
CONTENTS 

Preface  .................................................................................................  

1. MEASUREMENT AND ERROR  ...............................................  

1.1 Definitions  .....................................................................................  

1.2 Accuracy and Precision  .................................................................  

1.3 Significant Figures  ........................................................................  

1.4 Types of Error  ...............................................................................  

1.5 Statistical Analysis  ........................................................................  

1.6 Probability of Errors ......................................................................  

1.7 Limiting Errors  ..............................................................................  

References  ...........................................................................................  

Problems  ..............................................................................................  

2. SYSTEMS OF UNITS OF MEASUREMENT ...........................  

2.1 Fundamental and Derived Units ....................................................  

2.2 Systems of Units  ...........................................................................  

2.3 Electric and Magnetic Units  ..........................................................  

2.4 International System of Units  .......................................................  

2.5 Other Systems of Units  .................................................................  

2.6 Conversion of Units  ......................................................................  



References  ...........................................................................................  

Problems  ..............................................................................................  

3. STANDARDS OF MEASUREMENT..........................................  

3.1 Classification of Standards  ...........................................................  

3.2 Standards for Mass, Length, and Volume  .....................................  

3.3 Time and Frequency Standards  .....................................................  

3.4 Electrical Standards .......................................................................  

3.5 Standards of Temperature and Luminous Intensity  ......................  

3.6 IEEE Standards  .............................................................................  

References  ...........................................................................................  

Problems ...............................................................................................   

4 ELECTROMECHANICAL INDICATING INSTRUMENTS ..  

4.1 Suspension Galvanometer  .............................................................  

4.2 Torque and Deflection of the Galvanometer  ................................  

4.3 Permanent-Magnet Moving-Coil Mechanism ...............................  

4.4 DC Ammeters  ...............................................................................  

4.5 DC Voltmeters  ..............................................................................  

4.6 Voltmeter Sensitivity  ....................................................................  

4.7 Series-Type Ohmmeter  .................................................................  

4.8 Shunt-Type Ohmmeter  ..................................................................  



4.9 Multimeter or VOM  ......................................................................  

4.10 Calibration of DC Instruments  ....................................................  

4.11 Alternating-Current Indicating Instruments  ................................  

4.12 Thermo instruments  ....................................................................  

4.13 Electrodynamometers in Power Measurements  ..........................  

4.14 Watthour Meter  ...........................................................................  

4.15 Power-Factor Meters  ...................................................................  

4.16 Instrument Transformers  .............................................................  

References  ...........................................................................................  

Problems  ..............................................................................................  

5. BRIDGE MEASUREMENTS 

5.1 Introduction  ...................................................................................  

5.2 Wheatstone Bridge  ........................................................................  

5.3 Kelvin Bridge  ................................................................................  

5.4 Guarded Wheatstone Bridge ..........................................................  

5.5 AC Bridges and Their Application ................................................  

5.6 Maxwell Bridge .............................................................................  

5.7 Hay Bridge  ....................................................................................  

5.8 Schering Bridge .............................................................................  

5.9 Unbalance Conditions  ...................................................................  



5.10 Wien Bridge  ................................................................................  

5.11 Wagner Ground Connection  .......................................................  

References  ...........................................................................................  

Problems  ..............................................................................................  

6. ELECTRONIC INSTRUMENTS FOR MEASURING BASIC 

PARAMETERS ..................................................................................    

6.1 Introduction  ...................................................................................  

6.2 Amplified DC Meter  .....................................................................  

6.3 AC Voltmeter Using Rectifiers  .....................................................  

6.4 True RMS-Responding Voltmeter  ................................................  

6.5 Electronic Multimeter  ...................................................................  

6.6 Considerations in Choosing an Analog Voltmeter  .......................  

6.7 Digital Voltmeters ..........................................................................  

6.8 Component Measuring Instruments ...............................................  

6.9 Q Meter  .........................................................................................  

6.10 Vector Impedance Meter  .............................................................  

6.11 Vector Voltmeter .........................................................................  

6.12 RF Power and Voltage Measurement  .........................................  

References  ...........................................................................................  

Problems  ..............................................................................................  



7. OSCILLOSCOPES  .......................................................................  



PREFACE 

This new edition of Electronic In instrumentation and Measurement 

Techniques is a modernization of an old and effective text. The characteristics 

that has made this book suxessfu1 over the years have been retained while 

every effort was, taken to ensure a modern text that covers all aspects of 

instrumentation. To enforce this concept, the title has been changed to Modern 

Electronic Instrumentation and Measurement Techniques. 

Basic measurement techniques such as accuracy, precision, standards, and so 

on, are retained, with some clarification and modernization to include new 

standards. Understanding these basics is an absolute prerequisite for the 

discussion of more sophisticated systems. 

Some information concerning moving-coil meters was removed and modified, 

as these instruments find fewer applications in modern electronics. Some of the 

material is retained as an introduction to the general problems of measurement 

without bogging the reader down with excessively complex measuring systems. 

The digital storage oscilloscope is a new subject, as its use has become more 

commonplace in recent years. The Fourier transform or digital spectrum 

analyzer is also included in this edition. These two digital instruments are 

gaining wide acceptance in electronic instrumentation. 

Chapters 11 and 12 on transducers and data acquisition have received 

considerable overhaul to include more modern transducers and to include such 

important subjects as instrumentation and isolation amplifiers, and data 



transmission. An important inclusion in Chapter 12 is fiber optics data 

transmission, which is gaining rapid acceptance in the industrial environment. 

Chapter 14 is totally new and covers fiber optics measurements. There is very 

little material available to the student on the subject of optical measurements 

relative to fiber optics, and this chapter makes this edition unique. 

Above all, those items that make a book a textbook, such as worked-out 

examples, references, and review problems at the end of the chapters have been 

retained and expanded. 
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MEASUREMENT AND ERROR 

1.1 DEFINITIONS 

Measurement generally involves using an instrument as a physical means of 

determining a quantity or variable. The instrument serves as an extension of 

human faculties and in many cases enables a person to determine the value of 

an unknown quantity which his unaided human faculties could not measure. An 

instrument, then, may be defined as a device for determining the value or 

magnitude of or variable. The electronic instrument, as its name implies, is 

based on electrical or electronic principles for its measurement function. An 

electronic instrument may be a relatively uncomplicated device of simple 

construction such as a basic dc current meter (see Chapter 4). As technology 

expands, however, the demand for more elaborate and more accurate 

instruments increases and produces new developments in instrument design 

and application. To use these instruments intelligently, one needs to understand 

their operating principles and to appraise their suitability for the intended 

application. 

 Measurement work employs a number of terms which should be defined 

here. 

Instrument: a device for determining the value or magnitude of a quantity or 

variable. 

Accuracy: closeness with which an instrument reading approaches the true 

value of the variable being measured. 



Precision: a measure of the reproducibility of the measurements; i.e., given a 

fixed value of a variable, precision is a measure of the degree to which 

successive measurements differ from another. 

Sensitivity: the ratio of output signal or response of the instrument to a change 

of input or measured variable. 

Resolution: the smallest change in measured value to which the instrument will 

respond. 

Error: deviation from the true value of the measured variable. 

 

 Several techniques may be used to minimize the effects of errors. For 

example, in making precision measurements, it is advisable to record a series of 

observations rather than rely on one observation. Alternate methods of 

measurement, as well as the use of different instruments to perform the same 

experiment, provide a good technique for increasing accuracy. Although these 

techniques tend to increase the precision of measurement by reducing error, 

they cannot account for instrumental error.* 

 This chapter provides an introduction to different types of error in 

measurement and to the methods generally used to express errors, in terms of 

the most reliable value of the measured variable. 

1.2 ACCURACY AND PRECISION 

Accuracy refers to the degree of closeness or conformity to the true value of the 



quantity under measurement. Precision refers to the degree of agreement within 

a group of measurements or instruments. 

 To illustrate the distinction between accuracy and precision, two 

voltmeters of the same make and model may be compared. Both meters have 

knife-edged pointers and mirror-backed scales to avoid parallax and they have 

carefully calibrated scales. They may therefore be read to the same precision. If 

the value of the series resistance in one meter changes considerably, its 

readings may be in error by a fairly large amount. Therefore the accuracy of 

the two meters may be quite different. (To determine which meter is in error, a 

comparison measurement with a standard meter should be made.) 

 Precision is composed of two characteristics: Conformity and the 

number of significant figures to which a measurement maybe made. Consider, 

for example, that a resistor, whose true resistance is 1,384,572 Ω, is measured 

by an ohmmeter which consistently and repeatedly indicates 1.4 MΩ. But can 

the observer ―read‖ the true value from the scale? His estimates from the scale 

reading consistently yield a value of 1.4 MΩ. This is as close to the true value 

as he can read the scale by estimation. Although there are no deviations from 

the observed value, the error created by the limitation of the scale reading is a 

precision error. The example illustrates that conformity is a necessary, but not 

sufficient, condition for precision because of the lack of significant figures 

obtained. Similarly, precision is a necessary, but not sufficient, condition for 

accuracy. 



 Too often the beginning student is inclined to accept instrument readings 

at face value. He is not aware that the accuracy of a reading is not necessarily 

guaranteed by its precision. In fact, good measurement technique demands 

continuous skepticism as to the accuracy of the results. 

 In critical work, good practice dictates that the observer make an 

independent Set ‗of measurements, using different instruments or different 

measurement techniques not subject to the same systematic errors: He must 

also make sure that the instruments function properly and are calibrated against 

a known standard, and that no outside influence affects the accuracy of his 

measurements. 

1.3 SIGNIFICANT FIGURES 

An indication of the precision of the measurement is obtained from the number 

of significant figures in which the result is expressed. Significant figures 

convey actual information regarding the magnitude and the measurement 

precision of a quantity the more significant figures, the greater the precision of 

measurement. 

For example, if a resistor is specified as having a resistance of 68Ω, its 

resistance should be closer to 68Ω than to 67Ω or 69Ω. If the value of the 

resistor is described as 68.0Ω, it means that its resistance is closer to 68.0Ω 

than it is to 67.9Ω or 68.1Ω. In 68Ω there are two significant figures; in 68.0Ω 

there are three. The latter, with more significant figures, expresses a 

measurement of greater precision than the former. 



 Often, however, the total number of digits may not represent 

measurement precision. Frequently, large numbers with zeros before a decimal 

are used for approximate populations or amounts of my. For example, the 

population of a city is reported in six figures as 380,000. This may imply that 

the true value of the population lies between 379,999 and 380,001, which is six 

significant figures. What is meant, however, is that the population is closer to 

380,000 than to 370,000 or 390,000. Since in this case the population can be 

reported only to two significant figures, how can large numbers be expressed? 

A more technically correct notation uses powers of ten, 38 x 10
4
 or 3.8 x l0

5
. 

This indicates that the population figure is only accurate to two significant 

figures. Uncertainty caused by zeros to the left of the decimal point is therefore 

usually resolved by scientific notation using powers of ten. Reference. to the 

velocity of light as 186,000 mi/s, for example, would cause no 

misunderstanding to anyone with a technical background. But 1.86 x 10 mi/s 

leaves no confusion. 

 It is customary to record a measurement with all the digits of which we 

are sure nearest to the true value. For example, in reading a voltmeter, the 

voltage may be read as 117.1 V. This simply indicates that the voltage, read by 

the observer to best estimation, is closer to 117.1 V than to 117.0 V or 117.2 V. 

 Another way of expressing result indicates the range of possible error. 

The voltage may be expressed 117.1 ± 0.05 V, indicating that the value of the 

voltage lies between 117.15 V and 117.15 V. 



 When a flu measurements are taken in an effort to obtain the best 

possible answer (closest to the true value), the result is usually expressed as the 

arithmetic mean of all the readings, with the range of possible error as the 

largest deviation from that mean. This is illustrated in Example 1.1. 



EXAMPLE: 1-1 

A set of independent voltage measurements taken by four observers was 

recorded as 117.02 V, 117.11 V, 117.08 V, and 117.03 V. Calculate (a) the 

average voltage; (b) the range of error 

SOLUTION 

a. 
N

EEEE
E 4321

av


  

 117.06V
4

117.03117.08117.11117.02



  

b. Rang = Emax – Eav = 117.11 – 117.06 = 0.05V 

But also 

  Eav – Emin = 117.06 – 117.02 = 0.04 V 

The average range of error therefore equals 

  0.05V0.045
2

0.040.05



 

When two or more measurements with different degrees of accuracy are added, 

the result is only as accurate as the least accurate measurement. Suppose that 

two resistances are added in series as in Example 1-2. 

EXAMPLE: 1-2 

Two resistors, R1 and R2, are connected in series. Individual resistance 

measurements, using a digital multimeter, give R1 = 18.7Ω and R2 3.624Ω. 

Calculate the total resistance to the appropriate number of significant figures. 



SOLUTION 

 R1 = 18.7Ω (three significant figures) 

 R2 = 3.624Ω (four significant figures) 

 RT = R1 + R2 = 22.324 Ω (five significant figures) = 22.3Ω 

The doubtful figures are written in italics to indicate that in the addition of R1 

and R2 the last three digits of the sum are doubtful figures. There is no value 

whatsoever in retaining the last two digits (the 2 and the 4) because one of the 

resistance is accurate only to three significant figures or tenths of an ohm. The 

result should therefore also be reduced to three significant figures or the nearest 

tenth, i.e., 22.3 Ω. 

The number of significant figures in multiplication may increase rapidly, but 

again only the appropriate figures are retained in the answer, as shown in 

Example 1-3. 

EXAMPLE: 1 – 3  

In calculating voltage drop, a current of 3.18 A is recorded in a resistance of 

35.68 Ω. Calculate the voltage drop across the resistor to the appropriate 

number of significant figures. 

SOLUTION 

  E = IR = (35.68) x (3.18) = 113.4624 = 113V 

Since there are three significant figures involved in the multiplication, the 

answer can be written only to a maximum of three significant figures. 



 In Example 1-3, the current, I, has three significant figures and R has 

four; and the result of the multiplication has only three significant figures. This 

illustrates that the answer cannot be known to any accuracy greater than the 

least poorly defined of the factors. Note also that if extra digits accumulate in 

the answer, they should be discarded or rounded off. In the usual practice, if the 

(least significant) digit in the first place to be discarded is less than five, it and 

the following digits are dropped from the answer. This was done in Example 1-

3. If the digit in the first place to be discarded is five or greater, the previous 

digit is increased by one. For three-digit precision, therefore, 113.46 should be 

rounded off to 113; and 113.74 to 114. 

Addition of figures with a range of doubt is illustrated in Example 1-4. 



EXAMPLE: 1 – 4  

Add 826 ± 5 to 628 ± 3 

SOLUTION 

 N1 = 826 ± 5 (= ±0.605%) 

 N2 = 628 ± 3 (= ±0.477%) 

 Sum = 1,454 ± 8 (= ±0.55%) 

Note in Example 1-4 that the doubtful parts are added, since the ± sign means 

that one number may be high and the other low. The worst possible 

combination of range of doubt should be taken in the answer. The percentage 

doubt in the original figure N1 and N2 does not differ greatly from the 

percentage doubt in the final result. 

If the same two numbers are subtracted, as in Example 1-5, there is an 

interesting comparison between addition and subtraction with respect to the 

range of doubt. 

EXAMPLE: 1-5 

Subtract 628 + 3 from 826 + 5 and express the range of doubt in the answer as 

a percentage. 

SOLUTION 

 N1 = 826 + 5 (= + 0.605%)  

 N2 = 437 + 4 (= + 0.92%) 

 Difference = 198 + 8 (= + 4.04%) 



Again, in Example 1-5, the doubtful parts are added for the same reason as in 

Example 1-4. Comparing the results of addition and subtraction of the same 

numbers in Examples 1-4 and 1-5, note that the precision of the results, when 

expressed in percentages, differs greatly. The final result after subtraction 

shows a large increase in percentage doubt compared the percentage doubt after 

addiction. The percentage doubt increases even more when the difference 

between the number is relatively small. Consider the case illustrated in 

Example 1-6. 

EXAMPLE: 1-6 

Subtract 437 + 4 and express the range of doubt in the answer as a percentage.  

SOLUTION 

 N1 = 462 + 4 (= + 0.87%) 

 N2 = 437 + 4 (= + 0.92%) 

 Difference = 25 + 8 (= + 32%) 

Example 1-6 illustrates clearly that one should avoid measurement techniques 

depending on subtraction of experimental results because the range of doubt in 

the final result may be greatly increased. 

1.4 TYPES OF ERROR 

No measurement can be made with perfect accuracy, but it is important to find 

out what the accuracy actually is and how different errors have entered into the 



measurement. A study of errors is a first step in finding ways to reduce them. 

Such a study also allows us to determine the accuracy of the final test result. 

Errors come from different sources and are usually classified under three main 

headings: 

Gross errors: largely human errors, among them misreading of instruments 

incorrect adjustment and improper application of instruments, and 

computational mistakes. 

Systematic errors: shortcomings of the instruments, such as defective or worn 

parts, and effects of the environment on the equipment or the user. 

Random errors: those due to causes that cannot be directly established because 

of random variations in the parameter or the system of measurement. 

 Each of these classes of errors will be discussed briefly and some 

methods will be suggested for their reduction or elimination. 

1-4.1 Gross Errors 

 This class of errors mainly covers human mistakes in reading or using 

instruments and in recording and calculating measurement results. As long as 

human beings are involved, some gross errors will inevitably be committed. 

Although complete elimination of gross errors is probably impossible, one 

should try to anticipate and correct them. Some gross errors are easily detected; 

others may be very elusive. One common gross error, frequently committed by 

beginners in measurement work, involves the improper use of an instrument., 

In general, indicating instruments change conditions to some extent when 



connected into a complete circuit, so that the measured quantity is altered by 

the method employed For example, a well-calibrated voltmeter may give a 

misleading reading when connected across two points in a high-resistance 

circuit (Example 1-7). The same voltmeter, when connected in a low-resistance 

circuit, may give a more dependable reading Example 1-8). These examples 

illustrate that the voltmeter has a ―loading effect‖ on the circuit, altering the 

original situation by the measurement process. 

EXAMPLE: 1-7 

A voltmeter, having a sensitivity of 1,000 Ω/V, reads 100 V on its 150-V scale 

when connected across an unknown resistor in series with a milliammeter. 

When the milliammeter reads 5 mA, calculate (a) the apparent resistance of the 

unknown resistor; (b) the actual resistance of the unknown resistor; (c) the error 

due to the loading effect of the voltmeter. 

SOLUTION 

a. The total circuit resistance equals 

  20kΩ
5mA

100V

I

V
R

T

T
T   

Neglecting the resistance of the milliammeter, the value of the unknown 

resistor is Rx 20 kΩ, 

 

b. The voltmeter equals 



 150kΩ150V
V

Ω
1,000RV   

Since the voltmeter is in parallel with the unknown resistance, we can write 

 23.05kΩ
130

15020

RR

RR
RX

TV

VT 





  

c. % Error = 100%
23.05

23.05
100%

actual

apparentactual



 

 = 13.23% 

EXAMPLE: 14 – 8 

Repeat Example 1-7 if the milliammeter reads 800 mA and the voltmeter reads 

40 V on its 150V scale. 

a. 50Ω
0.8A

40V

I

V
R

T

T
T   

b. 150kΩ150V
V

Ω
1,000RV   

 50.1Ω
149.95

15050

RTRV

RTRV
RX 





  

c. % 0.2%100%
50.1

5050.1
Error 


   

 Errors caused by the loading effect of the voltmeter can be avoided by 

using it intelligently. For example, a low-resistance voltmeter should not be 

used to measure voltages in a vacuum tube amplifier. In this particular 

measurement, a high-input impedance voltmeter (such as a VTVM or TVM) is 

required. 



A large number of gross errors can be attributed to carelessness or bad habits, 

such as improper reading of an instrument, recording the result differently from 

actual reading taken, or adjusting the instrument, incorrectly. Consider the case 

in which a multirange voltmeter uses a single set of scale markings with 

different number designations for the various voltage ranges. It is easy to use a 

scale which does not correspond to the setting of the range selector of the 

voltmeter 4 gross error may also occur when the instrument is not set to zero 

before the measurement is taken; then all the readings are off. 

 Errors like these cannot be treated mathematically. They can be avoided 

only by taking care in reading and recording the measurement data. Good 

practice requires making more than one reading of the same quantity, 

preferably by a different observer. Never place complete dependence on one 

reading but take at least three separate readings, preferably under conditions in 

which instruments are switched off-on. 

1- 4.2 Systematic Errors 

This type of error, is usually divided into two different categories: 1. 

instrumental error, defined as shortcomings of the instruments; 2. 

environmental errors, due to extern conditions affecting the measurement. 

Instrumental errors are errors inherent in measuring instruments because of 

their mechanical structure. For example the d‘Arsonval movement friction in 

bearings of various moving components may cause incorrect readings. Irregular 

spring tension, stretching of the spring, or reduction in tension due to improper 



handling or overloading of the instrument will result in errors. Other 

instrumental errors are calibration errors, causing the instrument to read high or 

low along its entire scale. (Failure to set the instrument to zero before making a 

measurement has a similar effect.) 

 There are many kinds of instrumental errors, depending on the type of 

instrument used. The experimenter should always take precautions to insure 

that the instrument he is using is operating properly and does not contribute 

excessive errors for the purpose at hand. Faults in instruments may be detected 

by checking for erratic behavior, and stability and reproducibility of results. A 

quick and easy way to check an instrument is to compare it to another with the 

same characteristics or to one that is known to be more accurate. 

 Instrumental errors may be avoided by (1) selecting a suitable 

instrument for the particular measurement application; (2) applying correction 

factors after determining the amount of instrumental error; (3) calibrating the 

instrument against a standard. 

 Environmental errors are due to conditions external to the measuring 

device, including conditions in the area surrounding the instrument, such as the 

effects of changes in temperature, humidity, barometric pressure, or of 

magnetic or electrostatic fields. Thus a change in ambient temperature at which 

the instrument causes a change in the elastic properties of the spring in a 

moving-coil mechanism and so affects the reading of the instrument. 

Corrective measures to reduce these effects include air conditioning, 



hermetically sealing certain components in the instrument, use of magnetic 

shields, and the like. 

Systematic errors can also be subdivide into static or dynamic errors. Static 

errors caused by limitations of the measuring device or the physical laws 

governing its behavior. A static error is introduced in a micrometer when 

excessive pressure is applied in torquing the shaft. Dynamic errors are caused 

by fast enough to follow the changes in a measured variable. 

1-4.3 Random Errors 

These errors are due to unknown causes and occur even when a1l systematic 

errors have been accounted for. In we-design experiments, few random errors 

usually occur, but they become important in high-accuracy work. Suppose a 

voltage is being monitored by a voltmeter which is read at half-hour intervals. 

Although the instrument is operated under ideal environmental conditions and 

has been accurately calibrated - measurement, it will be found that the readings 

vary slightly over the observation. This variation cannot be corrected by any 

method ‗or other known method of control and it cannot be explained till 

investigation. The only way to offset these errors is by increasing the number 

of readings and using statistical means to obtain the best approximation of the 

true value of the quantity under measurement. 

1-5 STATISTICAL ANALYSIS 

A statistical analysis of measurement data is common practice because it 

allows an analytical determination of the uncertainty of the final test result. The 



outcome of a certain measurement method may be predicted on the basis of 

sample data without having detailed information on all the disturbing factors. 

To make statistical methods and interpretations meaningful, a large number of 

measurements is usually required. Also, systematic errors should be small 

compared with residual or random errors, because statistical treatment of data 

cannot remove a fixed bias contained in all the measurements. 

1-5.1 Arithmetic Mean 

The most probable value of a measured variable is the arithmetic mean of the 

number of readings taken. The best approximation will be made when the 

number of readings of the same quantity is very large. Theoretically, an infinite 

number of readings would give the best result, although in practice, only a 

finite number of measurements can be made. The arithmetic mean is given by 

the following expression: 

  
n

x

n

xxxxx
x n 


 ........4321   (1-1) 

Where  x  = arithmetic mean 

 x1, x2, xn = readings taken 

  n = number of readings 

Example 1-1 showed how the arithmetic mean is used. 

1-5.2 Deviation from the Mean 

Deviation is the departure of a given reading from the arithmetic mean of the 

group of readings. If the deviation of the first reading, x1, is called d1, and that 



of the second reading, x2, is called d2, and so on, then the deviations from the 

mean can be expressed as 

  d1 = x1 - x   d2 = x2 - x  dn = xn - x   (1-2) 

Note that the deviation from the mean may have a positive or a negative value 

and  that the algebraic sum of all the deviations must be zero. 

Example 1 – 9 illustrates current measurements was taken by six observers and 

recorded as 12.8 mA, 12.2 mA, 12.5 mA, 13.1 mA, 12.9 mA, and 12.4 mA. 

Calculate (a) the arithmetic mean; (b) the deviations from the mean. 

SOLUTION: 

a. using Eq. (1-1), we see that the arithmetic mean equals  

  12.65mA
6

12.412.913.112.512.212.8
x 


  

b. Using Eq. (1-2), we see that the deviations are 

 d1 = 12.8 – 12.65 = 0.15 mA 

 d2 = 12.2 – 12.65 = 0.45 mA 

 d3 = 12.5 – 12.65 = 0.15 mA 

 d4 = 13.1 – 12.65 = 0.45 mA 

 d5 = 12.9 – 12.65 = 0.25 mA 

 d6 = 12.4 – 12.65 = -0.25 mA 

Note that the algebraic sum of all the deviations equals zero. 



