1. SKELETAL MUSCLE RELAXANTS

(PERIPHERAL: DEPOLARIZING)

DIRECTLY ACTING

DR SHAMS SULEMAN

LEARNING OBJECTIVES

- Classify skeletal muscle relaxants.
- Describe the mechanism of action of Non depolarizing and depolarizing neuromuscular blockers.
- Discuss the differences between depolarizing and non depolarizing skeletal muscle relaxants
- Describe the therapeutic uses and adverse effects of skeletal muscle relaxants
- Describe centrally acting skeletal muscle relaxants (Spasmolytics)

LEARNING OBJECTIVES

- Name drugs causing malignant hyperthermia
- Discuss the rationale for use of Dantrolene in the treatment of malignant hyperthermia
- Discuss succinylcholine apnea and its management

Introduction

What are neuromuscular blocking drugs?

These are agents that act peripherally at neuromuscular junction/muscle fibre itself to block neuromuscular transmission.

Why do we need them?

In order to facilitate muscle relaxation for surgery & for mechanical ventilation during surgery or in ICU

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Physiologic of Muscle Contraction

Arriva of an action

potential at the motor

nerve **prminal**

Influx of calcium

Diffusion of acetylcholine across the synaptic cleft Activation of nicotinic receptors on motor end

Muscle contraction is then initiated by excitation-contraction coupling

SR release Ca++

Ca⁺⁺ initiates attractive forces between Actin & Myosin filaments

Ca⁺⁺ pumped back into SR

Released
acetylcholine is
quickly removed from
the end plate region

Diffusion & enzymatic destruction by the local acetylcholinesterase enzyme

MECHANISMS OF

NEUROMUSCULAR BLOCKADE Blocking the

effect of physiological agonist Non-depolarizing

Tubockade

Tubockade

Excess of depolarizing agonist

Depolarizing blockade

- Acetylcholine
- Succinylcholine

SEQUENCE OF PARALYSIS OF SKELETAL MUSCLES

- Motor muscle weakness to total flaccid paralysis
- Muscles capable of rapid movement like eye, jaw, larynx are paralyzed first
- Then neck, limbs, trunk are paralyzed
- Diaphragm and other respiratory muscles are last to be paralyzed
- Recovery occurs in reverse order ie diaphragm to be the first to recover and facial muscles are last of all

CHOLINERGIC ANTAGONISTS

ANTIMUSCARINIC AGENTS

Atropine
Cyclopentolate
Ipratropium
Scopolamine
Tropicamide

GANGLIONIC BLOCKERS

Mecamylamine Nicotine

NEUROMUSCULAR BLOCKERS

Atracurium
Cisatracurium
Doxacurium
Metocurine
Mivacurium
Pancuronium
Rocuronium
Succinylcholine

Tubocurarine Vecuronium

CLASSIFICATION

PERIPHERALLY ACTING

Neuromuscular blocking agents

- 1. Depolarizing agents
- 2. Non Depolarizing agents

Directly acting

- Dantrolene sodium
- Quinine Sulphate
- Others: Botulinium toxin

CENTRALLY ACTING (SPASMOLYTICS)

Depolarizing agents

Action lasts less than 08 minutes

- Succinylcholine (Suxamethonium)
- Suxethonium
- Decamethonium

Succinylcholine may stimulate

- ✓ ganglionic nicotinic receptors
- ✓ cardiac muscarinic receptors

NEUROMUSCULAR BLOCKING AGENTS

Non depolarizing agents

- Isoquinolone derivatives (IQ)
- Steroid derivatives (SD)

Non depolarizing agents.....

- a):- LONG ACTING: 30 to 100 minutes
- D Tubocurarine; also ganglion blocker
- Gallamine; anticholinergic
- Pancuronium (SD)
- Doxacarium (ID)
- Pipecuronium (SD)
- Metocurine (ID)

Non depolarizing agents.....

b):- INTERMEDIATE ACTING; 20 to 60 minutes

- Vecuronium (SD)
- Atracurium (ID)
- Cisatracurium (ID)
- Rocuronium (SD); fastest onset of action

Non depolarizing agents.....

c):- SHORT ACTING; 10 to 20 minutes

Mivacurium (ID)

OVEIVALE CLASSIFICATION

BASED ON DURATION OF ACTION

- Ultra short acting: Succinylcholine(Dep)Gantacurium (investigational)
- Short acting: Mivacurium
- Intermediate acting: Vecuronium, atracurium, cisatracurium, rocuronium
- Long acting: D-Tubocurarine, metocurine, pancuronium,

dovacuruum

PHARMACOKINETICS OF NEUROMUSCULAR BLOCKERS

- Neuromuscular blockers contain quaternary ammonium groups.
- They are highly polar and poorly soluble in lipid.
- Inactive if given by mouth.
- Penetrate membranes very poorly.
- Do not enter cells or cross the BBB.
- Always given IV or IM.

