BACTEREMIA AND SEPSIS

DR ZAHID KHATTAK ASSISTANT PROFESSOR MICROBIOLOGY

Outline

- History and Definitions
- Classification
- Epidemiology
- Microbiology
- Pathogenesis
- Clinical aspects of bacteremia
- Laboratory diagnosis
- Management
- Prevention

History

- From Greek word for "decomposition" or "decay" (Homers poems)
- First case of bacteremia (1899) Bacillus pyocyaneus
- The first definition Hugo Schottmüller 1914

"sepsis is present if a focus has developed from which pathogenic bacteria, constantly or periodically, invade the blood stream in such a way that this causes subjective and objective symptoms."

Definitions

- In 1991, first consensus definition of sepsis.
- 2nd definition in 2001
- 3rd definition in 2016

Table I. Definitions of sepsis.

Sepsis | (1991)⁶

Systemic inflammatory response syndrome (SIRS): systemic inflammatory response to a variety of severe clinical insults: Temperature >38°C or <36°C; heart rate >90 beats per min, or PaCO₂ < 32 mmHg; and white blood cell count > 12,000/cu mm, <4000/cu mm, or >10% immature (band) forms

Sepsis is a systemic response to infection, manifested by two or more of the SIRS criteria as a result of infection.

Severe sepsis: Sepsis associated with organ dysfunction, hypoperfusion, or hypotension; hypoperfusion and perfusion abnormalities may include, but not limited to, lactic acidosis, oliguria, or an acute alteration in mental status

Septic shock: Sepsis-induced, with hypotension despite adequate fluid resuscitation along with the presence of perfusion abnormalities that may include, but not limited to, lactic acidosis, oliguria, or an acute alteration in mental status; patients who are receiving inotropic or vasopressor agents may not be hypotensive at the time that perfusion abnormalities are measured.

Sepsis 2 (2001)⁷

Infection: Documented or suspected and some of the following:

General parameters:

Fever (core temperature > 38.3°C); hypothermia (core temperature < 36°C); heart rate > 90 beats per min or > 2 SD above the normal value for age; tachypnea: respiratory rate > 30 breaths per min; altered mental status; significant edema or positive fluid balance (>20 mLkg⁻¹ over 24h)

Hyperglycemia (plasma glucose $> 110\,mg\,dL^{-1}$ or $7.7\,mM\,L^{-1})$ in the absence of diabetes

Inflammatory parameters:

Leukocytosis (white blood cell count > 12,000/ μ L); leukopenia (white blood cell count < 4000/ μ L); normal white blood cell count with > 10% immature forms; plasma C-reactive protein > 2 SD above the normal value; and plasma procalcitonin > 2 SD above the normal value

Hemodynamic parameters:

Arterial hypotension (systolic blood pressure <90mmHg, MAP <70mmHg, or a systolic blood pressure decrease >40 mmHg in adults or <2 SD below normal for age, mixed venous oxygen saturation >70%, cardiac index >3.51 min⁻¹m⁻²) Organ dysfunction parameters: Arterial hypoxemia (PaO₂/FIO₂ < 300); acute oliguria (urine output <0.5 mL kg⁻¹ h⁻¹ or 45 mM L⁻¹ for at least 2 h); creatinine increase \ge 0.5 mg dL⁻¹; coagulation abnormalities (international normalized ratio > 1.5 or activated partial thromboplastin time >60 s); ieus (absent bowel sounds);

thrombocytopenia (platelet count < 100,000 μL^{-1}) Hyperbilirubinemia (plasma total bilirubin >4 mg dL⁻¹ or 70 mmol L⁻¹)

Tissue perfusion parameters:

Hyperlactatemia (>3 mmol L^{-1}); decreased capillary refill or mottling

Sepsis 3 (2016)8

Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection.

