoxicity
Dephosphorylation of NFATc IL-2 gene promotion IL-2	Tacrolimus (FK506)	Blocks calcineurin and inhibits IL-2 synthesis Blocks the IL-2 receptor	Nephrotoxicity, neurotoxicity, diabetes Gastrointestinal disorders
IL-2 receptors	Daclizumab Sirolimus	Blocks the IL-2 receptor Blocks cytokine-stimulated cell proliferation	Gastrointestinal disorders Hyperlipidemia, thrombocytopenia, leukopenia, headache, nausea
Progression into cell cycle		Inhibits purine synthesis	Bone marrow suppression, hepatotoxicity, thrombocytopenia, anemia, neoplasia
Cell proliferation	Mycophenolate mofetil	Inhibits purine synthesis	Gl upset, nausea, diarrhea, leukopenia, tumors, increases susceptibility to infection

FLOW CHART

FLOW CHART

ANTIGEN ++++ RECEPTOR

- Alemtuzumab
- ATG
- Muromonab CD3

RECEPTOR+++++ IL 1

Anakinra

RECEPTOR+++++ TNFα

- Adalimumab
- Etanercept
- Infliximab
- Thalidomide

RECEPTOR++++++ Ig E

Omalizumab

RECEPTOR +++ ACTIVATED CALCINEURIN

- Cyclosporin
- Tacrolimus

CALCINEURIN/ N.F.A.T c	
	N.F.A.T / IL 2 gene
	IL 2 gene /
RIBOSOMES	

- Anti CD25 (IL-2 R alpha) on T lymphocytes
 - Basiliximab
 - Daclizumab

INTERLEUKIN-2 RECEPTOR antagonist:-

 Both agents have been approved for prophylaxis of acute rejection in renal transplantation.

MEMBRANE IL 2 RECEPTOR+++ CELL CYCLE

Sirolimus

CYTOPLASMIC RECEPTORS+++ GENES

- Glucocorticoids
- 0

PROGRESSION OF CELL CYCLE

- Azathioprine
- Mycophenolate
- Methotrexate

TRANSPLANT: APPLIED PHARMACOLOGY

SUMMARY

- Graft rejection is an immunologic response displaying the attributes of specificity, memory, and self / nonself recognition. There major types of rejection reactions:-
- Hyperacute rejection mediated by preexisting host antibodies to graft antigens.
- Acute graft rejection in which T helper cells mediate tissue damage
- Chronic rejection involve both cellular and humoral immune components.

TRANSPLANT: APPLIED PHARMACOLOGY

CONT.....

- The immune response to tissue antigens encoded within MHC is the strongest force in rejection.
- The match between a recipient and potential graft donor is assessed by typing MHC class I and class II antigens.
- The process of graft rejection occurs in two stages –sensitization and effector stage.
- Certain sites in the body including cornea of eye, brain, testes, and uterus do not reject transplants despite genetic mismatch between donor and recipient.
- Specific tolerance to alloantigens is induced by exposure to them in utero or by injection of neonates.

CLINICAL PHARMACOLOGY IMMUNOSUPPRESSANT IN ORGAN TRANSPLANT

Immunosuppressive drug	s used to treat	transplant rejection
Calcineurin inhibitors		

Ciclosporin

Tacrolimus

mTOR inhibitors

Sirolimus

Everolimus

Anti-proliferatives

Azathioprine

Mycophenolic acid

Corticosteroids

Prednisolone

Hydrocortisone

Antibodies

Monoclonal anti-IL-2Rα receptor antibodies

Basiliximab

Daclizumab

Polyclonal anti-T-cell antibodies

Anti-thymocyte globulin (ATG)