CLINICAL USES

- Surgical Relaxation
- Tracheal Intubation
- Control of Ventilation
 - For critically ill patients
 (Involving trauma surgery, CPDD, pneumonia etc. on ventilators in ICUs)
- Treatment of Convulsions
 - Status epilepticus or local anesthetic toxicity
 (Effective in eliminating the muscular manifestations of the seizures)

CLINICAL USES

- Facilitate laryngoscopy, bronchoscopy, esophagoscopy
- In Modified ECT: to prevent fractures
- As a treatment of crush injures of chest
- Rx of poisoning due to convulsant drugs e.g. strychnine

Spasmolytics (centrally acting muscle relaxants)

 Reduce spasticity in a variety of painful conditions e.g. backache etc.

CONTRAINDICATIONS

- Myasthenia gravis
- Concomitant use of aminoglycosides
- Asthmatic patients
- Hypotensive states
- Succinylcholine in children
- Hyperkalemia (caution with other conditions/drugs)
- Severe liver/kidney disease
- Atypical pseudocholinesterase in patients

SUCCINYL - CHOLINE

Pharmacokinetics

- Succinylcholine is injected intravenously.
- Its brief duration of action results from redistribution and rapid <u>hydrolysis</u> by plasma pseudocholinesterase.
- It is sometimes given by continuous infusion to maintain a longer duration of effect.
- Drug effects rapidly disappear upon discontinuation.

- ED_{ss}0.51-0.63mg/kg.
- Onset of action-30-60sec.
- Duration of action-9-13 min.
- Shortest acting neuromuscular blocking agent.
- Metabolised by- butrycholinesterase or
 - plasma cholinesterase or
 - pseudocholinesterase

PLASMA CHOLINESTERASE

- Has an enormous capacity to hydrolyze succinylcholine
- Only a small percentage of the IV dose of Succinylcholine reaches the NMJ
- The amount of plasma cholinesterase at the motor end plate == negligible
- So action of succinylcholine is terminated by its diffusion away from the end plate into ECF and plasma
- Therefore, the circulating levels of plasma cholinesterase influence the duration of action of succinylcholine

Qualitative analysis of Butrycholinesterase

- Dibucain number-
- it is a amide based local anesthetic that inhibits normal butrycholinesterase by 80%.
 Abnormal enzyme by 20%.
- Flouride number

DURATION OF ACTION

- Extremely short (5–10 minutes)
- Rapid hydrolysis by:-
- Pseudocholinesterase and butyrylcholinesterase in plasma & liver
 - Primary metabolite = succinyl monocholine
 - Rapidly broken down to succinic acid and choline
- A non depolarizing blocker, Mivacurium is also eliminated by these enzymes

 Scuccinycholine on breakdown by butrycholinesterase produces

1- succinylmonocholine - succinic acid & choline

2-choline.

 At neuromuscular junction effect of succinylcholine terminated by diffusion.

DEPOLARIZING NEUROMUSCULAR BLOCKER

- Succinylcholine (also called Suxamethonium)
- Succinylcholine is two acetylcholine molecules linked end-to-end
- Phase I Depolarizing block
- Phase II Desensitizing block

1. Depolarizing Muscle Relaxant

Succinylcholine

Mechanism of action:

- Physically resemble Acetylcholine
- Act as acetylcholine receptor agonist
- Not metabolized locally at NMJ
- Metabolized by pseudocholinesterase in plasma
- Depolarizing action persists > Acetylcholine
- Continuous end-plate depolarization causes muscle relaxation

- Phase 1 block: acts as an agonist of ACh to bind with N_M receptor at NMJ membrane depolarization-transient fasciculations followed by paralysis
- Phase 2 block: desensitizationmembrane repolarizes, hyposensitive to ACh

