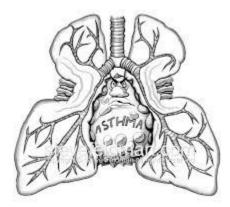
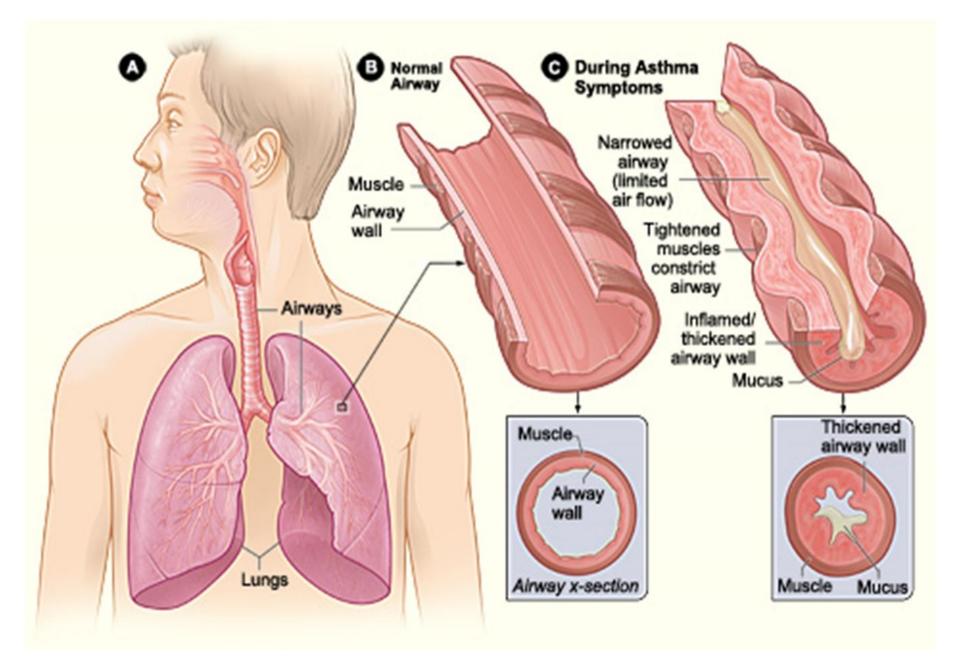
ANTI ASTHMA ANTI TUBERCULAR DRUGS FIRST YEAR MBBS

DR SHAMS SULEMAN


LEARNING OBJECTIVES

- Classify on anti asthma drugs
- Briefly describe Basic Pharmacology of anti asthma drugs
- Classify on First-line antitubercular drugs
- Briefly describe Basic Pharmacology of antitubercular drugs


Pharmacotherapy

Definition:

- Asthma is defined as an acute inflammatory disease characterized by bronchial hyper responsiveness that resolves spontaneously or with treatment
- A common chronic disorder of airways characterized by variable and recurring symptoms

AIMS OF TREATMENT

- Identify and reduce the exposure to risk factors
- Manage asthma exacerbations
- Achieve and maintain control of symptoms
- Maintain normal activity/ exercise level
- Prevent asthma mortality

- Relief medications:
- Short acting bronchodilators
- Systemic corticosteroids
- Anticholinergics
- Control agents:
- Inhaled corticosteroids
- Long acting bronchodilators
- Mast cell stabilizers
- Leukotriene modifiers

a- SYMPATHOMIMETICS:

- - Ephedrine

ii. β - adrenoceptor Agonists:

- Albuterol
- Terbutaline
- Salmeterol
- Formeterol
- ✤ Isoprenaline
- ✤ Orciprenaline

b- Methylxanthines:

- Aminophylline
- Theophylline
- Theobromine
- Caffeine
- c- Muscarinic Antagonists:

