2. SKELETAL MUSCLE RELAXANTS

(PERIPHERAL: NON-DEPOLARIZING)

+ CENTRALLY ACTING

DR SHAMS SULEMAN

LEARNING OBJECTIVES

- Classify skeletal muscle relaxants.
- Describe the mechanism of action of Non depolarizing and depolarizing neuromuscular blockers.
- Discuss the differences between depolarizing and non depolarizing skeletal muscle relaxants
- Describe the therapeutic uses and adverse effects of skeletal muscle relaxants
- Describe centrally acting skeletal muscle relaxants (Spasmolytics)

LEARNING OBJECTIVES

- Name drugs causing malignant hyperthermia
- Discuss the rationale for use of Dantrolene in the treatment of malignant hyperthermia
 Discuss succinylcholine apnea and its management

NEUROMUSCULAR BLOCKING AGENTS

Non depolarizing agents

Isoquinolone derivatives (IQ)
 Steroid derivatives (SD)

Non depolarizing agents

a):- LONG ACTING: 30 to 100 minutes D Tubocurarine; also ganglion blocker Gallamine; anticholinergic Pancuronium (SD) Doxacarium (ID) Pipecuronium (SD) Metocurine (ID)

Non depolarizing agents...... b):- INTERMEDIATE ACTING; 20 to 60 minutes

Vecuronium (SD)
Atracurium (ID)
Cisatracurium (ID)
Rocuronium (SD); fastest onset of action

Non depolarizing agents.....

c):- SHORT ACTING; 10 to 20 minutes

Mivacurium (ID)

CLIVINALLI ACTINU

SELETAL MUSCLE RELAXANTS

- Benzodiazepines (GABAergic)
 - Diazepam
 - Clonazepam
 - >Chlorodiazepoxide
- GABA derivatives
 - Baclofen (GABA.B agonist)
 - Gabapentin
- Central α2 agonists
 - Tizanidine

SELETAL MUSCLE RELAXANTS

Mephenesin derivatives.....
 Chlorozoxazone
 Chlormezanone
 Methocarbamol
 Mephenenisine
 Carisoprodol

Ethanolamine Group
 Orphenadine citrate

CLININALLI ACTINU

SELETAL MUSCLE RELAXANTS

Miscellaneous

>Cyclobezaprine
>Metoxalone
>Progabide
>Glycine
>Idrocilamide, riluzole (for ALS)

SKELETAL MUSCLE RELAXATION AND PARALYSIS

- By interruption of function at several sites
- >Along the pathway from the central nervous system (CNS) to myelinated somatic nerves
- >Unmyelinated motor nerve terminals
- > Nicotinic acetylcholine receptors
- Motor end plate
- >Muscle membrane
- Intracellular muscular contractile

NON-DEPOLARIZING

BENZYL-ISOQUINOLINES Natural > d-Tubocurarine • Synthetic > Mivacurium > Atracurium > Doxacurium > Gantacurium **Mixed-onium chlorofumarates** > Gantacurium

AMMONIO-STEROIDS

- Rapacuronium
- Rocuronium
- Vecuronium
- Pancuronium
 - Pipecuronium

13

HISTORY

Curare - arrow poison
 Strychnos species
 Strychnos toxifera Quarternary neuromuscular - blocking alkaloids

CHEMISTRY

- Structural resemblance to acetylcholine
- Succinylcholine 2
 acetylcholine molecules
 linked end-to-end
- Nondepolarizing agents conceal the "doubleacetylcholine" structure in bulky, semi-rigid ring systems
- Presence of one or two quaternary nitrogens makes them poorly lipid soluble and limits entry into the CNS

Drugs excreted by kidney
 Ionger half-lives
 Ionger durations of action (> minutes)

35

 Drugs eliminated by the liver (Ammonio-steroids)
 Shorter half-lives
 Shorter durations of action

- intermediate-acting steroid (eg, vecuronium and rocuronium)
- More dependent on biliary excretion/ hepatic metabolism for their elimination
- These muscle relaxants are more commonly used clinically than the long-acting steroid-based drugs (eg, pancuronium)

ROUTES OF ELIMINATION AND DURATION OF ACTION

- Plasma Pseudocholinesterase (Butyrylcholinesterase) (10 mins)
 Succinylcholine, Mivacurium
- Spontaneous (Non-enzymatic) (20 40 mins)
 Atracurium, Cisatracurium
- Liver (20 35 mins)
 Rocuronium, Vecuronium
- Kidneys (35 60 min)
 - Tubocurarine, Doxacurium, Pancuronium, Pipecuronium

