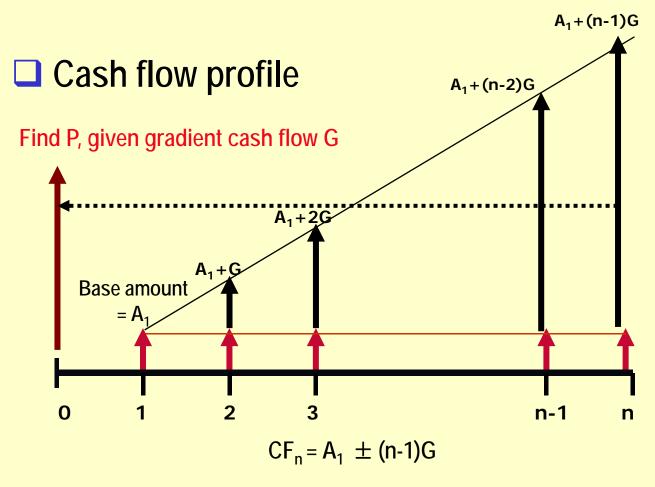
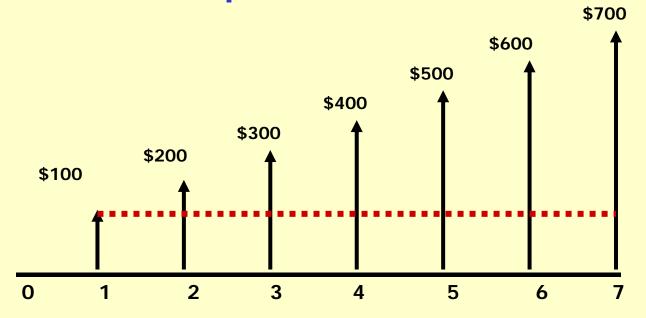
2.5 Arithmetic Gradient Factors (P/G) and (A/G)



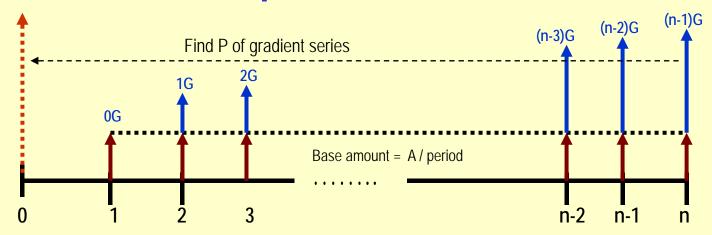
Gradient Example



Gradients have two components:

- The base amount (A₁ =\$100) and the gradient (G=\$100)

Gradient Components



- ☐ Present worth point is 1 period to the left of the 0G cash flow
- ■For present worth of the base amount, use the P/A factor (already known)
- ☐ For present worth of the gradient series, use the P/G factor (to be derived)

$$P=G(P/F,i,2)+2G(P/F,i,3)+$$
...+ $(n-2)G(P/F,i,n-1)+(n-1)G(P/F,i,n)$

$$P=G\{(P/F,i,2)+2(P/F,i,3)+$$

...+ $(n-2)(P/F,i,n-1)+(n-1)(P/F,i,n)\}$

[2] – [1]

$$Pi = G\left[\frac{1}{1+i} + \frac{1}{(1+i)^2} + \dots + \frac{1}{(1+i)^{n-1}} + \frac{1}{(1+i)^n} - \frac{n}{(1+i)^n}\right]$$