Clinical criteria for sepsis:

Suspected or documented infection and an acute increase of \ge 2 SOFA points (Table 2)

The task force considered that positive qSOFA (quick SOFA) criteria should also prompt consideration of possible infection in patients not previously recognized as infected.

qSOFA criteria: Altered mental status (GCS score < 15); systolic blood pressure < 100 mmHg; respiratory rate > 22 breaths per min Septic shock is defined as a subset of sepsis in which underlying circulatory and cellular metabolism abnormalities are profound enough to substantially increase mortality.

Septic shock can be identified with a clinical construct of sepsis with persisting hypotension, requiring vasopressor therapy to elevate MAP ≥ 65 mm Hg and lactate > 2 mmol L⁻¹ (18 mg dL⁻¹) despite adequate fluid resuscitation

Definitions 1991

Systemic inflammatory response syndrome

Criteria include at least two of the following:

- Temperature >38°C or <36°C
- Heart rate >90 beats/min
- Respiratory rate >20 breaths/min, or PaCO2 <32 mm Hg
- White blood cell count >12,000/mm3 or <4000/mm3, or
 >10% band forms

- Systemic Inflammatory Response Syndrome
 - A constellation of abnormal signs
 - Many triggers, infection is most common
 - EMS uses a version of SIRS that doesn't rely on blood test results (WBC count, ABG)
 - Temp, HR, RR, glucose, mental status

Definitions 1991

Septicemia

Bacteremia plus a clinical presentation of bacterial invasion and toxin production.

Sepsis

Infection with a systemic inflammatory response

Severe sepsis

Sepsis accompanied by organ dysfunction, hypotension, or tissue hypoperfusion

Septic shock

Sepsis accompanied by refractory hypotension

Defintions

Definitions 2001

Infection: Documented or suspected and some of the following

General parameters Inflammatory parameters Hemodynamic parameters Tissue perfusion parameters

Sepsis 2 (2001)7

Infection: Documented or suspected and some of the following:

General parameters:

Fever (core temperature > 38.3 °C); hypothermia (core temperature < 36 °C); heart rate > 90 beats per min or > 2 SD above the normal value for age; tachypnea: respiratory rate > 30 breaths per min; altered mental status; significant edema or positive fluid balance ($> 20 \text{ mL kg}^{-1}$ over 24h) Hyperglycemia (plasma glucose $> 110 \text{ mg dL}^{-1}$ or 7.7 mM L⁻¹) in the absence of diabetes

Inflammatory parameters:

Leukocytosis (white blood cell count > 12,000/ μ L); leukopenia (white blood cell count < 4000/ μ L); normal white blood cell count with > 10% immature forms; plasma C-reactive protein > 2 SD above the normal value; and plasma procalcitonin > 2 SD above the normal value

Hemodynamic parameters:

Arterial hypotension (systolic blood pressure < 90 mmHg, MAP < 70 mmHg, or a systolic blood pressure decrease > 40 mmHg in adults or < 2 SD below normal for age, mixed venous oxygen saturation > 70%, cardiac index > 3.5 L min⁻¹ m⁻²) Organ dysfunction parameters:

Arterial hypoxemia ($PaO_2/FIO_2 < 300$); acute oliguria (urine output < 0.5 mL kg⁻¹ h⁻¹ or 45 mM L⁻¹ for at least 2 h); creatinine increase ≥ 0.5 mg dL⁻¹; coagulation abnormalities (international normalized ratio > 1.5 or activated partial thromboplastin time > 60 s);

ileus (absent bowel sounds);

thrombocytopenia (platelet count < 100,000 μ L⁻¹) Hyperbilirubinemia (plasma total bilirubin > 4 mg dL⁻¹ or 70 mmol L⁻¹)

Tissue perfusion parameters:

Hyperlactatemia (>3 mmol L⁻¹); decreased capillary refill or mottling

Definitions 2016

Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection.