Ipratropium Bromide Tiotropium

d. corticosteroids

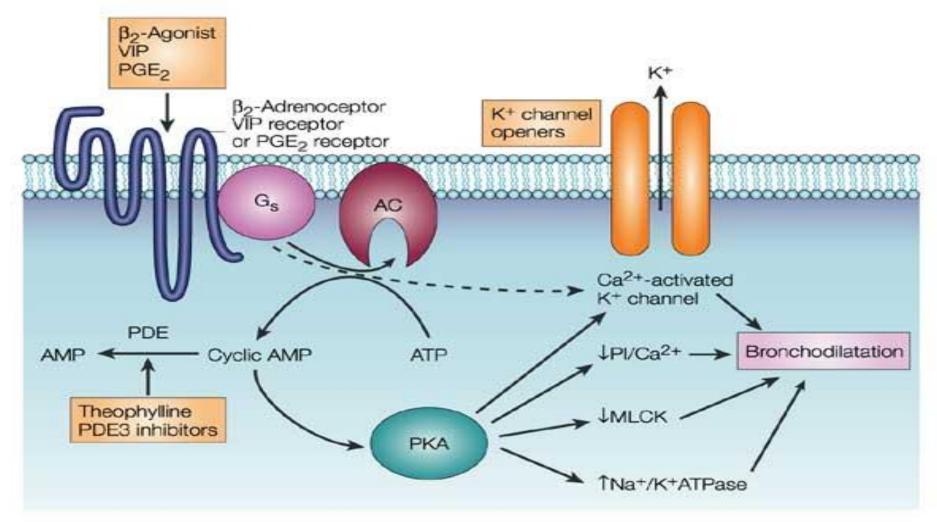
- Hydrocortisone Sodium Succinate
- Methyl Prednisolone
- Betamethasone Valerate
- Beclomethasone Dipropionate

e. Mast cell stabilizers

- Nedocromil
- Na Chromoglycate (Cromolyn)

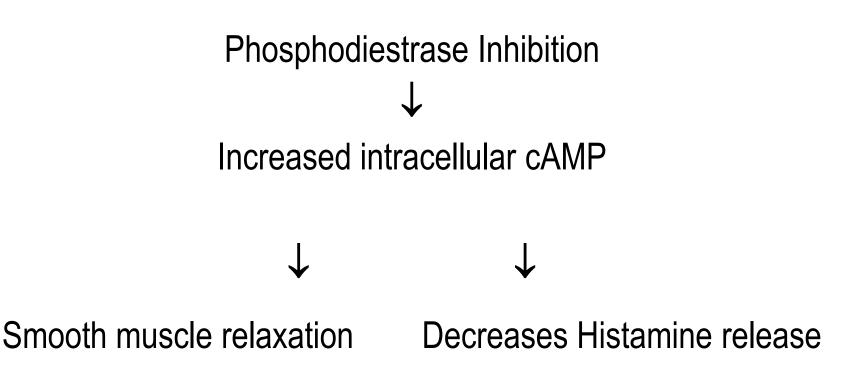
- f. LEUKOTRIENE PATHWAY INHIBITORS:
- Leukotriene Receptor Antagonist: Montelukast
- 5-lipooxygenase inhibitor (synthesis inhibitor)
 Zileuton
 g. Anti IgE monoclonal antibodies:

Omalizumab


 β_2 -AGONISTS:

Mechanism Of Action:

 β_2 receptors in airway smooth muscles Stimulate adenylyl cyclase ↑ cAMP in airway tissue Relaxation of smooth muscle **Bronchodilation**