BENZYLISOQUINOLINES

DRUG	ELIMINATION MECHANISM	DURATION OF ACTION (min)
Atracurium	Enzymatic & nonenzymatic ester hydrolysis	45
Cisatracurium	Spontaneous	45
Mivacurium	Plasma pseudocholinesterase	15
Tubocurarine	Renal (40%)	80

AMMONIOSTEROIDS

DRUG	ELIMINATION MECHANISM	OF ACTION (min)
Pancuronium	Enzymatic & nonenzymatic ester hydrolysis	90
Rocuronium	Hepatic (80%) and renal	30
Vecuronium	Hepatic (80%) and renal	45

- Highly ionized
- Do not readily cross cell membranes
- Not strongly bound in peripheral tissues —--- so larger volume of distribution than blood volume
- The duration of neuromuscular blockade produced by nondepolarizing relaxants is strongly correlated with the elimination half-life

Pharmacokinetics

POTENCY

 Tubocurarine _ 	1.0
 Succinylcholine _ 	0.4
 Rocuronium – 	0.8
 Atracurium – 	1.4
 Cis-atracurium – 	1.4
 Mivacurium – 	4.0
o Doxacurium	6.0
Pancuronium _	6.0
 Pipecuronium _ 	6.0

(taken as standard)

Pharmacokinetics

ONSET OF ACTION

Mivacurium = Shortest duration of action

- Rocuronium = fastest onset, least potent
- Gantacuriun = phase 3 trial (rapid, short)

• Atracurium = Duration of action 20 – 40 minutes

o Cis-atracurium

 Spontaneous non-enzymatic breakdown in plasma (Hofmann elimination)

o Laudanosine ==

- Main metabolite of Atracurium
- Slowly metabolized by the liver
- longer elimination half-life (i.e. 150 minutes)
- Readily crosses BBB
- May cause seizures

PHARMACOKINETICS: METABOLISM

- □ Vd =80- 140mL/kg
- Highly polar; little peripheral tissue binding
- Metabolized by kidneys = longer half life
- Metabolized by liver = shorter half life
- Contains Quaternary Ammonium
- Rapid initial distribution, slow elimination

PHARMACOKINETICS: METABOLISM

- Steroids derivatives = 30H, 170H, 3,17 OH
- ♦ 30H = 40 to 80% potent
- cumulates in ICU use
- Atracurium = Hoffman degradation, hepatic, its laudanosine derivative = 150 hours == Epileptogenic
- Cis atracurium = safe

THE ADULT NICOTINIC ACETYLCHOLINE RECEPTOR

- Composed of five peptides:
- Two alpha peptides
- o One beta
- o One gamma, and
- One delta peptide

MECHANISM OF ACTION Site of action: motor end plate **Competes** with acetylcholine for nicotinic receptors Blockade is **Competitive** and *« Surmountable* Decrease frequency of Na channel opening Not preceded by fasciculation

MECHANISM OF ACTION

Enter the pores of channels

Also <u>block pre-junctional sodium channels</u>

→ interfere with the mobilization of Ach at the nerve ending

→ cause fade of evoked nerve twitch contractions
 Weak blockade of cardiac muscarinic receptors (Tubocurarine)

MECHANISM OF ACTION

- Consequence of the surmountable nature of the postsynaptic blockade :
 - Tetanic stimulation (rapid delivery of electrical stimuli to a peripheral nerve) releases a large quantity of Ach,
 - Followed by transient post-tetanic facilitation of the twitch strength (i.e. relief of blockade)
 - An important clinical consequence of this principle is the reversal of residual blockade by cholinesterase inhibitors

MECHANISM OF ACTION REVERSED Neostigmine POTENTIATED Ether **Galothane** Aminoglycosides **Generation** Chlorpromazine **Galaxia** Acidosis Hypokalaemia **raised temperature**

PHARMACOLOGICAL ACTIONS

• Release of systemic histamine:

•Tubocurarine

oAtracurium = lesser extent

oMivacurium = lesser extent

Results in

Hypotension

(Premedication with an antihistamines prevent hypotension)

Bronchospasm

Ganglionic blockade – hypotension

- Tubocurarine = At large dose,
- Metocurine

PHARMACOLOGICAL ACTIONS

CARDIOVASCULAR EFFECTS

More with Pancuronium, minimal with Atracurium

Moderate tachycardia

Increased cardiac output

(Due to a vagolytic action, and increased release of NE from nerve endings

and blockade of neuronal uptake of NE)