1-5.3 Average Deviation 

The average deviation is an indication of the precision of the instruments used 

in making the measurements. Highly precise instruments will yield a low 

average deviation between readings. By definition, average deviation is the 

absolute values of the deviations divided by the number of readings. The 

absolute value of the deviation is the value without respect to sign. Average 

deviation may be expressed as 

 
n

d

n

dddd
D

n 





.......321
  (1-3) 

Example 1-10 shows how average deviation is calculated. 

EXAMPLE: 1-10 

Calculate the average deviation for the data given in Example 1-9. 

SOLUTION 

 0.283mA
6

0.250.250.450.150.450.15
D 


  

1-5.4 Standard 

In statistical analysis the root-mean-square deviation or standard deviation is a 

very valuable aid. By definition, the standard deviation of an infinite number of 

data is the square root of the sum of all the individual deviations squared, 

divided by the number of readings. Expressed mathematically: 

 
n

d

n

dddd tn 





222

3

2

2

2

1 ........
   (1-4) 



In practice, of course, the possible number of observations is finite. The 

standard deviation of a finite number of data is given by 

 
11

........
222

3

2

2

2

1










n

d

n

dddd tn   (1-5) 

Equation (1-5) will be used in Example 1-11. 

 Another expression for essentially the same quantity is the variance or 

mean square deviation, which is the same as the standard deviation except that 

the square root is not extracted. Therefore 

  variance (V) = mean square deviation = o.2 

The variance is a convenient quantity to use in many computations because 

variances are additive. The standard deviation, however, has the advantage of 

being of the same units as the variable, making it easy to compare magnitudes. 

Most scientific results are now stated in terms of standard deviation. 

1-6 PROBABILITY OF ERRORS 

1-6.1 Normal Distribution of Errors 

Table 1-1 shows a tabulation of 50 voltage readings that were taken at small 

time intervals and recorded to the nearest 0.! V. The nominal value of the 

measured voltage was 100.0 V. The result of this series of measurements can 

be presented 

TABLE 1-1 Tabulation of Voltage Readings 

Voltage reading Number of readings 



(volts) 

99.7 

99.8 

99.9 

100.0 

100.1 

100.2 

100.3 

1 

4 

12 

19 

10 

3 

1 

 50 

 

 

graphically in the form of a block diagram or histogram in which the number of 

observations is plotted against each observed voltage reading. The histogram of 

Fig. 1-1 represents the data of Table 1-1. 



Figure 1-1 shows that the largest number of readings (19) occurs at the central 

value of 100.0 V, while the other readings are placed more or less 

symmetrically on either side of the central value. If more readings were taken 

at smaller increments, say 200 readings at 0.05-V intervals, the distribution of 

observations would remain approximately symmetrical about the central value 

and the shape of the histogram would be about the same as before. With more 

and more data, taken at smaller and smaller increments, the contour of the 

histogram would finally become a smooth curve, as indicated by the dashed 

line in Fig. 1-1. This bell-shaped curve is known as a Gaussian curve. The 

sharper and narrower the curve, the more definitely an observer may state that 

the most probable value of the true reading is the central value or mean 

reading. 

The Gaussian or Normal law of error forms the basis of the analytical study of 

random effects. Although the mathematical treatment of this subject is beyond 

the scope of this text, the following qualitative statements are based on the 

Normal law: 

a. All observations include small disturbing effects, called random errors. 

b. Random errors can be positive or negative. 

c. There is an equal probability of positive and negative random errors. 

We can therefore expect that measurement observations include plus and minus 

errors in more or less equal amounts, so that the total error will be small and 

the mean value will be the true value of the measured variable. 



The possibilities as to the form of the error distribution curve can be stated as 

follows 

a. Small errors are more probable than large errors. 

b. Large errors are very improbable. 

 

c. There is an equal probability of plus and minus errors so that the probability 

of a given error will be symmetrical about the zero value. 

The error distribution curve of Fig. 1-2 is based on the Normal law and shows a 

symmetrical distribution of errors. This normal curve may be regarded as the 

limiting form of the histogram of Fig. 1-1 in which the most probable value of 

the true voltage is the mean value of 100.0 V. 

1-6.2 Probable Error 

The area under the Gaussian probability curve of Fig. 1-2. between the limits 

+∞ and -∞, represents the entire number of observations. The area under the 

curve between the +σ and -σ limits represents the cases that differ from the 

mean by no more than the standard deviation. Integration of the area under the 



curve within the ± σ limits gives the total number of cases within these limits. 

For normally dispersed data, following the Gaussian distribution, 

approximately 68 percent of all the cases lie between the limits of + σ and - σ 

from the mean. Corresponding values of other deviations, expressed in terms of 

σ, are given in Table 1-2. 

 If, for example, a large number of nominally 100-Ω resistors is 

measured and the mean value is found to be 100.00σΩ, with a standard 

deviation (S.D.) of 0.20Ω. 



TABLE 1-2 Area Under the Probability curve 

Deviation ( + ), σ Fraction of total area included 

0.6745 

1.0 

2.0 

3.0 

0.5000 

0.6828 

0.9546 

0.9972 

 

 We know that on the average 68 percent (or roughly two-thirds) of all 

the resistors have values which lie between limits of ± 0.20 Ω of the mean. 

There is then approximately a two to one chance that any resistor, selected 

from the lot at random, will lie within these limits. If larger odds are required, 

the deviation may be extended to a limit of ± 2σ, in this case ± 0.40Ω. 

According to Table 1-2, this now includes 95 percent of all the cases, giving 

ten to one odds that any resistor selected at random lies within ± 0.40Ω of the 

mean value of 100.00Ω. 

 Table 1-2 also shows that half of the cases are included in the deviation 

limits of ± 0.6745σ. The quantity r is called the probable error and is defined 

as 

  Probable error r = ± 0.6745σ   (1-6) 

 This value is probable in the sense that there is an even chance that any 

one observation will have a random error no greater than ± r. Probable error 



has been used in experimental work to some extent in the past, but standard 

deviation is more convenient in statistical work and is given preference. 

EXAMPLE: 1-11 

Ten measurements of the resistance of a resistor gave 101.2Ω, 101.7Ω, 101.3Ω, 

101.0Ω, 101.5Ω, 101.3Ω, 101.2Ω, 101.4Ω, 101.3Ω, and 101.1Ω. Assume that 

only random errors are present. Calculate (a) the arithmetic mean; (b) the 

standard deviation of the readings; (c) the probable error. 

SOLUTION With a large number of readings a simple tabulation of data is 

very convenient and avoids confusion and mistakes. 

 

Reading, x  

Deviation 

d d
2 

101.2 -0.1 0.01 

101.7 0.4 0.16 

101.3 0.0 0.00 

101.0 -0.3 0.09 

101.5 0.2 0.04 

101.3 0.0 0.00 

101.2 -0.1 0.01 

101.4 0.1 0.01 

101.3 0.0 0.00 

101.1 -0.2 0.04 



  0.013.1x    4.1d  36.02 d  

 

a. Arithmetic mean, 


3.101
10

0.013,1

n

x
x  

b. Standard deviation, 


 2.0
9

36.0

1

2

n

d
  

c. Probable error = 0.6745 σ = 0.6745 x 0.2 = 0.1349Ω 

1-7 LIMITING ERRORS 

In most indicating instruments the accuracy is guaranteed to a certain 

percentage of full-scale reading. Circuit components (such as capacitor, 

resistors, etc.) are guaranteed within a certain percentage of their rated value. 

The limits of these deviations from the specified values are as limiting errors or 

guarantee errors. For example, if the resistance of a resistor is given as 500Ω ± 

10 percent, the manufacturer guarantees that the resistance falls between the 

limits 450Ω and 550Ω. The maker is not specifying a standard deviation or a 

probable error, but promises that the error is no greater than the limits set. 

EXAMPLE 1-12 

A 0-150-V voltmeter has a guaranteed accuracy of 1 percent full-scale reading. 

The voltage measured by this instrument is 83 V. Calculate the limiting error in 

percent. 

SOLUTION 

The magnitude of the limiting error is 



  0.01 x 150V= 1.5V 

The percentage error at a meter indication of 83 V is 

  percent 1.81 percent  100
83

1.5
  

It is important to note in Example 1-12 that a meter is guaranteed to have an 

accuracy of better than 1 percent of the full-scale reading, but when the meter 

reads 83V the limiting error increases to 1.81 percent. Correspondingly, when a 

smaller voltage is measured, the limiting error will increase further. If the meter 

reads 60V, the percent limiting error is 1.5/60 x 100 = 2.5 percent; if the meter 

reads 30V, the limiting error is 1.5/30 x 100 = 5 percent. The increase in 

percent limiting error, as smaller voltages are measured, occurs because the 

magnitude of the limiting error is fixed quantity based on the full scale reading 

of the meter. Example 1-2 shows the importance of taking measurements as 

close to full scale as possible. 

Measurements or computations, combining guarantee errors, are often made. 

Example 1-13 illustrates such a computation. 

EXAMPLE: 1-13 

The voltage generated by a circuit is equally dependent on the value of three 

resistors and is given by the following equation: 

  
3

21

R

RR
Vout   

If the tolerance of each resistor is 0.1 percent, what is the maximum error of the 

generated voltage? 



SOLUTION 

The highest resulting voltage occurs when R1 and R2 are at the maximum value 

allowed by the tolerance, while R3 is at the lowest value allowed by the 

tolerance. The actual value need not be known but only the relative value. For a 

variation of 0.1 percent the highest value of a resistor is 1.001 times the 

nominal value, while the lowest value is 0.999 times the nominal value. Using 

the maximum value of R1, and R2 and the minimum value for R3 results in the 

greatest value for Vout of  

  003.1
999.0

)001.1)(001.1(

3

21 
R

RR
Vout  

The lowest resulting voltage occurs when the value of R3 is highest and R1 and 

R2 are the lowest. The resulting voltage is 

  997.0
003.1

)999.0)(999.0(

3

21 
R

RR
Vout  

 The total variation of the resultant voltage is ± 0.3 percent, which is the 

algebraic sum of the three tolerances. This is true in the first approximation. 

The maximum error is slightly different from the sum of the individual 

tolerances. On the other hand, it is highly unlikely that all three components of 

this example would have the maximum error and in such a fashion to produce 

the maximum or minimum voltage. Therefore, the statistical methods outlined 

in the previous sections must be used. 

EXAMPLE: 1-14 



The current passing through a resistor of 100 ± 0.2 Ω is 2.00 ± 0.01 A. Using 

the relationship P = I
2
R, calculate the limiting error in the computed value of 

power dissipation. 



SOLUTION 

Expressing the guaranteed limits of both current and resistance in percentages 

instead of units, we obtain 

 I = 2.00 ± 0.01 A = 2.00 ± 0.5% 

 R = 100 ± 0.2% = 100 ± 0.2% 

 It the worst possible combination of errors for the calculation of power, 

that is, the highest value of resistance and the highest value of current, is used, 

the power dissipation becomes 

 P = I
2 

(1 + 0.005)
2
 R(l.002) = l.012I

2
R 

For the lowest power dissipation, 

 P = I
2 

(1 - 0.005)
2
 R(l-0.002) = 0.988I

2
R 

The error is ± 1.2 percent, which is two times the 0.5 percent error of the 

current plus the 0.2 percent error of the resistor. This is because the I term of 

the equation essentially appears twice in the equation. This can be seen by 

rewriting the equation 

 P = I x I x R = I
2
R 
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PROBLEMS 

1-1. What is the difference between accuracy and precision? 

1-2. List four sources of possible errors in instruments. 

4-3.  What are the three general classes of errors? 

1-4.  Define (a) instrumental error; (b) limiting error; (c) calibration error; (d) 

 environmental error; (e) random error; (f) probable error. 

1-5 A 0-I-mA milliammeter has 100 divisions which can easily be read to 

 the nearest division. What is the resolution of the meter? 

1-6. A digital voltmeter has .a read-out range from 0 to 9,999 counts. 

 Determine the resolution of the instrument in volts when the full-scale 

 reading is 9.999V. 

1-7.  State the number of significant figures in each of the following: (a) 542; 

 (b) 0.65; (c) 27.25; (d) 0.00005; (e) 40 x 10
6
; (f) 20,000. 



1-8. Four capacitors are placed in parallel. The capacitor values are 36.3 µF, 

 3.85 µF, 34.002 µF, and 850 nF, with an uncertainty of one digit in the 

 last place. What is the total capacitance? Give only the significant 

 figures in the answer. 

1-9. A voltage drop of 112.5V is measured across a resistor passing a 

 current of 1:62 A. Calculate the power dissipation of the resistor. Give 

 only significant figures in the answer. 

1-10. What voltage would a 20,00041/V meter on a 0-1-V scale show in the 

 circuit of Fig. P1-10? 

 

1-11 The voltage across a resistor is 200 V, with a probable error of +2 

 percent, and the resistance is 42Ω with a probab1e error of ± 1.5 

 percent. Calculate (a) the power dissipated in the resistor; (b) the 

 percentage error in the answer. 

1-l2. The following values were obtained from the measurements of the value 

 of a resistor: 147.2Ω, 147.4Ω, 147.9Ω, 148.1Ω, 147.1Ω. 147.5Ω, 

 147.6Ω, 147.4Ω, 147.6Ω, and 147.5Ω. Calculate (a) the arithmetic 

 mean; (h) the average deviation; (c) the standard deviation; (d) the 

 probable error of the average of the ten readings. 



1-13. Six determinations of a quantity, as entered on the data sheet and 

 presented to you for analysis, are 12.35, 12.71, 12.48, 10.24, 12.63, and 

 12.58. Examine the data and on the basis of your conclusions calculate 

 (a) the arithmetic mean; (b) the standard deviation; (c) the probable error 

 in percent of the average of the readings. 

1-14. Two resistors have the following ratings: 

  R1 = 36 Ω ± 5%  and R2 = 75Ω ± 5% 

 Calculate (a) the magnitude of error in each resistor; (b) the limiting 

 error in ohms and in percent when the resistors are connected in series; 

 (c) the limiting error in ohms and in percent when the resistors are 

 connected in parallel. 

1-15 The resistance of an unknown resistor is determined by the Wheatstone 

 bridge method. The solution for the unknown resistance is stated as Rx = 

 R1R2 / R3, where 

   R1 = 500Ω ± 1% 

   R2 = 615Ω ± 1% 

   R3 = 100Ω ± 0.5% 

 Calculate (a) the nominal value of the unknown resistor; (b) the limiting 

 error in ohms of the unknown resistor; (c) the limiting error in percent of 

 the unknown resistor. 

1-16 A resistor is measured by the voltmeter-ammeter method. The voltmeter 

 reading is 123.4 V on the 250-V scale and the ammeter reading is 283.5 



 mA on the 500-mA scale. Both meters are guaranteed to be accurate 

 within ± 1 percent of full-scale reading. Calculate (a) the indicated 

 value of the resistance; (b) the limits within which you can guarantee the 

 result. 

1-17 In a dc circuit, the voltage across a component is 64.3 V and the current 

 is 2.53 A. Both current and voltage are given with an uncertainty of one 

 unit in the last place. Calculate the power dissipation to the appropriate 

 number of significant figures. 

1-18 A power transformer was tested to determine tosses and efficiency. The 

 input power was measured as 3,650 W and the delivered output power 

 was 3,385 W, with each reading in doubt by ± 10W. Calculate the 

 percentage uncertainty in the losses of the transformer; (b) the 

 percentage uncertainty in the efficiency of the transformer, as 

 determined by the difference in input and output power readings. 

1-19 The power factor and phase angle in a circuit carrying a sinusoidal 

 current are determined by measurements of current, voltage, and power. 

 The current is read as 2.50 A on a 5-A ammeter, the voltage as 115 V on 

 a 250-V voltmeter, and the power as 220 W on a 500-W wattmeter. The 

 ammeter and voltmeter are guaranteed accurate to within ±0.5 percent of 

 full-scale indication and the wattmeter to within ± 1 percent of full-scale 

 reading. Calculate (a) the percentage accuracy to which the power factor 

 can be guaranteed; (h) the possible error in the phase angle. 



2. SYSTEM OF UNITS OF MEASUREMENT 

2-1 FUNDAMENTAL AND DERIVED UNITS 

 To specify and perform calculations with physical quantities, the, 

physical quantities must be fined both in kind and magnitude. The standard 

measure of each kind of physical quantity is the unit the number of times the 

unit occurs in any given amount of the same quantity is the number of measure. 

For example, when we speak of a distance of 100 meters, we know that the 

meter is the unit of length and that the number of units of length is one 

hundred. The physical quantity, length, is therefore defined by the unit, meter. 

Without the unit, the number of measure has no physical meaning. 

 In science and engineering, two kinds of units are used: fundamental 

units and derived units. The fundamental units in mechanics are measures of 

length, mass, and time. The sizes of the fundamental units, whether foot or 

meter, pound or kilogram, second or hour, are arbitrary and can be selected to 

fit a certain set of circumstances. 

units. Measures of certain physical quantities in the thermal, electrical, and 

illumination disciplines are also represented by fundamental units. These units 

are used only when these particular classes are involved, and they may 

therefore be defined as auxiliary .fundamental units. 

 All other units which can be expressed in terms of the fundamental units 

are called derived units. Every derived unit originates from some physical law 

defining that unit. For example, the area (A) of a rectangle is proportional to its 



length (l) and breadth (b), or A = lb. If the meter has been chosen as the unit of 

length, then the area of a rectangle of 3m by 4m is 12 m
2
. Note that the number 

of measure multiplied (3 x 4 = 12) as well as the units (m x m = m
2
) The 

derived unit for area (A) is then the square meter (m
2
). 

 A derived unit is recognized by its dimensions, which can be defined as 

the complete algebraic formula for the derived unit. The dimensional symbols 

for the fundamental units of length, mass, and time are L, M, and T, 

respectively. The dimensional symbol for the derived unit of area is L
2
 and that 

for volume, L
3
. The dimensional symbol for the unit of force is LMT

-2
, which 

follows from the defining equation for force. The dimensional formulas of the 

derived units are particularly useful for converting units from one system to 

another, as is shown in Sec. 2-6. 

 For convenience, some derived units have been given new names. For 

example, the derived unit of force in the SI system is called the newton (N), 

instead of the dimensionally correct name kg.m/s
2
. 

2-2 SYSTEM OF UNITS 

 In 1790 the French government issued a directive to the French 

Academy of Sciences to study and to submit proposals for a single system of 

weights and measures to replace all other existing systems. The French 

scientists decided, as a first principle, that a universal system of weight and 

measures should not depend on man-made reference standards, but instead be 

based on permanent measures provided by nature. As the unit of length, 



therefore, they chose the meter, defined as the ten-millionth part of the distance 

from the pole to the equator along the meridian passing through Paris. As the 

unit of mass they chose the mass of a cubic centimeter of distilled water at 4°C 

and normal atmospheric pressure (760mm Hg) and gave it the name gram. As 

the third unit, the unit of time, they decided to retain the traditional second, 

defining it as l/86,400 of the mean solar day. 

 As a second principle, they decided that all other units should be derived 

from the aforementioned the aforementioned three fundamental units of length, 

mass, and time. Next the third principle they proposed that all multiples of 

basic units be in the decimals system, and they devised the system of prefixes 

in use today. Table 2-1 lists the decimal multiples and submultiples. 

 The proposals of the French Academy were approved and introduced as 

the metric system of units in: France in 1795. The metric system aroused 

considerable interest elsewhere and finally, in 1875, 17 countries signed the so-

called Meter Convention, making the metric system of units the legal system. 

Britain and the United States, although signatories of the convention,  

recognized its legality only in international transactions but did not accept the 

metric system for their own domestic use. 

Table 2-1: Decimal Multiples and Submultiples  

Name Symbol Equivalent 

tera T 10
12

 



giga 

mega 

kilo 

hecto 

deca 

deci 

centi 

milli 

micro 

nano 

pico 

femto 

atto 

G 

M 

k 

h 

da 

d 

c 

m 

µ 

n 

p 

f 

a 

10
9
 

10
6
 

10
3
 

10
2
 

10 

10
-1

 

10
-2

 

10
-3

 

10
-6

 

10
-9

 

10
-12

 

10
-15

 

10
-18

 

 

 Britain, in the meantime, had been working on a system of electrical 

units, and the British Association for the Advancement of Science decided on 

the centimeter and the gram as the fundamental units of length and mass. From 

this developed the centimeter-gram-second or CGS absolutes system of units, 

used by physicists all over the world. Complications arose when the CGS 

system was extended to electric and magnetic measurements because of the 



need to introduce at least one more unit in the system. In fact, two parallel 

systems were established. In the CGS electrostatic system, the unit of electric 

charge was derived from the centimeter, gram, and second by assigning the 

value 1 to the permittivity of free space in Coulomb‘s law for the force between 

electric charges. In the CGS electromagnetic system., the basic units are the 

same and the unit of magnetic pole strength is derived from them by assigning 

the value Ito the permeability of free space in the inverse square formula for the 

force between magnetic poles. 

 The derived units for electric current and electric potential in the 

electromagnetic system, the ampere and the volt, are used in practical 

measurements. These two units, and the corresponding ones, such as the 

Coulomb, ohm, henry, farad, etc., were incorporated in a third system, called 

the practical system. Further simplification in the establishment of a truly 

universal system cai1se result of pioneer work by the Italian engineer Giorgi, 

who pointed out that the practical units of current, voltage, energy, and power, 

used by electrical engineers, were compatible with the meter-kilogram-second 

system. He suggested that the metric system be expanded into a coherent 

system of units by including the practical electrical units. The Giorgi system, 

adopted by many countries in 1935, came to be known as the MKSA system, of 

units in which the ampere was selected as the fourth basic unit. 

 A more comprehensive system was adopted in 1954 and designated in 

1960, by international agreement as the Système International d‘Unités (SI). In 



the SI system, six basic units are used. namely, the meter, kilogram, second, 

and ampere 

Table 2-2: Basic SI Quantities, Units, and Symbols 

Quantity Unit Symbol 

Length 

Mass 

Time 

Electric current 

Thermodynamic temperature 

Luminous intensity 

 

Meter 

Kilogram 

Second 

Ampere 

Kelvin 

Candela 

m 

kg 

s 

A 

K 

cd 

 

of the MKSA system and, in addition, the kelvin and the candela as the units of 

temperature and luminous intensity, respectively. The SI units are replacing 

other systems in science and technology; they have been adopted as the legal 

units in France, and will become obligatory in other metric countries. 

 The six basic SI quantities and units of measurement, with their unit 

symbols, are listed in Table 2-2. 



2-3 ELECTRIC AND MAGNETIC UNITS 

 Before listing the SI units (sometimes called the International MKS 

system of units), the electrical and magnetic units seems appropriate. The 

practical electrical and magnetic units with which we are familiar, such as the 

volt, ampere, ohm, henry, etc., were first derived in the CGS systems of units. 

The CGS electrostatic system (CGSe) is based on Coulomb‘s experimentally 

derived law for the force between two electric charges. Coulomb‘s law states 

that 

  
2

21

r

QQ
kF      (2-1) 

where   F =  force between the charges, expressed in CGSe units of  

   force  (g cm/s2 = dyne)  

  k =  proportionality constant 

  Q1.2 = electric charges, expressed in (derived) CGSe units of.  

   electric charge (statcoulomb) 

  r  =  separation between the charges, expressed in the  

   fundamental CGSe unit of length (centimeter) 

 Coulomb also found that the proportionality factor k depended on the 

medium, varying inversely as its permittivity s. (Faraday called permittivity the 

dielectric constant.) Coulomb‘s law then takes the form 

   
2

21

r

QQ
kF


    (2-2) 



 Since ε is a numerical value depending only on the medium, a value of 1 

was assigned to the permittivity of free space, ε0, thereby defining ε0 as the 

fourth fundamental unit of the CGSe system. Coulomb‘s law then allowed the 

unit of electric charge Q to be determined in terms of these four fundamental 

units by the relation 

   
2

0

2

2 1)cm(εs

gcm
dyne




Q
 

and therefore, dimensionally, 

    12/12/3  sgcmQ     (2-3) 

The CGSe unit of electric charge was given the name statcoulomb. 

 The derived unit of electric charge in the CGSe system of units allowed 

other electrical units to be determined by their defining equations. For example, 

electric current (symbol 1) is defined as the rate of flow of electric charge and 

is expressed as 

   
t

Q
I    (statcoulomb/sec)   (2-4) 

 The unit for electric current in the CGSe system was given the name 

statampere. Electric field strength, E, potential difference, V, and capacitance, 

C, can similarly be derived from their defining equations. 

 The basis of the CGS electromagnetic system of units (CGSm) is 

Coulomb‘s experimentally determined law for the force between two magnetic 

poles, which states that 



    
2

21

r

mm
kF       (2-5) 

The proportionality factor, k, was found to depend on the medium in which the 

poles were placed, varying inversely with the magnetic permeability µ of the 

medium. The factor k was assigned the value 1 for the permeability of free 

space, µ0, so that k = l/µ0 = 1. This established the permeability of free space, 

µ0, as the fourth fundamental unit of the CGSm system. The derived 

electromagnetic unit of pole strength was then defined in terms of these four 

fundamental units by the relation: 

   
2

0

2

2 1)cm(s

gcm
dyne






m
  

and therefore, dimensionally, 

   12/12/3  sgcmm  

 The derived unit of magnetic polestrength in the COSm system led to 

the determination of other magnetic units, again by their defining equations. 

