

12.06.2023

Immunity

Prof Dr. Saeed ur Rahman MBBS, M.Phil, Ph.D, CHPE

Objectives

At the end of lecture, students of 3^{rd} year should be able to

- 1. Describe the functions & types of immunity
- 2. Describe the characteristics, origin and functions of cells of immune system.
- 3. Enlist the three lines of defenses and outline their properties
- 4. Compare innate and acquired immunity.
- 5. Compare the mechanism of active & passive immunity.

The Immune system

- Immunity is a state of relative resistance to disease.
- A functional immune system confers a state of health through effective elimination of infectious agents (bacteria, viruses, fungi, and parasites) and control of malignancies by protective immune surveillance.
- It is a body-wide network of cells and molecules.

SIGNIFICANCE OF THE IMMUNE SYSTEM

Beneficial:

- Protection from Invaders
- Elimination of "altered self"

- **Detrimental** (harmful):
 - Discomfort (inflammation)
 - Damage to self (autoimmunity)

MARKERS OF SELF

- Each body cell carries distinctive molecules (markers) on its surface that differentiate it as "self."
- The <u>main task</u> of the immune system is to distinguish between "self and non-self".
- Components of the innate immunity have patternrecognition receptors that identify pathogen-associated molecular pattern (PAMP) present on the surface of many microbes (that is not present on human cells).

MARKERS OF NON-SELF

- Foreign molecules, carry distinctive markers, with characteristic shapes
 called epitopes that protrude from their surfaces.
- The immune system recognizes many millions of distinctive non-self molecules, and responds by producing antibodies.
- Any substance capable to trigger an immune response is called **antigen**.

- The main components of the immune system are lymphocytes, phagocytes, antigen presenting cells, antibodies, cytokines and complement system
- The immune system acts in three phases
 - First phase is 'recognition' with the help of B- cell receptors (BCR – the surface immunoglobulin) and T- cell receptors (TCR).
 - 2. The second phase is **'activation'** of metabolic processes inside the cells.
 - The third phase is the 'effector' phase in which the activated cells produce chemicals (cytokines) to activate other cells.
 Memory cells are also generated in this phase.

IMMUNE CELLS ORIGINATE FROM PRECURSORS IN BONE MARROW

DEFENSES

1st line: Physical and Chemical barriers

- skin and mucous membranes (form continuous barrier)
- Iow pH (3 & 5) of sweat, sebum,
- digestive enzymes in saliva, lysozymes in tears,
- ciliary escalator/ elevator of respiratory mucosa, alveolar macrophages, mucous hairs in nose etc.
- GIT: hydrolytic enzymes in saliva, acid in stomach, various degradative enzymes and macrophages in small intestine, peristalsis, Low pH, bile acid, flushing

- Low pH of vagina in adult women (due to Lactobacilli),
- Subscription $(\underline{\alpha} \text{ in GIT } \& \underline{\beta} \text{ in LRT})$ (are + charged peptides that creates pores in bacterial cell membrane).
- 💐 Normal commensal flora,
- Inflammatory response, cough, sneezing reflexes,
- Fever (IL-I)

PHYSICAL BARRIERS ARE COMPROMISED

2nd line: molecular and Cellular (innate and nonspecific)

- neutrophils, basophils, mast cells, macrophages, eosinophil and NK cells (can kill invaders (either by phagocytosis or extracellular killing).
- complement cascade (plasma proteins) causes lysis of foreign cells
- interferons (protect cells from viral infection),

3rd line: Cellular (specific acquired)

antigen specific mechanisms involving B and T
 lymphocytes to produce antibodies and (cytotoxic) T-cells.

DEFENSES

Adaptive immunity

Invading	Innat (rapid respons micro 1 st Barriers	e Immunity se to broad range of organisms) 2 nd	Acquired Immunity (Slower response to specific microbes) 3 rd
pathogens)	• Physical	 Phagocytic cells 	 Humoral immunity
	Chemical	 Complements 	 Cell mediated
	• Biological	 Inflammatory response 	immunity

Innate

It is an inborn ability that depends on genetic factors. The

elements of the non-specific (innate) immune system

include:

- 1. Physio-chemical and biological barriers
- 2. Cellular components
- 3. Secretary molecules

Physico-chemical barriers to infections

System/ Organ	Active component	Effector Mechanism
Skin	 Squamous cells; Sweat 	Desquamation; flushing, organic acids (modify pH)
GI tract	Columnar cells	Peristalsis, low pH, bile acid, flushing
Lung	Tracheal cilia	Mucocialiary elevator, surfactant
Nasopharynx and eye	1. Mucus, 2. saliva, 3. tears	Flushing, lysozyme

Circulation and lymphoid organs	Phagocytic cells NK cells and K-cell	 Phagocytosis and intracellular killing Direct and antibody dependent cytolysis IL2-activated cytolysis 	
Serum	Lactoferrin and Transferrin	deprive organisms of iron by binding with iron.	
	Interferons	Antiviral proteins (inhibit viral replication and activate other cells which kill pathogens	
	TNF-alpha	suppresses viral replication and activates phagocytes.	
	Lysozyme	(in serum and tears) breaks down the bacterial cell wall (peptidoglycan hydrolysis)	
	Fibronectin	coats (opsonizes) bacteria and promotes their rapid phagocytosis.	
	Complement	Opsonization, enhanced phagocytosis, inflammation	

- Secretory factors or chemicals used by the different immune cells to communicate.
- 2. Signaling molecules released by one cell to cause a response in another. Sometimes referred to as chemical messengers.

Polypeptide molecules released by

- infected tissues cells,
- local endothelial cells,
- resident neutrophils & macrophages

to attract cells of the immune system.

When the invading agents breach innate body

defenses and reach inside the body, Specific

immune system becomes effective

ACQUIRED IMMUNITY

Active Immunity

- The immunity produced in response to an antigen, a part of an antigen, or contact with an infectious agent (disease or subclinical exposure)
- It takes time to develop but may be long lasting, even life long.
- Can be natural (infection) or artificial (stuck with a needle vaccination)

Passive Immunity

- The process of providing IgG (antibodies) to protect against infection.
- Transfer of serum from survivor, snake anti-venom, anti-toxin
- Transfer of immunoglobulin (through placenta or mother's milk).

Innate Immunity

= non-specific, natural, native

- Antigen independent
- Not antigen specific
- No time lag (immediate)
- No Immunologic memory

Adaptive Immunity = specific = acquired

- Antigen dependent
- Antigen specific
- A lag period
- Develops memory

Table 2: Features of Non-Specific and Specific Immunity

Feature	Nonspecific (innate) immunity	Specific (Acquired/ Adoptive) immunity	
Characteristic			
Specificity for microbes	Low-Minimal	High	
Diversity	Limited	Large	
Specialization	Low	Highly specialized	
Memory	Nil	Present	
Components			
Physical and Chemical Barriers	Skin, mucosal epithelia; anti-microbial chemicals in secretions such as defensins, lysozyme, acid in stomach, spermin etc.	Mucosal and cutaneous immune system and antibody molecules in secretions (secretory IgA)	
Blood proteins	Complement and Cytokines (TNF, IFN-a)	Antibodies (IgG, IgA, IgM, IgE, IgD), Cytokines	
Cells	Phagocytes (Neutrophils, Macrophages, NK cells)	Lymphocytes {B-lymphocytes, T-lymphocytes (Helper T-cells, Cytotoxic T-cells}	

Remarkable diversity (can respond to millions of Ag)

Long memory (memory B & T cells are produced] can

respond after many years after initial exposure)

Exhibit specificity and action against specific, initiating

THANK YOU