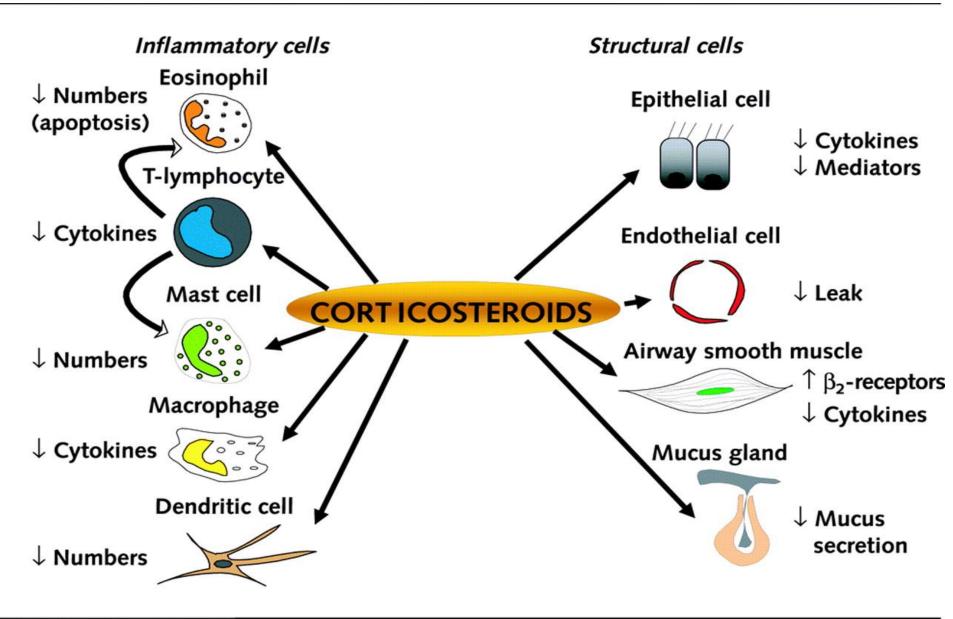

Mechanism of action

Nature Reviews | Drug Discovery

METHYLXANTHENES

MECHANISM OF ACTION

ANTICHOLINERGICS


- ✓ Relief/rescue medication
- ✓ Relieves acute asthma
- \checkmark Often paired with a short-acting $\beta 2$ -agonist
- \checkmark Used where β 2-agonist are intolerable

CORTICOSTEROIDS

> Mechanism of action:

- Inhibit multiple cell types involved in asthmatic response e.g.
- Mast cells, Eosinophils, Basophils, Lymphocytes, Macrophages, Neutrophils
- ✓ Mediate secretion of
- Histamine, Eicosanoids, Leukotrienes, Cytokines

Steroids: Mechanism of action

Routes:

- o Intranasal, I/V
- o Inhaled, oral

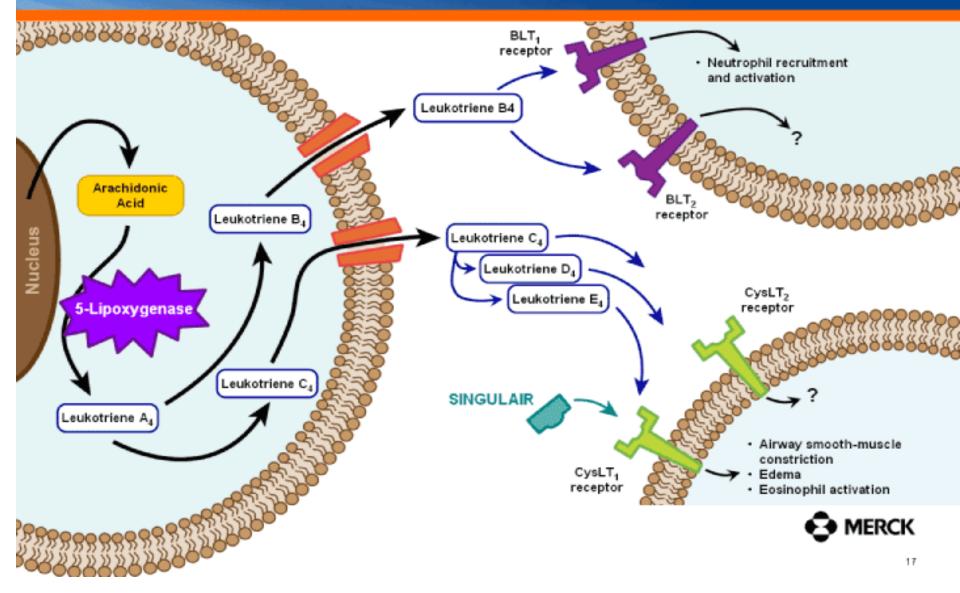
Adverse effects:

- o Osteoporosis
- o Growth retardation
- Oral candidiasis
- o Immunosuppression

MAST CELL STABILIZERS

- Alteration in function of delayed chloride channels in the cell membrane inhibiting cell activation, stabilizing cell – prevent release of histamine/related mediators
- Prophylactic anti-inflammatory agents
- ✓ Route:
- inhalational

