Autonomic Nervous System

Outline

- Review of preganglionic and post ganglionic fibres
- Cholinergic and Adrenergic Fibres
- Autonomic Functions
- Mechanism of Neurotransmitter Secretion and Removal

Preganglionic and Postganglionic Parasympathetic Neurons

Preganglionic fibers pass uninterrupted all the way to the organ that is to be controlled,

In the wall of the organ are located the **Postganglionic neurons**

very short postganglionic fibers, leave the neurons to innervate the tissues of the organ

PARASYMPATHE TIC NERVOUS SYSTEM	PREGANGLIONIC	POSTGANGLIONIC	EFFECTOR
	ACETYLCHOLINE	ACETYLCHOLINE	HEART SMOOTH MUSCLE LACRIMAL AND SALIVARY GLANDS

SYMPATHEIC NERVOUS SYSTEM	PREGANGLIONIC	POSTGANGLIONIC	EFFECTOR
	ACETYLCHOLINE	ACETYLCHOLINE \rightarrow OR NOREPINEPHRINE \rightarrow	SWEAT GLANDS HEART, SMOOTH MUSCLE, VESSELS, GLANDS

Comparison of somatic and autonomic nervous systems

Cholinergic and Adrenergic Fibers

- secrete acetylcholine are said to be cholinergic
- *secrete* **norepinephrine** *are said* to be **adrenergic**

All **preganglionic neurons** → **cholinergic** in both the sympathetic and the parasympathetic nervous systems

all of the postganglionic neurons → parasympathetic system are also cholinergic

most of the **postganglionic sympathetic neurons** are **adrenergic**

Acetylcholine is called a Parasympathetic transmitter and

Norepinephrine is called a Sympathetic transmitter.

Autonomic functions

Organ	Parasympathetic	Sympathetic
EYE	 Miosis Near Accommodation 	 Mydriasis(α receptors) Opposite
HEART	 ↓ Heart rate ↓ force of contraction ↓ Conduction of velocity 	Opposite (ß-1 receptors)
BLOOD VESSELS	1. Dilation ?	 Alpha receptors: Constriction β-2 receptors : Dilatation e.g. Coronary arteries, skeletal muscles

Organ	Parasympathetic	Sympathetic
Lungs	 Muscle contraction ↑ secretion 	Opposite(ß-2)
GIT	 Stomach, Intestine 1. ↑ Motility 2. ↑ Secretions 3. Sphincters relaxed Gall Bladder/Ducts: Contraction 	Opposite
URINARY BLADDER	 Muscle Contraction Sphincter relaxed 	Opposite
MTABOLISM	1. Anabolism	 Catabolism (β receptors) ↑ glycogenolysis ↑ lipolysis ↑ BMR

Organ	Parasympathetic	Sympathetic
Kidney	Nil	↑ Renin
Mental activity	Nil	1
Skeletal Muscle	Nil	↑ Glycogenolysis↑ Stretch

Autonomic Functions

- Opposite
 - Excitatory/Inhibitory
- Parasympathetic:
 - Localized
- Sympathetic:
 - Diffuse

Enteric Nervous System

GIT has its own **intrinsic set of nerves** known as the **intramural plexus** *or the* **intestinal enteric nervous** system → in the walls of the gut

Parasympathetic stimulation \rightarrow **increases** activity of the GIT by promoting peristalsis and relaxing the sphincters \rightarrow rapid propulsion of contents along the tract

Only a strong sympathetic stimulation inhibits peristalsis and increases the tone of the sphincters → may cause Constipation

Enteric Nervous system... a second Brain

- 500 million neurons
- Can operate autonomously
- Continues to function even if Vagus is severed
- Has efferent, afferent and interneurons
- Auerbach's and Meissner's plexus
- More than 30 neurotransmitters in this
- contains support cells similar to astroglia of the brain and a diffusion barrier around the capillaries surrounding ganglia which is similar to the blood-brain barrier of cerebral blood vessels

Adrenal Medullae And Sympathetic Nervous System.