Magnetic flux density (symbol B), for example, is defined as the magnetic 

force per unit polestrength, where both force and polestrength are derived units 

in the CGSm system. Dimensionally, B is found to be equal to cm
-1/2

g
1/2

s
-1 

(dyne-second/abcoulomb-centimeter) and is given the name gauss. Similarly, 

other magnetic units can be derived from defining equations and we find that 

the unit for magnetic fluxis (symbol Ф) is given the name maxwell; the unit for 

magnetic field- strength (symbol H), the name oersted; and the unit for 



magnetic potential difference or magnetomotive force (symbol U), the name 

gilbert. 

 The two CGS systems were linked together by Faraday‘s discovery that 

a moving magnet could induce an electric current in a conductor, and 

conversely. that electricity in motion could produce magnetic effects. Ampere‘s 

law of the magnetic field relates electric current (I) to magnetic fieldstrength 

(H),* quantitatively connecting the magnetic units in the CGSm system to the 

electric units in the COSe system. The dimensions of the two systems did not 

agree exactly, and numerical conversion factors were introduced. The two 

systems finally formed one practual system of electrical units which was 

officially adopted by the international Electrical Congress. 

These practical electrical units, det ved from the CGSm system, were later 

defined in terms of so-called international units . ltwas thought at the time 

(1908) that the establishment of the practical units from the definitions of the 

CGS system would be too difficult for most laboratories and it was therefore 

decided (unfortunately) to define the practical units in a way which would 

make it fairly simple to establish them. The ampere, therefore, was defined in 

terms of the rate of deposition of silver from a silver nitrate solution by passing 

current through that of a specified column of mercury. These units those 

derived from them were called international units. As measurement techniques 

improved, it was found that small differences existed between COSm derived 

practical units and the international units, which were then specified as follows. 

1 int. ohm = 1.00049Ω (practical CGSm unit) 



1 int. ampere = 0.99985 A 

1 int. volt = 1.00034 V 

1 int. coulomb = 0.99985 C 

1 int. farad = 0.99951 F 

1 int. henry = 1.00049 H 

1 int. watt = 1.00019 W 

1 int. joule = 1.00019 J 

 Particulars of the electric and magnetic units, and their defining 

relationships, are given in Table 2-3. Multiplication factors for conversion into 

SI units are given in the columns headed CGSm and CGSe. 

* See a textbook on electromagnetic theory. 



Table 2-3: Electric Magnetic Units 

 SI Unit Conversion factors 

Quantity & Symbol Name & Symbol Defining 

equation
a
 

CGSm CGSe
b
 

Electric current, I Ampere A 

dz

dN
IFz

2710  
10 10/c 

Electromotive force, E Volt V P = IE 10
-8

 10
-8

c 

Potential, V Volt V P = IV 10
-8

 10
-8

c 

Resistance, R Ohm Ω R = V/I 10
-9

 10
-9

c 

Electric charge, Q Coulomb C Q = It 10 10/c 

Capacitance, C Farad F C = Q/V 10
9
 10

9
/c

2
 

Electric fieldstrength, E - V/m E = V/l 10
-6

 10
-6

/c 

Electric flux density, D - C.m
2
 D = Q/l

2
 10

5
 10

5
/c 

Permittivity, ε - F/m ε = D/E - 10
11

/4πc
2
 

Magnetic fieldstrength, H - A/m фH dl = nl - - 

Magnetic flux, Ф Weber Wb E = dФ/dt 10
-8

 - 

Magnetic flux density, B tesla T B = Ф/I
2
 10

-4
 - 



Inductance, L. M henry H M = Ф/1 10
-9

 - 

Permeability, μ - H/m  μ = B/H 4π x 10
-7

 - 

a. N denotes Neumann‘s integral for two linear circuits each carrying the 

current I; Fz is the force between the two circuits in the direction defined by 

coordinate z, the circuits being in a vacuum; p denotes power; I
2
 denotes area. 

b. C=velocity of light in free space in cm/s = 2.997925 x 10
10

 

2-4 INTERNATIONAL SYSTEM OF UNITS 

 The international MKSA system of units was adopted in 1960 by the 

Eleventh General Conference of Weights and Measures under the name 

systeme international d‘ unites (SI). The SI system is replacing all other 

systems in the metric countries and its widespread acceptance dooms other 

systems to eventual obsolescence.  

 The six fundamental SI quantities are listed in Table 2-2. The derived 

units are expressed in terms of these six basic units by defining equations. 

Some examples of defining equations are given in Table 2-3 for the electric and 

magnetic quantities. Table 2-4 lists, together with the fundamental quantities 

which are repeated in this table, the supplementary and derived units in the SI 

which are recommended for use by the General Conference. 

 The first column in Table 2-4 shows the quantities (fundamental, 

supplementary, and derived). The second column gives the equation symbol for 

each quantity. The third column lists the dimension of each derived unit in 



terms of the six fundamental dimensions. The fourth column gives the name of 

each unit; the fifth, the unit symbol. The unit symbol should not be confused 

with the equation symbol; i.e., the equation symbol for resistance is R, but the 

unit abbreviation (symbol) for ohm is Ω. 



Table 2 – 4: Fundamental, Supplementary, and Derived Units 

 

2-5 OTHER SYSTEMS OF UNITS 



 The English system of units uses the foot (ft), the pound-mass (lb), and 

the second (s) as the three fundamental units of length; mass, and time, 

respectively. Although the measures of length and weight are legacies of the 

Roman occupation of Britain and therefore rather poorly defined, the inch 

(defined as one-twelfth of the foot) has since been fixed at exactly 25.4 mm. 

Similarly, the measure for the pound (lb) has been determined as exactly 

0.45359237 kg. These two figures allow all units in the English system to be 

converted into SI units. 

 Starting with the fundamental units, foot, pound, and second, the 

mechanical units may be derived simply by substitution into the dimensional 

equations of Table 2-4. For example, the unit of density will be expressed in 

lb/ft
3
 and the unit of acceleration in ft/s

2
. The derived unit of force in the ft-lb-s 

system is called the poundal and is the force required to accelerate 1 pound-

mass at the rate of 1 ft/s
2
. As a result the unit for work or energy becomes the 

foot-poundal (ft pdl). 

 Various other systems have been devised and were used in various parts 

of the world. The MTS (meter-tonne-second) system was especially designed 

for engineering purposes in France and provided a replica of the CGS system 

except that the length and mass units (meter and tonne, respectively) were more 

suitable in practical engineering applications. Gravitational systems define the 

second fundamental unit as the weight of a mass measure; i.e., as the force by 

which that mass is attracted to the earth by gravity. In contrast to the 

gravitational systems, the so-called absolute systems, as the CGS and SI, use 



the mass measure as the second fundamental unit, but its value is independent 

of gravitational attraction. 

 Since English measures are still extensively used, both in Britain and on 

the North American continent, conversion into the SI becomes necessary if we 

wish to work in that system. Table 2-5 lists some of the common conversion 

factors for English into SI units. 

 

2-6 CONVERSION OF UNITS 

It is often necessary to convert physical quantities from one system of units 

into another. Section 2- stated that a physical quantity is expressed in both unit 

and number of measure: it is the unit that must be converted, not the number of 

measure. Dimensional equations are very convenient for converting the 

numerical value of a dimensional quantity, when the units are transformed from 

one system to the other. The technique requires a knowledge of the numerical 

relation between the fundamental units and some dexterity in the manipulation 

of multiples and submultiples of the units. 



 The method used in converting from one system into the other is 

illustrated by a number of examples of progressively increasing difficulty. 
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PROBLEMS 

2-1. Complete the following conversions: 

1,500 MHz = GHz 

12.5 kHz Hz 

125 nH = μH 

346.4 kV = V 

5.3 mA = A 

5 H = mH 

4.6 pJ = J 

1.4 μs = ms 

3.2 ns = hr 

14  = fs 

2-2. What is the velocity of light in free space in feet per second? 

2-3. The charge of an electron is 1.6 x 10
-19

 C. How many electrons pass by a 

 point each microsecond if the current at that point is 4.56 A? 



2-4. Typical ―room‖ temperature is 25°C. What is this temperature in 

 degrees Fahrenheit and kelvin? 

2-5. Calculate the height in cm of a man 5 ft 11 in. tall. 

2-6. Calculate the mass in kg of 1 yd
3
 of iron when the density of iron is 7.86 

 g/cm
3
. 

2-7. Calculate the conversion factor to change mi/hr to ft/s. 

2-8. An electrically charged body has an excess of 10
15

 electrons. Calculate 

 its charge in C. 

2-9. A train covers a distance of 220 mi in 2 hr and 45 min. Calculate; he 

 average speed of the train in m/s. 

2-10. Two electric charges are separated by a distance of 1 m. If one charge is 

 + 10 C and the other charge -6C, calculate the force of attraction 

 between the charges in N and in lb. Assume that the charges are placed 

 in a vacuum. 

2-11. The practical unit of electrical energy is the kWh. The unit of energy in 

 the SI is the joule (J). Calculate the number of joules in 1 kWh. 

2-12. A crane lifts a 100-kg mass a height of 20 m in 5s. Calculate (a) the 

 work done by the crane, in SI units: (b) the increase of potential energy 

 of the mass, in SI units; (c) the power, or rate of doing the work, in SI 

 units. 

2-13. Calculate the voltage of a battery if a charge of 3 x 10
-4

 C residing on 

 the positive battery terminal possesses 6 x 10
-2

 J of energy. 



2-14. An electric charge of 0.035 C flows through a copper conductor in 5 

 mm. Calculate the average current in mA. 

2-15. An average current of 25 μA is passed through a wire for 30 s. Calculate 

 the number of electrons transferred through the conductor. 

2-16. The speed limit on a four-lane highway is 70 mi/hr. Calculate the speed 

 limit in (a) km/hr; (b) ft/s. 

2-17. The density of copper is 8.93 g/cm
3
. Express the density in (a) kg/m

3
; 

 (b) lb/ft
3
. 



3. STANDARDS OF MEASUREMENT 

3-1 CLASSIFICATION OF STANDARDS 

 A standard of measurements a physical representation of a unit of 

measurement. A unit is realized by reference to an arbitrary material standard 

or to natural phenomena including physical and atomic constants. For example, 

the fundamental unit of mass in the international system (SI) is the kilogram, 

defined as the mass of a cubic decimeter of water as its temperature of 

maximum density of 4°C (see Sec. 2-2). This unit of mass is represented by a 

material standard; the mass of the International Prototype Kilogram, consisting 

of a platinum-iridium alloy cylinder. This cylinder is preserved at the 

International Bureau of Weights and Measures at Sèvres, near Paris, and is the 

material representation of the kilogram. Similar standards have been developed 

for other units of measurement, including standards for the fundamental units 

as well as for some of the derived mechanical and electrical units. 

 Just as there are fundamental and derived units of measurement, we find 

different types of standards of measurement, classified by their function and 

application in the following categories: 

a. International standards 

b. Primary standards 

c. Secondary standards 

d. Working standards 



 The international standards are defined by international agreement. They 

represent certain units of measurement to the closest possibly accuracy that 

production and measurement technology allow. International standards are 

periodically evaluated and checked by absolute measurements in terms of the 

fundamental units (see Table 2-2). These standards are maintained at the 

International Bureau of Weights and Measures and are not available to the 

ordinary user of measuring instruments for purposes of comparison or 

calibration. 

 The primary (basic) standards are maintained by national standards 

laboratories in different parts of the world. The National Bureau of Standards 

(NBS) in Washington is responsible for maintenance of the primary standards 

in North America. Other national laboratories include the National Physical 

Laboratory (NPL) in Great Britain and, the oldest in the world, the 

Physikalisch-Technische Reichsanstalt in Germany. The primary standards, 

again representing the fundamental units and some of the derived mechanical 

and electrical units, are independently calibrated by absolute measurements at 

each of the national laboratories. The results of these measurements are 

compared against each other, leading to a world average figure for the primary 

standard. Primary standards are not available for use outside the national 

laboratories. One of the main functions of primary standards is the verification 

and calibration of secondary standards. 

 Secondary standards are the basic reference standards used in industrial 

measurement laboratories. These standards are maintained by the particular 



involved industry and are checked locally against other reference standards in 

the area. The responsibility for maintenance and calibration of secondary 

standards rests entirely with the industrial laboratory itself. Secondary 

standards are generally sent to the national standards laboratories on a periodic 

basis for calibration and comparison against the primary standards. They are 

then returned to the industrial user with a certification of their measured value 

in terms of the primary standard. 

 Working standards are the principal tools of a measurement laboratory. 

They are used to check and calibrate general laboratory instruments for 

accuracy and performance or to perform comparison measurements in 

industrial applications. A manufacturer of precision resistances, for example, 

may use a standard resistor (a working standard) in the quality control 

department of his plant to check his testing equipment. In this case, he verifies 

that his measurement setup performs within the required limits of accuracy. 

 In electrical and electronic measurement we are concerned with the 

electrical and magnetic standards of measurement. These are discussed in the 

following sections. We have seen, however, that electrical units can be traced 

back Lathe basic units of length, mass, and time (in fact, the national 

laboratories perform measurements to relate derived electrical units to 

fundamental units) and the deserve some investigation here. 



3-2 STANDARDS FOR MASS, LENGTH, AND VOLUME 

 The metric unit of mass was originally defined as the mass of a cubic 

decimeter of water at its temperature of maximum density. The material 

representation of this unit is the International Prototype Kilogram, preserved at 

the International Bureau of Weights and Measures near Paris. The primary 

standard of mass in North America is the United States Prototype Kilogram, 

preserved by the NUS to an accuracy of 1 part in 10
8
 and occasionally verified 

against the standard at the International Bureau. Secondary standards of mass, 

kept by the industrial laboratories, generally have an accuracy of 1 ppm (part 

per million) and may be verified against the NBS primary standard. 

Commercial working standards are available in a wide range of values to suit 

almost any application. Their accuracy is in the order of 5 ppm. The working 

standards, in turn, are checked against the secondary laboratory standards. 

 The pound (lb), established by the Weights and Measures Act of 1963 

(which actually came into effect on January 31, 1964), is defined as equal to 

0.45359237 kg exactly. All countries which retain the pound as the basic unit 

of measurement have now adopted the new definition, which supersedes the 

former imperial standard pound made of platinum. 

 The metric unit of length, the meter, was initially defined as 1/ l0 part of 

the meridional quadrant through Paris (Sec. 2-2). This was an outgrowth of a 

suggestion in 1790 by the well-known French astronomer Pierre-Simon 

Laplace that the right angle be divided into 100 degrees, rather than 90, and 

each degree into 100 minutes. rather than 60. The measure of one meter would 



be the distance on the surface of the earth covered by one second of arc, which 

would be one ten- thousandth of the meridional quadrant, or the line from the 

equator to the north geographical pole. This was materially represented by the 

distance between two lines engraved on a platinum-iridium bar preserved at the 

International Bureau of Weights and Measures near Paris. In 1960 the meter 

was redefined more accurately in terms of a number of wavelengths of light 

emitted from the krypton-86 atom. For over 20 years the international standard 

meter was 1,650,763.73 wavelengths of the orange-red radiation from a 

carefully specified and observed krypton discharge lamp. Because this standard 

did not prove as precise as originally thought, in 1983 a new standard for the 

meter was adopted. This standard is simply that one meter is the distance light 

that propagates in a vacuum in 1/299,792,458 seconds. 

 The yard is defined as 0.9144 meter exactly, or 1 inch is 25.4 mm 

exactly. This is because the standards for the English units of measurement are 

based on the metric standards. This definition of a yard and inch superseded the 

former definition in terms of a standard imperial yard. The few countries that 

have retained the yard and other English units of measurement have adopted 

this metric- based definition. 

 The most widely used industrial working standards of length are 

precision gage blocks, made of steel. These steel blocks have two plane parallel 

surfaces, a specified distance apart, with accuracy tolerances in the 0.5-0.25-

micron range (1 micron = one millionth of 1 m). The development and use of 

precision gage blocks, low in cost and of high accuracy, have made it possible 



to manufacture interchangeable industrial components in a very economical 

application of precision measurement. 

 The unit of volume is a derived quantity and is not represented by an 

international standard. The NBS, however, has constructed a number of 

primary standards of volume, calibrated in terms of the absolute dimensions of 

length and mass. Secondary derived standards of volume are available and may 

be calibrated in terms of the NBS primary standards. 

 As the need for more accurate standards arises and the technology is 

developed to create and preserve these standards, the basis for international 

weights and measures will change to fill the needs of the scientific and 

commerce community. Additions and improvements will be added to the 

international standards to keep in pace with the needs of the world. 

3.3 TIME AND FREQUENCY STANDARDS

 

 Since early times men have sought a reference standard for a uniform 

time scale together with means to interpolate from it a small time interval. For 

many centuries the time reference used was the rotation of the earth about its 

axis with respect to the sun. Precise astronomical observations have shown that 

the rotation of the earth about the sun is very irregular, owing to secular and 

irregular variations in the rotational speed of the earth. Since the time scale 

based on this apparent solar time does not represent a uniform time scale, other 

                                              


 Frequency and Time Standards, Application Note AN 52, published by Hewlett-Packard, Palo Alto, 

Calif., describes methods of frequency comparisons, time scales, and worldwide time standards 

broadcasts. 



avenues were explored. Mean solar time was thought to give a more accurate 

time scale. A mean solar day is the average of all the apparent days in the year. 

A mean solar second is then equal to 1/86,400 of the mean solar day. The mean 

solar second, thus defined, is still inadequate as the fundamental unit of time, 

since it is tied to the rotation of the earth, which is now known to be non-

uniform. 

 The system of universal time (UT), or mean solar time, is also based on 

the rotation of the earth about its axis. This system is known as UT0 and is 

subject to periodic, long-term, and irregular variations. Correction of UT0 has 

led to two subsequent universal time scales: UT1 and UT2. UT1 recognizes the 

fact that the earth is subject to polar motion, and the UT1 time scale is based on 

the true angular rotation of the earth, corrected for polar motion. The UT2 time 

scale is UT1 with an additional correction for seasonal variations in the rotation 

of the earth. These variations are apparently caused by seasonal displacement 

of matter over the earth‘s surface, such as changes in the amount of ice in the 

polar regions as the sun moves from the southern hemisphere to the northern 

and back again through the year. This cyclic redistribution of mass acts on the 

earth‘s rotation since it produces changes in its moment of inertia. The epoch, 

or instant of time, of UT2 can be established to an accuracy of a few 

milliseconds, but it is not usually distributed to this accuracy. The epoch 

indicated by the standard radio time signals may differ from the epoch of UT2 

by as much as 100 ms. The actual values of the differences are given in 



bulletins published by the national time services (NBS) and by the Bureau 

International de l‘Heure (Paris Observatory). 

 The search for a truly universal time unit has led astronomers to define a 

time unit called ephemeris time (ET). ET is based on astronomical observations 

of the motion of the moon about the earth. Since 1956 the ephemeris second 

has been defined by the International Bureau of Weights and Measures as the 

fraction 1/31,556,925.9747 of the tropical year for 1900 January Oat 12 h ET, 

and adopted as the fundamental invariable unit of time. A disadvantage of the 

use of the ephemeris second is that it can be determined only several years in 

arrears and then only indirectly, by observations of the positions of the sun and 

the moon. For physical measurements, the unit of time interval has now been 

defined in terms of an atomic standard. The universal second and the ephemeris 

second, however, will continue to be used for navigation, geodetic surveys, and 

celestial mechanics. 

 Development and refinement of atomic resonators have made possible 

control of the frequency of an oscillator and, hence, by frequency conversion, 

atomic clocks. The transition between two energy levels, E1 and E2, of an atom 

is accompanied by the emission (or absorption) of radiation having a frequency 

given h = E2 – E1, where h is Planck‘s constant. Provided that the energy 

states are not affected by external conditions, such as magnetic fields, the 

frequency,  is a physical constant, depending only on the internal structure of 

the atom. Since frequency is the inverse of time interval, such an atom provides 

a constant time interval. Atomic transitions of various metals were investigated, 



and the first atomic clock, based on the cesium atom, was put into operation in 

1955. The time interval, provided by the cesium clock, is more accurate than 

that provided by a clock calibrated by astronomical measurements. The atomic 

unit of time was first related to UT but was later expressed in terms of ET. The 

International Committee of Weights and Measures has now defined the second 

in terms of the frequency of the cesium transition, assigning a value of 

9,192,631,770 Hz to the hyperfine transition of the cesium atom unperturbed 

by external fields. 

 The atomic definition of the second realizes an accuracy much greater 

than that achieved by astronomical observations, resulting in a more uniform 

and much more convenient time base. Determinations of time intervals can 

now be made in a few minutes to greater accuracy than was possible before in 

astronsmical measurements that took many years to complete. An atomic clock 

with a precision exceeding 1 μs per day is in operation as a primary frequency 

standard at the NBS. An atomic time scale, designated NBS-A, is maintained 

with this clock. 

 Time and frequency standards are unique in that they may be transmitted 

from the primary standard at NBS to other locations via radio or television 

transmissions. Early standard time and frequency transmissions were in the 

high- frequency (HF) portion of the radio spectrum. but these transmissions 

suffered from. Doppler shifts due to the fact that radio propagation was 

primarily ionospheric. Transmission of time and frequency standards via low-

frequency and very low frequency radio reduces this Doppler shift because the 



propagation is strictly ground wave. Two NBS-operated stations, WWVL and 

WWVB, operate at 20 and 60 kHz, respectively, providing precision time and 

frequency transmissions. 

 Another source of precision time and frequency information is the low- 

frequency navigation system called LORAN-C. This navigation system 

transmits shaped pulses at a carrier frequency of 100 kHz with a bandwidth of 

20 kHz. The LORAN-C transmitters are controlled by cesium beam clocks and 

provide strong signals within most of the United States and in other parts of the 

world. Because LORAN-C is primarily a marine navigation system, coverage 

is not provided away from significant bodies of water. 

 Another source of accurate time and frequency dissemination is via 

television transmissions. The color burst frequency, which is nominally 

3.579545 MHz, is phase locked to a cesium clock and is distributed over the 

television networks. Because television programming is distributed via 

terrestrial and satellite microwave links, there is no significant Doppler shift, 

and the color burst frequency can he transmitted accurately and is readily 

available for use as a precision standard. 

3-4 ELECTRICAL STANDARDS 

3-4.1 The Absolute Ampere 

 The international system of units (SI) defines the ampere (the 

fundamental unit of electric current) as the constant current which, if 

maintained in two straight parallel conductors of infinite length and negligible 



circular cross section placed I m apart in a vacuum, will produce between these 

conductors a force equal to 2 x 10, newton per meter length. Early 

measurements of the absolute value of the ampere were made with a current 

balance which measured the force between two parallel conductors. These 

measurements were rather crude and the need was felt to produce a more 

practical and reproducible standard for the national laboratories. By 

international agreement, the value of the International Ampere was based on 

the electrolytic deposition of silver from a silver nitrate solution. The 

International Ampere was then defined as that current which deposits silver at 

the rate of 1.118 mg/s from a standard silver nitrate solution. Difficulties were 

encountered in the exact measurement of the deposited silver and slight 

discrepancies existed between measurements made independently by the 

various national standards laboratories. 

 In 1948 the International Ampere was superseded by the Absolute 

Ampere. The determination of the Absolute Ampere is again made by means of 

a current balance, which weighs the force exerted between two current-carrying 

coils. Improvement in the techniques of force measurement yields a value for 

the ampere far superior to the early measurements. The relationship between 

the force and the current which produces the force can be calculated from 

fundamental electromagnetic theory concepts and reduces to a simple 

computation involving the geometric dimensions of the coils. The Absolute 

Ampere is now the fundamental unit of electric current in the SI and is 

universally accepted by international agreement. 



 Instruments manufactured before 1948 are calibrated in terms of the 

international Ampere but newer instruments are using the Absolute Ampere as 

the basis for calibration. Since both types of instruments may be found side by 

side in one laboratory, the NBS has established conversion factors to relate 

both units. These factors are given in Sec. 2-3. 

 Voltage, current, and resistance are related by Ohm‘s law of constant 

proportionality (E = IR). The specification of any two quantities automatically 

sets the third. Two types of material standards form a combination which 

conveniently serves to maintain the ampere with high precision over long 

periods of time: the standard resistor and the standard cell (for voltage). Each 

of these is described below. 

3-4.2 Resistance Standards 

 The absolute value of the ohm in the SI system is defined in terms of the 

fundamental units of length, mass, and time. The absolute measurement of the 

ohm is carried out by the International Bureau of Weights and Measures in 

Sèvres and also by the national standards laboratories, which preserve a group 

of primary resistance standards. The NBS maintains a group of those primary 

standards (1-Ω standard resistors) which are periodically checked against each 

other and are occasionally verified by absolute measurements. The standard 

resistor is a coil of wire of some alloy like manganin which has a high 

electrical resistivity and a low temperature coefficient of resistance (almost 

constant temperature-resistance relationship). The resistance coil is mounted in 

a double-walled sealed container (Fig. 3-I) to prevent changes in resistance due 



to moisture conditions in the atmosphere. With a set of four or five I-fl resistors 

of this type, the unit of 

 

 

resistance can be represented with a precision of a few parts in 10 over several 

years. 



