(1) PHARMACOTHERAPY OF GOUT

(ACUTE)

DR SHAMS SULEMAN

LEARNING OBJECTIVES

- Classify drugs used to treat gout
- Describe the role of NSAIDs in the treatment of gout
- Describe the role of Glucocorticoids in the treatment of gout
- Describe the mechanism of action of various drugs (Colchicine, Probenecid, Allopurinol, Febuxostat) used in the treatment of Gout

LEARNING OBJECTIVES

- Discuss the adverse effects of anti-gout drugs
- Describe the drug interactions of Allopurinol and Probenecid
- Enlist the drugs causing hyperuricemia
- Discuss the mechanism by which drugs causes hyperuricemia

Physical Examination

FIGURE 2. Multiple tophi overlying both knees in a patient with unrecognized gout.

Key Points

- Gout is due to deposition of urate crystals in joints leading to inflammation.
- Diagnosis is by history and polaroid microscopy of synovial fluid.
- High serum uric acid does NOT mean the patient has gout.
- Gout is one of the most treatable arthritic conditions.
- Treat acute attack and then consider prophylaxis of future episodes.
- If untreated, can develop into chronic tophaceous gout.

Drugs Used in Gout				
	Gout is a familial metabolic disease <u>characterized by</u> recurrent episodes of acute arthritis due to deposits of monosodium urate in joints and cartilage.			
	Formation of uric acid calculi in the kidneys may also occur.			
	It is usually associated with high serum levels of uric acid, a poorly soluble substance that is the major end product of purine metabolism.			
	In most mammals, <u>uricase</u> converts uric acid to the more soluble allantoin ; this enzyme is absent in humans.			
	Treatment of gout is aimed at relieving the acute gouty attack and preventing recurrent gouty episodes and urate lithiasis.			

GOUT CLINICAL PRESENTATION

- Mono sodium urate crystals
- Allanoin
- Hyperurecemia and gout
- Joints and cartilages, tophi
- Renal calculi, interstitial nephritis
- Arthritis mutilans

DEFINITION

It is derived from the Latin word *gutta*, meaning "a drop" (of liquid).

Gout is a metabolic disorder characterized by elevated serum uric acid levels and deposits of urate crystals in synovial fluids and surrounding tissues.

Uric Acid Metabolism

Cause of hyperuricaemia

90% have decreased excretion
10% have increased production
1% have in born error of metabolism like HGPRT def or PRPP overactivity

TABLE: DRUGS AND CONDITIONS THAT PREDISPOSE PATIENTS TO GOUT

Drugs That Decrease Serum UA Levels

- Allopurinol
- Diuretics (thiazide and loop)
- Febuxostat
- NSAIDs
- Probenecid
- Sulfinpyrazone

Drugs That
Increase Serum UA
Levels

- Cyclosporine
- Ethambutol
- Ethanol
- Niacin
- Pyrazinamide
- Salicylates

Diseases Associated with Gout

- Alcohol abuse
- Chronic kidney disease
- Genetic or acquired cause of UA overproduction (eg, inborn error of purine metabolism or psoriasis, myeloproliferative, or lymphoproliferative disease)
- Hyperlipidemia
- Hypertension
- Metabolic syndrome
- Obesity
- Type 2 diabetes mellitus
- Lead intoxication

NSAID = nonsteroidal anti-inflammatory drug; UA = uric acid. Adapted from references 11, 14-17.

Table 2

Medications Associated With Risk of Hyperuricemia and Gout

Uric Acid-Elevating Medications Uric Acid–Decreasing Medications

ACE inhibitors/ARBs (excluding losartan) Aspirin (low-dose) Beta-blockers Diuretics Calcium channel blockers Losartan

ARB: angiotensin receptor blocker. Source: References 18, 22-26.

Hyperuricemia

Biologically significant hyperuricemia (≥6.8 mg/dL) is less than laboratory defined hyperuricemia (≥8.0 mg/dL)

The Hyperuricemia Cascade

Gout Stages

SCIENCEPHOLOLIBRAN

Monosodium Urate (MSU) Crystals

Calcium Pyrophosphate Dihydrate (CPPD) Crystals

Rod or rhomboid, weak positive birefringence Blue when parallel to compensator ray

Needle shaped, strong negative birefringence

Dietary advices:

