BLOOD PHYSIOLOGY BY DR. AMEENA NASIR # **BLOOD** - Volume = 5L - pH = 7.45 - Specific Gravity = 1.052 1.061 # **FUNCTIONS OF BLOOD** - Provision of nutrients - Provision of respiratory gases - Exchange of waste between tissue and vessel - Carrying vehicle for endocrine hormones - Act as medium for transport - Regulation of body temperature - Regulation of water balance - Act as buffer # COMPOSITION - □ Cellular portion (40 45% V/V) → RBCs, WBCs, Platelets - □ Liquid portion (50 60% V/V) → Plasma • SERUM: Clear fluid from the clotted blood i.e. plasma without clotting factors ### **SERUM** - Clear straw colored fluid that oozes out from blood clot - Fibrinogen is absent and is converted to fibrin during clotting - Composition is same as plasma except fibrinogen Lack clotting factors # **PLASMA PROTEINS** - Albumin - Globulin - Fibrinogen - Prothrombin | PROPERTIES | ALBUMIN | GLOBULIN | FIBRINOGEN | PROTHROMBIN | |-----------------|-----------------|-----------------|----------------|------------------| | CONCENTRATION | 4.5 – 5.7 g/dL | 1.5 – 2.5 g/dL | 0.2 – 0.4 g/dL | 0.01 – 0.02 g/DI | | SOLUBILITY | Water soluble | Insoluble | Insoluble | Insoluble | | COAGUBILITY | Heat coagulable | At 70°C | At 56°C | Helps in | | | | | | coagulation | | ISOELECTRIC PH | 4.7 | α – 5.1 | 5.8 | | | | | β – 5.6 | | | | | | γ – 6 | | | | PRODUCTION SITE | Liver | Liver except γ- | Liver | Liver | | | | globulin | | | Antibodies are γ -Globulins # **ALBUMIN** - Most abundant (50 60%) - Low molecular weight - Regulation of osmotic pressure (80%) - Precursor for tissue protein - Transport carrier for hormones, amino acids - Maintain pH # **GLOBULIN EXAMPLES** - Heptaglobin - Ceruloplasmin (Protein that binds to copper) - Antibody (γ-Globulin) - Carrier lipids - Transferrin (transport iron) # **FUNCTION OF PLASMA PROTEINS** - Immunity - Osmotic pressure regulation - Transport of amino acids, hormones - Maintain viscosity - Blood clotting # MAINTAIN ESR (ERYTHROCYTE SEDIMENTATION RATE) - 1. Fibrinogen (major role in ESR) - 2. Globulin - 3. Albumin - COLLOID OSMOTIC PRESSURE: The pressure that tends to keep the blood within vessels (28 mmHg) - **HYDROSTATIC PRESSURE**: The pressure that tends to keep the blood driven away from vessel (repulsive force for H₂O) - Albumin/Globulin Ratio is 2:1 - Osmotic pressure is due to blood solutes Oncotic pressure is due to plasma proteins # **ERYTHROCYTES** - Biconcave, anucleated - 7.8 μm mean diameter - Thickness at center 1 μm - Thickness at thickest part 2.5 μm - Life span = 120 days - Flexible cell membrane - Female Count = 47,00,000 ± 300,000/mm³ Male Count = 52,00,000 ± 300,000/mm³ # Why RBCs are less in females? Ans: Testosterone facilitates erythropoiesis in males thereby increasing RBC count ### SITE OF PRODUCTIONS OF RBCs - BEFORE BIRTH - Megaloblastic Stage (early weeks) → Yolksac - □ Hepatic Stage (second trimester) → Liver, spleen, lymphoid tissue - Myeloid Stage → Bone Marrow - AFTER BIRTH - Upto 5 Years → Bone Marrow of all bones - □ Till 20 Years → Bone Marrow of long bones except tibia and humerus - After 20 Years → Bone Marrow of membranous bones i.e. ribs, sternum, vertebrae, ileum Erythropoiesis takes 7 days ### **HEMOPOIESIS** - Origin, development, maturation and processing of blood cells - Blast → immature cell - Cyte → Mature cell - PROCESSION TO MATURITY LEADS TO - Cell size decrease - Cytoplasm to nucleus ratio increase - Nucleoli start disappearing - Amount of RNA (basophilic) decreases - Hb starts to appear | STAGE | SIZE | NUCLEUS | CYTOPLASM | Hb | |---|------------------------------|--|---------------------------------------|--------------------------------------| | Pro-Erythroblast