 Secondary standards and working standards are available from some 

instrument manufacturers in a wide range of values, usually in multiples of 

10Ω. These standard resistors are made of alloy resistance wire, such as 

manganin or Evanohm. Figure 3-2 is a photograph of a laboratory secondary 

standard, sometimes referred to as a transfer resistor. The resistance coil of the 

transfer resistor is supported between polyester film to reduce stresses on the 

wire and to improve the stability of the resistor. The coil is immersed in 

moisture-free oil and placed in a sealed can. The connections to the coil are 

silver soldered, and the terminal hooks are made of nickel-plated oxygen-free 

copper. The transfer resistor is checked for stability and temperature 

characteristics at its rated power and a specified operating temperature (usually 

25°C). A calibration report accompanying the resistor specifies its traceability 

to NBS standards and includes the a and $ temperature coefficients. Although 

the selected resistance wire provides almost constant resistance over a fairly 

wide temperature range, the exact value of the resistance at any temperature 

can be calculated from the formula 

  2
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where   Rt =  resistance at the ambient temperature 

 CR
o

25  R  =  resistance at 25°C 

          α, β =  temperature coefficients 

 Temperature coefficient a is usually less than 10 x 10
-6

, and coefficient β 

lies between - 3 x 10
-7

 and -6 x 10
-7

. This means that a change in temperature of 



10°C from the specified reference temperature of 25°C may cause a change in 

resistance of 30 to 60 ppm (parts per million) from the nominal value. 

 Transfer resistors find application in industrial, research, standards, and 

calibration laboratories. In typical applications, the transfer resistor may be 

used for resistance and ratio determinations or in the construction of ultra linear 

decade dividers which can then be used for the calibration of universal ratio 

sets, volt- boxes, and Kelvin-Varley dividers. 

3-4.3 Voltage Standards 

 For many years the standard volt was based on an electrochemical cell 

called the saturated standard cell or standard cell. The saturated cell has a 

temperature dependence, and the output voltage changes about -40 μV/°C from 

the nominal of 1.01858 V. 

 The standard cell suffers from this temperature dependence and also 

from the fact that the voltage is a function of a chemical reaction and not 

related directly to any other physical constants. A new standard for the volt 

came about from the work of Brian Josephson in 1962. A thin-film junction is 

cooled to nearly absolute zero and irradiated with microwave energy. A voltage 

is developed across the junction, which is related to the irradiating frequency 

by the following relationship: 

e

hf
v

2
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where   h = Planck‘s constant (6.63 X 10
-34

 J-s) 



  e = charge of an electron (1.602 x l0
-19

 C) 

  f = frequency of the microwave irradiation 

 Because only the irradiating frequency is a variable in the equation, the 

standard volt is related to the standard of time/frequency. When the microwave 

irradiating frequency is locked to an atomic clock or a broadcast frequency 

standard such as WWVB, the accuracy of the standard volt, including all of the 

system inaccuracies, is one part in 10
8
. 

 The major method of transferring the volt from the standard based on 

the Josephson junction to secondary standards used for calibration is the 

standard cell. This device is called the normal or saturated Weston cell. The 

Weston cell has a positive electrode of mercury and a negative electrode of 

cadmium amalgam (10% cadmium). The electrolyte is a solution of cadmium 

sulfate. These components are placed in an H-shaped glass container, as shown 

in Fig. 3-3. 



 

 There are two types of Weston cell: the saturated cell, in which the 

electrolyte is saturated at all temperatures by cadmium sulfate crystals covering 

the electrodes, and the unsaturated cell, in which the concentration of cadmium 

sulfate is such that it produces saturation at 4°C. The unsaturated cell has a 

negligible temperature coefficient of voltage at normal room temperatures. The 

saturated cell has a voltage variation of approximately -40μV per 1°C rise, but 

is better reproducible and more stable than the unsaturated cell. 

 National standards laboratories, such as the NBS, maintain a number of 

saturated cells as the primary standard for voltage. The cells are kept in an oil 

bath to control their temperature to within 0.01°C. The voltage of the Weston 

saturated cell at 20°C is 1.01858 V (absolute), and the emf at other 

temperatures is given by the formula  
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 Saturated Weston cells remain satisfactory as voltage standards for 

periods of 10 to 20 years, provided that they are carefully treated. Their drift in 

voltage is on the order of 1 μV per year. Since saturated cells are temperature 

sensitive, they are unsuited for general laboratory use as secondary or working 

standards. 

 More rugged portable secondary and working standards are found in the 

unsaturated Weston cell. These cells are very similar in construction to the 

normal cell but they do not require exact temperature control. The emf of an 

unsaturated cell lies in the range of 1.0180 V to 1.0200 V and varies less than 

0.01 percent from 10°C to 40°C. The voltage of the cell is usually indicated on 

the cell housing, as shown in Fig. 3-3 (1.0193 abs. V). The internal resistance 

of Weston cells range from 500Ω to 800 Ω. The current drawn from these cells 

should therefore not exceed 100 μA, because the nominal voltage would be 

affected by the internal voltage drop. 

 Versatile laboratory working standards have been developed with 

accuracies on the order of standard cell accuracy. Figure 3-4. is a photograph of 

a multipurpose laboratory voltage standard, called a transfer standard, based on 

the operation of a Zener diode as the voltage reference element. The instrument 

basically consists of a Zener-controlled voltage source placed in a temperature- 

controlled environment to improve its long-term stability, and a precision 

output voltage divider. The temperature-controlled oven is held to within ± 

0.03°C over an ambient temperature range of 0°C to 50°C, providing an output 

stability on the order of 10 ppm/month. The four available outputs are (a) a 0-



1,OOO-μV source with 1-μV resolution, called (Δ); (b) a 1.000-V reference for 

voltbox potentiometeric measurements; (c) a 1.018 + (Δ) reference for 

saturated cell comparisons; (d) a 1.0190 ± (Δ) reference for unsaturated cell 

comparisons. The dc transfer standard can be used as a transfer instrument and 

can be moved to the piece of equipment to be calibrated, since it can easily be 

disconnected from the power line at one location and set up at a different 

location where it will recover to within ± 1 ppm in approximately 30 minutes 

warm-up time. 

 

3-4.4 CAPACITANCE STANDARDS 

 Since the unit of resistance is represented by the standard resistor, and 

the unit of voltage by the standard Weston cell, many electrical and magnetic 

units may be expressed in terms of these standards. The unit of capacitance (the 

farad) can be measured with a Maxwell dc commutated bridge, where the 

capacitance is computed from the resistive bridge arms and the frequency of 

the dc commutation. This bridge is shown in Fig. 3-5. Although the exact 



derivation of the expression for capacitance in terms of the resistances and the 

frequency is rather involved, it may be seen that the capacitor could be 

measured by this method. Since both resistance and frequency can be 

determined vet y accurately, the value of the capacitance can be measured with 

great accuracy. Standard capacitors are usually constructed from interleaved 

metal plates with air as the dielectric material. The area of the plates and the 

distance between them must be known very accurately, and the capacitance of 

the air capacitor can be determined from these basic dimensions. The NBS 

maintains a bank of air capacitors as standards and uses them to calibrate the 

secondary and working standards of measurement laboratories and industrial 

users. 

 Capacitance working standards can be obtained in a range of suitable 

values. Smaller values are usually air capacitors, whereas the larger capacitors 

use solid dielectric materials. The high dielectric constant and the very thin 

dielectric layer account for the compactness of these standards. Silver-mica 

capacitors make excellent working standards; they are very stable and have a 

very low dissipation factor (Sec. 5-8), a very small temperature coefficient, and 

little or no aging effect. Mica capacitors are available in decade mounting, but 

decade capacitors are usually not guaranteed better than 1 percent. Fixed 

standards are generally used where accuracy is important. 

3-4.5 Inductance Standards 

 The primary inductance standard is derived from the ohm and the farad, 

rather than from the large geometrically constructed inductors used in the 



determination of the absolute value of the ohm. The NBS selected a Campbell 

standard of 

 

mutual inductance as the primary standard for both mutual and self-inductance. 

Inductance working standards are commercially available in a wide range of 

practical values, both fixed and variable. A typical set of fixed inductance 

standards includes values from approximately 100 μH to 10 H, with a 

guaranteed accuracy of 0.1 percent at a specified operating frequency. Variable 

inductors are also available. Typical mutual inductance accuracy is on the order 

of 2.5 percent and inductance values range from 0 to 200 mH. Distributed 

capacitance exists between the windings of these inductors, and the errors they 

introduce must be taken into account. These considerations are usually 

specified with commercial equipment. 

3-5 STANDARDS OF TEMPERATURE AND LUMINOUS 

 INTENSITY 

 Thermodynamic temperature is one of the basic SI quantities and its unit 

is the Kelvin (Sec. 2-2). The thermodynamic Kelvin scale is recognized as the 



fundamental scale to which all temperatures should be referred. The 

temperatures on this scale are designated as K and denoted by the symbol T. 

The magnitude of the Kelvin has been fixed by defining the thermodynamic 

temperature of the triple point of water at exactly 273.16 K. The triple point of 

water is the temperature of equilibrium between ice, liquid water, and its vapor. 

 Since temperature measurements on the thermodynamic scale are 

inherently difficult, the Seventh General Conference of Weights and Measures 

adopted in 1927 a practical scale which has been modified several times and is 

now called the International Practical Scale of Temperature. The temperatures 

on this scale are designated as °C (degree Celsius) and denoted by the symbol t. 

The Celsius scale has two fundamental fixed points: the boiling point of water 

as 100°C and the triple point of water as 0.01°C, both points established at 

atmospheric pressure. A number of primary fixed points have been established 

above and below the two fundamental points. These are the boiling point of 

oxygen (-182.97°C), the boiling point of sulfur (444.6°C), the freezing point of 

silver (960.8°C), and the freezing point of gold (1,063°C). The numerical 

values of all these points are reproducible quantities at atmospheric pressure. 

The conversion between the Kelvin scale and the Celsius scale follows the 

relationship: 

   T (°C) = 1(K) - T0    (3-4) 

 where   T0 = 273.15 degrees. 

 The primary standard thermometer is a platinum resistance thermometer 

of special construction so that the platinum wire is not subjected to strain. 



Interpolated values between the fundamental and primary fixed points on the 

scale are calculated by formulas based on the properties of the platinum 

resistance wire. 

 The primary standard of luminous intensity is a full radiator (black body 

or Planckian radiator), at the temperature of solidification of platinum (2,042 K 

approx.). The candela is then defined as one-sixtieth of the luminous intensity 

per cm
2
 of the full radiator. Secondary standards of luminous intensity are 

special tungsten filament lamps, operated at a temperature whereby their 

spectral power distribution in the visible region matches that of the basic 

standard. These secondary standards are recalibrated against the basic standard 

at periodic intervals. 

3-6 IEEE STANDARDS 

 A slightly different type of standard is published and maintained by the 

Institute of Electrical and Electronics Engineers, IEEE, an engineering society 

headquartered in New York City. These standards are not. physical items that 

are available for comparison and checking of secondary standards but are 

standard procedures, nomenclature, definitions, etc. These standards have been 

kept updated, and some of the early standards were in use before World War II. 

Many of the IEEE standards have been adopted by other agencies and societies 

as standards for their organization, such as the American National Standards 

Institute. 



 A large group of the IEEE standards is the standard test methods for 

testing and evaluating various electronics systems and components. As an 

example, there is a standard method for testing and evaluating attenuators. 

Although any test method should result in the same value for the attenuation, 

when certain factors are introduced, such as high frequency or high attenuation, 

measurement errors are possible. Specifying a methodology for the 

measurement decreases the chances for disparity between measurements. 

 Another useful standard is the specifying of test equipment. The 

common laboratory oscilloscope becomes difficult to use when each 

manufacturer adopts a different arrangement of knobs and functions and, worst 

of all, different names for the same function. An IEEE standard addresses the 

laboratory oscilloscope and specifies the controls, functions, etc., so that an 

oscilloscope operator does not have to reeducate himself for each oscilloscope 

he uses. 

 There are various standards concerning the safety of wiring for power 

plants, ships, industrial buildings, etc. Not only is safety a factor, but standard 

voltages, current ratings, etc., are specified so that components may be 

interchanged without damage or danger. 

 Standard schematic and logic symbols are defined so that engineering 

drawings can be understood by all engineers. 

 Perhaps one of the most important standards is the IEEE-488 digital 

interface for programmable instrumentation for test and other equipment. 

Standardizing the interface between test equipment makes it possible to 



interface various pieces of laboratory test equipment, regardless of 

manufacture, to create sophisticated automatic test equipment systems. 

Applications of this standard will be discussed in Chapter 13. 
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PROBLEMS 

3-1. What is the difference between a primary and secondary standard? 

3-2.  How is the standard meter defined? 

3-3.  What is atomic time? How does this differ from ephemeris time? 

3-4.  How can time and frequency standards be disseminated? 

3-5.  How is the Absolute Ampere determined? 



3-6. A precision 1-Ω resistance standard has been calibrated at 25°C, and has 

 an alpha factor of 0.6 x 10
-6

 and a beta factor of -4 x l0
-7

 What would the 

 resistance of the standard be at 30°C? 

3-7. A Josephson junction is irradiated with 10.25 GHz of microwave 

 radiation. What would be the potential across the junction? 

3-8. What are the disadvantages of transmitting time and frequency standards 

 by high- frequency, 3-30-MHz, radio? What are some of the methods 

 used to improve the dissemination of these standards? 

3-9. What are IEEE standards? How do these standards differ from those 

 maintained by national standards laboratories? 

3-10. What is the normal emf of a Weston cell at 20°C, and how does this emf 

 change when the cell is used at 0°C? 



4 ELECTROMECHANICAL INDICATING 

INSTRUMENTS 

4-1 SUSPENSION GALVANOMETER 

 Early measurements of direct current re required a suspension 

galvanometer. This instrument was the forerunner of the moving-coil 

instrument, t dc indicating movements currently used. 

 A coil of fine wire is suspended in a magnetic field produced by a 

permanent magnet. According to the fundamental law of electromagnetic force, 

the coil will rotate in the magnetic field when it carries an electric current. The 

fine filament suspension of the if serves to carry current to and from it, and 

elasticity of the filament sets up a moderate torque in opposition to the rotation 

of the coil. The coil will continue to deflect until its electromagnetic torque 

balances the mechanical counter torque of the suspension. The coil deflection 

therefore is a measure of the magnitude of the current carried by the coil. A 

mirror attached to the coil deflects a beam of light, causing a magnified light 

spot to move on a scale at some distance from the instrument. The optical 

effect is that of a pointer of great length but zero mass. 

4-2 TORQUE AND DEFLECTION OF THE GALVANOMETER 

4-2.1 Steady-State Deflection 

 Although the suspension galvanometer is neither a practical no portable 

instrument, the principles governing its operation apply equally to its more 



modem version, the permanent-magnet moving-coil mechanism (PMMC). 

Figure 4-1 shows the construction of the PMMC mechanism. The different 

parts of the instrument are identified alongside the figure. 

 Here again we have a coil, suspended in the magnetic field of a 

permanent magnet, this time in the shape of a horseshoe. The coil is suspended 

so that it can rotate freely in the magnetic field. When current flows in the coil, 

the developed electromagnetic (EM) torque causes the coil to rotate. The EM 

torque is counterbalanced by the mechanical torque of control springs attached 

to the movable coil. The balance of torques, and therefore the angular position 

of the movable coil, is indicated by a pointer against a fixed reference, called a 

scale. 

 The equation for the developed torque, derived from the basic law for 

electromagnetic torque, is 

  T = B x A x I x N     (4-1) 

where   T = torque [newton-meter (N-m)] 

  B = flux density in the air gap [webers/square meter (tesla)] 

  A = effective coil area [square meters (m
2
)] 

  I = current in the movable coil [amperes (A)] 

  N = turns of wire on the coil 



 

 

 Equation (4-1) shows that the developed torque is directly proportional 

to the flux density of the field in which the coil rotates, the current in the coil, 

and the coil constants (area and turns). Since both flux density and coil area are 

fixed parameters for a given instrument, the developed torque is a direct 

indication of the current in the coil. This torque causes the pointer to deflect to 

a steady-state position where it is balanced by the opposing control-spring 

torque. 

 Equation (4-i) also shows that the designer may very only the value of 

the control torque and the number of turns on the moving coil to measure a 

given full scale current. The practical coil area generally ranges from 

approximately 0.5 to 2.5 cm
2
. Flux densities for modern instruments usually 

range from 1,500 to 5 000 gauss (0 15 to 05 tesla). Thus a wide choice of 

mechanisms is available to the designer to meet many different measurement 

applications. 



 A typical panel PMMC instrument, with a 3k-in. case, a 1-mA range, 

and full-scale deflection of 100 degrees of arc, would have the following 

characteristics: 

  A = 1.75 cm
2
 

  B = 2,000 G (0.2 tesla) 

 N = 84 turns 

  T = 2.92 x 10
-6

 N-m 

 coil resistance = 88Ω 

 power dissipation = 88 μW 

4-2.2 Dynamic Behavior 

 In Sec. 4-2.1 we considered the galvanometer as a simple indicating 

instrument in which the deflection of the pointer is directly proportional to the 

magnitude of the current applied to the coil. This is perfectly satisfactory when 

we are dealing with a steady-state condition in which we are mainly interested 

in obtaining a reliable reading of a direct current. In some applications, 

however, the dynamic behavior of the galvanometer (such as speed of 

response, damping, overshoot) can be important. For example, when an 

alternating or varying current is applied to a recording galvanometer, the 

written record produced by the motion of the moving coil includes the response 

characteristics of the moving element itself and it is therefore important to 

consider its dynamic behavior. 



| The dynamic behavior of the galvanometer can be observed by suddenly 

interrupting the applied current, so that the coil swings back from its deflected 

position toward the zero position. It will be seen that as a result of inertia of the 

moving system the pointer swings past the zero mark in the opposite direction, 

and then oscillates back and forth around zero. These oscillations gradually die 

down as a result of the damping of the moving element, and the pointer will 

finally come to rest at zero. 

 The motion of a moving coil in a magnetic field is characterized by three 

quantities: 

a. The moment of inertia (J) of the moving coil about its axis of  rotation 

b. The opposing torque (5) developed by the coil suspension 

c. The damping constant (D) 

 The differential equation that relates these three factors yields three 

possible solution, each of which describes the dynamic behavior are shown in 

the curves Fig. 4-2 and are known as overdamped, underdamped, and critically 

damped. Curve of fig. 4-2 shows the overdamped case in which the coil returns 

slowly to its test position, without overshoot or oscillations. The pointer seems 

to approach the steady-state position in a sluggish manner. This case is of 

minor interest because we prefer to operate under the conditions of curve II or 

curve III for most applications. Curve II of Fig. 4-2 shows the underdamped 

case in which the motion of the coil is subject to damped sinusoidal 

oscillations. The rate at which these oscillations die away is determined by the 



damping constant (D), the moment of inertia (J), and the counrer torque (S) 

produced by the coil suspension. Curve Ill of Fig. 4-2 shows the critically 

damped case in which the pointer returns promptly to its steady-state position, 

without oscillations. 

 Ideally, the galvanometer response should be such that the pointer 

travels to its final position without overshoot; hence, the movement should be 

critically damped. In practice, the galvanometer is usually slightly 

underdamped, causing the pointer to overshoot a little before coming to rest. 

This method is perhaps less direct than critical damping, but it assures the user 

that the movement has hot been damaged because of rough handling, and it 

compensates for any additional friction that may develop in time because of 

dust or wear. 

 

4-2.3 Damping Mechanisms 

 Galvanometer damping is provided by two mechanisms: mechanical and 

electromagnetic. Mechanical damping is caused mainly by the motion of the 



coil through the air surrounding it; it is independent of any electrical current 

through the coil. Friction of the movement in its bearing and flexing of the 

suspension springs caused by the rotating coil also contribute to the mechanical 

damping effects. Electromagnetic damping is caused by induced effects in the 

moving coil as it rotates in the magnetic field, provided that the coil forms part 

of a closed electrical circuit. 

 PMMC instruments are generally constructed to produce as little viscous 

damping as possible and the required degree of damping is added. One of the 

simplest damping mechanisms is provided by an aluminum vane, attached to 

the shaft of the moving coil. As the coil rotates, the vane moves in an air 

chamber. The amount of clearance between the chamber walls and the air vane 

effectively controls the degree of damping. 

 Some instruments use the principle of electromagnetic damping (Lenz‘s 

law), where the movable coil is wound on a light aluminum frame. The rotation 

of the coil in the magnetic field sets up circulating currents in the conductive 

metal frame, causing a retarding torque that opposes the motion of the coil. 

Indeed, the same principle is often used to protect PMMC instruments during 

shipment by placing a metal shorting strap across the coil terminals to reduce 

deflection. 

 A galvanometer may also be damped by connecting a resistor across the 

coil. When the coil rotates in the magnetic field, a voltage is generated in the 

coil which circulates a current through the coil and the external resistor. This 

produces an opposing, or retarding, torque that damps the motion of the 



movement. For any galvanometer, a value for the external resistor can be found 

that produces critical damping. This resistance is called the Critical Damping 

Resistance External (CRDX); it is an important galvanometer constant. The 

dynamic damping torque produced by the CDRX depends on the total circuit 

resistance: the smaller the total circuit resistance, the larger the damping 

torque. 

 One way to determine the CDRX consists of observing the 

galvanometer swing when a current is applied or removed from the coil. 

Beginning with the oscillating condition, decreasing values of external 

resistances are tried until a value is found for which the overshoot just 

disappears. A determination like this is not very precise, but it is adequate for 

most practical purposes. The value of the CDRX may also be computed from 

known galvanometer constants. 

4-3 PERMANENT-MAGNET MOVING-COIL MECHANISM 

4-3.1 D’ Arsonval Movement 

 The basic PMMC movement of fig: 4-1 is often called the d‘ Arsonval 

movement, after its inventor. This design offers the largest magnet in a given 

space and is used when maximum flux in the air gap is required - It provides an 

instrument with very low power consumption and low current required for full-

scale deflection (fsd). 

 Inspection of the diagram of Fig. 4-1 shows a permanent magnet of 

horseshoe form, with soft iron pole pieces attached to it. Between the pole 



pieces is a cylinder of soft iron, which serves to provide a uniform magnetic 

field in the air gap between the pole pieces and the cylinder. The coil is wound 

on a light metal frame and is mounted so that it can rotate freely in the air gap. 

The pointer, attached to the coil, moves over a graduated scale and indicates 

the angular deflection of the coil and therefore the current through the coil. 

 Two phosphor-bronze conductive springs, normally equal in strength, 

provide the calibrated force opposing the moving-coil torque. Constancy of 

spring performance is essential to maintain instrument accuracy. The spring 

thickness is accurately controlled in manufacture to avoid permanent set of the 

springs. Current is conducted to and from the coil by the control springs. 

 The entire moving system is statically balanced for all deflection 

positions by three balance weights, as shown in Fig. 4-3. The pointer, springs, 

and pivots are assembled to the coil structure by means of pivot bases, and the 

entire movable- coil element is supported by jewel bearings. Different bearing 

systems are shown in Fig. 4-4. 

 The V-jewel, shown in Fig. 4-4(a), is almost universally used in 

instrument bearings. The pivot, bearing in the pit in the jewel, may have a 

radius at its tip from 0.01 mm to 0.02 mm, depending on the weight of the 

mechanism and the vibration the instrument will encounter. The radius of the 

pit in the jewel is 



 

 

slightly larger than the pivot radius, so that the contact area is circular, only a 

few microns across. The V-jewel design of Fig. 4-4(a) has the least friction of 

any practical type of instrument bearing. Although the moving elements of 

instruments are designed to have the smallest possible weight, the extremely 

minute area of contact between pivot and jewel results in stresses on the order 

of 10 kg/mm
2
. If the weight of the moving element is further increased, the 



contact area does not increase in proportion so that the stress is even greater. 

Stresses set up by relatively moderate accelerations (like jarring or dropping an 

instrument) may consequently cause pivot damage. Specially protected 

(ruggedized) instruments use the spring-back (incabloc) jewel bearing, whose 

construction is shown in Fig. 4-4(b). It is located in its normal position by the 

spring and is free to move axially when the shock to the mechanism becomes 

severe. 

 The scale markings of the basic dc PMMC instrument are usually 

linearly spaced because the torque (and hence the pointer deflection) is directly 

proportional to the coil current. [See Eq. (4-1) for the developed torque] The 

basic PMMC instrument is therefore a linear-reading dc device. The power 

requirements of the d‘Arsonval movement are surprisingly small: typical 

values range from 25μW to 200μW. Accuracy of the instrument is generally on 

the order of 2 to 5 percent of full-scale reading. 

 If low-frequency alternating current is applied to the movable coil, the 

deflection of the pointer would be up-scale for one half-cycle of the input 

waveform and down-scale (in the opposite direction) for the next half-cycle At 

power line frequencies (60 Hz) and above, the pointer could not follow the 

rapid variations in direction and would quiver slightly around the zero mark, 

seeking the average value of the alternating current (which equals zero). The 

PMMC instrument is therefore unsuitable for ac measurements, unless the 

current is rectified before application to the coil. 



4-3.2 Core-Magnet Construction 

 In recent years, with the development of Alnico and other improved 

magnetic materials, it has become feasible to design a magnetic system in 

which the magnet itself serves as the core. These magnets have the obvious 

advantage of being relatively unaffected by external magnetic fields, 

eliminating the magnetic shunting effects in steel panel construction, where 

several meters operating side by side may affect each other‘s readings. The 

need for magnetic shielding, in the form of iron cases, is also eliminated by the 

core-magnet construction. Details of the core-magnet self-shielding movement 

are shown in Fig. 4-5. 

 Self-shielding makes the core-magnet mechanism particularly useful in 

aircraft and aerospace applications, where a multiplicity of instruments must be 

mounted in close proximity to each other. An example of this type of mounting 

may be found in the cross-pointer indicator, where as many as five mechanisms 

are mounted in one case to form a unified display. Obviously, the elimination 

of iron cases and the corresponding weight reduction are of great advantage in 

aircraft and aerospace instruments. 

4-3.3 Taut-Band Suspension 

The suspension-type galvanometer mechanism has been known for many years. 