Phases of Gout and Treatment Goals

Prevent gouty arthritis Terminate flare

Prevent repeated flares Reverse / prevent complications

DRUGS FOR ACUTE GOUT

NSAIDs
 Nonselective Cox inhibitors
 Selective Cox 2 inhibitors

Corticosteroids

Colchicine

Anakinra

DRUGS FOR CHRONIC GOUT

Uricosuric Agents

- (increase urinary excretion of uric acid)
- oProbenecid
- Sulfinpyrazone
- Benzobramone
- Lesinurad

Adjuvant drugs: not used primarily for gout

- Losartan
- Fenofibrate
- Atorvastatin
- Vitamin C
- Rilonacept

DRUGS FOR CHRONIC GOUT

Uricostatic agents

(Decreasing Production Of uric acid)

Allopurinol

oOxypurinol

oFebuxostat

Uricolytic agents

- Rasburicase
- Pegloticase
- Polyethylene glycol uricase

Treatment options for therapeutic goal

Acute

gout

Treatment of acute flares

NSAIDs

- Colchicine
- Prednisolone
- Intra-articular corticosteroids
- Adrenocorticotropic hormone
- IL-1 inhibitors
- (canakinumab, rilonacept, anakinra)

Prophylaxis against acute flares

NSAIDs
 Colchicine
 IL-1 inhibitors
 (canakinumab, rilonacept, anakinra)

Urate-lowering therapy for chronic gout

- Xanthine oxidase inhibitors (allopurinol, febuxostat)
- Uricosuric agents
- (probenecid, sulfinpyrazone, benzbromarone)
- Pegloticase

Chronic Gout

Treatment of Acute Attack

AIM- to reduce symptoms

- NSAID
- Colchicine
 - GI side effects,
 - Most effective in 1^s 24 hours
- Corticosteroid
 - If NSAID and colchicine contraindicated

Preventing Flares

Khanna D, Khanna PP, Fitzgerald JD, et al. 2012 ACR Guidelines for Management of Gout. Part 2. Arth Care & Res 2012; 64 (10): 1447-61.

Starting urate -lowering drugs:

Urate lowering drugs:

Started 1-2 weeks after resolution of the acute attack.

Prevention of acute flares during maintenance trt:

Colchicin or NSAIDs for 3-6 months.

Flares

Should be treated without interruption of uratelowering therapy.

NSAIDS IN GOUT

ALL can be used EXCEPT

- Aspirin
- Tolmetin
- Salicylates

COMMONLY USED AGENTS

- Indomethacin50 mg thrice daily
- Ibuprofen
- Flurbiprofen
- Oxaprazone = additionally excretes urates

Treatment

High Dose NSAIDs Rapid response Naproxen 750 mg initially then 500mg bid Diclofenac 75-100 mg intially then 50 mg bid or tid Indomemethacin 75 mg initially the 50 mg bid or gid

NSAIDs

- Strong anti inflammatory drugs
- Use in patients without contraindication
- Use maximum dose/potent NSAID

e.g., Indomethacin 50 mg po t.i.d. Diclofenac 50 mg po t.i.d. Ketorolac 10 mg q4-6hrsr, Napoxen, Piroxicam

- continue until pain/inflammation absent for 48 hours
- MOA: inhibit urate crystal phagocytosis and chemotatic migration of leukocytes into inflammed joints.
- NSAIDs are not recommended for long term.
- (Salicylates are not used , have tendency to raise uric acid)

ASPIRIN IN GOUT

- Aspirin is not used at low dose ≤ 2.6 g/d
 (competes with physiological renal excretion of uric acid)
- Aspirin can be used at high doses >3.6 g/d Uricosuric action

Corticosteroid

Use when NSAIDS/Cholchicine risky or contraindicated e.g.,: elderly

> hypertensive peptic ulcer disease renal impairment

liver impairment

use when • NSAIDS ineffective

Mode of administration –

- intra articular Depomedrol 40-80 mg with lidocaine.
- Oral Prednisone 30-40 mg qd for 3-4 days, taper by 5 mg every 2-3 days & stop over 1-2 wks

GLUCOCORTICOIDS

- Reduce the migration of inflammatory cells
- Inhibit Phospholipase A₂
- Inhibit prostaglandins and leukotriene synthesis

Oral Prednisone

Dose is 30–50 mg/d for 1–2 days Tapered over 7–10 days

Intra-articular Triamcinolone injection

10 mg (small joints) 30 mg (wrist, ankle, elbow) and 40 mg (knee)

COLCHICINE

- Alkaloid isolated from a plant, *Colchicum Autumnale*
- While NSAIDs are first-line drugs, colchicine is reserved for very severe acute attacks
- Relieves
 - the pain and inflammation of gouty arthritis in 12–24 hours
 - Without altering the production or excretion of urates.

