

14.06.2023

Humoral Immunology

Prof Dr. Saeed ur Rehman

MBBS, M.Phil, Ph.D, CHPE

Objectives

At the end of lecture, students of 3rd year should be able to

- 1. Describe humoral immunity.
- 2. Describe the role of B & T lymphocytes in immunity.
- 3. Describe the role of B lymphocytes in humoral immunity.
- 4. Explain how T cells regulate the immune system.
- 5. Differentiate between humoral and cell mediated immunity.

HUMORAL IMMUNITY

- **Humoral immunity** is the antibody-mediated defense against foreign antigens.
- It is mediated by macromolecules including secreted antibodies, complement proteins, and certain antimicrobial peptides - located in extracellular fluids.
- Humoral immunity is named so because it involves substances found in the humors, or body fluids.

Humoral Immunity

Humoral immunity is the principal defense against extracellular microbes, bacterial toxins and viruses e.g.

• It is directed primarily against exotoxin-mediated infections Clostridium tetani, Vibrio cholera, and by *Corynebacterium diphtheria*, extracellular pyogenic bacteria (Staph, Streptococci), infections by polysaccharide capsules containing bacteria (e.g., pneumococci, meningococci, Haemophilus influenzae), and certain viral infections i.e. HBV.

MAIN FUNCTIONS OF HUMORAL IMMUNITY

- Defense against infection (opsonize bacteria, neutralize toxins and viruses).
- Allergy (hypersensitivity) (e.g., hay fever, anaphylactic shock)
- Autoimmunity

Cells of humoral immune system

- B cells and T cells are the main component of the humoral immunity.
 - They have specific receptors,
 - Each cell's receptors recognize only one antigen
 - lymphocytes can recognize thousands of antigens,
 - one antigen / clone
 - There are many cells of each clone in blood stream or lymph nodes

B cells

- constitute 10 20% of circulating lymphocytes
- form lymphoid follicles in the superficial cortex of lymph nodes
- Organized in lymphoid follicles in the white pulp of spleen and tonsils.
- When activated, stain pale & occupy Germinal centers.
- They are the ancestor of plasma cells.
- produce antibodies,
- Act as antigen-presenting cells.
- produce a variety of cytokines to modify

the immune response.

HUMORAL IMMUNITY

Activation of B cell through $T_{\rm H}$ cells

Contact of antigen presenting cells activate helper T cells

- Cytokines (protein signals) are released
- B cells are activated and differentiated into plasma cells
 - Cell binding produces greater response

- B cells divide (and form clones of cells)
- Plasma cells release thousands of antibody per second for a few days and then die. Memory cells are saved for future.

- Certain antigens (e.g., bacterial polysaccharides) can activate B cells directly, without the help of T cells, and are called T-cell– independent antigens. In this, only IgM is produced by B cells.
- Interleukins 4 and 5 from helper T cell and CD40L-CD40 interaction are required for the B cell to "class switch" TGF-beta immunoglobulins to produce IgG, IgA, and IgE.
 IFN-gamma IIL-4
- The T-cell–dependent response generates memory B cells, whereas the T-cell–independent response does not; therefore, a secondary antibody response does not occur in the latter.

EFFECTOR MECHANISMS OF HUMORAL IMMUNITY

Antibodies may initiate different mechanisms to combat microbes,

- promote phagocytosis,
- bind to cells and trigger release of inflammatory mediators,
- Enter mucosal organs to provide defense against ingested and inhaled microbes
- IgG crosses the placenta to induce immunity against infections of the newborn.
- The risk of pyogenic infections increases if IgG levels drops below 400 mg/dl (N= 100-1500 mg/dl).

sciencenotes.org

Immune system

memory.

5 Types of Antibodies

Antibodies or immunoglobulins (Ig) are Y-shaped proteins that recognize unique markers (antigens) on pathogens.

Crosses

placenta.

T cells

T-cells form the main component (70-80%) of the total lymphocytes in adults. These have T-cell receptors (TCR) on their surface.

Major role of CD4+ cells is to help B cells make antibody (<u>"helper T cells"</u>).

- Th1 🗌 activate CTL (IL2),
- Th2 B-cell helper (IL4, 5)

The major role of CD8+ T cells is to recognize and lyse

infected target cells (<u>"cytotoxic T cells"</u> or CTL)

T cell perform regulatory & effector functions

- Regulatory functions are
 - IL4 is **B cell growth factor** while IL5 is B cell **differentiating** factor
 - IL4 & IL5 activate B cells [Immunoglobulin production
 - IL2 is **T cell growth factor** and activates CD4, CD8 T cells,
 - Gamma interferon activates macrophages to initiate delayed hypersensitivity reaction against intracellular microbes (i.e.

Mycobacterium tuberculosis.

- Effector functions are carried out by Tc cells
 - Kill virus infected cells, tumor cells & allograft

Remarkable diversity (can respond to millions of Ag)

Long memory (memory B & T cells are produced] can

respond after many years after initial exposure)

Exhibit specificity (show activity against the specific Ag)

INDUCTION OF ANTIBODIES

- Antibodies can be
 - induced actively in the host or
 - acquired passively (for immediate defense i.e. postexposure).
- Passive immunity is used to neutralize toxins of diphtheria, tetanus, and botulism by antitoxins. Passive immunity neutralizes viruses early in the incubation period (i.e. rabies and hepatitis A and B viruses).

ANTIBODIES IN THE FETUS

- Antibodies in the fetus are primarily IgG acquired by transfer of maternal IgG across the placenta.
- Some antibodies can be made by the fetus if infection occurs, such as in congenital syphilis.
- Newborn infants can make IgG (and others isotypes, as IgM and IgA) to certain 'protein antigens'. For example, the vaccine against hepatitis B that contains hepatitis B surface antigen is effective when given to newborns.
- After birth, maternal IgG declines and protection by maternal IgG is lost by 3 to 6 months.

RESPONSE TO MULTIPLE ANTIGENS ADMINISTERED SIMULTANEOUSLY

- When two or more antigens are administered at the same time, the host reacts by producing antibodies to all of them.
- Combined immunization is widely used (e.g., diphtheria, tetanus, and pertussis [DTP] vaccine or the measles, mumps, rubella [MMR] vaccine).

TESTS FOR EVALUATION OF HUMORAL IMMUNITY

- Evaluation of humoral immunity consists primarily of measuring the amount of each of the three important immunoglobulins (i.e., IgG, IgM, and IgA) in the patient's serum.
- This is usually done by **nephelometry**.
- Immunoelectrophoresis can also provide valuable information.

THANK YOU