Until recently the device was used only in the laboratory where high 

sensitivities were required and the torque was extremely low (because of small 

currents). It was desirable in such instruments to eliminate even the low friction 

of pivots and 



 

 

jewels. The suspension galvanometer had to be used in the upright position, 

because sag in the low-torque ligaments caused the moving system to come in 

contact with stationary members of the mechanism in any other position. This 

increase in friction caused errors. 



 The taut-band instrument of Fig. 4-6 has the advantage of eliminating 

the friction of the jewel-pivot suspension. The movable coil is suspended by 

means of two torsion ribbons. The ribbons are placed under sufficient tension 

to eliminate any sag, as was the case in the suspension galvanometer. This 

tension is provided by a tension spring, so that the instrument can be used in 

any position. Generally speaking, taut-band suspension instruments can be 

made with higher sensitivities than those using pivots and jewels, and they can 

be used in almost every application served by pivoted instruments. 

Furthermore, taut-band instruments are relatively insensitive to shock and 

temperature and are capable of withstanding greater overloads then previous 

types described. 



4-3.4 Temperature Compensation 

The PMMC basic movement is not inherently insensitive to temperature, but it 

may be temperature-compensated by the appropriate use of series and shunt 

resistors of copper and manganin. Both the magnetic fieldstrength and spring 

tension decrease with an increase in temperature. The coil resistance increases 

with an increase in temperature. These changes tend to make the pointer read 

low for a given current with respect to magnetic fieldstrength and coil 

resistance. The 

 

spring change, conversely, tends to cause the pointer to read high with an 

increase in temperature. The effects are not identical, however; hence an 

uncompensated meter (ends to read low by approximately 0.2 percent per °C 

rise in temperature. For purposes of instrument specification, the movement is 



considered to be compensated when the change in accuracy, due to a 10°C-

change in temperature, is not more than one-fourth of the total allowable error.

 

 Compensation may be accomplished by using swamping resistors in 

series with the movable coil, as shown in Fig. 4-7(a). The swamping resistor is 

made of manganin (which has a temperature coefficient of practically zero) 

combined with copper in the ratio of 2011 to 30/1 - The total resistance of coil 

and swamping resistor increases slightly with a rise in temperature, but only 

just enough to counteract the change of springs and magnet, so that the overall 

temperature effect is zero. 

 A more complete cancellation of temperature effects is obtained with the 

arrangement of Fig. 4-7(b). Here the total circuit resistance increases slightly 

with a rise in temperature, owing to the presence of the copper coil and the 

copper shunt resistor. For a fixed applied voltage, therefore, the total current 

decreases slightly with a rise in temperature. The resistance of the copper shunt 

resistor increases more than the series combination of coil and manganin 

resistor; hence a larger fraction of the total current passes through the coil 

circuit. By correct proportioning of the copper and manganin parts in the 

circuit, complete cancellation of temperature effects may be accomplished. One 

disadvantage of the use of swamping resistors is a reduction in the full-scale 

sensitivity of the movement, because a higher applied voltage is necessary to 

sustain the full-scale current. 

                                              


 PMMC Data Sheets, Weston Instruments, Inc., Newark, NJ. 



4-4 DC AMMETERS 

4-4.1 Shunt Resistor 

 The basic movement of a dc ammeter is a PMMC galvanometer. Since 

the coil winding of a basic movement is small and light, it can carry only very 

small currents. When large currents are to be measured, it is necessary to 

bypass the major part of the current through a resistance, called a shunt, as 

shown in Fig. 4-8. 

 The resistance of the shunt can be calculated by applying conventional 

circuit analysis to Fig. 4-8, where 

Rm = internal resistance of the movement (the coil) 

Rs= resistance of the shunt 

Im = full-scale deflection current of the movement 

I = shunt current 

I = full-scale current of the ammeter including the shunt 

 Since the shunt resistance is in parallel with the meter movement, the 

voltage drops across the shunt and movement must be the same and we can 

write 

    Vshunt = Vmovement 

Or  

   IsRs = Im Rm and 
s

mm

I

RI
   (4-2) 



Since Is = I - Im, we can write  

   Rs = 
m

mm

I-I

RI
     (4-3) 

 For each required value of full-scale meter current we can then solve for 

the value of the shunt resistance required. 

EXAMPLE 4-1 

A 1-mA meter movement with an internal resistance of 100Ω is to be converted 

into a 0-100-mA ammeter. Calculate the value of the shunt resistance required. 

SOLUTION 

   Is = I – Im = 100 – 1 =99 mA 

   1.01Ω
99mA

100Ω1mA

I

RI
R

s

mm
s 


  

 

 The shunt resistance used with a basic movement may consist of a 

length of constant-temperature resistance wire within the case of the instrument 



or it may be an external (manganin or constantan) shunt having a very low 

resistance. Figure 4-9 shows an external shunt. It consists of evenly spaced 

sheets of resistive material welded into a large block of heavy copper on each 

end of the sheets. The resistance material has a very low temperature 

coefficient, and a low thermoelectric effect exists between the resistance 

material and the copper. External shunts of this type are normally used for 

measuring very large currents. 

4-4.2 Ayrton Shunt 

 The current range of the dc ammeter may be further extended by a 

number of shunts, selected by a range switch. Such a meter is called a 

multirange ammeter. Figure 4-10 shows the schematic diagram of a multirange 

ammeter. The circuit has four shunts, RQ, Rb, R, and Rd. which can be placed 

in parallel with the movement to give four different current ranges. Switch S is 

a multi-position, make-before-break type switch, so that the movement will not 

be damaged, unprotected in the circuit, without a shunt as the range is changed. 

The universal, or Ayrton, shunt of Fig. 4-11 eliminates the possibility of having 

the meter in the circuit without a shunt. This advantage is pined at the price of a 

slightly higher overall meter resistance. The Ayrton shunt provides an excellent 

opportunity to apply basic network theory to a practical circuit. 

 



 

 



 

 Direct-current ammeters are commercially available in a large number 

of ranges, from 20 μA to 50 A full-scale for a self-contained meter and to 500 

A for a meter with external shunt. Laboratory-type precision ammeters are 

provided with a calibration chart, so that the user may correct his readings for 

any scale errors. 

 The following precautions should be observed when using an ammeter 

in measurement work: 

a. Never connect an ammeter across a source of emf. Because of its low 

resistance it would draw damaging high currents and destroy the delicate 

movement. Always connect an ammeter in series with a load capable of 

limiting the current. 

b. Observe the correct polarity. Reverse polarity causes the meter to deflect 

against the mechanical stop and this may damage the pointer. 

c. When using a multirange meter, first use the highest current range; then 

decrease the current range until substantial deflection is obtained. To 

increase accuracy of the observation (see Chapter I), use the range that will 

give a reading as near to full-scale as possible. 



4-5 DC VOLTMETERS 

4-5.1 Multiplier Resistor 

 The addition of a series resistor, or multiplier, converts the basic 

d‘Arsonval movement into a de voltmeter, as shown in Fig. 4-12. The 

multiplier limits the current through the movement so as not to exceed the 

value of the full-scale deflection current (Ifsd). A dc voltmeter measures the 

potential difference between 

 

two points in a dc circuit and is therefore connected across a source of emf or a 

circuit component. The meter terminals are generally marked ―pos‖ and ―neg,‖ 

since polarity must be observed. 

 The value of a multiplier, required to extend the voltage range, is 

calculated from Fig. 4-12, where 

  Im = deflection current of the movement (I) 

  Rm = internal resistance of the movement 

  Rs = multiplier resistance 

  V = full-range voltage of the instrument 

For the circuit of Fig. 4-12, 



Solving for Rs gives 
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 The multiplier is usually mounted inside the case of the voltmeter for 

moderate ranges up to 500 V. For higher voltages, the multiplier may be 

mounted separately outside the case on a pair of binding posts to avoid 

excessive heating inside the case. 

4-5.2 Multirange Voltmeter 

 The addition of a number of multipliers, together with a range switch, 

provides the instrument with a workable number of voltage ranges. Figure 4-13 

shows a multirange voltmeter using a four-position switch and four multipliers, 

R1, R2, R3, and R4, for the voltage ranges V1, V2, V3, and V4, respectively. The 

values of the multipliers can be calculated using the method shown earlier or, 

alternatively, by the sensitivity method. The sensitivity method is illustrated by 

Example 4-4 in Sec. 4-6, where sensitivity is discussed. 

 



 

 A variation of the circuit of Fig. 4-13 is shown in Fig. 4-14, where the 

multipliers are connected in a series string and the range selector switches the 

appropriate amount of resistance in series with the movement. This system has 

the advantage that all multipliers except the first have standard resistance 

values and can be obtained commercially in precision tolerances. The low-

range multiplier, R4, is the only special resistor that must be manufactured to 

meet the specific circuit requirements. 

EXAMPLE 4-3 

 A basic d‘Arsonval movement with internal resistance, Rm = 100Ω, and 

full- scale current, Ifsd = 1 mA, is to be converted into a multirange dc voltmeter 

with voltage ranges of 0-10 V, 0-50 V, 0-250 V. and 0-500 V. The circuit 

arrangement of Fig. 4-16 is to be used for this voltmeter. 



SOLUTION 

 For the 10-V range (V4 position of range switch), the total circuit 

resistance is 

  RT   k
mA

V
10

1

10  

  R4 = RT - Rm = 10 kΩ – 100 Ω = 9,900 Ω 

For the 50-V range (V3 position of range switch), 
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For the 250-V range (V2 position of range switch), 
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For the 500-V range (V1 position of range switch), 
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 Notice in Example 4-3 that only the low-range multiplier R4 has a 

nonstandard value. 



4-6 VOLTMETER SENSITIVITY 

4-6.1 Ohms-per-Volt Rating 

 In Sec. 4-5 it was shown that the full-scale deflection current Ifsd was 

reached on all voltage ranges when the corresponding full-scale voltage was 

applied. As shown in Example 4-3, a current of 1 mA is obtained for voltages 

of 10 V, 50 V, 250 V, and 500 V across the meter terminals. For each voltage 

range, the quotient of the total circuit resistance RT and the range voltage V is 

always 1,000 Ω/V. This figure is often referred to as the sensitivity, or the 

ohms-per-volt rating, of the voltmeter. Note that the sensitivity, S, is essentially 

the reciprocal of the full- scale deflection current of the basic movement, or 
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 The sensitivity S of the voltmeter may be used to advantage in the 

sensitivity method of calculating the resistance of the multiplier in a dc 

voltmeter. Consider the circuit of Fig. 4-14, where 

  S =  sensitivity of the voltmeter (Ω/V) 

  V =  the voltage range, as set by the range switch 

  Rm =  internal resistance of the movement (plus the previous  

   series resistors) 

  Rs=  resistance of the multiplier 

For the circuit of Fig. 4-14, 

  RT = S x V    (4-6) 



and 

  RS = (S x V) - Rm   (4-7) 

Use of the sensitivity method is illustrated in Example 4-4. 

EXAMPLE 4-4 

 

 

4-6.2 Loading Effect 

 The sensitivity of a dc voltmeter is an important factor when selecting a 

meter for a certain voltage measurement. A low-sensitivity meter may give 

correct readings when measuring voltages in low-resistance circuits, but it is 

certain to produce very unreliable readings in high resistance circuits. A 

voltmeter connected across two points in a highly resistive circuit, acts as a 

shunt for that portion of the circuit and thus reduces the equivalent resistance in 

that portion of the circuit. The meter will then give a lower indication of the 

voltage drop than actually existed before the meter was connected. This effect 

is called the loading effect of an instrument; it is caused principally. low-



sensitivity instruments. The loading effect of a voltmeter is illustrated in 

Example 4-5. 

EXAMPLE 4-5 

 

 

 The calculation of Example 4-5 indicates that the meter with the higher 

sensitivity or ohms-per-volt rating gives the most reliable result. It is important 

to realize the factor of sensitivity, particularly when voltage measurements are 

made in high-resistance circuits. 



 The matter of reliability and accuracy of the test result raises an 

interesting point. When an insensitive, yet highly accurate, dc voltmeter is 

placed across the terminals of a high resistance, the meter accurately reflects 

the voltage condition produced by loading. The error is a human oLg sixr (Sec. 

1-4), because the proper instrument was not selected. TI1èThiter ―disturbs‖ the 

circuit, and the ideal of instrumentation, at all times, is to measure a condition 

without affecting it in any way. The human investigator has the responsibility 

to select an instrument which is precise, reliable, and sufficiently sensitive not 

to disturb that which is being measured. The fault lies not with the highly 

accurate instrument but with the investigator, who is using it incorrectly. In 

fact, the sophisticated instrument user could calculate the true voltage by using 

an insensitive yet accurate meter. Therefore accuracy is always required in 

instruments; sensitivity is needed only in special applications where loading 

disturbs that which is being measured. Example 4-6 illustrates how an 

insensitive yet accurate instrument is used to perform an entirely valid 

measurement. 

 



 

 Example 4-6 shows that when the instrument user is aware of the 

limitations of his instrument, he can still make allowances provided that the 

voltmeter is accurate. 

 The following general precautions should be observed when using a 

voltmeter: 

a. Observe the correct polarity. Wrong polarity causes the meter to deflect 

against the mechanical stop and this may damage the pointer. 

b. Place the voltmeter across the circuit or component whose voltage is so 

be measured. 

c. When using a multirange voltmeter, always use the highest voltage 

range and then decrease the range until a good up-scale reading is 

obtained. 

d. Always be aware of the loading effect. The effect can be minimized by 

using as high a voltage range (and highest sensitivity) as possible. The 



precision of measurement decreases if the indication is at the low end of 

the scale (Sec. 1-4). 

 

4-7 SERIES-TYPE OHMMETER 

 The series-type ohmmeter essentially consists of a d‘Arsonval 

movement connected in series with a resistance and a battery to a pair of 

terminals to which the unknown is connected. The current through the 

movement then depends on the magnitude of the unknown resistor, and the 

meter indication is proportional to the value of the unknown, provided that 

calibration problems are taken into account. Figure 4-17 shows the elements of 

a simple single-range series ohmmeter. In Fig. 4-17, 

  R1 = current-limiting resistor 

  R2 = zero adjust resistor 

  E = internal battery 

  Rm = internal resistance of the d‘Arsonval movement 

  Rx = unknown resistor 

 When the unknown resistor Rx = 0 (terminals A and B shorted), 

maximum current flows in the circuit. Under this condition, shunt resistor R2 is 



adjusted until the movement indicates full-scale current (Ifsd). The full-scale 

current position of the pointer is marked ―0Ω‖ on the scale. Similarly, when 

Rx= α (terminals A and B open), the current in the circuit drops to zero and the 

movement indicates zero current, which is then marked ―α‖ on the scale. 

Intermediate markings may be placed on the scale by connecting different 

known values of Rx to the instrument. The accuracy of these scale markings 

depends on the repeating accuracy of the movement and the tolerances of the 

calibrating resistors. 

 Although the series-type ohmmeter is a popular design and is used 

extensively in portable instruments for general-service work, it has certain 

disadvantages. Important among these is the internal battery whose voltage 

decreases gradually with time, so that the full-scale current drops and the meter 

does not read ―0‖ when A and B are shorted. The variable shunt resistor R2 in 

Fig. 4-17 provides an adjustment to counteract the effect of battery change. 

Without R2, it would be possible to bring the pointer back to full scale by 

adjusting R1. but this would change the calibration all along the scale. 

Adjustment by R2 is a superior solution, since the parallel resistance of R2 and 

the coil Rm is always low compared to R1 and therefore the change in R2 

needed for adjustment does not change the 

 



 calibration very much. The circuit of Fig. 4-17 does not compensate 

completely for aging of the battery, but it does a reasonably good job within the 

expected limits of accuracy of the instrument. 

 A convenient quantity to use in the design of a series-type ohmmeter is 

the value of Rx which causes half-scale deflection of the meter. At this position, 

the resistance across terminals A and B is defined as the half-scale position 

resistance Rh. Given the full-scale current Ifsd and the internal resistance of the 

movement Rm, the battery voltage E, and the desired value of the half-scale 

resistance Rh, the circuit can be analyzed; i.e., values can be found for R1 and 

R2. 

 The design can be approached by recognizing that, if introducing Rh 

reduces the meter current to ½ Ifsd, the unknown resistance must be equal to the 

total internal resistance of the ohmmeter. Therefore 
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 The total resistance presented to the battery then equals 2Rh, and the 

battery current needed to supply the half-scale defection is 
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 To produce full-scale deflection, the battery current must be doubled, 

and therefore 
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The shunt current through R2 is 

   I2 = It – Ifsd      (4-11) 

The voltage across the shunt (Esh) is equal to the voltage across the movement 

and 

   Esh = Em or I2R2 = IfsdRm 

and  
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substituting Eq. (4-11) into Eq. (4-12), we obtain 
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Solving Eq. (4-8) for R1 gives 
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Substituting Eq. (4-13) into Eq. (4-14) and solving for R1 yields 
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A typical calculation for the series-type ohmmeter is given in Example 4-7. 

EXAMPLE 4-7 



 

 



 The ohmmeter of Example 4-7 could be designed for other values of Rh, 

within limits. If Rh = 3,000 Ω, the battery current would be 1 mA, which is 

required for the full-scale deflection current. If the battery voltage would 

decrease owing to aging, the total battery current would fall below 1 mA and 

there would then be no provision for adjustment. 

4-8 SHUNT-TYPE OHMMETER 

 The circuit diagram of a shunt-type ohmmeter is shown in Fig. 4-18. It 

consists of a battery in series with an adjustable resistor R1 and a d‘Arsonval 

movement. The unknown resistance is connected across terminals A and B, in 

parallel with the meter. In this circuit it is necessary to have an off-on switch to 

disconnect the battery from the circuit when the instrument is not used. When 

the unknown resistor Rx = 0 Ω (A and B shorted), the meter current is zero. If 

the unknown resistor Rx = (A and B open), the current finds a path only 

through the meter, and by appropriate selection of the value of R1, the pointer 

can be made to read full scale. The ohmmeter therefore has the ―zero‖ mark at 

the left-hand side of the scale (no current) and the ―infinite‖ mark at the right-

hand side of the scale (full-scale deflection current). 

 The shunt-type ohmmeter is particularly suited to the measurement of 

low- value resistors. It is not a commonly used test instrument, but it is found 

in laboratories or for special low-resistance applications. 



 The analysis of the shunt-type ohmmeter is similar to that of the series 

type ohmmeter (Sec. 4-7). In Fig. 4-18, when Rx = ∞, the full-scale meter 

current will 

 

be 
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Where  E    = internal battery voltage 

  R1 = current-limiting resistor 

  Rm = internal resistance of the movement 

Solving for R1, we find 
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 For any value of Rx connected across the meter terminals, the meter 

current decreases and is given by 
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The meter current for any value of R1, expressed as a fraction of the full-scale 

current, is 
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Defining 
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and substituting Eq. (4-23) into Eq. (4-22), we obtain 
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If Eq. (4-24) is used, the meter can be calibrated by calculating s in terms of Rx 

and Rp 

 At half-scale reading of the meter (Im = 0.5 Ifsd), Eq. (4-21) reduces to 
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where Rh = external resistance causing half-scale deflection. To determine the 

relative scale values for a given value of R1, the half-scale reading may be 

found by dividing Eq. (4-19) by Eq. (4-25) and solving for Rh: 
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 The analysis shows that the half-scale resistance is determined by 

limiting resistor R1 and the internal resistance of the movement, Rm. The 

limiting resistance, R1, is in turn determined by the meter resistance Rm, and the 

full-scale deflection current, Ifsd. 

 To illustrate that the shunt-type ohmmeter is particularly suited to the 

measurement of very low resistances, consider Example 4-8. 

 



4-9 MULTIMETER OR VOM 

 The ammeter, the voltmeter, and the ohmmeter all use a d‘Arsonval 

movement. The difference between these instruments is the circuit in which the 

basic movement is used. It is therefore obvious that a single instrument can be 

designed to perform the three measurement functions. This instrument, which 

contains a function switch to connect the appropriate circuits to the d‘Arsonval 

movement, is often called a multimeter or volt-ohm-milliammeter (VOM). 

 A representative example of a commercial multirneter is shown in Fig. 

4-19. The circuit diagram of this meter is given in Fig. 4-20. The meter is a 

combination of a dc milliammeter, a dc voltmeter, an ac voltmeter, a 

multirange ohmmeter, and an output meter. (The circuits of the ac voltmeter 

and the output meter are discussed in Sec. 4-11.2.) 

 Figure 4-21 shows the circuit for the dc voltmeter section, where the 

common input terminals are used for voltage ranges of 0-1.5 to 0-1,000 V. An 

external voltage jack, marked ―DC 5,000 V,‖ is used for dc voltage 

measurements to 5,000 V. The operation of this circuit is similar to the circuit 

of Fig. 4-12, which was discussed in Sec. 4-5. 

 The basic movement of the multimeter of Fig. 4-19 has a full-scale 

current of 50 μA and an internal resistance of 2,000Ω. The values of the 

multipliers are given in Fig. 4-21. Notice that on the 5,000-V range, the range 

switch should be set to the 1,000-V position, but the test lead should be 

connected to the external 



 

 



 

 



 

 jack marked ―DC 5,000 V.‘ The normal precautions for measuring 

voltage & should be taken. Because of its fairly high sensitivity (20 kΩ/V), the 

instrument is suited to general-service work in the electronics field. 

 The circuit for measuring dc milliamperes and amperes is given in Fig. 

4-22 and again the circuit is self-explanatory. The positive (+) and ―negative‖ 

(-) terminals are used for current measurements up to 500 mA and the jacks 

marked ―+10 A‖ and ―-10 A‖ are used for the 0-10-A range. 



 Details of the ohmmeter section of the VOM are shown in Fig. 4-23. 

The circuit in Fig. 4-23 gives the ohmmeter circuit for a scale multiplication of 

1. Before any measurement is made, the instrument is short-circuited and the 

―zero- adjust‖ control is varied until the meter reads zero resistance (full-scale 

current). Notice that the circuit takes the form of a variation of the shunt-type 

ohmmeter. Scale multiplications of 100 and 10,000 are shown in Fig. 4-23(b) 

and (c). 

 The ac voltmeter section of the meter is selected by setting the ―ac-dc‖ 

switch to the ―ac‖ position. The operation of this circuit is discussed in Sec. 

4-11.2. 

4-10 CALIBRATION OF DC INSTRUMENTS 

 Although detailed calibration techniques are beyond the scope of this 

chapter, some general procedures for the calibration of basic dc instruments are 

given. 

 Calibration of a dc ammeter can most easily be carried out by the 

arrangement of Fig. 4-24. The value of the current through the ammeter to be 

calibrated is determined by measuring the potential difference across a standard 

resistor by the voltmeter method and then calculating the current by Ohm‘s 

law. The result of this calculation is compared to the actual reading of the 

ammeter under calibration and inserted in the circuit. A good source of 

constant current is required and is usually provided by storage cells or a 

precision power supply. A rheostat is placed in the circuit to control the current 



to any desired value, so that different points on the meter scale can be 

calibrated. 

 A simple method of calibrating a dc voltmeter is shown in Fig. 4-25, 

where the voltage across dropping resistor R is accurately measured with a 

potentiometer. The meter to be calibrated is connected across the same two 

points as the 

 

 

potentiometer and should therefore indicate the same voltage. A rheostat is 

placed in the circuit to control the amount of current and therefore the drop 

across the resistor, R, so that several points on the voltmeter scale can be 

calibrated. Voltmeters tested with the method of Fig. 4-25 can be calibrated 

with an accuracy of ±0.01 percent, which is well beyond the usual accuracy of 

a d‘Arsonval movement. 



 The ohmmeter is generally considered to be an instrument of moderate 

accuracy and low precision. A rough calibration may be done by measuring a 

standard resistance and noting the reading of the ohmmeter. Doing this for 

several points on the ohmmeter scale and on several ranges allows one to 

obtain an indication of the correct operation of the instrument. 

4-11 ALTERNATING-CURRENT INDICATING INSTRUMENTS 

 The d‘Arsonval movement responds to the average or de value of the 

current through the moving coil. If the movement carries an alternating current 

with positive and negative half-cycles, the driving torque would be in one 

direction for the positive alternation and in the other direction for the negative 

alternation. If the frequency of the ac is very low, the pointer would swing back 

and forth around the zero point on the meter scale. At higher frequencies, the 

inertia of the coil is so great that the pointer cannot follow the rapid reversals of 

the driving torque and hovers around the zero mark, vibrating slightly. 

 To measure ac on a d‘Arsonval movement, some means must be devised 

to obtain a unidirectional torque that does not reverse each half-cycle. One 

method involves rectification of the ac. so that the rectified current deflects the 

coil. Other methods use the heating effect of the alternating current to produce 

an indication of its magnitude. Some of these methods are discussed in this 

chapter. 

4-11.1 Electrodynamometer 



 One of the most important ac movements is the electrodynamometer. It 

is often used in accurate ac voltmeters and ammeters, not only at the powerline 

frequency but also in the lower audio frequency range. With some slight 

modifications, the electrodynamometer can he used as a wattmeter, a 

VARmeter, a power-factor meter, or a frequency meter. The 

electrodynamometer movement may also serve as a transfer instrument, 

because it can be calibrated on dc and then used directly on ac, establishing a 

direct means of equating ac and dc measurements of voltage and current. 