Colchicine

Is neither analgesic nor anti – inflammatory, but it suppress gouty inflammation.

It does not inhibit the synthesis or promote the excretion of uric acid, and has no effect on blood uric acid levels.

COLCHICINE PHARMACOKINETICS

- Oral drug
- Half-life of 9 hours
- Excreted by intestinal tract & Urine

COLCHICINE: MOA

- Inhibitor of microtubule assembly
- Binds to the intracellular protein tubulin
- Prevents its polymerization into microtubules
- Arrests structural moiety and the neutrophil are immobilized
- Leading to the inhibition of leukocyte migration and phagocytosis

COLCHICINE: MOA

- Colchicine inhibit glycoprotein release
 - Other actions-
 - arrest of mitosis in metaphas "spindle poison"
 - increases gut motility.
 - Antipyretic , respiratory depressant
 - Inhibit histamine , Insulin release
 - hypertensive at high dose , Increase vasomotor tone
 - direct vasoconstrictor

COLCHICINE DOSE

• PROPHYLACTIC DOSE :

0.6 mg 1-3 times daily.

• DURING AN ACUTE ATTACK OF GOUT:

- Initial dose of 0.6 mg
- Followed by 0.6 mg every 2 hours
- Until pain is relieved or nausea and diarrhea appear.

Total dose can be given intravenously if necessary, but it should be remembered that as little as 8 mg in 24 hours may be fatal.

(Intravenous use of colchicine is not recommended by FDA)

COLCHICINE: INDICATIONS

- Very high plasma levels of uric acid in patients with gout
- Several acute attacks of gouty arthritis in a short period of time
- Gouty tophi

COLCHICINE ADVERSE EFFECTS

Acute intoxication:

- Burning throat pain
- Bloody diarrhea
- Hematuria
- Fatal ascending central nervous system depression

More common with parenteral therapy Treatment is supportive. Parenteral use = FDA disapproved in 2008

COLCHICINE.....

ADVERSE EFFECTS

- Diarrhea; rate and use limiting
- o Hair loss
- Bone marrow depression
- Alopecia
- Acute renal failure
- Hepatic necrosis

CHRONIC TOXICITY

- Agranulocytosis
- Peripheral neuritis
- Myopathy

interaction with;					
Sr. No.	Category of drug	Example from class	Interaction		
1.	Cholesterol drugs	atorvastatin, fluvastatin, lovastatin, gemfibrozil	Serious muscle damage.		
2.	Antiarrhythmic drug.	Digoxin,			
3.	HIV drugs,	indinavir, atazanavir, nelfinavir, saquinavir, or ritonavir.			
4.	Antidepressressants	nefazodone.			
5.	Antibiotics,	clarithromycin or telithromycin			
5.	Antifungal drugs	ketoconazole or itraconazole.	Increases concentrationof colchicine		
7.	Calcium channel blocker	verapamil or diltiazem	stomach pain, constipation, diarrhea, nausea, c vomiting.		

Interleukin-1 Antagonists (Canakinumab, Anakinra)

• MOA:

- Anakinra: Competitively inhibits IL-1 from binding to the IL-1 type 1 receptors
- Canakinumab: Recombinant IL-1β monoclonal antibody
- Dose:
 - Anakinra: 100mg SQ daily x 3 days
 - Canakinumab: 150mg SQ once
- Role in Therapy:
 - Canakinumab is approved in the EU for acute gout
 - FDA has not approved either in America for gout

Prevention of Further Attacks **AIM - Prophylaxis**

- Lifestyle changes to minimise risk factors
- Drug therapies
 - Xanthine oxidase inhibitors e.g. Allopurinol
 - Uricosuric agents e.g. Probenecid
- Need to be taken for life
- Can precipitate an acute attack therefore give together with NSAID or colchicine for 2 months.

REFERENCES

- Basic and Clinical Pharmacology: Katzung BG, Masters SB, Trevor AJ. 14th Edition.
- Katzung & Trevor's Pharmacology: Examination & Board Review. 12th Edition
- Lippincott's Illustrated Reviews: Pharmacology, Clark MA, Finkel R, Rey JA, Whalen K. 7th Edition
- Goodman & Gilman's The Pharmacological Basis of Therapeutics: Brunton LL. 12th Edition

Email address for queries on the topic

drshams11@hotmail.com