Mast Cell Stabilizers


Possible Mechanisms

- Phosphorylation of a 78,000-dalton protein
- which terminates secretion
- Inhibition of Ca⁺⁺ influx into cell, preventing membrane changes
- Reduces pre-secretion membrane fluidity

Mast Cell Stabilization

Membrane Changes Halted

5-Lipoxygenase Inhibition: Targets Pathway Responsible for Production of All Leukotrienes

LEUKOTRIENE SYNTHESIS INHIBITOR

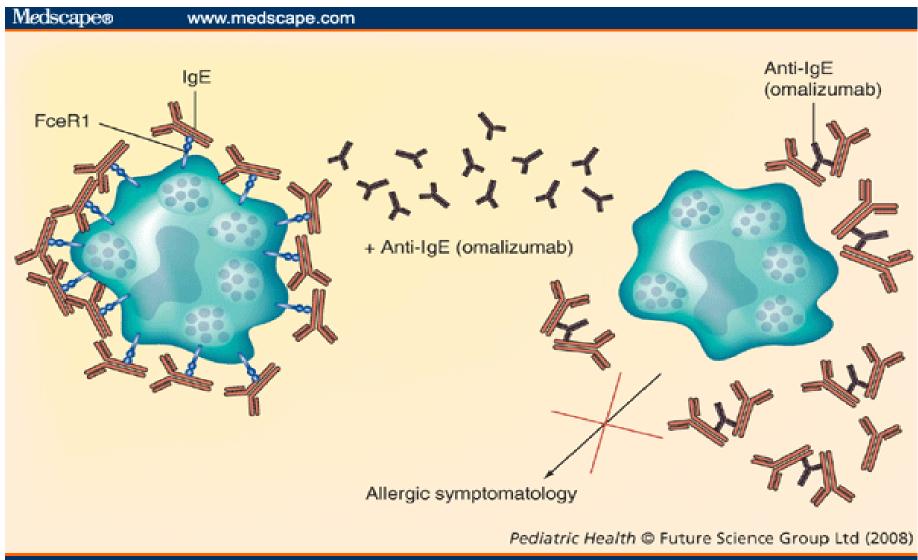
SYNTHESIS

5- Lipooxygenase

Arachidonic acid \rightarrow Leukotrienes

- ✓ Synthesized from
- Eosinophils
- o Mast cells
- o Macrophages
- o Basophils

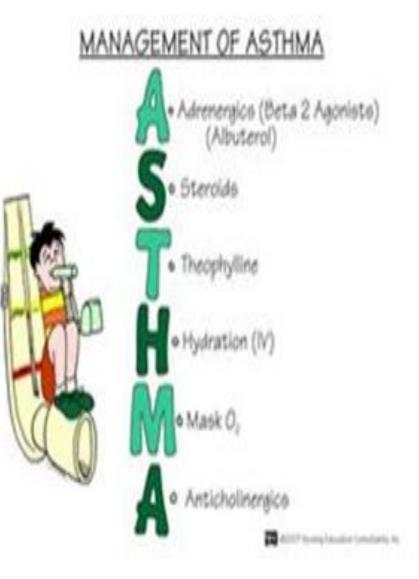
ANTI IGE ANTIBODIES


Recombinant DNA – derived monoclonal antibody

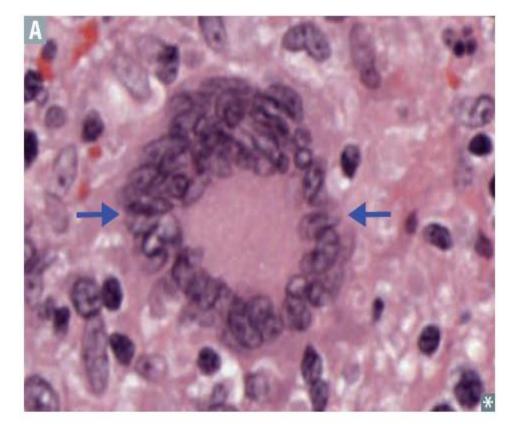
✓ Selectively binds to $IgE \rightarrow \downarrow$ binding to IgE receptors on surface of mast cells/basophils \rightarrow inhibit degranulation