Minimal cardiovascular effects

- Vecuronium
- Pipecuronium
- Doxacurium
- Cis-atracurium
- Rocuronium

HYPOTENSION

- Tubocurarine
- o Atracurium
- o Mecuronium
 - Systemic histamine release
 - Ganglionic blockade, with larger doses Tubocurarine
- Premedication with an antihistaminic compound attenuates tubocurarine-induced hypotension

HISTAMINE RELEASING POTENTIAL

Significant

Insignificant

Tubocurarine	+++
Metocurine	++
Atracurium besylate	+
Mivacurium chloride	+
Succinylcholine chloride	+

Rocuronium bromide	±
Vecuronium bromide	±
Pancuronium bromide	±
Pipecuronium bromide	±
Doxacurium chloride	±

PHARMACOLOGICAL ACTIONS : SUMMARY

- Flaccid paralysis (T>P>A>Mi>Me)
- > Hypotension; histamine release
- Ganglion blockade = higher doses (T> Me)
- > Bronchoconstriction = (T> Mi)
- Vagal block = (Pan: > Gall:)
- Increased IOP, intragastric pressure, muscular

DRUG INTERACTIONS

- Potentiation == General Anesthesia
- Competitive blockade == Ketamine
- Blockade of calcium (specific P type) channels ==

 Aminoglycosides
 Tetracycline
 Polypeptides
 Lincosamides

 Blockade of twitching ==Calcium channel blockers
- Diminished response == Alkalosis & hyperkalemia =
- o increased response == Acidosis & hypokalemia

DRUG INTERACTIONS

o Inhaled anesthetics

- $\circ \rightarrow$ Potentiate the neuromuscular blockade
- In a dose dependent manner in the following order
 - Isoflurane
 - Sevoflurane
 - Desflurane
 - Halothane
 - Nitrous oxide

CLINICAL PHARMACOLOGY

- The most important factors involved in interaction b/w Neuromuscular blockers x Inhaled anesthetics:
- (1) nervous system depression at sites proximal to the neuromuscular junction (i.e. CNS);
- (2) increased muscle blood flow (i.e. due to peripheral vasodilation produced by volatile anesthetics), which allows a larger fraction of the injected muscle relaxant to reach the neuromuscular junction
- (3) decreased sensitivity of the post junctional membrane to depolarization.

DRUG INTERACTIONS

LOCAL ANESTHETICS

- In small doses, local anesthetics can depress post-tetanic potentiation via a pre-junctional neural effect
- In large doses, local anesthetics can block neuromuscular transmission
 - → as a result of blockade of the nicotinic receptor ion channels rather than typical Na channel blockade by Local anesthetics
 - Bupivacaine

(Higher doses are associated with cardiac arrhythmias)

DRUG INTERACTIONS

ANTIARRHYTHMIC DRUGS:

Quinidine == sodium channel blocking drug

• Effects similar to local anesthetics

ADVERSE EFFECTS

 PROLONGED APNEA
 Hypotension,
 CV collapse (histamine release anaphylaxis)
 Bronchospasm
 Bradycardia---cardiac arrest

PROLONGED APNEA

- Decreased elimination: ✓ Hepatic dysfunction Cis-atracurium Rocuronium Vecuronium ✓ Renal dysfunction (Pancuronium) Airway obstruction \succ Hyperventilation due to decreased PCO2 Neuromuscular depressant effect of excessive neostigmine Alteration in body temp, electrolyte imbalance Presence of latent myasthenia gravis or (Eaton Lambert SCLC myasthenic
 - syndrome)

D TUBOCURARINE

Prototype: Mono-quarternary ammonium alkaloid Highly polar Not absorbed from GUT Vd is only slightly larger than the blood volume NOT metabolised in liver Excreted unchanged

ATRACURIUM

- An intermediate-acting
- Elimination
 - Hepatic
 - Hofmann elimination, a form of spontaneous breakdown
- Causes histamine release
- Cis-atracurium a potent isomer of Atracurium: with even lesser dependence on hepatic inactivation
- Safe in patients with hepatic and renal dysfunction

MIVACURIUM

shortest duration of action Onset of action is significantly slower than that of succinylcholine Use of a larger dose to speed the onset can be associated with profound histamine release leading to hypotension, flushing, and bronchospasm Clearance by plasma cholinesterase