(Pro-normoblast) | 20 μm | Large nucleus
Two or more nuclei | Basophilic (RNA) | -short
-synthesis don't
appear | | Basophil
Erythroblast
(early
normoblast) | 15 μm | Nucleoli disappear | Basophilic | Start appearing | | Polychromatic
erythroblast
(intermediate
normoblast) | 10 – 12 μm | Nucleus present | Both stains bcz Hb
and RNA present | Start increasing | | Orthochromatic erythroblast (Late normoblast) | 8 – 10 μm | Inkspot nucleus
(Pyknosis)
Nuclear extrusion | Almost acidophilic
(due to Hb) | Present | | Reticulocyte | Larger than
mature
RBC | | Majorly acidophilic
due to Hb | Present | # **RETICULOCYTE** - At Reticulocyte stage, RBC enter into circulation - Normal Reticulocyte count = less than 1% In newborn baby = 2 6 % - Reticulocytes enter into circulation by diapedesis - Reticulocytes show citric acid cycle and oxidative phosphorylation - Remain in bone marrow for 1 2 days, then enter the blood and lose mitochondria and ribosomes - SIGNIFICANCEOF RETICULOCYTE COUNT The number of reticulocytes in the peripheral blood increases in hemolytic disease of newborn # **FACTORS AFFECTING ERYTHROPOIESIS** - 1. Hypoxia stimulates erythropoietin - 2. Anemia - 3. High altitude - 4. Cardiac failure - 5. Lung disease # **ERYTHROPOIETIN** - Hormone - Glycoprotein - Molecular weight = 34000 - Site of production: - 1. Kidneys (90%) Fibroblast cells surrounding tubules in cortex and medukka - 2. Liver (10%) # Stimulus for Erythropoietin - 1. Hypoxia in kidney - 2. Hypoxia in other organs - 3. Epinephrine, norepinephrine, prostaglandins After stimulus, erythropoietin production takes place within minutes. Erythropoiesis now occurs in 5 days. # **Effect of Erythropoietin** - 1. Production of proerythroblast from hemopoietic stem cells - Causes cells to rapidly pass through subsequent stages (act as catalyst) Hypoxia → Erythropoietin → Erythropoiesis → Increase in RBCs → Hypoxia Relieved # **FACTORS AFFECTING ERYTHROPOIETIN** - 1. Tissue oxygenation - 2. Nutritive factors like Vitamin C, Vitamin B12, Folic acid - 3. Growth inducers such as interleukin-3 - 4. Differentiation inducers help in Vitamin B₁₂ absorption - 5. Proteins supply amino acids - 6. Intrinsic factor - 7. Extrinsic factor - 8. Hormones such as testosterone, ACTH and thyroid hormones - 9. Minerals such as iron, cobalt (is a part of Vitamin B₁₂,) Cu, Ni, Mn # VITAMIN B₁₂ - Important in pyrimidine synthesis (thymidine triphosphate) involved in cell division of RBCs - Delay in nuclear maturation and cell division - Normal requirement per day = $1 3 \mu g$ - Storage in liver is 1000 times extra - Vitamin B₁₂ deficiency manifests in 3 4 years ### CAUSES OF VITAMIN B₁₂ DEFICIENCY - 1. Dietary - Pure strict vegetarians - 2. Gastric Factors - Gastrectomy - Pernicious anemia #### ABSORPTION OF VITAMIN B₁₂ | Vit. B12 in food | Fathophysia C | |-----------------------------|---------------------| | Panetal cells - Intrinsic F | factor | | 2ntrinsic factor + Vitamin | | | V | secretion) | | Binds with receptors on | 122011 | | Pinocytosis V | * Resalich! | | transported by blood to | get stored in liver | # **PERNICIOUS ANEMIA** Deficiency of intrinsic factor leads to anemia # **CAUSES** - 