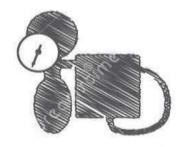
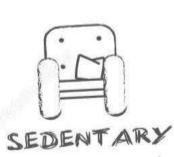
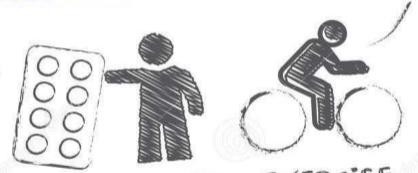
Anti hypertensive Drugs



By; Dr Shaikh Fahad falah


Objectives

- At the end of session
- You should know the mechanism of action of anti hypertensive drugs.

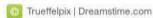


DIAGNOSIS

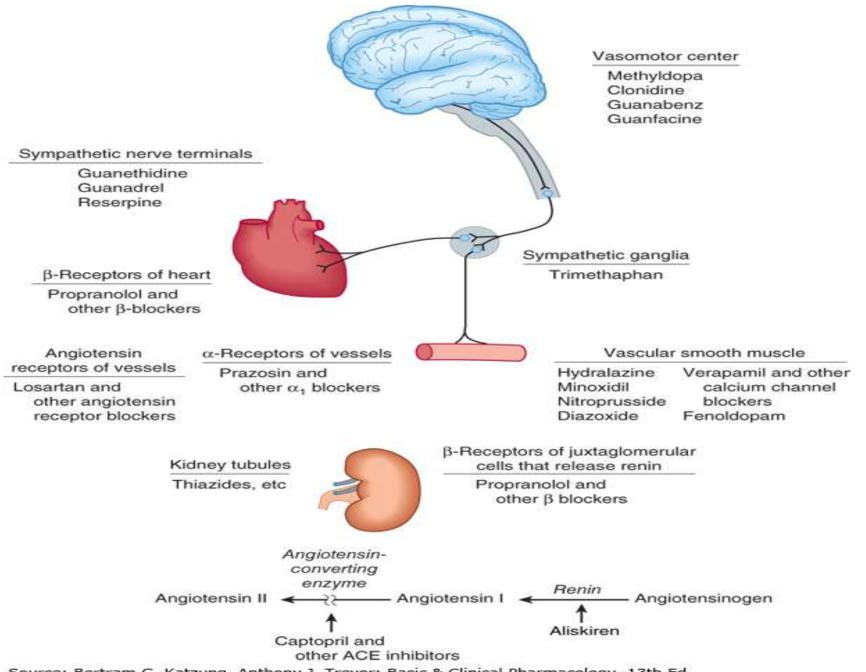
BETA BLOCKER

EXERCISE

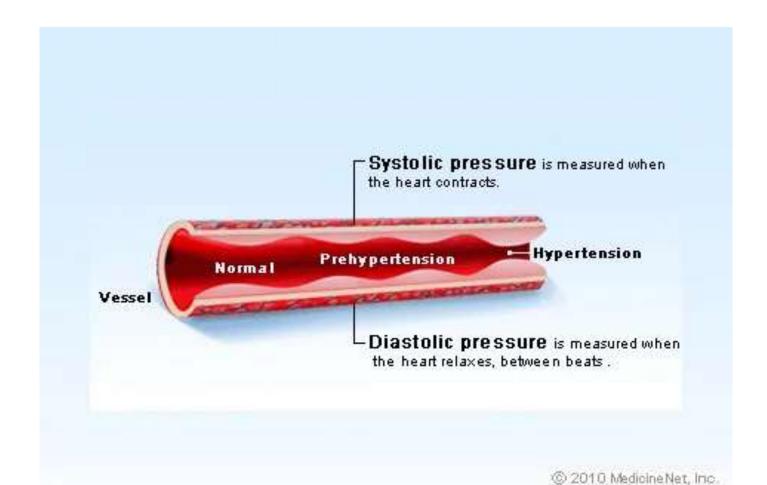
NUTRITION



ALCOHOL



- <u>hypertension</u>, a chronic disease characterized by elevation of <u>blood pressure</u>
- classified by cause as either <u>essential</u> (also known as primary or <u>idiopathic</u>) or <u>secondary</u>
- overconsumption of sodium and underconsumption of potassium


 Secondary hypertension indicates that the hypertension is a result of a specific underlying condition with a well-known mechanism, such as chronic kidney disease, narrowing of the aorta or kidney arteries, or endocrine disorders such as excess aldosterone, cortisol, or catecholamines

- <u>Cardiac output</u> and <u>peripheral resistance</u> are the two determinants of <u>arterial pressure</u>.
- Cardiac output is determined by <u>stroke</u> <u>volume</u> and <u>heart rate</u>
- Stroke volume is related to <u>myocardial</u> <u>contractility</u> and to the size of the <u>vascular</u> <u>compartment</u>.
- Peripheral resistance is determined by functional and anatomic changes in small <u>arteries</u> and <u>arterioles</u>.

mount comment by sen maret. If I to	SYSTOLIC	DIASTOLIC
NORMAL	90-129	60-79
STAGE 1	130-139	80-89
STAGE 2	140-179	90-109
CRITICAL	OVER 180	OVER 110

Source: Bertram G. Katzung, Anthony J. Trevor: Basic & Clinical Pharmacology, 13th Ed. www.accesspharmacy.com
Copyright © McGraw-Hill Education. All rights reserved.

Centrally acting alpha agonists

Stimulate α 2 receptors in brainstem, reducing sympathetic outflow

Beta adrenergic blocking agents

Block cardiac β1 adrenergic receptors, reducing heart rate and cardiac contractility

Angiotensin converting enzyme inhibitors

Block conversion of angiotensin I to angiotensin II,a potent vasoconstrictor

Angiotensin II receptor blockers

Competitively block angiotensin II receptors

Dihydropyridine calcium channel blockers

Bind α 1 subunit of L-type calcium channel in muscle cell membrane, reducing vascular smooth muscle contractility

Director vasodilators

Hydralazine reduces intracellular calcium in vascular smooth muscle cells and minoxidil causes potassium efflux with smooth muscle relaxation; both drugs cause arteriolar dilation

Angiotensin converting enzyme inhibitors

Block conversion of angiotensin I to angiotensin II,a potent vasoconstrictor

Angiotensin II receptor blockers

Competitively block angiotensin II receptors

Dihydropyridine calcium channel blockers

Bind α1 subunit of L-type calcium channel in muscle cell membrane, reducing vascular smooth muscle contractility

Director vasodilators

Hydralazine reduces intracellular calcium in vascular smooth muscle cells and minoxidil causes potassium efflux with smooth muscle relaxation; both drugs cause arteriolar dilation

Thiazide diuretics

Inhibit Na-Cl cotransporter in distal convoluted tubule of nephron, causing natriuresis

Loop diuretics

Inhibit Na-K-Cl cotransporter in loop of Henle of nephron, causing natriuresis

Mineralocorticoid receptor blockers Competitively inhibit aldosterone binding to the mineralocorticoid receptor, ultimately reducing sodium reabsorption in collecting duct of nephron

•Thank you