✓ High cost

✓ Useful in


 Moderate – severe asthma not responding to conventional therapy

Source: Pediatr Health @ 2008 Future Medicine Ltd


ACUTE SEVERE ASTHMA

- Oxygen
- Goal :saO2 > 92%
- Inhaled bronchodilators
- Short acting β 2 agonist
- Systemic corticosteroids
- Intravenous fluids

TUBERCULOSIS

- Is a chronic infectious disease caused by Mycobacterium Tuberculosis
- Requires prolonged treatment
- Consists of excessive fibrous tissue with central necrosis

TUBERCULOSIS

- Poor vascularity of lesion
- poor penetration of the drug to lesion site
- Mycobacterial species are mostly intracellular pathogens
- Bacteria residing within macrophages are inaccessible to drugs that penetrate these cells poorly
- Mycobacteria are notorious for their ability to develop resistance.

ANTIMYCOBACTERIAL DRUGS CLASSIFICATION

- First line antitubercular drugs (standard drugs)
 - 1. Isoniazid (H)
 - 2. Rifampicin (R)
 - 3. Pyrazinamide (Z)
 - 4. Ethambutol (E)
 - 5. Streptomycin (S)

ANTIMYCOBACTERIAL DRUGS CLASSIFICATION

- <u>Second-Line antitubercular drugs (Reserve/</u> <u>Alternative drugs)</u>
- 1. Para-amino salicylic acid
- 2. Thiacetazone
- 3. Cycloserine
- 4. Ethionamide
- 5. Kanamycin
- 6. Capreomycin
- 7. Amikacin

ANTIMYCOBACTERIAL DRUGS CLASSIFICATION

- <u>Second-Line antitubercular drugs (Reserve/</u> Alternative drugs)
- 8. Levofloxacin
- 9. Moxifloxacin
- 10. Ofloxacin
- 11. Clarithromycin
- 12. Rifabutin
- 13. Rifapentine
- 14. Bedaquiline
- 15. Linezolid

Isoniazid (H) ,Rifampicin (R) , Pyrazinamide (Z), Ethambutol (E), Streptomycin (S)

FIRST-LINE ANTI TUBERCULAR DRUGS

CHEAP MORE EFFECTIVE ROUTINELY USED LESS TOXIC

ISONIAZID (INH)

- Active against both, intracellular and extracellular bacilli
- Mechanism of action: Inhibits biosynthesis of Mycolic acids, which are essential constituents of the mycobacterial cell wall
- Tuberculocidal
- Metabolized by acetylation (in liver) either slow or fast acetylation – under genetic control
- Metabolites are excreted in urine

RIFAMPIN/ RIFAMPICIN

- A derivative of rifamycin
- It rapidly kills intracellular and extracellular bacilli including spurters (those rising in caseous lesion)
- It is the only agent that can act on all types of bacillary subpopulation, hence rifampicin is called as sterilizing agent

RIFAMPIN/ RIFAMPICIN

- It is active in vitro against
 - > Mycobacteria
 - Gram-positive and gram-negative cocci
 - Some enteric bacteria
 - Chlamydia
- Mechanism of action

Binds to the B-subunit of bacterial DNA-dependent RNA polymerase and inhibits RNA synthesis

ETHAMBUTOL

- Bacteriostatic
- Mechanism of action

It inhibits Arabinosyl transferase that are involved in synthesis of Arabinolgycan in the mycobacterial cell wall

- Adverse effects: Optic neuritis
 - Characterized by decreased visual acuity and color-vision defects (red-green)
 - The toxicity is reversible if the drug is discontinued early following onset of symptoms

PYRAZINAMIDE

- A synthetic analogue of nicotinamide
- Active in acidic pH (of lysosomes) –effective against intracellular bacilli (has sterilizing activity)
- Has Tuberculocidal activity
- <u>Pyrazinamide</u> is converted to <u>Pyrazinoic acid</u> the active form of the drug—by mycobacterial <u>pyrazinamidase</u>
- Pyrazinoic acid disrupts mycobacterial cell membrane metabolism and transport functions.