1. Autoimmunity (most common cause) Autoimmune antibodies are formed that destroy parietal cells - 2. Severe gastritis - 3. Ulcer - 4. Gastrectomy - 5. Sprue # **FOLIC ACID** - Involved in DNA methylation - Deficiency of folate causes megaloblastic anemia ### **SOURCES OF FOLIC ACID** - Green leafy vegetables - Bread - Beef - Beans - Pasta - Rice - cereals ### PATHOPHYSIOLOGY OF MEGALOBLASTIC ANEMIA Decreased Vitamin B_{12} and Folic acid \rightarrow Decreased synthesis of TTP \rightarrow Abnormal DNA synthesis and failure of nuclear maturation \rightarrow Megaloblasts (large RBC, flimsy membrane and fragile) # **MACROCYTE** (larger than normal RBC) CAUSES: - 1. Alcohol - 2. Liver diseases 3. Stomach diseases causing impaired Vitamin B₁₂ absorption # **VITAMIN C** - Reduces ferric ion to Fe⁺² - Helps in iron absorption - Deficiency causes microcytic anemia # **HEMOGLOBIN** - Iron containing coloring matter of RBCs - 100 ml of blood has 34g of Hb - Hb level in males = 15 17 g/100mlHb level in females -12 - 14g/100ml - 1g of Hb binds with 1.34 ml of oxygen 15g of Hb binds with 20 ml of oxygen - Oxygen binds loosely and reversibly with hemoglobin - O₂ forms dative bond with Fe⁺² - Oxygen is released in molecular form, not in ionic form - Hemoglobin act as oxygen buffer # **Hb Synthesis** 2 Succinyl Co-A + 2 Glycine → Pyrrole 4 Pyrrole → Protoporphyrin IX Protoporphyrin IX + Fe⁺² → Heme Heme + Polypeptide \rightarrow Hb Chain (α or β) $2 \alpha + 2 \beta \rightarrow 1$ molecule of Hb (HbA) 1 Hb → 8 atoms of oxygen 1 Hb \rightarrow 4 molecules of O₂ # **HEMOGLOBIN CHAINS** - α -chain (having 141 amino acids) - β -chain (having 146 amino acids) - η-chain - Delta-chain # TYPES OF Hb - HbA (97% of normal adult Hb) \rightarrow 2 α + 2 β - HbA₂ (2.5% of normal adult Hb) \rightarrow 2 α + 2 delta - HbF \rightarrow 2 α + 2 γ - □ HbS \rightarrow 2 α + 2 faulty β chain # HbF - Present in fetal life - Replaced by HbA immediately after birth - HbF has more affinity for oxygen than maternal HbA - Completely replaced in 6 10 weeks # IRON - □ Total conc. = 4 5 g - Hb 65% - Myoglobin 4% - □ Ferritin 15 30% - □ Daily Requirement = 30 60 mg - Daily loss of iron is 0.7 mg daily - Stored form of iron is Fe⁺³ - Ferritin has ability to bind 4500 Fe/protein If iron load increases beyond normal level excess is stored as hemosiderin in liver and heart | Ferritin | Hemosiderin | |---|------------------------------------| | Main storage form | Smaller storage form | | Iron stored in small and dispersed clusters | Stored in large clusters | | Seen by electron microscope | Can be seen by ordinary microscope | | Fe can be removed quite easily | Fe more difficult to remove | # Van Den Bergh Test - specific test for increased serum bilirubin levels. - Normal serum gives a negative reaction - Van Den Bergh reagent = sulfonic acid + NaNO2 # **ANEMIA** Deficiency of Hb in blood combined with impaired provision of O₂ to tissue ### **CAUSES** - Too few RBCs - Too little Hb #### **SYMPTOMS AND SIGNS** - Weakness - Fatigue - Dyspnea (difficulty in breathing) - Pale skin - Conjunctiva (transparent membrane on sclera) - Headache #### **CLASSIFICATION** - 1. Blood loss anemia - 2. Nutrition deficiency - 3. Aplastic anemia - 4. Hemolytic anemia - 5. Anemia of chronic disease #### MORPHOLOGICAL CLASSIFICATION - 1. Microcytic anemia - 2. Macrocytic anemia - 3. Normocytic anemia (less count but normal shape) # **MICROCYTIC