CLINICAL PHARMACOLOGY IMMUNOSUPPRESSANT IN ORGAN TRANSPLANT

Classification of Immunosuppressive Therapies Used in Organ Transplantation

- Glucocorticoids
- Small-molecule drugs
 - Immunophilin-binding drugs
 - Calcineurin inhibitors
 - Cyclophilin-binding drugs: cyclosporine,ISA(TX)247
 - FKBP12-binding drugs: tacrolimus, modified release tacrolimus
 - · Target-of-rapamycin inhibitors: sirolimus, everolimus
 - Inhibitors of nucleotide synthesis
 - Purine synthesis (IMPDH) inhibitors
 - Mycophenolate mofetil
 - Enteric-coated mycophenolic acid
 - Mizoribine
 - · Pyrimidine synthesis (DHODH) inhibitors
 - Leflunomide
 - FK778
 - Antimetabolites: azathioprine
 - Sphingosine-1-phosphate-receptor antagonists: Fingolimod

CLINICAL PHARMACOLOGY IMMUNOSUPPRESSANT IN ORGAN TRANSPLANT

Protein drugs

- Depleting antibodies (against T cells, B cells, or both)
 - Polyclonal antibody: horse or rabbit antithymocyte globulin
 - Mouse monoclonal anti-CD3 antibody (muromonab-CD3)
 - Humanized monoclonal anti-CD52 antibody (alemtuzumab)
 - B-cell-depleting monoclonal anti-CD20 antibody (rituximab)
- Nondepleting antibodies and fusion proteins
 - Humanized or chimeric monoclonal anti-CD25 antibody (daclizumab, basiliximab)
 - Fusion protein with natural binding properties:CTLA-4-lg Belatacept
- Intravenous immune globulin

IMMUNOSUPPRESSION IN ORAGN TRANSPLANTATION

INDUCTION REGIMEN

Given in perioperative period.

Cyclosporine+ Predisolone+ Azathioprine

MAINTENANC -E REGIMEN

Given for prolonged period.

Cyclosporine+ Predisolone+ Azathioprine

ANTI-REJECTION REGIMEN

Given to suppress an episode of acute rejection.

Methylprednis olone 0.5-1g i.v. daily for 3-5 days.

CLINICAL PHARMACOLOGY

		Table 1				
Oral Immunosuppressants Commonly Used in Maintenance Therapy						
Drug	Type of Transplant	Metabolism	Adult Dosing Guide			
Cyclosporine (Neoral)	Kidney, liver, heart	Liver (CYP3A4)	Kidney: 9 ± 3 mg/kg/day* Liver: 8 ± 4 mg/kg/day* Heart: 7 ± 3 mg/kg/day*			
Cyclosporine (Sandimmune)	Kidney, liver, heart	Liver (CYP3A4)	10 to 15 mg/kg/day, then tapered by 5%/week to 5 to 10 mg/kg/day*			
Tacrolimus	Kidney, liver (heart— not FDA approved)	Liver (CYP3A4)	Kidney: 0.2 mg/kg/day in two divided doses every 12 hours* Liver: 0.1 to 0.15 mg/kg/day in two divided doses every 12 hours*			
Sirotimus	Kidney (heart, lung, islet cell—not FDA approved)	Liver (CYP3A4)	Loading dose: 6 mg; maintenance dose in combination with cyclosporine is 2 mg/day* In absence of cyclosporine, dose is about four times higher*			
Azathioprine	Kidney	Erythrocytes, liver	3 to 5 mg/kg/day; then 1 to 3 mg/kg/day			
Mycophenolate mofetil	Kidney, liver, heart	Liver (glucunoryl transferase)	1,000 mg twice daily			
Mycophenolate sodium	Kidney	Liver (glucunoryl transferase)	720 mg twice daily			
THE RESERVE TO SECURE						

* Further during needs to be adjusted based on recommended trough concentration guidelines of the institution.

GROUP: IMMUNOSUPPRESSANT

Commonly used Drugs

Cyclosporine (sandimmune)

Mycophenolaten mofetil (cell cept)

Tacrolimus (FK506,Prograf)

Azathiprine (imuran)

Muromanab-CD3 (orthoclone OKT3)

REFERENCES

- Basic & Clinical Pharmacology, 14th Edition
 Bertram G. Katzung
- Katzung & Trevor's Pharmacology: Examination
 & Board Review, 12th Edition
- Lippincott illustrated review Pharmacology: 6th
 Edition

Email address for queries on the topic

drshams11@hotmail.com