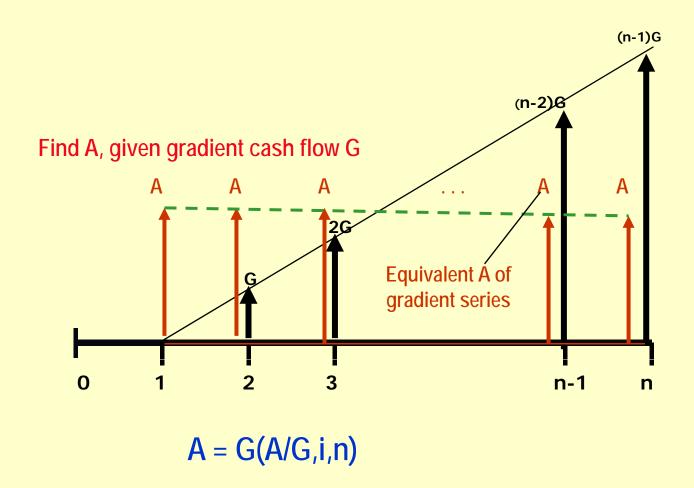
$$P = \frac{G}{i} \left[\frac{(1+i)^n - 1}{i(1+i)^n} - \frac{n}{(1+i)^n} \right]$$

(P/G, i%, n) factor

Gradient Decomposition

- As we know, arithmetic gradients are comprised of two components
 - 1. Gradient component
 - 2. Base amount
- When working with a cash flow containing a gradient, the (P/G) factor is only for the gradient component
- Apply the (P/A) factor to work on the base amount component
- P = PW(gradient) + PW(base amount)

Use of the (A/G) Factor



□ A/G converts a linear gradient to an equivalent annuity cash flow.

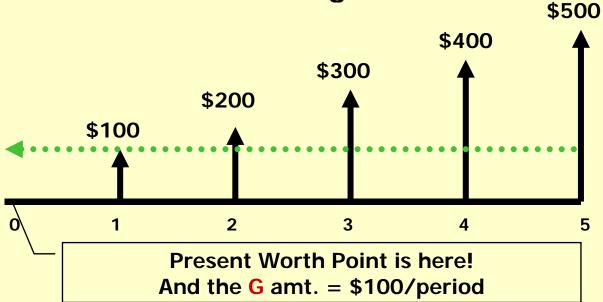
$$A = G(P/G,i,n)(A/P,i,n)$$

$$A = \frac{G}{i} \left[\frac{(1+i)^n - 1}{i(1+i)^n} - \frac{n}{(1+i)^n} \right] \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right]$$

$$A = \frac{G}{i} \left[\frac{(1+i)^n - 1}{i(1+i)^n} - \frac{n}{(1+i)^n} \right] \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right]$$

(A/G,i,n) =
$$A = G\left[\frac{1}{i} - \frac{n}{(1+i)^n - 1}\right]$$

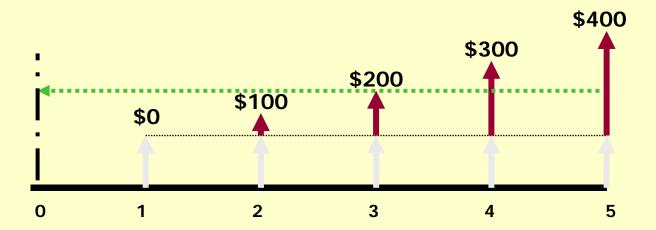
Consider the following cash flow



Find the present worth if i = 10%/yr; n = 5 yrs

First, The Base Annuity of \$100/period

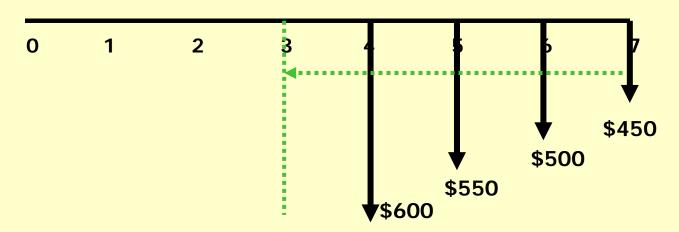
1-13



- $PW(10\%)_{Base\ Annuity} = 379.08
- •PW(10%)_{Gradient Component} = \$686.18
- •Total PW(10%) = \$379.08 + \$686.18
- •Equals \$1065.26
- Note: The two sums occur at t = 0 and can be
 added together concept of equivalence