Septic shock can be identified with a clinical construct of sepsis with persisting hypotension, requiring vasopressor therapy to elevate MAP≥65 mm Hg and lactate>2 mmol L-1 (18 mg dL-1) despite adequate fluid resuscitation

Definitions 2016

Definitions 2016

Table 2. Sequential (sepsis-related) organ failure assessment (SOFA) score.8.9

System	Score						
	0	I	2	3	4		
Respiration							
PaO ₂ /FIO ₂ , mmHg (kPa) Coagulation	≥400 (53.3)	<400 (53.3)	<300 (40)	<200 (26.7) with respiratory support	<100 (13.3) with respiratory support		
Platelets, $\times 10^3 \ \mu L^{-1}$ Liver	≥150	<150	<100	<50	<20		
Bilirubin, mg dL⁻¹ (µmol L⁻¹)	<1.2 (20)	1.2–1.9 (20–32)	2.0–5.9 (33–101)	6.0–11.9 (102–204)	>12.0 (204)		
Cardiovascular	MAP≥70 mmHg	MAP<70 mmHg	Dopamine < 5 or dobutamine (any dose) ^a	Dopamine 5.1–15 or epinephrine≤0.1 or norepinephrine≤0.1ª	Dopamine > 15 or epinephrine > 0.1 or norepinephrine > 0.1ª		
Central Nervous Syste	em (CNS)						
Glasgow Coma Scale score ^b	15	13–14	10-12	6–9	<6		
Creatinine, mg dL ⁻¹ (µmol L ⁻¹)	<1.2 (110)	1.2–1.9 (110– 170)	2.0–3.4 (171– 299)	3.5-4.9 (300-440)	>5.0 (440)		
Urine output, mL per day				<500	<200		

Sepsis Definitions 2016

Definitions

Bacteremia

Presence of viable bacteria in the blood

Pseudobacteremia

Contamination leading to false-positive results

Occult bacteremia

Bacteremia not associated with any physical signs or symptoms of severe infection

Epidemiology

- More than 30 million people affected by sepsis every year worldwide
- 6 million deaths annually

World Sepsis Day 13 September

Risk Factors

Increased incidence of Bacteremia over the last few years attributable to

- Immunocompromised state
- Increased use of invasive procedures
- Age of the patient
- Antimicrobial resistance
- Diagnostic criteria and coding practices

Increased Risk for Sepsis

- DIABETES, DIABETES, DIABETES
- Liver cirrhosis
- Autoimmune diseases (lupus, rheumatoid arthritis)
- HIV/AIDS
- Para/quadriplegics
- Sickle cell disease
- Splenectomy patients
- Compromised skin (chronic wounds, burns, ulcers)

Increased Risk for Sepsis

- Chemotherapy
- Post-organ transplant (bone marrow, solid organ)
- Chronic steroid use
- Recent antibiotic use
- Indwelling catheters of any kind (dialysis, Foley, IV, PICC, PEG tubes, etc)

Causes of Sepsis

- Pneumonia
- Urinary tract infections
- Infection after abdominal surgery
- Skin infection (cellulitis, open wounds, MRSA abscess).
- C.diff colitis
- Bacteremia from IV drug use.

Microbiology Evolution Over the Years

Gram Negative aerobes Low incidence of MDR isolates Monomicrobial Seticemia High Incidence of Haemophilus influenzae and Pneumococcal bacteremia

Gram positive organisms High incidence of MRSA,VRE,ESBL Polymicrobial Septicemia Low Incidence of *Haemophilus influenzae* and Pneumococcal bacteremia

Sepsis

Pathogenesis

Pathophysiology of Sepsis

- Uncontrolled, exaggerated immune response
- Endothelium damage, cell mediator activation, disruption of coagulation system homeostasis
- Vasodilation and capillary permeability
- Systemic inflammatory response
- End-organ damage, death

Clinical aspects of Bacteremia

Signs and Symptoms

- Fever or hypothermia
- Shaking chills
- Hypotension
- Tachypnea (Early sign)
- Delirium, stupor, or agitation
- Nausea and vomiting
- Acute renal failure
- Ecthyma gangrenosum