SUCCINYLCHOLINE: M.O.A

Phase IDepolarising phase

Phase II
Desensitising phase

Two Phases:

Phase I

- Membrane depolarization
- Refractory period extends as long as succinylcholine is present
- Initial contraction, then flaccid

paralysis

Phase II

- Membrane repolarization
- Desensitization of the nACh receptor

PHASE I – DEPOLARIZING BLOCK

- Acts as acetylcholine with a longer effect at NMJ
- Opens Na channels causing depolarization of the motor end plate
- Causes contractions of muscle motor units
- Because of the lack of pseudo cholinesterase at NMJ, the depolarized membranes remain depolarized and unresponsive to subsequent impulses with no end plate repolarization ("repriming")
- Resulting in a state of depolarizing blockade

PHASE I – DEPOLARIZING BLOCK

 With no end plate repolarization, a flaccid paralysis results

- The initial depolarization is often accompanied by twitching and fasciculations
- This Phase I (depolarizing) block is AUGMENTED, not reversed, by cholinesterase inhibitors

PHASE II - DESENSITIZING BLOCK

- Depolarization decreases and the membrane becomes repolarized
- Despite this the membrane cannot easily be depolarized again because it is **Desensitized**
- The mechanism is unclear
- o It is postulated:

succinylcholine enters the channel and block the channel from inside causing desensitization

PHASE II - DESENSITIZING BLOCK

- The channels behave as if they are in a prolonged closed state
- Phase II block of Succinylcholine is identical to that of Nondepolarizing block

(i.e. a non-sustained twitch response to a tetanic stimulus)

with possible reversal by acetylcholinesterase inhibitors

PHARMACODYNAMICS

NEUROMUSCULAR TRANSMISSION

- Response of a peripheral nerve to transdermal electrical stimulation
- 1. Single twitch stimulation
- 2. Train of four (TOF) stimulation
- 3. Tetanic stimulation
- 4. Double burst
- 5. Post tetanic potentiation

- o Cardiovascular Effects:-
 - Low dose
 - Direct myocardial depressant effects
 - Muscarinic (Vagal) stimulation and parasympathetic ganglionic stimulation
 - Bradycardia
 - High dose
 - Positive inotropic and chronotropic effects

- Effects on Electrolytes:-
- Hyperkalemia
 - During prolonged depolarization
 - In patients with
 - extensive injury to soft tissues
 - Burns
 - Trauma
- Can cause cardiac arrest

- Effects on Eye:-
- Increased Intraocular Pressure
 - Peaking at 2–4 minutes, and declining after 5 minutes
 - Tonic contraction of myofibrils and/or transient dilation of ocular Choroidal blood vessels
- Contraindicated in trauma to anterior chamber ("open globe")

- Effects on GIT:-
- Increased Intragastric Pressure
 - In heavily muscled patients related to fasciculation
 - Increases the risk for regurgitation and aspiration of gastric contents
 - More in patients with delayed gastric emptying
 - Diabetes mellitus
 - Traumatic injury
 - Esophageal dysfunction
 - Morbid obesity

REVERSAL OF DEPOLARIZING BLOCKADE

- Short duration of action
- Action terminates itself in 5 10 min
- Give ventilatory support

Succinylcholine-Adverse Side Effects

- Cardiac Dysrhythmia
- Fasciculations
- Hyperkalemia
- Myalgias
- Myoglobinuria
- Increased Intraocular Pressure
- Increased Intracranial Pressure
- Increased Intragastric Pressure
- Trismus
- Malignant Hyperthermia Trigger

Succinylcholine

Advantages:

- Most commonly used for Tracheal intubation
- Rapid onset (1-2 min)
- Good intubation conditions relax jaw, separated vocal chords with immobility, no diaphargmatic movements
- Short duration of action (5-10 minutes)
- Dose 1-1.5mg/kg
- Used as continous infusion occasionally

Disadvantages:

- Cardiovascular: unpredictable BP, heart rate and arrhythmias
- Fasciculation
- Muscle pain
- Increased intraocular pressure
- Increased intracranial pressure
- Hyperkelemia: k+ efflux from muscles, life threatening in Cardiac Heart Failure, patient with diuretics etc

Succinylcholine Adverse Effects – Malignant Hyperthermia (MH)