Shifted Gradient Example

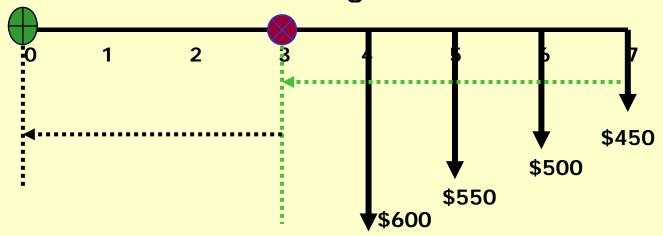
Consider the following Cash Flow



- 1. This is a "shifted" negative, decreasing gradient.
- 2. The PW point in time is at t = 3 (not t = 0)

Shifted Gradient Example

Consider the following Cash Flow

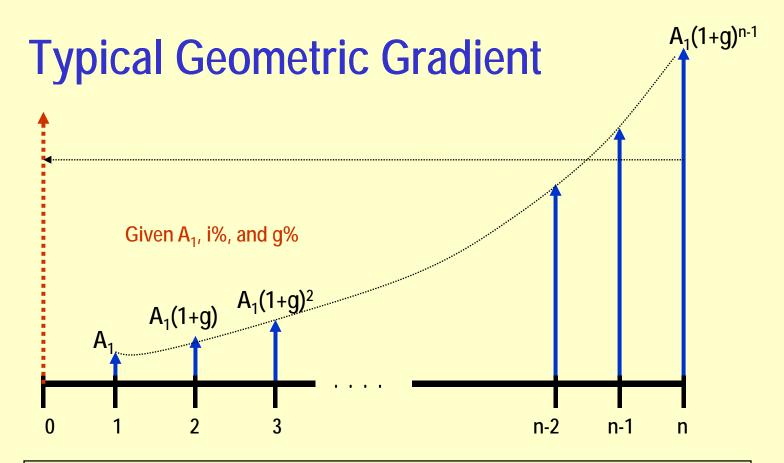


- •The PW @ t = 0 requires getting the PW @ t = 3;
- •Then using the P/F factor move PW₃ back to t=0

Shifted Gradient Example

2.6 Geometric Gradient Series Factor

- Geometric Gradient
 - Cash flow series that starts with a base amount A₁
 - Increases or decreases from period to period by a constant percentage amount
 - This uniform rate of change defines
 - **A GEOMETRIC GRADIENT**
 - Notation:
 - g = the constant rate of change, in decimal form, by which future amounts increase or decrease from one time period to the next



$$P_g = \frac{A_1}{(1+i)^1} + \frac{A_1(1+g)}{(1+i)^2} + \frac{A_1(1+g)^2}{(1+i)^3} + \dots + \frac{A_1(1+g)^{n-1}}{(1+i)^n}$$

Geometric Gradients Derivation

Geometric Gradients Derivation

$$P_{g}\left(\frac{1+g}{1+i}-1\right) = A_{1}\left[\frac{(1+g)^{n}}{(1+i)^{n+1}} - \frac{1}{1+i}\right]$$

Geometric Gradient: $i \neq g$ Case

$$P_{g} = A_{1} \left[\frac{1 - \left(\frac{1+g}{1+i}\right)^{n}}{i - g} \right] \quad g \neq i$$

• This is the (P/A,g,i,n) factor and is valid if g is not equal to i.