Multiple Organ System Dysfunction

- Catheter-Related Bloodstream Infections
- Pneumonias
- Urinary Tract Infections
- Intra-abdominal Infections
- Skin Infections
- Infective Endocarditis
- Musculoskeletal Infections
- Central Nervous System Infections

United Effort to Improve Survival from Sepsis

- Research from past 20 years is saving lives
 - Rapid identification, fluids, antibiotics
- Education to all physicians, nurses, technicians
- "Care bundles" monitored by Feds
- Sepsis alert teams in hospitals
- Chart review
- Administrative support at all levels

EMS and Sepsis

- The whole principle behind Emergency Medical Services is early identification and treatment of life and limb-threatening disease and injury. This is the fundamental reason the EMS was created. EMS has demonstrated a benefit in STEMI, stroke, and trauma. As it happens, it appears that sepsis is no different. EMS can benefit patients by early recognition and early management.
- Over the past 20 years, we have learned that we can improve survival from sepsis when we identify it faster, provide the supportive care to reverse organ hypoperfusion (IV fluids and other drugs that reverse shock), and provide antibiotics as quickly as possible. EMS can play a very important role in helping hospital staff achieve these goals even before the patient gets to the ED.

Sepsis Laboratory diagnosis

- Thrombocytopenia
- Leukocytosis or leukopenia
- Lactic acidosis
- Hypoglycemia or hyperglycemia
- Abnormal liver function test results (hyperbilirubinemia)
- Coagulopathy
- Elevations in C-reactive protein, haptoglobin, and fbrinogen
- Deranged Renal function tests

Sepsis Laboratory Diagnosis <u>Cultures</u>

- Blood Cultures: Most Important
 - Positive blood culture is critical value
- Other cultures: according to source of infection

Sepsis Laboratory Diagnosis <u>Cultures</u>

Suspected site	Symptoms/signs*	Initial microbiologic evaluation [¶]	
Upper respiratory tract	Pharyngeal inflammation plus exudate ± swelling and lymphadenopathy	Throat swab for aerobic culture	
Lower respiratory tract	Productive cough, pleuritic chest pain, consolidative auscultatory findings	Sputum of good quality, rapid influenza testing, urinary antigen testing (eg, pneumococcus, legionella; not recommended in children), quantitative culture of protected brush or bronchoalveolar lavage	
Urinary tract	Urgency, dysuria, loin, or back pain	Urine culture and microscopy showing pyuria	

Sepsis Laboratory Diagnosis

Cultures

Suspected site	Symptoms/signs*	Initial microbiologic evaluation [¶]
Central nervous system	Signs of meningeal irritation	CSF cell count, protein, glucose, Gram stain, and culture ^Δ
Gastrointestinal	Abdominal pain, distension, diarrhea, and vomiting	Stool culture
Intra-abdominal	Specific abdominal symptoms/signs	Aerobic and anaerobic culture of percutaneously or surgically drained abdominal fluid collections
Genital tract	Women: Low abdominal pain, vaginal discharge Men: Dysuria, frequency, urgency, urge incontinence, cloudy urine, prostatic tenderness	Women: Endocervical and high vaginal swabs onto selective media Men: Urine Gram stain and culture

Laboratory Diagnosis Blood Cultures

- Specimen Collection
- Specimen transport
- Blood Culture Systems
- Processing of positive blood cultures
- Rapid Identification of Microorganisms from Blood Cultures
- Interpretation and reporting

Laboratory Diagnosis Blood Cultures

Specimen Collection

Skin Preparation Multiple blood cultures Increase yield Recognize true pathogen Timing Volume	Patient weight (kg)	Recommen ded blood per culture (ml)	Total blood volume for 2 cultures
Blood to Broth ratio 1:5 to 1:10 Labeling Patient details	Less than 8	1	(ml) 2
Date and time of collection Site of collection	8 to 14 14 to 27	3 5	6 10
	29 to 11	10	20
Specimen Transport