ANEMIA** - Seen in - 1. Iron deficiency - 2. Thalassemia - 3. Nutritional deficiency (Vitamin C, PLP) - 4. Lead toxicity - Common features $MCV < 80 \mu m^3$ Reason of microcytosis – size reduces to maintain its MHC - Lab Findings in microcytic anemia - Ferritin low - Serum iron low - % saturation low - Serum transferrin levels increase # **BLOOD LOSS ANEMIA** - **ACUTE**: normocytic, normochromic - **CHRONIC**: microcytic, hypochromic Chronic blood loss \rightarrow Person can't absorb enough Fe \rightarrow Decreased synthesis of Hb \rightarrow Small RBCs with lesser Hb \rightarrow Microcytic, hypochromic anemia • After acute hemorrhage – blood replaces fluid of plasma in 1 – 3 days # **APLASTIC ANEMIA** - Bone marrow aplasia - Hematopoietic stem cells damaged - Reticulocyte count low ### **CAUSES** - Radiation - Chemotherapy - Idiopathic (unknown causes) - Toxic chemicals - Autoimmune disorders #### **FEATURES OF APLASTIC ANEMIA** - 1. Low RBC count → anemia - 2. Low WBC count → recurrent infections - 3. Low platelets → brusing tendency increase # **NUTRITIONAL DEFICIENCY ANEMIA** - Vitamin B₁₂ deficiency anemia - Ascorbate deficiency - Iron deficiency anemia # **IRON DEFICIENCY ANEMIA**: Low availability of Fe for Hb synthesis #### **CAUSES** - 1. Blood loss - 2. Increased Fe intake - 3. Poor absorption of iron - 4. Poor diet in children - 5. Breast feeding - 6. Pica - 7. GIT hemorrhage - 8. Increased Fe requirements ### **FEATURES** - Brittle nails - Koilonychia (spoon shaped nails) - Brittle nails ### **LAB FINDINGS** - Ferritin low - Serum iron decrease - % saturation decrease # **HEMOLYTIC ANEMIA** - Abnormal RBCs - Hereditary - Fragile RBCs - Sickle cell anemia **EXTRINSIC**: Due to external factors causing lysis of cell #### **EXAMPLE:** - Anemia in erythroblastosis fetalis - Autoimmune disorders like rheumatic arthritis **INTRINSIC**: Intrinsic defect in RBC morphology leads to hemolysius #### **EXAMPLES:** - Sickle cell anemia - Hereditary spherocytosis - □ Hemoglobinopathies → HbS + HbC - Thalassemia # **HEREDITARY SPHEROCYTOSIS** Inherited defect of RBC cytoskeleton Spherocytosis → Sphere shaped RBCs → Cant resist compression forces → Rupture → Hemolytic anemia Sickle-cell anemia – subtype of hemolytic anemia # **THALASSEMIA** - Inherited disorder characterized by abnormal hemoglobin - Decreased Globin → Decreased Hb → Microcytic hypochromic anemia - **Alpha Thalassemia**: defect in α -chain or absence of α -chain - **Beta Thalassemia**: defect in β -chain - Thalassemia Minor: symptoms are like iron deficiency anemia - Defective or decreased synthesis of chain of Hb - Thalassemia Major: complete lack of any one chain of Hb | Anemia | Hb Level (g/dL) | | |----------------------------|-----------------|--| | Grade 0 | ≥ 11.0 | | | Grade 1 (mild) | 9.5 – 10.9 | | | Grade 2 (moderate) | 8.0 – 9.4 | | | Grade 3 (serious) | 6.5 – 7.9 | | | Grade 4 (life threatening) | < 6.5 | | # **POLYCYTHEMIA** Increased number of RBC #### SECONDARY POLYCYTHEMIA - RBC count = 6 -7 million/mm³ - At high altitude - Physiological phenomenon #### **POLYCYTHEMIA VERA** - 3Erythemia - Pathological - □ RBC count = 7 8 million/mm³ - □ Hematocrit = 60 70% - All cell types increase - Blood volume increase ### **CAUSE** - Bone marrow damages - Genetic aberration in hemocytoblastic cells #### **EFFECT ON CIRCULATORY SYSTEM** - Viscosity increase (10X) - Entire system get engorged - Resistance to blood flow