 

 Where the d‘Arsonval movement uses a permanent magnet to provide 

the magnetic field in which the movable coil rotates, the electrodynamometer 

uses the current under measurement to produce the necessary field flux. Figure 

4-26 shows a schematic arrangement of the parts of this movement. A fixed 

coil, split into two equal halves, provides the magnetic field in which the 

movable coil rotates. The two coil halves are connected in series with the 

moving coil and are fed by current under measurement. The fixed coils are 

spaced far enough apart to allow passage of the shaft of the movable coil. The 



movable coil carries a pointer, which is balanced by counterweights. Its 

rotation is controlled by springs, similar to the d‘Arsonval movement 

construction. The complete assembly is surrounded by a laminated shield to 

protect the instrument from stray magnetic fields which may affect its 

operation. Damping is provided by aluminum air vanes, moving in sector-

shaped chambers. The entire movement is very solid and rigidly constructed in 

order to keep its mechanical dimensions stable and its calibration intact. A 

cutaway view of the electrodynamometer is shown in Fig. 4-27. 

 The operation of the instrument may be understood by returning to the 

expression for the torque developed by a coil suspended in a magnetic field. 

We previously stated [Eq. (4-1)] that 

   T= B x A x I x N 

indicating that the torque, which deflects the movable coil, is directly 

proportional to the coil constants (A and N), the strength of the magnetic field 

in which the coil moves (B), and the current through the coil (I). In the 

electrodynamometer the flux density (B) depends on the current through the 

fixed coil and is therefore directly proportional to the deflection current (I). 

Since the coil dimensions and the number of turns on the coil frame are fixed 

quantities for any given meter, the developed torque becomes a function of the 

current squared (I
2
). 

 Af the electrodynamometer is exclusively designed for dc use, its 

square-law scale is easily noticed, with crowded scale markings at the very low 

current values, progressively spreading out at the higher current values. For ac 



use, the developed torque at any instant is proportional to the instantaneous 

current squared (I
2
). The instantaneous value of P is always positive and torque 

pulsation 

 

are therefore produced. The movement, however, cannot follow the rapid 

variations of the torque and takes up a position in which the average torque is 

balanced by the torque or the control springs. The meter deflection is therefore 

a function of the mean of the squared current. The scale of the 

electrodynamometer is usually calibrated in terms of the square root of the 

average current squared, and the meter therefore reads the rms or effective 

value of the ac. 

 The transfer properties of the electrodynamometer become apparent 

when we compare the effective value of alternating current in terms of their 

heating effect or transfer of power. An alternating current that produces heat in 



a given resistance at the same average rate as a direct current (I) has by 

definition, a value of I amperes. The average rate of producing heat by a dc of I 

amperes in a resistance R is I
2
R watts. The average rate of producing heat by an 

ac of i amperes during one cycle in the same resistance R is 
T
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By definition, therefore. 
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 This current, I, is then called the root-mean-square (rms) or effective 

value of the alternating current and is often referred to as the equivalent dc 

value. 

 If the electrodynamometer is calibrated with a direct current of I A and a 

mark is placed on the scale to indicate this I-A dc value, then that alternating 

current which causes the pointer to deflect to the same mark on the scale must 

have an rms value of I A. We can therefore ―transfer‖ a reading made with dc 

to its corresponding ac value and have thereby established a direct connection 

between ac and dc. The electrodynamometer then becomes very useful as a 

calibration instrument and is often used for this purpose because of its inherent 

accuracy. 



 The electrodynamometer, however, has certain disadvantages. One of 

these is its high power consumption, a direct result of its construction. The 

current under measurement must not only pass through the movable coil, but it 

must also provide the field flux. To get a sufficiently strong magnetic field, a 

high mmf is required and the source must supply a high current and power. In 

spite of this high power consumption, the magnetic field is very much weaker 

than that of a comparable d‘Arsonval movement because there is no iron in the 

circuit, i.e., the entire flux path consists of air. Some instruments have been 

designed using special laminated steel for part of the flux path, but the presence 

of metal introduces calibration problems caused by frequency and waveform 

effects. Typical values of electrodynamometer flux density are in the range of 

approximately 60 gauss. This compares very unfavorably with the high flux 

densities (1,000-4,000 gauss) of a good d‘Arsonval movement. The low flux 

density of the electrodynamometer immediately affects the developed torque 

and therefore the sensitivity of the instrument is typically very low. 

 The addition of a series resistor converts the electro-dynamometer into a 

voltmeter, which again can be used to measure dc and ac voltages. For reasons 

previously mentioned, the sensitivity of the electrodynamometer voltmeter is 

low, approximately 10 to 30 Ω/V (compare this to the20 kΩ/V of a d‘Arsonval 

meter). The reactance and resistance of the coils also increase with increasing 

frequency, limiting the application of the electro-dynamometer voltmeter to the 

lower frequency ranges. It is, however, very accurate at the power-line 

frequencies antis therefore often used as a secondary standard. 



 The electrodynamometer movement (even unshunted) may be regarded 

as an ammeter, but it becomes rather difficult to design a moving coil which 

can carry more than approximately 100 mA. Larger current would have to be 

carried to the moving coil through heavy lead-in wires, which would lose their 

flexibility. A shunt, when used, is usually placed across the movable coil only. 

The fixed coils are then made of heavy wire which can carry the large total 

current and it is feasible to build ammeters for currents up to 20 A. Larger 

values of ac currents are usually measured by using a current transformer and a 

standard 5-A ac ammeter (Sec. 4-16). 

4-11.2 Rectifier-Type Instruments 

 One obvious answer to the question of ac measurement is found by 

using a rectifier to convert ac into a unidirectional dc and then to use a dc 

movement to indicate the value of the rectified ac. This method is very 

attractive, because a dc movement generally has a higher sensitivity than either 

the electrodynamometer or the moving-iron instrument. 

 Rectifier type instruments generally use a PMMC movement in 

combination with some rectifier arrangement. The rectifier element usually 

consist germanium or a silicon diode. Copper orxide and selenium rectifiers 

have become obsolete, because they have small inverse voltage ratings and can 

handle only limited amounts of current. Germanium diodes have a speak iverse 

voltage (PIV) on the order of 300 V and a current rating of approximately 100 

mA. Low-current silicon diode rectifier have a PIV of up to 1,000 V and a 

current rating on the order of 500 mA. 



 Rectifier instrument work sometimes consist of four diodes in a bridge 

configuration. Providing full wave rectification. Figure 4-28 shows an ac 

voltmeter circuit consisting of a multiplier, a bridge rectifier, and a PMMC 

movement. 

 The bridge rectifier produces a pulsating unidirectional current through 

the meter movement over the com let the input voltage. Because of the inertia 

of the moving coil, the meter will indicate a steady deflection proportional to 

the average value of the current. Since alternating currents and voltages are 

usually expressed in rms values, the meter scale is calibrated in terms of the 

rms value of a sinusoidal waveform. 

 

 



 

 A nonsinusoidal waveform has an average value that may differ 

considerably from the average value of a pure sine wave (for which the meter is 

calibrated) and the indicated reading may be very erroneous. The form factor 

relates the average value and the rms value of time-varying voltages and 

currents: 
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 Note that the voltmeter of Example 4-9 has a scale suitable only for 

sinusoidal ac measurements. The form factor of Eq. (4-27) is therefore also the 

factor by which the actual (average) dc current is multiplied to obtain the 

equivalent rms scale markings. 

 The ideal rectifier element should have zero forward and infinite reverse 



resistance. In practice, however, the rectifier is a nonlinear device, indicated by 

the characteristic curves of Fig. 4-29. At low values of forward current, the 

rectifier operates in an extremely nonlinear part of its characteristic curve, and 

the resistance is large as compared to the resistance at higher current values. 

The lower part of the ac scale of a low-range voltmeter is therefore often 

crowded, and most manufacturers provide low-voltage scale, calibrated 

specially for this purpose. The high resistance in the early part of the rectifier 

characteristics also sets a limit on the sensitivity which can be obtained in 

micro-ammeters and voltmeters. 

 

 The resistance of the rectifying element changes with varying 

temperature, one of the major drawbacks of rectifier-type ac instruments. The 

meter accuracy is usually satisfactory under normal operating conditions at 

room temperature and is generally on the order of ±5 percent of full-scale 

reading for sinusoidal waveforms. At very much higher or lower temperatures, 

the resistance of the rectifier changes the total resistance of the measuring 

circuit sufficiently to cause the meter to be gravely in error. If large 

temperature variations are expected, the meter should be enclosed in a 

temperature-controlled box. 



 Frequency also affects the operation of the rectifier elements. The 

rectifier exhibits capacitive properties and tends to bypass the higher 

frequencies. Meter readings may be in error by as much as 0.5 percent decrease 

for every l-kHz rise in frequency. 

 

4-11.3 Typical Multimeter Circuits 

 General rectifier-type ac voltmeters often use the arrangement shown in 

Fig. 4-30. Two diodes are used in this circuit, forming a full-wave rectifier with 

the movement so connected that it receives only half of the rectified current. 

Diode D1 conducts during the positive half-cycle of the input waveform and 

causes the meter to deflect according to the average value of this half-cycle. 

The meter movement is shunted by a resistance Rh, in order to draw more 

current through the diode D1 and move its operating point into the linear 

portion of the characteristic curve. In the absence of diode D2, the negative 

half-cycle of the input voltage would apply a reverse voltage across diode D2, 

causing a small leakage current in 

 



 

the reverse direction. The average value of the complete cycle would therefore 

be lower than it should be for half-wave rectification. Diode D2 deals with this 

problem. On the negative half-cycle, D2 conducts heavily, and the current 

through the measuring circuit, which is now in the opposite direction, bypasses 

the meter movement. 

 The commercial multimeter often uses the same scale markings for both 

its dc and ac voltage ranges. Since the dc component of a sine wave for half-

wave rectification equals 0.45 times the rms value, a problem arises 

immediately. In order to obtain the same deflection on corresponding dc and ac 

voltage ranges, the multiplier for the ac range must be lowered proportionately. 

The circuit of Fig. 4-31 illustrates a solution to the problem and is discussed in 

some detail in Example 440. 

Example 4-10 



 

 

 Section 4-10 dealt with the dc circuitry of a typical multimeter, using the 

simplified circuit diagram of Fig. 4-20. The circuit for measuring ac volts 

(subtracted from Fig. 4-20) is reproduced in Fig. 4-32. Resistances R9, R13, R7, 

and R6 form a chain of multipliers for the voltage ranges of 1,000V, 250V, 

50V, and 10V, respectively, and their values are indicated in the diagram of 

Fig. 4-32. On the 2.5-V ac range, resistor R23 acts as the multiplier and 

corresponds to the multiplier R24 of Example 4-10 shown in Fig. 4-31. Resistor 

R24 is the meter shunt and again acts to improve the rectifier operation. Both 

values are unspecified in the diagram and are factory selected. A little thought, 



however, will convince us that the shunt resistance could be 2,000 (1, equal to 

the meter resistance. If the average forward resistance of the rectifier elements 

is 500Ω (a reasonable assumption), then resistance R23 must have a value of 

1,000Ω. This follows because the meter sensitivity on the ac ranges is given as 

1,000Ω/V; on the 2.5-V ac range, the circuit must therefore have a total 

resistance of 2,500Ω. This value is made up of the sum of R13, the diode 

forward resistance, and the combination of movement and-shunt resistance, as 

shown in Example 4-10. 

4-12 THERMOINSTRUMENTS 

 Figure 4-33 shows a combination of a thermocouple and a PMMC 

movement that can be used to measure both ac and dc. This combination is 

called a thermocouple instrument, since its operation is based on the action of 

the thermocouple element. 

 



 

 When two dissimilar metals are mutually in contact, a voltage is 

generated at the junction of the two dissimilar metals. This voltage rises in 

proportion to the temperature of the junction. In Fig. 4-33, CE and DE 

represent the two dissimilar metals, joined at point E. and are drawn as a light 

and a heavy line, to indicate dissimilarity. The potential difference between C 

and D depends on the temperature of the so-called cold junction, E. A rise in 

temperature causes an increase in the voltage and this is used to advantage in 

the thermocouple. Heating element AB, which is in mechanical contact with 

the junction of the two metals at point E, forms part of the circuit in which the 

current is to be measured. AEB is called the hot junction. Heat energy 

generated by the current in the heating element raises the temperature of the 

cold junction and causes an increase in the voltage generated across terminals 

C and D. This potential difference causes a dc current through the PMMC-

indicating instrument. The heat generated by the current is directly proportional 

to the current squared (12R), and the temperature rise (and hence the generated 

dc voltage) is proportional to the square of the rms current. The deflection of 

the indicating instrument will therefore follow a square-Law relationship, 

causing crowding at the lower end of the scale and spreading at the high end. 



The arrangement of Fig. 4-33 does not provide compensation for ambient 

temperature changes. 

 The compensated thermo-element, shown schematically in Fig. 4-34, 

produces a thermoelectric voltage in thermocouple CED, which is directly 

proportional to the current through circuit AB. Since the developed couple 

voltage is a function of the temperature difference between its hot and cold 

ends, this temperature difference must be caused only by the current being 

measured. Therefore, for accurate measurements, points C and D must be at the 

mean temperature of points A and B. This is accomplished by attaching couple 

ends C and D to the center of separate copper strips, whose ends are in thermal 

contact with A and B, but electrically insulated from them. 

 

 

 Self-contained thermoelectric instruments of the compensated type are 

available in the 0.5-20-A range. Higher current ranges are available, but in this 



case the heating element is external to the indicator. Thermo-elements used for 

current ranges over 60 A are generally provided with air cooling fins. 

 Current measurements in the lower ranges, from approximately 0.1-0.75 

A, use a bridge-type thermo-element, shown schematically in Fig. 4-35. This 

arrangement does not use a separate heater: the current to be measured passes 

directly through the thermo-elements and raises their temperature in proportion 

to I
2
R. The cold junctions (marked c) are at the pins which are embedded in the 

insulating frame, and the hot junctions (marked h) are at splices midway 

between the pins. The couples are arranged as shown in Fig. 4-35, and the 

resultant thermal voltage generates a dc potential difference across the 

indicating instrument. Since the bridge arms have equal resistances, the ac 

voltage across the meter is 0 V, and no ac passes through the meter. The use of 

several thermocouples in series provides a greater output voltage and deflection 

than is possible with a single element, resulting in an instrument with increased 

sensitivity. 

 Thermo-instruments may be converted into voltmeters using low-current 

thermocouples and suitable series resistors. Thermocouple voltmeters are 

available in ranges of up to 500 V and sensitivities of approximately 100 to 

500Ω/V. 

 A major advantage of a thermocouple instrument is that its accuracy can 

be as high as 1 percent, up to frequencies of approximately 50 MHz. For this 

reason, it is classified as an RF instrument. Above 50 MHz, the skin effect 

tends to force the current to the outer surface of the conductor, increasing the 



effective resistance of the heating wire and reducing instrument accuracy. For 

small currents (up to 3 A), the heating wire is solid and very thin. Above 3 A 

the heating element is made from tubing to reduce the errors due to skin effect. 

4-13 ELECTRODYNAMOMETERS IN POWER 

MEASUREMENTS 

 The electrodynamometer movement is used extensively in measuring 

power. It may be used to indicate both dc and ac power for any waveform of 

voltage and current and it is not restricted to sinusoidal waveforms. As 

described in 

 

Sec. 4-11.1, the electrodynamometer used as a voltmeter or an ammeter has the 

fixed coils and the movable coil connected in series, thereby reacting to the 

effect of the current squared. When used as a single-phase power meter, the 

coils are connected in a different arrangement (see Fig. 4-36). 

 The fixed coils, or field coils, shown here as two separate elements, are 

connected in series and carry the total line current (ic). The movable coil, 



located in the magnetic field of the fixed coils, is connected in series with a 

current- limiting resistor across the power line and carries a small current (ip). 

The instantaneous value of the current in the movable coil is ip = e/Rp, where e 

is the instantaneous voltage across the power line, and Rp is the total resistance 

of the movable coil and its series resistor. The deflection of the movable coil is 

proportional to the product of these two currents, ic and ip, and we can write for 

the average deflection over one period: 

   dtii
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0

1
      (4-28) 

where θav = average angular deflection of the coil 

 K = instrument constant 

 ic = instantaneous current in the field coils 

 ip = instantaneous current in the potential coil 

 Assuming for the moment that I is equal to the load current, i (actually, 

ic = ip + i), and using the value for ip = e/Rp, we see that Eq. (4-28) reduces to 
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By definition, the avenge power in a circuit is 

   dt ei
T

1
P

T

0
av       (4-30) 

which indicates that the electrodynamometer movement, connected in the 

configuration of Fig. 4-36, has a deflection proportional to the average power. 



If e and i are sinusoidally varying quantities-of the form e = Em sin wt and i = 

Im, sin (wt ± θ), Eq. (4-29) reduces to 

   θav = K3EI cos θ     (4-31) 

where E and I represent the rms values of the voltage and the current, and θ 

represents the phase angle between voltage and current. Equations (4-29) and 

(4-30) show that the electrodynamometer indicates the average power delivered 

to the load. 

 Wattmeters have one voltage terminal and one current terminal marked 

―±.― When the marked current terminal is connected to the incoming line, and 

the marked voltage terminal is connected to the line side in which the current 

coil is connected, the meter will always read up-scale when power is connected 

to the load. If for any reason (as in the two-wattmeter method of measuring 

three-phase power), the meter should read backward, the current connections 

(not the voltage connections) should be reversed. 

 The electrodynamometer wattmeter consumes some power for 

maintenance of its magnetic field, but this is usually so small, compared to the 

load power, that it may be neglected. If a correct reading of the load power is 

required, the current coil should carry exactly the load current, and the potential 

coil should be connected across the load terminals. With the potential coil 

connected to point A, as in Fig. 4-36, the load voltage is properly metered, but 

the current through the field coils is greater by the amount ip. The wattmeter 

therefore reads high by the amount of additional power loss in the potential 

circuit. If. however, the potential coil is connected to point B in Fig. 4-38, the 



field coils meter the correct load current, but the voltage across the potential 

coil is higher by the amount of the drop across the field coils. The wattmeter 

will again read high, but now by the amount of the I
2
R losses in the field 

windings. Choice of the correct connection depends on the situation. Generally, 

connection of the potential coil at point A is preferred for high-current, low-

voltage loads; connection at B is preferred for low current, high-voltage loads. 

 The difficulty in placing the connection of the potential coil is overcome 

in the compensated wattmeter, shown schematically in Fig. 4-37. The current 

coil consists of two windings, each winding having the same number of turns. 

One winding uses heavy wire that carries the load current plus the current for 

the potential coil. The other winding uses thin wire and carries only the current 

to the voltage coil. This current, however, is in a direction opposite to the 

current in the heavy winding, causing a flux that opposes the main flux. The 

effect of ip is therefore canceled out, and the wattmeter indicates the correct 

power. 

 



4-14 WATTHOUR METER 

 The watthour meter is not often found in a laboratory situation but it is 

widely used for the commercial measurement of electrical energy. In fact, it is 

evident wherever a power company supplies the industrial or domestic 

consumer with electrical energy. Figure 4-38 shows the elements of a single-

phase watthour meter in schematic form. 

 

 The current coil is connected in series with the line, and the voltage coil 

is connected across the line. Both coils are wound on a metal frame of special 

design, providing two magnetic circuits. A light aluminum disk is suspended in 

the air gap of the current-coil field, which causes eddy currents to flow in the 

disk. The reaction of the eddy currents and the field of the voltage coil creates a 

torque (motor action) on the disk, causing it to rotate. The developed torque is 

proportional to the fieldstrength of the voltage coil and the eddy currents in the 

disk which are in turn a function of the fieldstrength of the current coil. The 

number of rotations of the disk is therefore proportional to the energy 



consumed by the load in a certain time interval, and is measured in terms of 

kilowatthours (kWh). The shaft that supports the aluminum disk is connected 

by a gear arrangement o the clock mechanism on the front of the meter, 

providing a decimally calibrated readout of the number of kWh. 

 Damping of the disk is provided by two small permanent magnets 

located opposite each other at the rim of the disk. Whenever the disk rotates, 

the permanent magnets induce eddy currents in it. These eddy currents react 

with the magnetic fields of the small permanent magnets, damping the motion 

of the disk. A typical single-phase watthour meter is shown in Fig. 4-39. 

 

 Calibration of the watthour meter is performed under conditions of full 

rated load and 10 percent of rated load. At full load, the calibration consists pf 

adjustment of the position of the small permanent magnets until the meter reads 

correctly. At very light loads, the voltage component of the field produces a 

torque that is not directly proportional to the load. Compensation for the error 



is provided by inserting a shading coil or plate over a portion of the voltage 

coil, with the meter operating at 10 percent of rated load. Calibration of the 

meter at these two positions usually provides satisfactory readings at all other 

loads. 

 The floating-shaft watthour meter uses a unique design to suspend the 

disk. The rotating shaft has a small magnet at each end. The upper magnet of 

the shaft is attracted to a magnet in the upper bearing, and the lower magnet of 

the shaft is attracted to a magnet in the lower bearing. The movement thus 

floats without touching either bearing surface, and the only contact with the 

movement is that of the gear connecting the shaft with the gear train. 

 Measurements of energy in three-phase systems are performed with poly 

phase watthour meters. Each phase of the watthour meter has its own magnetic 

circuit and its own disk, but all the disks are mounted on a common shaft. The 

developed torque on each disk is mechanically summed and the total number of 

revolutions per minute of the shaft is proportional to the total three-phase 

energy consumed. 

4-15 POWER-FACTOR METERS 

 The power factor, by definition, is the cosine of the phase angle between 

voltage and current, and power-factor measurements usually involve the 

determination of this phase angle. This is demonstrated in the operation of the 

crossed-coil power- factor meter. The instrument is basically an 

electrodynamometer movement, where the moving element consists of two 



coils, mounted on the same shaft but at right angles to each other. The moving 

coils rotate in the magnetic field provided by the field coil that carries the line 

current. 

 The connections for this meter in a single-phase circuit are shown in the 

circuit diagram of Fig. 4-40. The field coil is connected as usual in series with 

the line and carries the line current. One coil of the movable element is 

connected in series with a resistor across the lines and receives its current from 

the applied potential difference. The second coil of the movable element is 

connected in series with an inductor across the lines. Since no control springs 

are used, the balance position of the movable element depends on the resulting 

torque developed by the two crossed coils. When the movable element is in a 

balanced position, the contribution to the total torque by each element must be 

equal but of opposite sign. The developed torque in each coil is a function of 

the current through the coil and therefore depends on the impedance of that coil 

circuit. The torque is also proportional to the mutual inductance between each 

part of the crossed coil and the stationary field coil. This mutual inductance 

depends on the angular position of the crossed-coil elements with respect to the 

position of the stationary field coil. When the movable element is at balance, it 

can be shown that 



 

its angular displacement is a function of the phase angle between line current 

(field coil) and line voltage (crossed coils). The indication of the pointer, which 

is connected to the movable element, is calibrated directly in terms of the phase 

angle or power factor. 

 The polarized-vane power-factor meter is shown in the construction 

sketch of Fig. 4-41. This instrument is used primarily in three-phase power 

systems, because its operating principle depends on the application of three-

phase voltage. The outside coil is the potential coil, which is connected to the 

three phase 



 

lines of the system. The application of three-phase voltage to the potential coil 

causes it to act like the stator of a three-phase induction motor in setting up a 

rotating magnetic flux. The central coil, or current coil, is connected in series 

with one of the phase lines, and this polarizes the iron vanes. The polarized 

vanes move in a rotating magnetic field and take up the position that the 

rotating field has at the instant that the polarizing flux is maximum. This 

position is an indication of the phase angle and therefore the power factor. The 

instrument may be used in single-phase systems, provided that a phase-splitting 

network (similar to that used in single-phase motors) is used to set up the 

required rotating magnetic field. 

 Both types of power-factor meter are limited to measurement at 

comparatively low frequencies and are typically used at the powerline 

frequency (60 Hz). Phase measurements at higher frequencies often are more 



accurately and elegantly performed by special electronic instruments or 

techniques. 

4-16 INSTRUMENT TRANSFORMERS 

 Instrument transformers are used to measure ac at generating stations, 

transformer stations, and at transmission lines, in conjunction with ac 

measuring instruments (voltmeters, ammeters, wattmeters, VARmeters, etc.). 

Instrument  transformers are classified according to their use and are referred 

to as current transformers (CT) and potential transformers (PT). 

 Instrument transformers perform two important functions: They serve to 

extend the range of the ac measuring instrument, much as the shunt or the 

multiplier extends the range of a dc meter; they also serve to isolate the 

measuring instrument from the high-voltage power line. 

 The range of a dc ammeter may be extended by using a shunt that 

divides the current under measurement between the meter and the shunt. This 

method is satisfactory for dc circuits, but in ac circuits current division depends 

not only the resistances of the meter and the shunt but also on their reactances. 

Since ac measurements are made over a wide frequency range, it becomes 

difficult to obtain great accuracy. A CT provides the required range extension 

through its transformation ratio and in addition produces almost the same 

reading regardless of the meter constants (reactance and resistance) or, in fact, 

of the number of instruments (within limits) connected in the circuit. 



Isolation of the measuring instrument from the high-voltage power line is 

important when we consider that ac power systems frequently operate at 

voltages of several hundred kilovolts. It would be impractical to bring the high-

voltage lines directly to an instrument panel in order to measure voltage or 

current, not only because of the safety hazards involved but also because of the 

insulation problems connected with high-voltage lines running closely together 

in a confined space. When an instrument transformer is used, only the low-

voltage wires from the transformer secondary are brought to the instrument 

panel and only low voltages exist between these wires and ground, thereby 

minimizing safety hazards and insulation problems: 

 Many textbooks develop in detail the theory underlying the operation of 

 



transformers. Here these instrument transformers are merely described and 

their use in measurement situations is shown.