Malignant Hyperthermia

- Very rare condition 1:15,000
- Patient experiences a rapid increase of temperature, metabolic acidosis, rhabdomyolysis, and DIC
- Treatment includes administration of Dantrolene and external means of temp. reduction

MALIGNANT HYPERTHERMIA,

- Idiosyncratic condition :Genetic condition
- Triggered by general anesthesia involving halothane protocols
- That include succinylcholine or tubocurarine

HYPERTHERMIA

- Succinylcholine, halothane
- Life threatening condition
- Contracture, rigidity & heat production from skeletal muscle hyperthermia, metabolic acidosis, tachycardia
- Uncontrolled release of Ca⁺² from SR (Ryanodine receptor)
- Genetic predisposition
- Dantrolene, rapid cooling 100% oxygen, control of acidosis

How Dantrolene works as antidote for succinylcholine?

DANTROLENE: MOA

(HYDANTOIN DERIVATIVE)

- Acts on the Ryanodine receptor (RyR1) channels of the ssarcoplasmic reticulum of skeletal muscle.
- These channels also release Ca++
- It interferes with the release of the Ca++
- Resulting in decreased contraction of skeletal muscle
- Thus decreasing the body temperature
- Given IV
- Cardiac & smooth muscles are depressed slightly

DANTROLENE (CONTD.)

ADVERSE EFFECTS

- Sedation
- Muscular weakness
- Fatigue
- Rashes
- Jaundice/hepatitis
- Diarrhea
- Should be used with caution in concomitant hepatic, renal ,cardiac and pulmonary disorders.

BOTULINUM TOXIN (BONT)

Chemodenervati
 on & local
 paralysis in
 muscle

USES

- Cosmetic
- Cerebral palsy
- Dystonia
- Overactive bladder incontinence
- Chronic

SUCCINYLCHOLINE APNEA

- Typical example of Idiosyncrasy
- Seen in patients with
 - Atypical/absent pseudo cholinesterase due to genetic defect
 - Liver diseases
- Metabolism of succinylcholine is slow
- Results in:-
 - Severe neuromuscular blockade
 - Respiratory paralysis with prolonged apnoea

TREATMENT OF SUCCINYLCHOLINE APNEA

- No antidote
- Fresh frozen plasma/ fresh whole blood
- Anesthesia should be continued till recovery from neuromuscular blockade
- Artificial ventilation till the recovery of active respiration

CLINICAL PHARMACOLOGY: SUCCINYLCHOLINE

- The negative inotropic and chronotropic responses
- With large doses of succinylcholine, positive inotropic and chronotropic effects
- Stimulates
 - Autonomic cholinoceptors at both sympathetic and parasympathetic ganglia
 - Muscarinic receptors in the heart (eg, sinus node)
- Cardiac arrhythmias, especially when administered during halothane anesthesia
- Treatment:-
 - Glycopyrrolate/ Atropine : for negative inotropic and chronotropic effects

CLINICAL PHARMACOLOGY: SUCCINYLCHOLINE

- Bradycardia observed when a second dose of succinylcholine is given less than 5 minutes after the initial dose
- Direct myocardial effects, increased muscarinic stimulation, and ganglionic stimulation contribute to this bradycardia
- This transient bradycardia prevented by
 - Thiopental
 - Atropine
 - Ganglionic -blocking drugs
 - Pretreating with a small dose of a nondepolarizing muscle relaxant (eg, rocuronium)

DON'T FORGET GENERAL ANESTHESIA

QUIZ

Succinylcholine is a:- select true answer

- a) Pharmacological antagonist at Muscarinic receptors with lesser antagonism at nicotinic receptors
- Pharmacological antagonist at nicotinic receptors with lesser agonism at muscarinic receptors
- Pharmacological agonist at nicotinic receptors with lesser agonism at muscarinic receptors
- d) Pharmacological agonist at muscarinic receptors with lesser antagonism at nicotinic receptors

REFERENCES

- Basic and Clinical Pharmacology: Katzung BG,
 Masters SB, Trevor AJ. 14th Edition.
- Katzung & Trevor's Pharmacology: Examination & Board Review, 12th Edition
- Lippincott's Illustrated Reviews: Pharmacology,
 Clark MA, Finkel R, Rey JA, Whalen K. 7th Edition
- Goodman & Gilman's The Pharmacological Basis of Therapeutics: Brunton LL. 12th Edition

Email address for queries on the topic

drshams11@hotmail.com