Anticoagulants

By Dr. Shaikh Fahad Falah

Learning objectives

- To know the clotting pathways and where they can be intervened.
- To know about anticoagulants; heparin and warfarin.
- Their mechanism of action.
- Common uses and contraindications.

Anticoagulants

Blood Clotting

- Vascular Phase
- Platelet Phase
- Coagulation Phase
- Fibrinolytic Phase

Vascular Phase

- Vasoconstriction
- Exposure to tissues activate Tissue factor and initiate coagulation

Platelet phase

- (endothelial cells) prevent platelet adhesion and aggregation
- platelets contain receptors for fibrinogen and von
 Willebrand factor
- after vessel injury Platelets adhere and aggregate.
- Loose their membrane and form a viscous plug

Coagulation Phase

- Two major pathways
 - Intrinsic pathway
 - Extrinsic pathway

- Both converge at a common point
- 13 soluble factors are involved in

clotting

Coagulation Phase

- Biosynthesis of these factors are dependent on Vitamin K1 and K2
- Output in the sequential output is a sequentially activated
- Hereditary lack of clotting factors lead to hemophilia -A

Intrinsic Pathway

- All clotting factors are within the blood vessels
- Oclotting slower
- Activated partial thromboplastin test (aPTT)

Extrinsic Pathway

Initiating factor is outside the blood vessels - tissue factor Olotting - faster - in **Seconds** Output Prothrombin test (PT)

Anticoagulant drugs to treat thromboembolism

Drug Class	Prototype	Action	Effect
Anticoagulant Parenteral	Heparin	Inactivation of clotting Factors	Prevent venous Thrombosis
Anticoagulant Oral	Warfarin	Decrease synthesis of Clotting factors	Prevent venous Thrombosis
Antiplatelet drugs	Aspirin	Decrease platelet aggregation	Prevent arterial Thrombosis
Thrombolytic Drugs	Streptokin	ase Fibinolysis	Breakdown of thrombi

Uses

Acute myocardial infarction

Arterial and venous thrombosis

• Pulmonary embolism

Contra indications

Stroke

Major surgery

• Brain neoplasm

Active bleed

Heparin

Mechanism of action

- binds to the enzyme inhibitor antithrombin III (AT), causing a conformational change that results in its activation
- The activated AT then inactivates thrombin, factor Xa and other proteases

Administration

- given parenterally because it is not absorbed from the gut. (intravenously or subcutaneously (under the skin)intramuscular injections (into muscle) are avoided because of the potential for forming hematomas
- short biologic half-life of about one hour, heparin must be given frequently or as a continuous infusion.
- often used only to commence anticoagulation therapy until an oral anticoagulant
 e.g. warfarin takes effect

Warfarin

- Warfarin, sold under the brand name Coumadin
- Mechanism of action

inhibits the <u>vitamin K</u>-dependent synthesis of biologically active forms of the <u>clotting</u> factors <u>II</u>, <u>VII</u>, <u>IX</u> and <u>X</u>

Administration

 Warfarin is available orally. Warfarin has a long half-life and need only be given once a day

It takes several days for warfarin to reach the therapeutic effect

Thank you