STREPTOMYCIN

- An aminoglycoside antibiotic
- A bactericidal drug
- Active against extracellular bacilli in alkaline pH
- Pharmacokinetics: Not effective orally and must be injected intramuscularly
- Adverse Effects: Ototoxicity, nephrotoxicity and neuromascular blockade

SECOND-LINE / ALTERNATIVE ANTI TUBERCULOSIS DRUGS

SECOND-LINE / ALTERNATIVE ANTI TUBERCULOSIS DRUGS

The alternative drugs are usually considered only

In case of resistance to first-line agents;

In case of failure of clinical response to conventional therapy; and

In case of serious treatment-limiting adverse drug reactions

ETHIONAMIDE

- Structurally similar to INH but less efficacious
- Mechanism of action: It inhibits the synthesis of mycolic acid
- Spectrum: A bacteriostatic drug effective against both extracellular and intracellular bacilli
- Resistance to ethionamide as a single agent develops rapidly in vitro and in vivo.
- There can be low-level cross-resistance between isoniazid and ethionamide.

CYCLOSERINE

- Bacteriostatic activity
- Mechanism of action: It inhibits bacterial cell wall synthesis
- Widely distributed in the body including CSF
- Side Effects:
 - Related to CNS and include headache, tremor, depression, psychosis and convulsions
 - Peripheral neuropathy (the most serious side effect)

CAPREOMYCIN

- A peptide protein synthesis inhibitor antibiotic
- Injectable agent
 - Used for treatment of drug-resistant tuberculosis

• Side Effects:

- Nephrotoxicity
- Ototoxicity
- Tinnitus, deafness, and vestibular disturbances
- Local pain, and sterile abscesses

AMINOSALYCYLIC ACID

- Structurally similar to Sulphonamides
- Mechanism of action:
 - Competitively inhibits folate synthetase enzyme and thus prevents the formation of tetrahydrofolic acid (THFA)
 - A bacteriostatic effect
- Uses:
 - A reserve drug for the management of MDRtuberculosis

*MDR – multidrug-resistant

KANAMYCIN & AMIKACIN

- Amikacin is useful against atypical mycobacteria
- There is no cross-resistance between streptomycin and amikacin
- But kanamycin resistance often indicates resistance to amikacin as well
- Amikacin is indicated for treatment of tuberculosis suspected or known to be caused by streptomycin-resistant or multidrug-resistant strains

FLUOROQUINOLONES

- Also helpful in treating atypical mycobacteria
- Useful for strains resistant to first-line antitubercular drugs
- Resistance: may result from one of several single point mutations in the Gyrase A subunit, if a Fluoroquinolone is used as a single agent

LINEZOLID

- Used in combination with other antitubercular drugs for the treatment of multidrug resistant strains
- Adverse effects: bone marrow suppression and irreversible peripheral and optic neuropathy

RIFABUTIN/RIFAPENTINE

- Rifabutin is derived from rifamycin and is related to rifampin
- It has significant activity against *M tuberculosis*, MAC, and *Mycobacterium fortuitum*
- Indicated in place of rifampin Because it is a less potent inducer of hepatic enzymes

BEDAQUILINE

- A diarylquinoline, with a novel mechanism of action
- Mechanism of action:
 - Inhibits adenosine 5'-triphosphate (ATP) synthase in mycobacteria,
 - has in vitro activity against both replicating and non replicating bacilli
- Has bactericidal and sterilizing activity
- No cross-resistance with other medications used to treat tuberculosis.

REFERENCES

- Basic and Clinical Pharmacology: Katzung BG, Masters SB, Trevor AJ. 14th Edition.
- Katzung & Trevor's Pharmacology: Examination
 & Board Review. 12th Edition
- Lippincott's Illustrated Reviews: Pharmacology, Clark MA, Finkel R, Rey JA, Whalen K. 7th Edition
- Goodman & Gilman's The Pharmacological Basis of Therapeutics: Brunton LL. 12th Edition

Email address for queries on the topic

drshams11@hotmail.com