- Do not refrigerate blood cultures
- Ensure that bottles are not broken in transit

Rejection Criteria

- Reject blood cultures that are received unlabeled.
- Do not process if the tube or bottle is cracked or broken.
- Labeled blood cultures are not rejected even if medium is expired

Culture Media Used in Conventional Broth Systems

- Brain-heart infusion
- Soybean casein broth
- Peptone broth
- Trypticase soy broth
- Brucella broth
- Columbia broth base

Laboratory Diagnosis Blood Culture Additives

Neutralization of Inhibitors: Antimicrobial removal device (ARD), Resins

Anticoagulants and Other Additives.

Sodium polyanetholsulfonate (SPS) functions

Anticoagulation

Neutralization of the bactericidal activity

Prevention of phagocytosis

Inactivation of certain antimicrobial agents

Laboratory Diagnosis Manual Blood Culture Systems

- Biphasic (solid agar and broth combination)
- Slide paddle (agars) attached to the top of a standard broth bottle.
- Tipped daily or twice weekly to bathe the slide paddle with the broth medium, allowing frequent blind subcultures

Laboratory Diagnosis Manual Blood Culture Systems

Oxoid Signal system

- Blood is inoculated into broth
- Plastic signal device is then attached to the top of the bottle
- Signal device has a long needle extending down below the level of the liquid
- Growth: CO₂ generation, increases pressure on the liquid
- The presence of fluid in the signal device indicates the growth of bacteria

Laboratory Diagnosis Manual Blood Cultures Systems

Lysis centrifugation

- Fastidious bacteria, yeasts, dimorphic fungi and mycobacteria
- Mixture of saponin, propylene glycol, SPS, and EDTA.
- Lysis of white and red blood cells, releasing intracellular organisms
- Concentration through high-speed centrifugation
- Sediment inoculated onto culture medium (fungal and mycobacterial media)

Blood Cultures Examination of Blood Culture Bottles in <u>a Manual System</u>

Microscopic observation	Associated microorganism(s)
Hemolysis	Streptococci, staphylococci, <i>Listeria</i> spp., clostridia, <i>Bacillus</i> spp.
Turbidity	Aerobic Gram-negative bacilli, staphylococci, <i>Bacteroides</i> spp.
Gas formation	Aerobic Gram-negative bacilli, anaerobes
Pellicle formation	<i>Pseudomonas</i> spp., <i>Bacillus</i> spp., yeast cells
Clotting	Staphylococcus aureus

BACTEC 460

- First automated blood culture system
- Radiolabeled carbon (14C) in the broth medium: Growth leading to 14CO₂ production
- Gas aspiration into an ionization chamber using sterile needles injected into the bottle.
- Amount of 14CO2 produced measured as a growth index and compared with threshold level.
- Advantage: Early detection
- Disadvantage: high cost , high contamination rate ,radiation hazard

Three models are currently available

9240 (holds 240 bottles/module)9120 (holds 120 bottles/module)9050 (holds 50 bottles/module)

- Based on Fluorescence
- Growth Detected by a gas-permeable sensor on the bottom of each vial
- Carbon dioxide produced by an organism diffuses into the sensor, generating hydrogen ions
- Increase hydrogen ion concentration increases fluorescence output of the sensor.
- Photodetectors measures the fluorescence every 10 minutes

BacT/ALERT 3D System

- Bottles with pH-sensitive membranes placed in the bottom of the bottles.
- Microbial growth, release of CO2, pH change indicated by a change in color from gray to yellow. The color change is measured by reflected light.
- Measures CO2 production colorimetrically
 - Gas-impermeable plastic blood culture bottles safer and lighter, do not interfere with microorganism growth