- Epinephrine and norepinephrine are always released by the adrenal medullae at the same time --- organs are stimulated in 2 ways
- directly by the sympathetic nerves and indirectly by the adrenal medullary hormones
- stimulate structures of the body that are not innervated by direct sympathetic fibers → the metabolic rate of every cell of the body is increased by these hormones

Integration of Nervous and Endocrine Systems

Adrenal cortex secretes mineralocorticoids and glucocorticoids

sympathetic versus parasympathetic

Sympathetic

- Thoracolumbar outflow
- Quick response mobilising system"
- Fight or flight
- Diverts blood flow away from GI tract and skin
- Blood flow to skeletal muscles and lungs is increased
- Dilates bronchioles of the lung, which allows for greater alveolar oxygen exchange
- Increases heart rate and the contractility of cardiac cells
- Dilates pupils and relaxes the ciliary muscle to the lens, allowing more light to enter the eye and far vision
- Provides coronary vasodilation
- Constricts the intestinal and urinary sphincters
- Inhibits peristalsis
- Stimulates orgasm

Parasympathetic

- Craniosacral outflow
- more slowly activated dampening system
- Rest and digest or feed and breed
- dilate blood vessels leading to the GI tract, increasing blood flow
- bronchiolar constriction
- Decreases the heart rate and contraction
- constriction of the pupil and contraction of the ciliary muscle to the lens
- stimulates salivary gland secretion, accelerates peristalsis
- erection of genital tissues and stimulating sexual arousal

Mechanism of Neurotransmitter Secretion and Removal

Mechanisms of Neurotransmitter Secretion

 Where autonomic fibres pass over or near cells to be stimulated, they have bulbous enlargements -> Varicosities ->

contain neurotransmitter vesicles+ large no of mitochondria

 Action potential spreads over terminal fibres → more Ca++ ions enter → fuse with vesicles emptying their contents to the exterior

Mechanism of neurotransmitters secretion in Smooth Muscle

Circulation of neurotransmitters

- Acetylcholine:
 - Local
- Noradrenaline/ Norepinephrine:
 - Local
 - Blood
 - Hormone
- Adrenaline/ Epinephrine
 - Blood
 - Hormone

Metabolism of Neurotransmitters

- Acetylcholine
 - Synthesis
 - From Choline
 - In terminal nerve endings
 - Destruction
 - Acetylcholinesterase

Norepinephrine

- Synthesis
 - From Tyrosine
 - In axoplasm of nerve endings
- Removal
 - i. Reuptake
 - ii. Blood
 - iii. Enzymes

Acetylcholine

- one of many neurotransmitters in ANS
- acts on both the PNS and CNS
- and is the only neurotransmitter used in the motor division of Somatic Motor System
- is also the principal neurotransmitter in all autonomic ganglia
- In cardiac tissue has an inhibitory effect → lowers heart rate
- also behaves as an **excitatory neurotransmitter** at neuromuscular junctions in skeletal muscle

Synthesis and Destruction of Acetylcholine

choline acetyl transferase

Acetyl-CoA + Choline -----→ Acetylcholine

acetylcholinestrase

- Acetylcholine ------→ acetate + choline
- Choline is transported back into terminal nerve ending used for resynthesis of acetylcholine ,
- Acetylcholine secreted by the nerve ending persists for a few seconds

Synthesis & Release of Acetylcholine

Epinephrine and Norepinephrine

- Chemically, the 2 compounds differ only **slightly**
- exert similar pharmacological actions resembling the effects of sympathetic stimulation
- So classified as **sympathomimetic agents**
- The active secretion of the adrenal medulla → 80 % epinephrine and 20 %norepinephrine
- In the **sympathetic nerves Norepinephrine** is predominant

Synthesis and Removal of Norepinephrine

Tyr = tyrosine; TH = tyrosine hydroxylase; DD = DOPA decarboxylase; DA = dopamine; DBH = dopamine β -hydroxylase; NE = norepinephrine Synthesis and Removal of Norepinephine hydroxylation

- Tyrosine -----→ Dopa decarboxylation
- Dopa ------→ Dopamine
- Transport of dopamine into vesicles hydroxylation
- Dopamine ------→ Norepinephrine

methylation

Norepinephrine -----→ Epinephrine

Removal of Norepinephrine

 50%- 80% is reuptaken by adrenergic nerve endings by active transport

• Diffusion away from nerve endings into surrounding body fluids and then into blood

 Destruction of small amounts by tissue enzymes like MAO in nerve endings and catechol-O-methyl transferase

Duration of action of Norepinephrine

When secreted into tissues → remains active for a few seconds

 In blood both norepinephrine and epinephrine remain active for 10-30 seconds and activity decline in 1 to several minutes

Receptors on Effector Organs

• Transmitter+ Receptor \rightarrow

• Change in cell membrane permeability to one or more ions

 Activating or inactivating an enzyme attached to the other end of receptor protein (2nd messenger enzymes)