ANTIBODY DR ZAAHID KHATTAK ASSISTANT PROFESSOR MICROBIOLOGY

DEFINITION

- Antibodies are Protein molecules/ Globulins that react specifically with the specific Ag, that produced them
- Make up 20% of plasma proteins (Gamma globulins)
- Produced by plasma cells (B cells)
- 5 classes of antibodies;
 - -IG G (IgG1, IgG2, IgG3, IgG4)
 - -IG A (IgA1, IgA2)
 - -IGM
 - -IG D & IG E

PROPERTIES OF IMMUNOGLOBULINS

75

PROPERTIES

- % OF Igs Serum con mg/dl
- Sediment coeffi
- Mol Wt (x1000)
- Structure
- H- Chain r
- Complement fixation + Transplacental passage Allergy mediation Secretions present Opsonization +
- Ag receptar on B cell -J chains in polymer -

lgG	lgA	lgM	lgD	lgE
15	09	0.2	0.004	
1000	200	120	03	0.05
7s	11 s	19s	7s	8 s
150	170	900	180	190
Mono	Dimer	Penta	Mono	Mono
α	μ	δ	€	
-	+	-	-	
+	-	-	-	-
-	-	-	-	+
+milk	+mucu	ıs+m	-	-
-	-	-	-	
-	+	-	-	
-	+	+	-	-

SECRETORY- Ig

- Epithelial cells in intestine, tear ducts, salivary gland, lactating mammary gland do secrete antibody
- Secreted "IgA" forms a very important defence against infection in Resp; Tract & GIT
- "IgG also IgM" secreted into the external secretions.

HUMORAL IMMUNITY & B LYMPHOCYTES

- B Lymphocytes Live in blood, bone marrow, lymphoid tissues (spleen/LN)
- Activation of Lymphocyte by exposure to antigens (CD4+ T cell)
- B cells differentiate into plasma cells (that make antibodies)
- The antibodies kill the pathogens

B CELL RECEPTORS

STRUCTURE OF ANTIBODIES

- Y-shaped glycoprotein
 - 2 Light chains (k/l), mol wt 25,000,
 - 2 Heavy chains (r, u, a, e, d), mol wt 60,000
- Constant region forms the Fc fragmentfor;
 - Complement fixation
 - Binds to APC's
 - Defines class, (IgG Class: IgA,IgE)
- Variable regions forms the Fab (Ab binding site)
 - Binds to antigen
- Hypervariable region- the Ag binding site

FUNCTIONS OF ANTIBODIES

- **1.** Bind to and "Neutralizes" antigens
- 2. Coats "opsonizes" microbes, making them palatable to macrophages and neutrophils
- 3. Activate complement.

ANTIBODY DIVERSITY

- 10⁶-10⁹ (10,00,00,000)</sup> different antibody mol, so 10⁹ distinct B cell clones in a single individual.
- Ig genes rearrange during B cell development (VDJC).
- DNA from mature B cells rearrange with excision of some DNA.

The arrangement of Ig heavy chain constant regions in man

antibody (sub)class produced

MONO/ POLYCLONAL Abs/ CHYMERIC Abs

- Antibodies in animals are <u>Heterogenous &</u> <u>polyclonal</u>- formed by different plasma cells/ B cells
- Antibodies formed by a single clone of plasma cells in cancers (myeloma) are <u>homogenous &</u> <u>monoclonal</u>.
- In the lab the "hybridomas" make unlimited monoclonal antibodies
- Chymeric McAb; Fc portion is Human & Fab portion is from Mouse

USES OF McAb

- **1. Transplant related immuno-suppression**; IL2 Ab for GVHD therapy
- 2. Autimmune disease; TNFa Ab for RA/ Crohn's disease
- **3.** Prevention of infections; Resp; Syncitial Virus Ab, Prevents Pneumonia
- 4. Treatment of cancer; CD20 Ab (Rituximab), for Lymphoma/ Ca breast (Herceptin)
- 5. Blood group sera (Anti A/AntiB)

ISOTYPE, ALLOTYPE/ IDIOTYPE

• ISOTYPE; Differnce in Fc- IgG/ IgM

• ALLOTYPE; Same Ab (IgG), but variant IgG1,2,3,4

• IDIOTYPE; Specific AA at Ag binding site of a single clone

PRIMARY RESPONSE

- When Ag is first time encountered, Abs detectable after long periods (7-10 days)-"PRIMARY RESPONSE"
- Primary response- weaker
- Initially a small clone of B cell/ plasma cells proliferate
- Abs con increases for 02 weeks & then declines
- The first Ab to appear is IgM, followed by IgG.

SECONDARY RESPONSE

- •After a second encounter with the <u>same</u> Ag, months/ years after primary response, a rapid Ab response with a lag period of 3-5 days
- •Higher levels of abs produced
- •Due to presence of "memory cells"
- •The Ig M produced is same as produced in primary response, but larger amounts of Ig G,
- With each subsequent exposureactivation of germinal centre of LN
 Basis of booster doses of vaccine

PRIMARY & SECONDARY RESPONSE

RESPONSE TO MULTIPLE ANTIGENS ADMINISTERED SIMULTANEOUSLY

- When 2/more Ag are administered at the same time, body reacts by forming Abs to all of them (DPT/MMR)
- Functions of Abs- protect against infectious agents;
 - -Neutralize toxins/ viruses
 - Opsonize- making microorganisms palatable for phagocytes
 - Fc receptors on phagocytes
 - IgG/IgM Activates complement
 - -Abs can be;
 - Induced actively
 - Acquired passively