GANTACURIUM

- (investigational phase 3)-
- Ultra-short acting
- Degraded non-enzymatically by adduction of the amino acid cysteine & ester bond hydrolysis
- Rapid onset
- Predictable duration of action
- Reversed with edrophonium or cysteine
- Cardiovascular adverse effects due to histamine release

No bronchospasm or pulmonary vasoconstriction has been reported at these

Non-depolarizing Drugs

Gallamine

- Less potent than curare
- Tachycardia

D-Tubocurarine

- 1-2 hr duration of action
- Histamine releaser (Brochospasm, hypotension)
- Blocks autonomic ganglia (Hypotension)

Atracurium

- Rapid recovery
- Safe in hepatic & renal impairment
- Spontaneous inactivation to laudanosine (seizures)

Non-depolarizing Drugs

- Mivacurium
 - Metabolized by pseudocholinesterase
 - Fast onset and short duration
- Pencuronium
 - Long duration of action
 - Tachycardia
- Vecuronium
 - Intermediate duration of action
 - Fewer side effects (no histamine release, no ganglion blockade, no antimuscarinic action)

EFFECTS OF AGING ON THE NEUROMUSCULAR RESPONSE

ADVANCED AGE

- → associated with a prolonged duration of action from these drugs
 - Due to decreased clearance of the drugs by the liver and kidneys –
 - needs dose reduction in old patients

EFFECTS OF DISEASES ON THE NEUROMUSCULAR RESPONSE

• MYASTHENIA GRAVIS

 → enhances the neuromuscular blockade produced by non-depolarizing muscle relaxants

• SEVERE BURNS

O UPPER MOTOR NEURON DISEASE

- Resistant to these drugs
 - Due to proliferation of extra-junctional receptors
 - → so increased dose requirement for the nondepolarizing relaxant to block a sufficient number of receptors

Drug	Action	Dose (mg/kg)	Onset (minutes)	Length (minutes)	Advantages	Comments
Succinylcholine	Depolarizing	1-2 Not recommended for INF	Immediate	3-5	Short action (intubation)	Hyperpotassemia Fasciculations
Vecuronium	Non-depolarizing	Initial bolus: 0.08-0.2 INF: 0.08-0.2 mg/k/h	2-4	20	No cardiovascular effects	Muscle weakness
Pancuronium	Non-depolarizing	Initial bolus: 0.1 INF: 0.1 mg/k/h	2-4	30-45	Longer action	Tachycardia, hypertension Increase in ICH
Atracurium	Non-depolarizing	Initial bolus: 0.3-0.6 INF: 0.3-0.6 mg/k/h	2-3	25-30	Not metabolized by the liver and kidney	Bronchospasm Bradycardia
Rocuronium	Non-depolarizing	Initial bolus: 0.6-1.2 INF: 5-15 µg/k/min	1-2	30-40	No cardiovascular effects	Tachycardia at high doses
Mivacurium	Non-depolarizing	Initial bolus: 0.1-0.2 INF: 10-14 µg/k/min	2-4	12-18	Short action	Bronchospasm Coughing
Cisatracurium	Non-depolarizing	Initial bolus: 0.15 INF: 1.5 µg/k/min	3-4	30	Not metabolized by the liver and kidney	No cardiovascular effects

Table 3 - Characteristics of the neuromuscular blocking agents most frequently used in children

ICH = intracranial hypertension; INF = continuous infusion.

REVERSAL OF NONDEPOLARIZING NEUROMUSCULAR BLOCKADE

- o Neostigmine
- Pyridostigmine
- o Edrophonium
 - Antagonize non-depolarizing neuromuscular blockade
 - Increase the availability of acetylcholine at the motor end plate
 - mainly by inhibition of acetylcholinesterase
 - Also increase the release of this NMJ blocker from the motor nerve terminal == lesser extent
 - Edrophonium, not favored due to its very short life

REVERSAL OF NONDEPOLARIZING NEUROMUSCULAR BLOCKADE

• Sugammadex: novel reversal agent

- Beta cyclodextrin
- Approved in Europe
- Selective and rapid reversal
- NO action on NMJ
- Action is in the plasma by chelation by binding preferably to steroidal neuromuscular blockers such as rocuronium and vecuronium
- The blockers diffuse from NMJ to plasma under concentration gradient