VERSA TREK

- Detects the consumption or production of multiple gases
- Gases are detected by monitoring changes in head space pressure.
- Internal computer algorithm monitors the changes in pressure, plots a growth curve to flag the bottle as positive.
- Advantage: Earlier detection of growth

PROCESSING OF BLOOD CULTURES

Safety

- keep culture bottles within a biosafety cabinet or wear face mask.
- Always wear gloves
- Needleless transfer devices or safety needles, and never recap them
- Dispose of needles and syringes in a puncture-proof container

Incubation

- Continuous-monitoring blood culture systems include an incubator
- Temperature: 35°C ±2° C for 5 to 7 days

PROTOCOLS FOR POSITIVE BLOOD CULTURES

- Gram stain
- Inform physician
- Subculture and biochemical tests based on Gram stain
- Direct identification
- Direct AST: For disk method, add 10 drops of the blood culture and inoculate Mueller Hinton agar.

Laboratory Diagnosis

Rapid Identifcation of Microorganisms Growing in Blood Cultures

- Direct Tube Coagulase:
- Fluorescence in situ Hybridization:
- Nucleic Acid Amplifcation Methods:
- Other Rapid Diagnostic Tests:
 - i. Thermonuclease
 - ii. Oxidase
 - iii. Bile solubility
 - iv. Quellung capsule stain
 - v. Modifed Kinyoun stain

Gram stain result	BAP	BAP with disks	CHOC	AN 1	Other tests	Report
Positive cocci in clusters	X	Cefoxitin, penicillin, vancomycin	Х	Х	1 or 2 drops to coagulate plasma at 35'C. Add AST <i>i</i> f coagulase positive	"Probable Staphylococcus spp."; update to "Probable Staphylococcus aureus
Positive cocci in chains or pairs	Х	Penicillin, vancomycin, optochin, CAMP test	Х		1 drop to bile- esculin slant at 35C; AST if bile- esculin positive	Probable Streptococcus spp."; update to "Probable Enterococcus" if bile- esculin positive or "Probable Streptococcus pneumoniae" if Quellung positive or bile soluble

Gram stain result	BAP	BAP with disks	CHOC	AN 1	Other tests	Report
positive rods	Х	Penicillin, vancomycin, CAMP test	Х	Х	1 drop to bile- esculin slant at 35C; wet mount	"Gram-positive rods"; <i>Listeria</i> " if tumbling motile or bile-esculin positive
Negative rods	Х	Polymyxin B or colistin disk			MAC or EMB; kit; AST.	"Gram-negative rods"
Yeast	Х		Χ		CHROMagar; germ tube read at 2 h; India ink if round; 2 drops to urea slant at 35'C	Yeast"; update to "Probable Cryptococcus " if urease positive or capsules present. " Candida albicans" if germ tube positive.

- Interpretation
 Members of Enterobacteriaceae, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, Candida albicans almost always indicate infection
- Coagulase negative *Staphylococci*, Diphtheroids, *Viridans* Streptococci, Bacillus species and other skin microbiota should be questioned when isolated

Interpretation

- More than one blood culture bottle growing the same organism usually indicates that the isolate is significant
- Isolation of the same organism in the blood and from a normally sterile site usually indicates that the organism isolated from the blood is a pathogen

QUALITY CONTROL

Contamination rate

- Dividing the number of cultures containing skin contaminants by the total number of cultures collected by venipuncture.
- 1-3%

True-positive blood culture rates

- Dividing the number of cultures positive by the total number of blood cultures received
- 6 to 12%
- If too low, too many samples might have been drawn; if it is too high, not enough samples may have been collected

Monitor compliance with volume and number of bottles

Sepsis Laboratory Diagnosis <u>Biomarkers</u>

"Objectively measured characteristic that indicates a normal biologic or pathogenic process, or pharmacologic response to therapy "

• The goal of such a marker is to distinguish between sepsis and any other SIRS

Sepsis Laboratory Diagnosis <u>Biomarkers</u>

BOX 36-2 Biomarkers for Sepsis

Some of the more commonly used diagnostic and/or prognostic biomarkers for sepsis:

- (1-3)-β-D-Glucan*
- Lactate
- Procalcitonin
- C-reactrive protein
- D-dimer
- Endocan
- Inducible protein 10
- Group IV phospholipase A2 type II
- Neutrophil gelatinase-associated lipocalin
- Lipopolysaccharide-binding protein
- Macrophage migration inhibitory factor
- Mature adrenomedullin
- Mer receptor
- Mid-regional pro-adenomedullin
- Natriutetic peptides
- Copeptin
- Thrombopoietin
- Soluble triggering receptor expressed on myeloid cells-1
- Soluble urokinase-type plasminogen activator

*Marker for invasive fungal infection.

Management of Sepsis

Initial Resuscitation Therapy

Monitoring Response

Source identification and control

Management

- Give high-flow oxygen
- Take blood culture
- Give IV antibiotics according to local protocol
- Start IV fluid resuscitation
- Check lactate
- Monitor hourly urine output

<u>Management</u>

shutterstock.com · 307728209

- Repeat serum lactate
- After initial fluid resuscitation administer vasopressor
- Re-assess volume status and tissue perfusion

<u>Management</u>

- Establish source control
- Re-assess volume status and tissue perfusion
- For Unresponsive patients consider: Hydrocortisone and fludrocortisone
- Insulin to control blood glucose

Management

- Antimicrobial Therapy
- Antisepsis Therapy
 Physiologic Support
 Anticoagulation Agents
 Glucocorticoids
 Anticytokine Therapies

Sepsis <u>Emperic Antimicrobial Therapy</u>

Expected Organism	Regimen
Suspected Methicillin- resistant Staphylococcus aureus (MRSA)	
Suspected Extended-Spectrum Beta-lactamase (ESBL) Producing GNRs	
Suspected Carbapenem-resistant GNRs	

Sepsis Emperic Antimicrobial Therapy

Expected Organism	Regimen
Suspected Pseudomonas aeruginosa	
Polymicrobial aerobic- anaerobic infection	
Unknown source < 15% MDR prevalence	
> 15% MDR prevalence	

Management

THERAPIES BEING INVESTIGATED

Inhibition of innate immunity : Inhibition of TLRs

- Intravenous immune globulin: Polyclonal, IgA, IgM ; binds endotoxin
- **Cytokine and endotoxin inactivation or removal** :Hemoperfusion, plasma exchange
- **Granulocyte-macrophage colony stimulating factor:** Promotes maturation of the progenitor cells of granulocytes
- Interferon-gamma: Restoration of monocytic cell function

Management

THERAPIES BEING INVESTIGATED

Stem cell therapy: Reprogram the immune system

Immunostimulation: IL-7, IL-15, or anti-PDL1

- Hemofiltration: Remove proinflammatory molecules
- **Anticoagulants:** Heparin has anti-thrombotic and immunomodulating effects
- **Beta-blockade:** Attenuate the deleterious effects of the sympathetic adrenergic response
- **Vitamin C:** Hydrocortisone and vitamin C act synergistically on the inflammatory cascade
- Targeting bioenergetic failure: Activating mitochondrial biogenesis

Prevention

- Community-acquired bacteremia Immunizations
- Nosocomial bacteremias
- Minimizing iatrogenic infections
- Infection control practices

PAST QUESTIONS?

Past Questions?

- A 26 year old female presents to ER, diagnosed with Gram negative sepsis and multi-organ failure
- A) Define sepsis with respect to vital parameters
- B) Enlist important points for pathophysiology of sepsis
- C) Three important strategies for sepsis with justification
- D) Give 3 novel therapeutic strategies for sepsis

Past Questions?

- Define sepsis, severe sepsis and septic shock
- What is SIRS? How is it different from sepsis?
- What is bacterial translocation? Enumerate risk factors