 

 Figure 4-42 shows a potential transformer; Fig. 4-43 shows a current 

transformer. The potential transformer (PT) is used to transform the high 

voltage of a power line to a lower value suitable for direct connection to an ac 

voltmeter or the potential coil of an ac wattmeter. The usual secondary 

transformer voltage is 120 V. Primary voltages are standardized to 

accommodate the usual transmission line voltages which include 2,400 V, 

4,160 V, 7,200 V. 13.8 kV, 44kv, 66kv, and 220 kV. The PT is rated to deliver 

a certain power to the secondary load or burden. Different load capacities are 

available to suit individual applications; a general capacity is 200 VA at a 

frequency of 60 Hz. 

 The PT must satisfy certain design requirements that include accuracy of 

the turns ratio, small leakage reactance, small magnetizing current, and 

minimal voltage drop. Furthermore, since we may be working with very high 

primary voltages, the insulation between the primary a secondary windings 

must be able to 

                                              


 For fuller treatment of ac machines and circuits, consult textbooks like the following; Michael 

Liwshitz-Garik and Clyde C. Whipple, AC Machines, 2nd ed. (Princeton, N.J.: D. Van Nostrand 

Company, Inc., 1961), chaps. 2-5; Russell M. Kerchper and George F. Corcoran, Alternating Current 

Circuits, 4
th

 ed. (New York: John Wiley & Sons, Inc., 1961). pp. 291-317. 

 



 

withstand large potential differences, and the dielectric requirements are very 

high. In the usual case, the high-voltage coil is of a circular pancake 

construction, shielded to avoid localized dielectric stresses. The low-voltage 

coil or coils are wound on a paper form and assembled inside the high-voltage 

coil. The assembly is thoroughly dried and oil impregnated. The core and coil 

assembly is then mounted inside a steel case, which supports the high-voltage 

terminals or porcelain bushings. The case is then filled with an insulating oil. 

 Developments in the synthetic rubber industry have introduced the 

molded rubber potential transformer, replacing the insulating oil and porcelain 

bushings in some applications. Figure 4-42 shows a rubber-molded 25-kV 

potential transformer suitable for outdoor use. This unit is less expensive than 



the conventional oil-filled PT, and since the bushings are made of molded 

rubber, porcelain breakage is eliminated. A white polarity dot is placed on the 

proper bushing on the front of the transformer. Two stud-type secondary 

terminals are enclosed in a removable conduit box. The power rating of a 

potential transformer is based on considerations other than load capacity, for 

the reasons previously outlined. A typical load rating is 200 VA at 60 Hz for a 

transformer having a ratio of 2,400/120 V. For most metering purposes, 

however, the burden will be significantly less than 200 VA. 

 The current transformer (CD sometimes has a primary and always has a 

secondary winding. If there is a primary winding, it has a small number of 

turns. In most cases, the primary is only one turn or a single conductor 

connected in series with the load whose current is to be measured. The 

secondary winding has a larger number of turns and is connected to a current 

meter or a relay coil. Often the primary winding is a single conductor in the 

form of a heavy copper or brass bar running through the core of the 

transformer. Such a CT is called a bar-type current transformer. The CT 

secondary winding is usually designed to deliver a secondary current of 5 A. 

An 800/5-A bar-type current transformer would have 160 turns on the 

secondary coil. 

 The primary winding of the current transformer is connected directly in 

the load circuit. When the secondary winding is open-circuited, the voltage 

developed across the open terminals may be very high (because of the step-up 

ratio) and could easily break down the insulation between the secondary 



windings. The secondary winding of a current transformer should therefore 

always be short- circuited, or connected to a meter or relay coil. A current 

transformer should never have its secondary open while the primary is carrying 

current; it should always be closed through a current meter, relay coil, 

wattmeter current coil, or simply a short. Failure to observe this precaution may 

cause serious damage to either equipment or operating personnel. 

 The current transformer shown in Fig. 4-43 consists of a core with the 

secondary winding encased in molded-rubber insulation. The window in the 

core allows for the insertion of one or more turns of the current-carrying high-

voltage conductor. A single conductor constitutes a one-turn primary winding. 

The nominal ratio of the transformer is given on the nameplate; this i not the 

turns ratio (since more than one turn can be used as the primary) but only 

indicates that a primary current of 500 A will cause a secondary current of 5 A 

when the secondary coil is connected to a 5-A ammeter. Within practical limits, 

the current in the secondary winding is determined by the primary excitation 

current and not by the secondary circuit impedance. Since the primary current 

is determined by the load in the ac system, the secondary current is related to 

the primary current by approximately the inverse of the turns-ratio. This is true 

within rather wide limits of the nature of the secondary burden. 

 Figure 4-44 indicates the use of instrument transformers in a typical 

measurement application. This diagram illustrates the connection of instrument 

transforms in a three-wire three-phase circuit, including two wattmeters, two 

voltmeters, and two ammeters. The potential transformers are connected across 



phase lines A and B, and phase lines C and B; the current transformers are in 

phase lines A. and D. The secondary windings of the potential transformers are 

connected to the voltmeter coils and the potential coils of the waltmeters; the 

current transformer secondaries feed the ammeters and the current coil of the 

wattmeters. 

 

 The polarity markings on the transformers, indicated by a dot at the 

transformer leads, aid in making the correct polarity connections to the 

measuring instruments. At any given instant of the ac cycle, the dot-marked 

terminals have the same polarity and the marked wattmeter terminals must be 

connected to these transformer leads as shown. 
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PROBLEMS 

4-1. Determine the resistor value required to use a 0-1mA meter with an 

 internal resistance of 1250 for a 0-1-V meter. 

4-2. What value of shunt resistance is required for using a 50-μA meter 

 movement, with an internal resistance of 250 Ω, for measuring 0-500 

 mA? 

4-3. What series resistance must be used to extend the 0-200-V range of a 

 20,000-Ω/V meter to 0-2000 V? What power rating must this resistor 

 have? 

4-4. What will a 5,000-Ω/V meter read on a 0-5-V scale when connected to 

 the circuit of Fig. P4-4? 



 Figure P4-4 

4-5. Draw the schematic, including Values, for an Ayrton shunt for a meter 

 movement having a full-scale deflection of 1mA and an internal 

 resistance of 500Ω to cover the current ranges of 10, 50, 100, and 500 

 mA. 

4-6. Many electronic voltage measuring instruments have a fixed input 

 resistance of 1 MΩ. Which settings of the range switch of the 

 multimeter shown in Figs. 4-21 and 4-22 would have a higher input 

 resistance than the typical electronic instrument for dc measurements? 

4-7. The resistance of a 50-kΩ resistor is measured using the multimeter 

 shown in Figs. 4- 21. 4-22, and 4-25. (a) How much power is dissipated 

 in the resistor if the R x 10,000 range is used? (b) How much power is 

 dissipated in the resistor if the R x 100 range is used? Assume that the 

 zero control is set to its midpoint. 

4-8. A series-type ohmmeter, designed to operate with a 6-V battery, has a 

 circuit diagram as shown in Fig. 4-19. The meter movement has an 

 internal resistance of 2,000Ω and requires a current of 100 μA for full-

 scale deflection. The value of R1 is 49kΩ. (a) Assuming the battery 

 voltage has fallen to 5.9 V, calculate the value of R2 required to zero the 

 meter. (b) Under the condition? mentioned in part (a), an unknown 



 resistor s connected to the meter causing a 60 percent meter deflection. 

 Calculate the value of the unknown resistance. 

4-9. How low must the battery voltage of the 1.5-V cell in the multimeter 

 ohmmeter section shown in Fig. 4-25(a) fall before it is impossible to 

 zero the meter? 

4-10.  What is a transfer instrument? Why is an electrodynamometer a transfer 

 instrument? 

4-11. Why is sensitivity (ohms per volt) of the ac scales of a multimeter less 

 than the dc section? 

4-12. What is meant by a waveform error? Which ac meters are most likely to 

 be affected by this form of error? 

4-13. What are the advantages of a thermocouple meter? 

4-14. What is the midscale point of a 10-A full-scale thermocouple meter? 

4-15. The circuit diagram of Fig. 4-30 shows a full-wave rectifier ac 

 voltmeter. The meter movement has an internal resistance of 250 Ω and 

 requires 1 mA for full deflection. The diodes each have a forward 

 resistance of 50 Ω and infinite reverse resistance. Calculate (a) the series 

 resistance required for full-scale meter deflection when 25 V rms is 

 applied to the meter terminals; (b) the ohms-per-volt rating of this ac 

 voltmeter. 

4-16. Calculate the indication of the Meter in Problem 4-15 when a triangular 

 waveform with a peak value of 20 V is applied to the meter terminals. 



4-17. If an electrodynamometer is used to measure power with a full-scale 

 reading of 100 W, what is the one-quarter scale reading? 



BRIDGE MEASUREMENTS 

5-1 INTRODUCTION 

Precision measurements of component values have been made for many years 

using various forms of bridges. The simplest form of bridge is for the purpose 

of and is called the Wheatstone bridge. There are variations of the Wheatstone 

bridge for measure very high and very low resistances. There is an entire group 

of ac bridges for measuring inductance, capacitance, admittance, conductance, 

and any of the impedance parameters. 

General-purpose bridges are hardly used any more. Some specialized 

measurements, such as impedance at high frequencies are still made with a 

bridge. 

The bridge circuit still forms the backbone of some measurements and for the 

interfacing of transducers; as an example, there are fully automatic bridges that 

electronically null a bridge to make precision component measurements. For 

this reason, a chapter is devoted to bridge measurements. Also, in this chapter, 

the concept of guarded measurements and three-terminal resistance 

measurement is covered. 

5-2 WHEATSTONE BRIDGE 

5.2.1 Basic Operation 



Figure 5-1 shows the schematic of a Wheatstone bridge. The bridge has four 

resistive arms, together with a source of emf (a battery) and a null detector, 

usually a galvanometer or other sensitive current meter. The current through 

the galvanometer depends on the potential difference between point‘s c and d. 

The bridge is said to be balanced when the potential difference across the 

galvanometer is 0 V so that there is no current through the galvanometer. This 

condition occurs when the voltage from point c to point a equals the voltage 

from point d to point a; or by referring to the other battery terminal, when the 

voltage from point c to point b equals the voltage from point d to point 1‘. 

Hence the bridge is balanced when 

2211 RIRI       (5.1) 

If the galvanometer current is zero, the following condition also exist:  
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Combining Eqs. (5-1), (5-2) and (5-3) and simplifying, we obtain 
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from which 



3241 RRRR      (5.4) 

 

Equation (5-5) is the well-known expression for balance of the Wheatstone 

bridge. If three of the resistances have known values, the fourth may be 

determined from Eq. (5-5). Hence, if R4 is the unknown resistor, its resistance 

xR can 

Figure 5-I Wheatstone Bridge used for the precision measurement of. 

Resistances ranging from fractions of an ohm to several me ohms. The ratio 

control switches the ratio arms in decade steps. The remaining four step 

switches set the resistance of the standard arm. 

Be expressed in term of the remaining resistors as follows: 

1

1
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R

R
RRx      (5.6) 



Resistor R3 is called the standard arm of the bridge, and resistor R2 and R1 are 

called the ratio arms. 

The measurement of the unknown resistance Rx is independent of the 

characteristics of the calibration of the null-detecting galvanometer, provided 

that the null detector has sufficient sensitivity to indicate the balance position 

of the bridge with the required degree of precision. 

5-2.2 Measurement Errors 

Wheatstone bridge is widely used for precision measurement of resistance from 

approximately I   to the low megohm range. The main source of measurement 

error is found in the limiting errors of the three known resistors. Other errors 

may include the following: 

 Insufficient sensitivity of the null detector. This problem is discussed 

more fully in Sec 5-2.3. 

 Changes  resistance of the bridge arms due to the heating effect of the 

current through the resistors. He effect (I
2
 R) of the bridge arm currents 

may change the resistance of the resist in question. The rise in tempera 

ture not only affects the resistance during the actual measurement, but 

ex-cessive currents may cause a permanent change in resistance values. 

This may not be discovered in time and subsequent measurements could 

well be erroneous. The power dissipation in the bridge arms must 

therefore be cornuted in advance, particularly when low-resistance 



values are to be measured, and the current must be limited to a safe 

value. 

 Thermal emfs in the bridge circuit or the galvanometer circuit can also 

cause problems when low value resistors are being measured. To 

prevent thermal emfs, the more sensitive galvanometers sometimes have 

copper coils and copper suspension systems to avoid having dissimilar 

metals in contact with one another and generating thermal emfs. 

 Errors due to the resistance of leads and contacts exterior to the actual 

bridge circuit play a role in the measurement of very low-resistance 

values. These errors may be reduced by using a Kelvin bridge (see Sec. 

5-3). 

5-2.3 Thevenin Equivalent Circuit 

To determine whether or not the galvanometer has the required sensitivity to 

detect an unbalance condition, it is necessary to calculate the galvanometer 

current. Different galvanometers not only may require different currents per 

unit deflection (current sensitivity), but they also may have a different internal 

resistance. It is impossible to say, without prior computation, which 

galvanometer with the required degree of precision. 

Sec. 5-2 Wheatstone Bridge will make the bridge circuit more sensitive to an 

unbalance condition. This sensitivity can be calculated by ―solving‖ the bridge 

circuit for a small unbalance. The solution is approached by converting the 

Wheatstone bridge of Fig. 5-1 to its Thevenin equivalent. 



Since we are interested in the current through the galvanometer, the Thevenin 

equivalent circuit is determined by looking into galvanometer terminals c and 

din Fig. 5.1 Two steps must be taken to find the Thévenin equivalent; the first 

step involves finding the equivalent voltage appearing at terminals c and d 

when the galvanometer is removed from the circuit. The second step involves 

finding the equivalent resistance looking into terminals c and d, with the 

battery replaced by its internal resistance. For convenience, the circuit of Fig. 

5-1(b) is redrawn in Fig. 5-2(a). 

The Thevenin, or open-circuit, voltage is found by referring to Fig. 5-2(a), and 

we can write 

Ecd = Eac — 11R1 — I2R2 



 

Where 
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This is the voltage of the Thévenin generator. 

The resistance of the Thevenin equivalent circuit is found by looking back into 

terminals c and d and replacing the battery by its internal resistance. The circuit 

of Fig. 5-2(b) represents the Thévenin resistance. Notice that the internal 

resistance, Rb. of the battery has been included in Fig. 5-2(b). Converting this 

circuit into a more convenient form requires use of the delta-wye 



transformation theorem. Readers interested in this approach should consult 

texts on circuit analysis where this theorem is derived and applied.* In most 

cases, however, the extremely low internal resistance of the battery can be 

neglected and this simplifies the reduction of Fig. 5-2(a) to its Thévenin 

equivalent considerably. 

Referring to Fig. 5-2(b), we see that a short circuit exists between points 

a and b when the internal resistance of the battery is assumed to be  . The 

Thevenin resistance, looking into terminals c and d, then becomes 

RTH = 
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       (5-8) 

The Thévenin equivalent of the Wheatstone bridge circuit therefore reduces to 

a Thevenin generator with an emf described by Eq. (5-7) and an internal 

resistance given by Eq. (5-8). This is shown in the circuit of Fig. 5-2(c). 

When the null detector is now connected to the output terminals of the 

Thévenin equivalent circuit, the galvanometer current is found to be 

 Ig = 
gTH

TH

RR

E


       (5-9) 

where Ig is the galvanometer current and Rg its resistance. 

EXAMPLE 5-1 



Figure 5-3(a) shows the schematic diagram of a Wheatstone bridge with 

values of the bridge elements as shown. The battery voltage is 5 V and its 

internal resistance negligible. The galvanometer has a current sensitivity of 10‘ 

mm/  A and an internal resistance of 100  . Calculate the deflection of the 

galvanometer caused by the 5-fl unbalance in arm BC. 

SOLUTION  Bridge balance occurs if arm BC has a resistance of 2,000 

 . The diagram shows arm BC as a resistance of 2.005  , representing a 

small unbalance (42,000(I). The first step in the solution consists of converting 

the 

 Herbert W. Jackson. Introduction to Electric Circuits, 5th ed. 

(Englewood Cliffs, N.J.: Pren-tice-Hall, Inc., 1981), pp. 448ff. 

bridge circuit into its Thevenin equivalent circuit. Since we are interested in 

finding the current in the galvanometer, the Thévenin equivalent is determined 

with respect to galvanometer terminals B and D. The potential difference from 

B to D, with the galvanometer removed from the circuit, is the Thevenin 

voltage. Using Eq. (5.7), we obtain 

 ETH = EAD = 5 V x (
005,2000,1

000,1

200100

100





) 

= 2.77 mV 

The second step of the solution involves finding the equivalent Thévenin 

resistance, looking into terminals B and D, and replacing the battery with its 



internal resistance. Since the battery resistance is  , the circuit is represented 

by the configuration of Fig. 5-3(b) from which we find 

RTH  =  734
005,3

005,2000,1

300

200100 xx
 

The Thévenin equivalent circuit is given in Fig. 5-2(c). When the 

galvanometer is now connected to the output terminals of the equivalent circuit, 

the current through the galvanometer is  

Ig = 32.3
Ω100Ω734

Vm3.77





 gTH

TH

RR

E
 A 

The galvanometer deflection is 

 d = 3.34  A x 
μA

10mm
 = 33.2 mm 

At this point the merit of the Thevenin equivalent circuit for the solution 

of an unbalanced bridge becomes evident. If a different galvanometer is used 

(with a different current sensitivity and internal resistance), the computation of 

its deflection is very simple, as is clear from Fig. 5-3(c). Conversely, if the 

galvanometer sensitivity is given, we can solve for the unbalance voltage 

needed to give a unit deflection (say 1 mm). This value is of interest when we 

want to determine the sensitivity of the bridge to unbalance, or in response to 

the question: ―Is the galvanometer selected capable of detecting a certain small 

unbalance?‖ The thevenin method is used to find the galvanometer response, 

which in most cases is of prime interest. 



EXAMPLE 5-2 

The galvanometer of Example 5-1 is replaced by one with an internal 

resistance of 500   and a current sensitivity of 1 mm/  A. Assuming that a 

deflection of 1 mm can be observed on the galvanometer scale, determine if 

this new galvanometer is capable of detecting the 5-11 unbalance in arm BC of 

Fig. 5-3(a). 

SOLUTION  Since the bridge constants have not been changed, the 

equivalent circuit is again represented by a Thévenin generator of 2.77 mV and 

a 

Thevenin resistance of 734  . The new galvanometer is now connected to the 

output terminals resulting in a galvanometer current 

 Ig = A
mA

RR

E

gTH

TH 24.2
500734

77.2






 

The galvanometer deflection therefore equals 2.24  A x 1 mm/  A = 

2.24 mm, indicating that this galvanometer produces a deflection that can be 

easily observed. 

The Wheatstone bridge is limited to the measurement of resistances 

ranging from a few ohms to several megohms. The upper limit is set by the 

reduction in sensitivity to unbalance, caused by high resistance values, because 

in this case the equivalent Thevenin resistance of Fig. 5-3(c) becomes high, 



thus reducing the galvanometer current. The lower limit is set by the resistance 

of the connecting 

 

leads and the contact resistance at the binding posts The resistance of the leads 

could be calculated or measured, and the final result modified, but contact 

resistance is very hard to compute or measure. For low-resistance 

measurements, therefore, the Kelvin bridge is generally the preferred 

instrument 

5-3 KELVIN BRIDGE 



5-3.1 Effects of Connecting Leads 

The Kelvin bridge is a modification of the Wheatstone bridge and 

provides greatly increased accuracy in the measurement of low-value 

resistances, generally below1 . Consider the bridge circuit shown in Fig. 5-4, 

where Ry represents the resistance of the connecting lead from R3 to Rx. Two 

galvanometer connections are possible, to point in or to point m. When the 

galvanometer is connected to point m, the resistance Ry of the connecting lead 

is added to the unknown Rx, resulting in too high an indication for Rx. When 

connection is made to point n, Ry is added to bridge arm R3 and the resulting 

measurement of Rx will be lower than it should be, because now the actual 

value of R3 is higher than its nominal value by resistance Ry. If the 

galvanometer is connected to a point p, in between the two points m and n, in 

such a way that the ratio of the resistances from n top and from m to p equals 

the ratio of resistors R1 and R2, we can write 
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The balance equation for the bridge yields 

Rx + Rnp = 
2

1

R

R
(R3 + Rmp)    (5-11) 

Substituting Eq. (5-10) into Eq. (5-11), we obtain 
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which reduces to 

 Rx = 3

2

1 R
R

R
      (5-13) 

Equation (5-13) is the usual balance equation developed for the Wheatstone 

bridge and it indicates that the effect of the resistance of the connecting lead 

from point in to point ii has been eliminated by connecting the galvanometer to 

the intermediate position p. 

This development forms the basis for construction of the Kelvin double 

bridge, commonly known as the Kelvin bridge. 

5-3.2 Kelvin Double Bridge 

The term double bridge is used because the circuit contains a second set 

of ratio arms, as shown in the schematic diagram of Fig. 5-5. This second set of 

arms, labeled a and b in the diagram, connects the galvanometer to a point p at 

the appropriate potential between m and n, and it eliminates the effect of the 



yoke resistance Ry. An initially established condition is that the resistance ratio 

of a and b is the same as the ratio of R1 and R2. 

The galvanometer indication will be zero when the potential at k equal 

the potential at p, or when Ekl = EImp where 
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and 
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We can solve for R1 by equating Ekl, and EImp,, in the following manner: 
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Or simplifying, we get 
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and expanding the right-hand member yields 
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Solving for Rx yields 
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so that 
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Using the initially established condition that a/b = R1/R2, we see that Eq. (5-16) 

reduces to the well-known relationship 

 Rx = R3 
2
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R
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Equation (5-17) is the usual working equation for the Kelvin bridge. It 

indicates that the resistance of the yoke has no effect on the measurement, 

provided that the two sets of ratio arms have equal resistance ratios. 

The Kelvin bridge is used for measuring very low resistances, from 

approximately 1  to as low as 0.00001 . Figure 5-6 shows the simplified 



circuit diagram of a commercial Kelvin bridge capable of measuring 

resistances from 10   to 0.00001 . In this bridge, resistance R3 of Eq. (5-17) 

is represented by the variable standard resistor in Fig. 5-6. The ratio arms (R1 

and R2) can usually be switched in a number of decade steps.  

Contact potential drops in the measuring circuit may cause large errors 

and to reduce this effect the standard resistor consists of nine steps of 0.001  

each plus a calibrated manganin bar of 0.0011  with a sliding contact. The 

total resistance of the R3 arm therefore amounts to 0.0101  and is variable in 

steps of 0.001  plus fractions of 0.0011  by the sliding contact. When both 

contacts are switched to select the suitable value of standard resistor, the 

voltage drop be- tween the ratio-arm connection points is changed, but the total 

resistance around the battery circuit is unchanged. This arrangement places any 

contact resistance in series with the relatively high-resistance values of the ratio 

arms, and the contact resistance has negligible effect. 

The ratio R1/R2 should be selected that a relatively large part of the 

standard resistance is used in the measuring circuit. In this way the value of 

unknown resistance Rx is determined with the largest possible number of 

significant figures, and the measurement accuracy is improved. 



 

5- 4 GUARDED WHEATSTONE BRIDGE 

5- 4.1 Guard Circuits 

The measurement of extremely high resistances, such as the insulation 

resistance of a cable or the leakage resistance of a capacitor (often on the order 

of several thousands of megohms), is beyond the capability of the ordinary dc 

Wheatstone bridge. One of the major problems in high-resistance 

measurements is the leakage that occurs over and around the component or 

specimen being measured, or over the binding posts by which the component is 

attached to the instrument, or within the instrument itself. These leakage 

currents are undesired because they can enter the measuring circuit and affect 

the measurement accuracy to a considerable extent. Leakage currents, whether 



inside the instrument itself or associated with the test specimen and its 

mounting, are particularly noticeable in high-resistance measurements where 

high voltages are often necessary to obtain sufficient deflection sensitivity. 

Also, leakage effects are generally variable from day to day, depending on the 

humidity of the atmosphere. 

The effects of leakage paths on the measurement are usually removed by 

some form of guard circuit. The principle of a simple guard circuit in the Rx 

arm of a Wheatstone bridge is explained with the aid of Fig. 5-7. Without a 

guard circuit, leakage current I1 along the insulated surface of the binding post 

adds to current Ix 

 

through the component under measurement to produce a total circuit current 

that can be considerably larger than the actual device current. A guard wire, 

completely surrounding the surface of the insulated post, intercepts this leakage 

cur- rent and returns it to the battery. The guard must be carefully placed so 



that the leakage current always meets some portion of the guard wire and is 

prevented from entering the bridge circuit. 

In the schematic diagram of Fig. 5-8 the guard around the Rx binding 

post, indicated by a small circle around the terminal, does not touch any part of 

the bridge circuitry and is connected directly to the battery terminal. The 

principle of the guard wire on the binding post can be applied to any internal 

part of the bridge circuit where leakage affects the measurement; we then speak 

of a guarded Wheatstone bridge. 

5- 4.2 Three-Terminal Resistance 

To avoid the effects of leakage currents external to the bridge circuitry, 

the junction of ratio arms RA and RB is usually brought out as a separate guard 

 

terminal on the front panel of the instrument. This guard terminal can be used 

to connect a so-called three-terminal resistance, as shown in Fig. 5-9. The high 

is mounted on two insulating posts that are fastened to a metal plate. The two 

main terminals of the resistor are connected to the Rx terminals of the bridge in 

the usual manner. The third terminal of the resistor is the common point of 



resistances R1 and R2, which represent the leakage paths from the main 

terminals along the insulating posts to the metal plate, or guard. The guard is 

connected to the guard terminal on the front panel of the bridge, as indicated in 

the schematic of Fig. 5-9. This connection puts R1 in parallel with ratio arm RA, 

but since R1 is very much larger than RA, its shunting effect is negligible. 