PROTOTYPICAL CHARACTERISTICS OF TWO

GROUPS

D-tubocurarine	Succinylcholine
Uses: 1. Adjuvant to provide skeletal muscle relaxation during longer surgeries/ procedures 2. Tetanus 3. Status epilepticus 4. To reduce the chest wall resistance to inflation – in critically ill patients in the ICU who are on ventilatory support	Uses: 1. Endrotracheal intubation 2. Short procedures: Laryngoscopy, bronchoscopy, esophagoscopy, fracture reduction/dislocation 3. To prevent trauma during ECT

www.mutalikpharmacology.com

PROTOTYPICAL CHARACTERISTICS OF TWO

GROUPS

D-tubocurarine	Succinylcholine	
ADVERSE EFFECTS	ADVERSE EFFECTS	
1. Hypotension	1. Hyperkalemia	
2. Flushing 3. Bbronchospasm	2. Post-operative muscle soreness	
4. Malignant hyperthermia	 Arrhythmias /Cardiac arrest Malignant hyperthermia Succinylcholine apnea (pseudocholinesterase deficiency) 	
Treatment of overdose Neostigmine/Edrophonium plus atropine	Treatment of toxicity: Artificial respiration, fresh blood transfusion	

www.mutalikpharmacology.com

	Competitive Non-depolarizing	Non-Competitive Depolarizing
Paralysis	Flaccid	Fasciculations> Flaccid
Neostigmine	Antagonizes	Exaggerate / no effect.
Examples	Pancuronium	Succinylcholine

....

0

....

Difference between the competitive and depolarisinng muscle blocker

parameter	D tubocurarine	SuccinyIcholine
Blockade type	Competitive blockade	Depolarising blockade
Type of relaxation	Flaccid paralysis	Fasciculation followed by paralysis
Neostigmine addition +	antagonism	Potentiation
Effect of other neuromuscular blocking drug	Decreased effect	Increases effect
Histamine release	++ release	negligible
Serum k+ level	No change	Hyperkalemia
Pharmocogenetic variation	nil	pesudocholinesterase
Cardiac M2 receptor	No effect	stimulate (bradycardia)

Spasmolytics

- Chronic neurologic diseases
 Cerebral Palsy, Multiple Sclerosis
- Acute Injury

Spinal cord damage, muscle inflamation

Goal of therapy: Reduce spasticity and pain, while retaining function

DIAZEPAM

- Facilitates GABA (inhibitory) transmission in the CNS
- MAIN action == Sedation mediated by
 - GABA_A == hyperpolarization due to opening of chloride channels
- At $GABA_B = =$ lesser extent
 - Spasmolytic effect

BACLOFEN

GABA _B agonist at both presynaptic and postsynaptic receptors, causing membrane hyperpolarization

- **Pre synaptically**
 - Reduces calcium influx
- Decreases the release of the excitatory transmitter glutamic acid
- Post synaptically

facilitates the inhibitory action of GABA

BACLOFEN

- Orally effective
- p-chlorophenyl-GABA
- Decrease the release of substance P in both the brain & SC
- Less sedation & Less muscular weakness
 - Effective as Diazepam → causes less sedation
 - Dose not reduce general muscle strength like with Dantrolene
- Can be given intrathecally in severe spasms
- Off label use
 - _

TIZANIDINE

Congener of clonidine

α₂ agonist = related to clonidine

- Reinforces mainly PRE synaptic & minimal postsynaptic inhibition in spinal cord
- Inhibits the excitatory Aspartate and stimulates the inhibitory Glycine in the spinal interneurons

ADVERSE EFFECTS

Unatoncian Acthonia Codation and Dry

DRUGS USED IN ACUTE LOCAL MUSCLE SPASM

Cyclobenzaprine (prototype) Anti muscarinic effects - sedation, transient visual hallucinations Carisoprodol Chlorphenesin Chlorzoxazone Metaxalone Methocarbamol Orphenadrine

Types of skeletal muscle relaxants: 2 groups

Neuromuscular blockers

- Relax normal muscles (surgery and assistance of ventilation)
- Interfere with transmission at the motor end plate
- No central nervous system activity.
- Used primarily as a part of general anesthesia

Spasmolytics

- Reduce spasticity
- Centrally acting (except dantrolene which act on the skeletal muscle)
- Used in a variety of neurologic conditions

REFERENCES

- Basic and Clinical Pharmacology: Katzung BG, Masters SB, Trevor AJ. 14th Edition.
- Katzung & Trevor's Pharmacology: Examination & Board Review. 12th Edition
- Lippincott's Illustrated Reviews: Pharmacology, Clark MA, Finkel R, Rey JA, Whalen K. 7th Edition
- Goodman & Gilman's The Pharmacological Basis of Therapeutics: Brunton LL. 12th Edition

Email address for queries on the topic

drshams11@hotmail.com