Geometric Gradient: i = g Case

$$P_{g} = A_{1} \left(\frac{1}{(1+i)} + \frac{1}{(1+i)} + \frac{1}{(1+i)} + \dots + \frac{1}{(1+i)} \right)$$

$$P_g = \frac{nA_1}{(1+i)}$$
 For the case i = g

Geometric Gradients: Summary

$$P_{g} = A_{1} \left[\frac{1 - \left(\frac{1+g}{1+i}\right)^{n}}{i - g} \right] \quad g \neq i$$

Case: $g \neq i$

$$P_g = \frac{nA_1}{(1+i)}$$

Case: g = i

To use the (P/A,g%,i%,n) factor

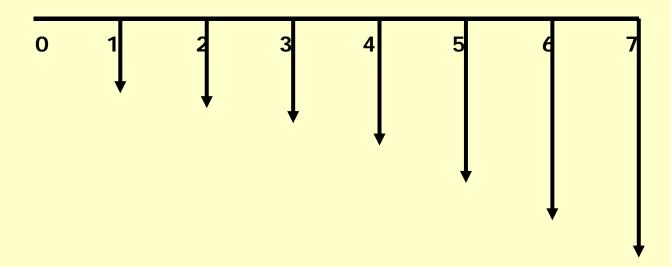
- $\square A_1$ is the starting cash flow
- ☐ There is NO base amount associated with a geometric gradient
- ■The remaining cash flows are generated from the A₁ starting value

Geometric Gradient: Notes

- •One will not find tabulated tables for the (P/A, g,i,n) factor.
- You have to calculate either from the closed form for each problem or apply a preprogrammed spreadsheet model to find the needed factor value
- •No spreadsheet built-in function for this factor!

- •Assume maintenance costs for a particular activity will be \$1700 one year from now.
- •Assume an annual increase of 11% per year over a 6-year time period. (thus the total duration of study peroid is 7 yrs)
- •If the interest rate is 8% per year, determine the present worth of the future expenses at time t = 0.
- •First, draw a cash flow diagram to represent the model.

•g = +11% per period; $A_1 = 1700 ; i = 8%/yr



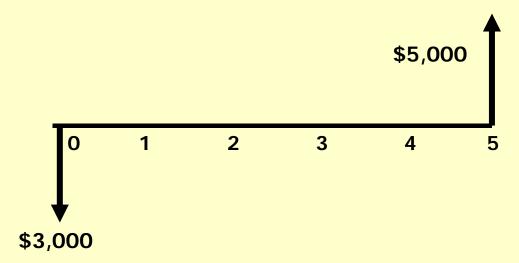
- P = \$1,700(P/A,g=11%,i=8%,n=7)
- Need to calculate the P/A factor from the closed-form expression for a geometric gradient.

$$P_{g} = A_{1} \left[\frac{1 - \left(\frac{1+g}{1+i}\right)^{n}}{i - g} \right] \quad g \neq i$$

2.7 Determination of Unknown Interest Rate

- Class of problems where the interest rate, i%, is the unknown value
- ☐ Termed, "rate of return analysis" (Chapter 7)
- □ For simple, single payment problems (i.e., P and F only), solving for i% given the other parameters is not difficult
- ☐ For annuity and gradient type problems, solving for i% can be tedious
 - Trial and error method
 - Apply spreadsheet models

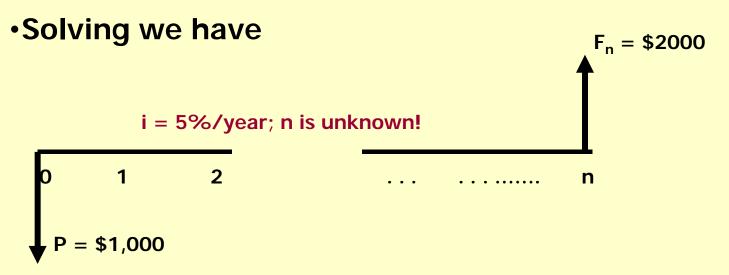
- Assume one can invest \$3000 now in a venture in anticipation of gaining \$5,000 in five (5) years.
- •What interest rate equates these two cash flows?



2.8 Determination of Unknown Number of Years

 Some problems require knowing the number of time periods required given the other parameters

 How long will it take for \$1,000 to double in value if the discount rate is 5% per year?



$$\bullet F_{n=?} = 1000(F/P,5\%,x)$$
: 2000 = 1000(1.05)^x

Solving we have