increase #### **COMPLEXION IN POLYCYTHEMIA** Color of skin is due to quantity of blood in skin subpapillary venous plexus Polycythemia \rightarrow sluggish flow \rightarrow large Hb deoxygenation \rightarrow deoxyhemoglobin masks the red color of oxyhemoglobin \rightarrow ruddy complexion with bluish tinit (cyanotic complexion) # **LEUKOCYTES** - White blood cells - Mobile units of body's protective system - Normal value: 4000/μL 11000/μL ### **CLASSIFICATION** - Granulocytes have cytoplasmic granules that contain biologically active molecules - Agranulocytes ### **GRANULOCYTES** (Polymorphonuclear cells) - Neutrophils 62% - Eiosinophils 2.3% - Basophils 0.4% ### **AGRANULOCYTES** - Monocytes 5.3% - Lymphocytes 30% ### **Sites of Leukopoiesis** - 1. Bone marrow produce granulocyte, monocyte - 2. Lymph tissue i.e. spleen, thymus, tonsils etc produce lymphocytes and plasma cells #### LIFE SPAN OF WBCs - Granulocytes - □ In blood: 4 8 hrs - □ In tissues: 4 5 days Monocytes In blood: 10 – 20 hrsIn tissues: for months Lymphocytes In blood: few hoursContinually recycle #### **PROPERTIES** 1. Diapedesis – squeezing of cels 2. Amoeboid – neutrophils and macrophages 3. Chemotaxis – inflammation release cytokines # **NEUTROPHILS** Granules take both stains - Multi-lobed nucleus - 10 12 µm in diameter - More lobes of nucleus, more mature it is - A single neutrophil can phagocytose 3 20 bacteria - Granules have bactericidal component | PROPERTIES | NEUTROPHILS | MACROPHAGES | |----------------|------------------------------------|------------------------| | Types of cells | Mature cells | Derived from monocytes | | Site | Blood | Tissues | | Power | Less | More power | | Bacteria | 3 – 20 bacteria | More than 100 | | Life span | Days (increase in acute infection) | Weeks to months | # **INFLAMMATION** - Vasodilation - Increased permeability of capillary - Increased clotting - Migration of granulocytes and monocytes to the site of injury - Swelling # **VASODILATION CAUSED BY** - Histamine - Serotonin - Bradykinin - Prostaglandins - Lymphokines # LINES OF DEFENCE - FIRST LINE Tissue macrophages - SECOND LINE Macrophage invasion - THIRD LUNE Neutrophil invasion - FOURTH LINE Granulocyte and monocyte # **EOSINOPHILS** (pink color) - Coarse granules - Stain pink/ red with eosin - Bilobed nucleus - $10 14 \mu m$ in diameter ### **FUNCTIONS** - Phagocytosis - Combat parasitic infections e.g. schistosomiasis, trichinosis - Kills parasites by - Hydrolytic enzymes i.e. lysosomes - Reactive O₂ species - Major basic protein lavocidal - Response to allergy - Termination of inflammatory response reactions - Eosinophils accumulates and causes - Detoxification - Phagocytosis - Destroys antigen-antibody complexes - Prevents spread of inflammation - Substances released by eosinophils - Eosinophil peroxidase - Major basic protein - Eosinophil cationic protein - Eosinophil derived neurotoxin - Cytokines ### Which granulocytes are phagocytic cells? - 1. Eosinophils weak phagocytes due to smaller size - 2. Neutrophils show phagocytosis ### **BASOPHILS** - Coarse granules - Stain purple with methylene blue - Bilobed nucleus - 8 10 µm in diameter - 0.4% of WBCs - Mast cells present in tissue Basophils present in circulation - Mechanism of action of basophil Allergen → activation of IgE → attachment of IgE with mast cell/basophil → Degranulation of basophils - Basophils release - Histamine - Heparin - Serotonin - Bradykinin - Slow releasing substance of anaphylaxis # **LEUKOPENIA** - Decrease in number of WBCs - Less than 4000/mm³ **CAUSES** are bone marrow depression due to - Hypnotics - Thiauracil - Chloramphenicol - Drugs with benzene nuclei cause aplasia - Exposure to X-Rays #### **TREATMENT** - Initially, stem cells in marrow which regenerate bone marrow - Other options Transfusion + antibiotic # **LEUKOCYTOSIS** - More than 1100/mm³ - Protective infection - Leukocytosis normal WBCs increase in number Leukemia cancer condition in which WBCs increase in number #### **CAUSES** - Chronic infection Monocytosis - Allergy Eosinophilia - Viral infections Lymphocytosis - Acute bacterial infection neutrophilic leukocytosis # **LEUKEMIA** - Caused by cancerous mutation of myelogenous or lymphogenous cells - Uncontrolled cancerous production of RBCs - CAUSES - Radiation - Chemicals - Viruses - Genetics #### LYMPHOGENOUS LEUKEMIA - Cancerous production of lymphoid cells - Sites: Lymphoid nodes, all lymphocytic area - Acute Lymphoblastic Leukemia - Young - Adults other than 65 years - Chronic Lymphocytic leukemia - Adults over 55 years #### **MYELOGENOUS LEUKEMIA** - Cancerous production of myeloid cells - Neutrophilic leukemia - Site: - Bone marrow - Extramedullary tissues e.g. lymph nodes, liver and spleen #### **ACUTE LEUKEMIA** - Cells are less differentiated - Provide no protection - Lead to death within minutes #### **CHRONIC LEUKEMIA** - More differentiated cells than in acute - Develop over years #### **EFFECT ON BODY** - 1. Metastatic growth of leukemic cells - 2. Infections, anemia, thrombocytopenia - 3. On bone - 4. Excessive use of metabolic substrates by cancerous cell - 5. Weakness - 6. Death # **INNATE IMMUNITY** - Natural resistance by the body - Does not require prior exposure - Does not improve after exposure #### **EXAMPLES** - Phagocytosis by WBCs - Stomach acid - Skin # TYPES OF ACQUIRED IMMUNITY - 1. Humoral immunity (B-cell) - 2. Cell-mediated immunity (T-cell) | PROPERTIES | T-CELL | B-CELL | |--------------------|-------------------|-----------------| | Origin | Thymus | Bone marrow | | Blood | 80% | 20% | | Membrane receptors | TCR | BCR | | Function | Cell mediated | Humoral | | Diversity | Less (whole cell) | More (antibody) | #### **PREPROCESSING** - Thymus → T cells - Liver, bone marrow → B cells # MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) Set of cell surface proteins of acquired immune system to recognize foreign molecules and determine histocompatibility. HLA – Human Leukocyte Antigen #### **FUNCTION OF MHC** - Binds antigen of pathogen and display - Determines compatibility of transplant donor #### **TYPES OF T-CELLS** - Helper T cells (CD4 and MHC-II) - Cytotoxic T cells (CD8 and MHC-I) - Suppressor T cells - Memory T cells MHC-I proteins present antigen to cytotoxic T-cells MHC-II proteins present antigen to helper T-cells ### ANTIGEN PRESENTING CELLS Antigen-presenting cells (APCs) are **a heterogeneous group of immune cells** that mediate the cellular immune response by processing and presenting antigens for recognition by certain lymphocytes such as T cells. Antigen presenting cells include - Macrophages (most potent) - Dendritic cell - B-lymphocytes # **ROLE OF ANTIGEN PRESENTING CELLS** - 1. Phagocytosis of antigen - 2. Fusion of lysosome and phagosome - 3. Degradation - 4. Fragments of antigen on APC surface - 5. Leftover fragments released by exocytosis