Similarly, leakage resistance R2 is in parallel with the galvanometer, but the 

resistance of R2 is so much higher than that of the galvanometer that the only 

effect is a slight reduction in galvanometer sensitivity. The effects of external 

leakage paths are therefore removed by using the guard circuit on the three-

terminal resistance. 

If the guard circuit were not used, leakage resistance R1 and R2 would be 

directly across Rx and the measured value of Rx would be considerably in error. 



 

Assuming, for example, that the unknown is 100 M  and that the leakage 

resis-tance from each terminal to the guard is also 100 M , resistance Rx 

would be measured as 67 M , an error of approximately 33 per cent. 

5-5 AC BRIDGES AND THEIR APPLICATION 

5-5.1 Conditions for Bridge Balance 

` The ac bridge is a natural outgrowth of the dc bridge and in its basic 

form consists of four bridge arms, a source of excitation, and a null detector. 

The power source supplies an ac voltage to the bridge at the desired frequency. 

For measurements at low frequencies, the power line may serve as the source 



of excitation; at higher frequencies, an oscillator generally supplies the 

excitation voltage. The null detector must respond to ac unbalance currents and 

in its cheapest (but very effective) form consists of a pair of headphones. In 

other applications, the null detector may consist of an ac amplifier with an 

output meter, or an electron ray tube (tuning eye) indicator. 

The general form of an ac bridge is shown in Fig. 5-10. The four bridge 

arms Z1, Z2, Z3, and Z4 are indicated as unspecified impedances and the 

detector is represented by headphones. As in the case of the Wheatstone bridge 

for dc measurements, the balance condition in this ac bridge is reached when 

the detector response is zero, or indicates a null. Balance adjustment to obtain a 

null response is made by varying one or more of the bridge arms. 

The general equation for bridge balance is obtained by using complex 

notation for the impedances of the bridge circuit. (Boldface type is used to 

indicate quantities in complex notation.) These quantities may be impedances 

or admittances as well as voltages or currents. The condition for bridge balance 

requires that the potential difference from A to C in Fig. 5-10 be zero. This will 

be the case when the voltage drop from B to A equals the voltage drop from B 

to C, in both magnitude and phase. In complex notation we can write 

EBA = EBC or I1Z1  = I2 Z2      (5-18) 



 

For zero detector current (the balance condition), the currents are 

I1 = 
31 ZZ

E


      (5-19) 

and 

I2 = 
42 ZZ

E


      (5-20) 

Substitution of Eqs. (5-19) and (5-20) into Eq. (5-18) yields 

 Z1Z4 + Z2 Z3      (5-21)  

or when using admittances instead of impedances. 

 Y1 Y4 = Y2 Y3     (5-22) 

Equation (5-21) is the most convenient form in most cases and is the general 

equation for balance of the ac bridge. Equation (5-22) can be used to advantage 

when dealing with parallel components in bridge arms. Equation (5-21) states 

that the product of impedances of one pair of opposite arms must equal the 



product of impedances of the other pair of opposite arms, with the impedances 

expressed in complex notation. If the impedance is written in the form Z = Z /0, 

where Z represents the magnitude and   the phase angle of the complex 

impedance, Eq. (5-21) can be written in the form 

(Z1 /  1 )(Z4 / 4) =  (Z2  / 2 )(Z3  / 3)   (5-23) 

Since in multiplication of complex numbers the magnitudes are multiplied and 

the phase angles added, Eq. (5-23) can also be written as 

 Z1Z4 /( )41   = Z2 Z3 /( )32       (5-24)  

Equation (5-24) shows that two conditions must be met simultaneously when 

balancing an ac bridge. The first condition is that the magnitudes of the 

impedances satisfy the relationship 

 Z1Z4 = Z2 Z3       (5-25) 

or, in words: 

The products of the magnitudes of the opposite arms must be equal. 

The second condition requires that the phase angles of the impedances 

satisfy the relationship 

 / 1 + / 4 = / 2 + / 3     (5-26) 

Again, in words: 



The sum of the phase angles of the opposite arms must be equal. 

5-5.2 Application of the Balance Equations 

The two balance conditions expressed in Eqs. (5-25) and (5-26) can be 

applied when the impedances of the bridge arms are given in polar form, with 

both magnitude and phase angle. In the usual case, however, the component 

values of the bridge arms are given, and the problem is solved by writing the 

balance equation in complex notation. The following examples illustrate the 

procedure. 

 

The problem becomes slightly more complex when the component values of 

the bridge arms arc specified and the impedances are to be expressed in 



complex notation. In this case, the inductive or capacitive reactances can only 

be calculated when the frequency of the excitation voltage is known, as 

Example 5-4 shows. 

 

 

 

 

 

 

EXAMPLES 5-4 

 

5-6 MAXWELL BRIDGE 



 The Maxell bridge, whose schematic diagram is shown in Fig. 5-11, 

measures an unknown inductance in terms of a known capacitance. One of the 

ratio arms has a resistance and a capacitance in parallel and it may now prove 

somewhat easier to write the balance equations using the admittance of arm 1 

instead of its impedance. 

 Rearranging the general equation for bridge balance, as expressed in Eq. 

(5-21), we obtain  

 

where Y1 is the admittance of arm 1. Reference to Fig. 5-11 shows that 

 Z2 R2; Z3 = R3; and Y1 = 
1

1

R
+ j 1C  

Substitution of these values in Eq. (5-27) gives 

 Zx = Rx + j xL = R2R3 ( 1

1

1
Cj

R
 )     (5-28) 

Separation of the real and imaginary terms yields 



 Rx = 
1

32

R

RR
        (5-29) 

and  

 Lx = R2R3C1        (5-30)  

where the resistances are expressed in ohms, inductance in henrys, and 

capacitance in farads. 

The Maxwell bridge is limited to the measurement of medium-Q coils (1 

< Q < 10 ). This can be shown by considering the second balance condition 

which states that the sum of the phase angles of one pair of opposite arms must 

be equal to the sum of the phase angles of the other pair. Since the phase angles 

of the resistive elements in arm 2 and arm 3 add up to 0
o
, the sum of the angles 

of arm 1 and arm 4 must also add up to 0
o
. The phase angle of a high-Q coil 

will he very nearly 90° (positive), which requires that the phase angle of the 

capacitive arm must also be very nearly 90° (negative). This in turn means that 

the resistance of R1 must be very large indeed, which can be very impractical. 

High-Q coils are therefore generally measured on the Hay bridge, presented in 

Sec. 5-7. 

The Maxwell bridge is also unsuited for the measurement of coils with a 

very low Q-value (Q < 1) because of balance convergence problems. Very low 

Q values occur in inductive resistors, for example, or in an RF coil if measured 

at low frequency. As can be seen from the equations for Rx and Lx, adjustment 



for inductive balance by R3 upsets the resistive balance by R1 and gives the 

effect known as sliding balance. Sliding balance describes the interaction 

between controls, so that when we balance with R1 and then with R3, then go 

back to R1, we find a new balance point. The balance point appears to move or 

slide toward its final point after many adjustments. Interaction does not occur 

when R1 and C1 are used for the balance adjustments, but a variable capacitor is 

not always suitable. 

The usual procedure for balancing the Maxwell bridge is by first adjusting R3 

for inductive balance and then adjusting R1 for resistive balance. Returning to 

the R3 adjustment, we find that the resistive balance is being disturbed and 

moves to a new value. This process is repeated and gives slow convergence to 

final balance. For medium-Q coils, the resistance effect is not pronounced, and 

balance is reached after a few adjustments. 

5-7 HAY BRIDGE 

The Hay bridge of Fig. 5-12 differs from the Maxwell bridge by having 

resistor R1 in series with standard capacitor C1instead of in parallel. It is 

immediately apparent that for large phase angles, R1 should have a very low 

value. The Hay circuit is therefore more convenient for measuring high-Q 

coils. 



The balance equations are again derived by substituting the values of the 

impedances of the bridge arms into the general equation for bridge balance. For 

the circuit of Fig. 5-12, we find that 

 Z1 = R1 - 
1C

j


; Z2 = R2; Z3 = R3; Zx = Rx + j xL  

Substituting these values in Eq. (5-21), we get 

 )(
1

1 xx LjR
C

j
R 











 = R2 R3    (5-31) 

Which expands to  

 R1Rx + 321

11

RRRLj
C

jR

C

L
x

xx  


 

Separating the real and imaginary terms, we obtain 

 R1Rx + 32

11

RR
C

jR

C

L xx 


     (5-32) 

and 

 1

1

RL
C

R
x

x 


        (5-33) 

Both Eq. (5-32) and Eq. (5.33) contain Lx and Rx, and we must solve these 

equations simultaneously. This yields 



Rx = 
2

1

2

1

2

321

2

1

2

1 RC

RRRC






      (5-34) 

 

 Lx 2

1

2

1

2

132

1 RC

CRR


      (5-35) 

These expressions for the unknown inductance and resistance both 

contain the angular velocity wand it therefore appears that the frequency of the 

voltage source must be known accurately. That this is not true when a high-Q 

coil is being measured follows from the following considerations: 

Remembering that the sum of the opposite sets of phase angles must be equal, 

we find that the inductive phase angle must be equal to the capacitive phase 

angle, since the resistive angles are zero. Figure 5-13 shows that the tangent of 

the inductive phase angle equals 

 Tan Q
R

L

R

X

x

xL
L 


     (5-36) 

and that of the capacitive phase angle is 

 tan 
11

1
tan

RC
QorcL


     (5-37) 



When the two phase angles are equal, their tangents are also equal and we can 

write 

 tan 
11

1
tan

RC
QorcL


      (5-38) 

Returning now to the term (1 ± w2ClRf) which appears in Eqs. (5-34) and 

(535),we find that, after submitting Eq. (5-38) in the expression for 4, Eq. (535) 

Reduces to 

Lx = 
2

132

)/1(1 Q

CRR


     (5-39) 

For a value of Q greater than ten, the term (1/Q)
2
 will be smaller than 1/100 and 

can be neglected. Equation (5-35) therefore reduces to the expression derived 

for the Maxwell bridge, 

 Lx = R2R3C1 

 The Hay bridge is suite for 10, the measurement (Q) Inductors, especially for 

those inductors having a Q greater than 10. For Q- values smaller than 100, the 

term (1/Q)
2
 becomes important and cannot be neglected. In this case, the Max-

well bridge is more suitable. 

 



5-8 SCHERING BRIDGE 

The Schering bridge, one of the most important ac bridges, is used 

extensively for the measurement of capacitors. Although the Schering bridge is 

used for capacitance measurements in a general sense, it is particularly useful 

for measuring insulating properties, i.e., for phase angles very nearly 90°. 

The basic circuit arrangement is shown in Fig. 5-14, and inspection of 

the circuit shows a strong resemblance to the comparison bridge. Notice that 

arm 1 now contains a parallel combination of a resistor and a capacitor, and the 

standard arm contains only a capacitor. The standard capacitor is usually high-

quality mica capacitor for general measurement work or an air capacitor for 

insulation measurements. A good-quality mica capacitor has very low losses 

(no resistance) and therefore a phase angle of approximately 900. An air 

capacitor, when designed carefully, has a very stable value and a very small 

electric field; the insulating material to be tested can easily be kept out of any 

strong fields. 

The balance conditions require that the sum of the phase angles of arms 

1 and 4 equals the sum of the phase angles of arms 2 and 3. Since the standard- 

capacitor is in arm 3, the sum of the phase angles of arm 2 and arm 3 will be 0
o 

+ 90° = 90°. In order to obtain the 90°-phase angle needed for balance, the sum 

of the angles of arm 1 and arm 4 must equal 90°. Since in general measurement 

work the unknown Will have a phase angle smaller than 90°, it is necessary to 

give arm 1 a small capacitive angle by connecting capacitor C1 in parallel with 



resistor R1. A small capacitive angle is very easy to obtain, requiring a small 

capacitor across resistor R1. 

The balance equations are derived in the usual manner, and by 

substituting the corresponding impedance and admittance values in the general 

equation, we obtain. 

 Zx Z2Z3Y1 

or 

 Rx - 

















 
 1

13

2

1
Cj

RC

j
R

C

j

x




 

 

and expanding 

 Rx - 
13

2

3

12

RC

jR

C

CR

C

j

x 
     (5-40) 

Equating the real terms and the imaginary terms, we find that 

 Rx = R2 
3

1

C

C
      (5-41) 



 Cx = C3 
2

1

R

R
      (5-42) 

As can be seen from the circuit diagram of Fig. 5-13. the, two variables chosen 

for the balance adjustment are capacitor C1 and resistor R2. There seems to be 

nothing unusual about the balance equations or the choice of variable 

components, but consider for a moment how the quality of a capacitor is 

defined. 

The power factor (PF) of a series RC combination is defined as the 

cosine of the phase angle of the circuit. Therefore the PF of the unknown 

equals PF = Rx/Zx. For phase angles very close to 90
o
, the reactance is almost 

equal to the impedance and we can approximate the power factor to 

PF = xx

x

x RC
X

R
      (5-43) 

The dissipation factor of a series RC circuit is defined as the cotangent of the 

phase angle and therefore, by definition, the dissipation factor 

D = xx

x

x RC
X

R
      (5-44) 

Incidentally, since the quality of a coil is defined by Q = XL/RL, we find that the 

dissipation factor, D, is the reciprocal of the quality factor, Q, and therefore D 

= 1/Q. The dissipation factor tells us something about the quality of a 

capacitor; i.e., how close the phase angle of the-capacitor is to the ideal value 



of 90°. By substituting the value of Cx, in Eq. (5-42) and of Rx in Eq. (5-41) 

into the expression for the dissipation factor, we obtain 

D = 11CR        (5-45) 

If resistor R1 in the Schering bridge of Fig. 5-14 has a fixed value, the dial of 

capacitor C1 may be calibrated directly in dissipation factor D. This is the usual 

practice in a Schering bridge. Notice that the term u appears in the expression 

for the dissipation factor [Eq. (5-45)]. This means, of course, that the 

calibration of the C1 dial holds for only one particular frequency at which the 

dial is calibrated. A different frequency can be used, provided that a correction 

is made by multiplying the C1 dial reading by the ratio of the two frequencies. 

Figure 5-15 shows a modern automatic bridge. 

 

5-9 UNBALANCE CONDITIONS 



It sometimes happens that an ac bridge cannot be balanced at all simply 

because one of the stated balance conditions (Sec. 5-5) cannot he met. Consider 

for example. the circuit of Fig. 5-16, where Z1 and Z4 are inductive elements 

(positive phase angles), Z2 is a pure capacitance (-90
o
 phase angle), and Z3 is a 

variable resistance (zero phase angle). The resistance of R3 needed to obtain 

bridge balance can be determined by applying the first balance condition 

(magnitudes) and 

 

we find that 

 R3 = Ω300
400

600x200

Z

ZZ

2

41   

Hence adjusting R3 to a value of 300   will satisfy the first condition, 

Considering the second balance condition (phase angles) yields the 

following 

situation: 

 
ooo

32

ooo

41

90090θθ

903060θθ




 



Obviously, ,3241    and the second condition is not satisified. In this 

case, bridge balance cannot be obtained. 

An interesting illustration of a bridge balancing problem is given in 

Example 5-5, where minor adjustments to one or more of the bridge arms result 

in a situation where balance can be obtained. 

 

 

 

EXAMPLE 5-5 

 



 

Substituting the known values and solving for R1, we obtain 

 
1,000x500

j500100

1,000R

1

1




j
 

and 

It should he noted that the addition of R1 upsets the first balance condition of 

the circuit (the magnitude of Z1 has changed) and variable resistor R3 should be 

adjusted to compensate for this effect. 



The second option is to modify the phase angle of arm 2 or arm 3 by adding a 

series capacitor, as shown in Fig. 5-17(c). Again writing the general balance 

equation, using impedances this time, we obtain  

 Z3 = 
2

41

Z

ZZ
 

Substituting the component values and solving for X yields 

 1,000 – jXc = 
500

)500100(000,1 jj
 

or 

 Xc = 200  

In this case, also, the magnitude of Z3 has increased so that the first balance 

condition has changed. A small readjustment of R1 is necessary LO restore 

balance. 

5-10 WIEN BRIDGE 

The Wien bridge is presented here not only for its use as an ac bridge to 

measure frequency, but also for its application in various other useful circuits. 

We find, for example, a Wien bridge in the harmonic distortion analyzer, where 

it is used as a notch filter, discriminating against one specific frequency. The 

Wien bridge also finds application in audio- and HF oscillators as the 

frequency-determining element. in this chapter, however, the Wien bridge is 



discussed in its basic form, designed to measure frequency; in other chapters it 

is shown as an element of different types of instrument. 

The Wien bridge has a series RC combination in one arm and a parallel 

RC combination in the adjoining arm (see Fig. 5-18). The impedance of arm 1 

is Z1 =R1 – j/ 1C . The admittance of arm 3 is Y3 = 1/R3 + j/ 3C . Using the 

basic equation for bridge balance and substituting the appropriate values, we 

obtain 

 R2 


















 3

3

4

1

1

1
Cj

R
R

C

j
R 


    (5-46) 

Expanding this expression, we get 

 R2 = 
`1

34

31

4
413

3

41

C

CR

RC

jR
RRCj

R

RR



    (5-47) 

Equating the real terms, we obtain 

 R2 = 
3

41

R

RR
+ 

1

34

C

CR
      (5-48) 

which reduces to 

 
1

3

3

1

4

2

C

C

R

R

R

R
        (5-49) 



 

Equating the imaginary terms, we obtain 

 
31

4
413

RC

R
RRC


       (5-50) 

where   = 2 f, and solving for f, we get 

 f = 
31312

1

RRCC
     (5-51) 

Notice that, the two conditions for bridge balance now result in an 

expression determining the required resistance ratio, R2/R4, and another 

expression determining the frequency of the applied voltage, in other words, if 

we satisfy Eq. (5-49), and also excite the bridge with a frequency described by 

Eq. (5-51), the bridge will be in balance.  

In most Wien bridge circuits, the components are chosen such that R1 = 

R3 and C1 = C3. This reduces Eq. (5-49) to R2/R4 = 2 and Eq. (5-51) to 

 f = 
RC2

1
     (5-52) 



which is the general expression for the frequency of the Wien bridge. In 

a practical bridge, capacitors C1 and C3 are fixed capacitors, and resistors R1 

and R3 are variable resistors controlled by a common shaft. Provided now that 

R2 = 2R4, the bridge may be used as a frequency-determining device balanced 

by a single control. This control may be calibrated directly in terms of 

frequency. 

Because of its frequency sensitivity, the Wien bridge may be difficult to 

balance (unless the waveform of the applied voltage is purely sinusoidal). Since 

the bridge is not balanced for any harmonics present in the applied voltage, 

these harmonics will sometimes produce an output voltage masking the true 

balance point. 

5.11 WAGNER GROUND CONNECTION 

The- discussion so far has assumed that the four bridge arms consist of 

simple lumped impedances which do not interact in any way. In practice, 

however, stray capacitances exist between the various bridge elements and 

ground, and also 

 



 

between the bridge arms themselves. These stray capacitances shunt the bridge 

arms and cause measurement errors, particularly at the higher frequencies or 

when small capacitors or large inductors are measured. One way to control 

stray capacitances is by shielding the arms and connecting the shields to 

ground. This does not eliminate the capacitances but at least makes them 

constant in value, and they can therefore b compensated. 

One of the most widely used methods for eliminating some of the effects 

of capacitance in a bridge circuit is the Wagner ground connection. This circuit 

eliminates the troublesome capacitance which exists between the detector 

terminals and ground. Figure 5-19(a) shows the circuit of a capacitance bridge. 

where C1 and C2 represent these stray capacitances. The oscillator is removed 

from its usual ground connection and bridged by a series combination of 



resistor Rw and capacitor Cw. The junction of Rw and Cw is grounded and is 

called the Wagner ground connection. The procedure for initial adjustment of 

the bridge is as follows: The detector is connected to point 1, and R1 is adjusted 

for null or minimum sound in the headphones. The switch is then thrown to 

position 2, which connects the detector to the Wagner ground point. Resistor 

Rw, is now‘ adjusted for minimum sound. When the switch is thrown to 

position 1 again. some unbalance will probably be shown. Resistors R1 and R3 

are then adjusted for minimum detector response, and the switch is again 

thrown to position 2. A few adjustments of Rw and R1 (and R3) may be 

necessary before a null is reached on both switch positions. When null is finally 

obtained, points 1 and 2 are at the same potential, and this is ground potential. 

Stray capacitances C1 and C2 are then effectively shorted out and have no effect 

on normal bridge balance. There are also capacitances from points C and D to 

ground, but the addition of the Wagner ground point eliminates them from the 

detector circuit, since current through these capacitances will enter through the 

Wagner ground connection. 

The capacitances across the bridge arms arc not eliminated by the 

Wagner ground connection and they will still affect the accuracy of the 

measurement. The idea of the Wagner ground can also be applied to other 

bridges, as long as care is taken that the grounding arms duplicate the 

impedance of one pair of bridge arms across which they are connected. Since 

the addition of the Wagner ground connection does not affect the balance 

conditions, the procedure for measurement remains unaltered. 
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PROBLEMS 

5-1. The standard resistor arm of the bridge shown in Fig. P5-l has a range 

from 0 to 100  with a resolution of 0.001 . The galvanometer has an 

internal resistance of 100  and can be read to 0.5 .A  When the 

unknown resistance is 500, what is the resolution of the bridge in both 

ohms and per cent of the unknown? 



 

5-2. The ratio arms of the Kelvin bridge of Fig. 5-5 are 100   each. The 

galvanometer has an internal resistance of 500   and a current sensitivity of 

200 mm/  A. The unknown resistance Rx 0.1002   and the standard resistance 

is set at 0.1000  . A dc current of 10 A is passed through the standard and the 

unknown from a 2.2-V battery in series with a rheostat. The resistance of the 

yoke may be neglected. Calculate (a) the deflection of the galvanometer, and 

(b) the resistance unbalance required to produce a galvanometer deflection of 1 

mm. 

5-3. The ratio arms of a Kelvin bridge are 1,00011 each. The galvanometer 

has an internal resistance of 100   and a current sensitivity of 500 mm/  A. A 

dc current of 10 A is passed through the standard arm and the unknown from a 

2.2-V battery in series with a rheostat. The standard resistance is set at 0.1000 

  and the galvanometer deflection is 30 mm. Neglecting the resistance of the 

yoke, determine the value of the unknown.  

5-4. A balanced ac bridge has the following constants: arm AB, R = 2,000   

in parallel with C = 0.047  F; arm BC, R = 1,000  in series with C = 0.47 



 F; arm CD, unknown; arm DA, C = 0.5  F. The frequency of the oscillator 

is 1,000 Hz. Find the constants of arm CD. 

5-5. A bridge is balanced at 1,000 Hz and has the following constants: AB, 

0.2  F pure capacitance; BC, 500  pure resistance; CD, unknown; DA, R = 

300  in parallel with C = 0.1  F. Find the R and C or L constants of arm CD, 

considered as a series circuit. 

5-6. A 1,000-Hz bridge has the following constants: arm AB, R = 1,000  in 

parallel with C = 0.5  F; BC, R = 1,000  in series with C= 0.5  F; CD, L = 

30 mH in series with R = 200 . Find the constants of arm DA to balance the 

bridge. Express the result as a pure R in series with a pure C or L and also a 

pure R in parallel with a pure C or L. 

5-7. An ac bridge has in arm AB a pure capacitance of 0.2  F; in arm BC, a 

pure resistance of 500  : in arm CD, a series combination of R = 50  and L = 

0.1 H. Arm DA consists of a capacitor C = 0.4  F in series with a variable 

resistor Rs. w = 5,000 rad/s. (a) Find the value of Rs to obtain bridge balance. 

(b) Can complete balance be attained by the adjustment of Rs? If not, specify 

the position and value of an adjustable resistance to complete the balance. 

5-8. An ac bridge has the following constants: arm AB, R = 1,000  in 

parallel with C = 0.159  F; BC, R = 1,000 ; CD, R = 500 ; DA, C = 0.636 

 F in series with an unknown resistance. Find the frequency for which this 



bridge is in balance and deter mine the value of the resistance in arm DA to 

produce this balance. 



Electronic Instruments for Measuring Basic Parameters 

6-1 INTRODUCTION 

The measuring instruments discussed in the previous chapters used the 

movement of an electromagnetic meter to measure voltage, current, resistance, 

power, etc. Although the bridges and multimeters used electrical components 

for these measurements, the instruments described used no amplifiers to 

increase the sensitivity of the measurements. The heart of these instruments 

was the d‘Arsonval meter, which typically cannot be constructed with a full-

scale sensitivity of less than about 50  A. Any measurement system using the 

d‘Arsonval meter, without amplifiers, must obtain at least 50  A from the 

circuit under test for a full-scale deflection. For the measurement of currents of 

less than 50 MA full scale, an amplifier must be employed. The resistance of a 

(very) sensitive meter, such as a 50- A meter for a volt-ohm-milliammeter, is 

on the order of a few hundred ohms and represents a small but finite amount of 

power. As an example, 50  A through a 200-  meter represents microwatt 

( W). This represents the power required for the meter for full-scale 

deflection and does not represent the power dissipated in the series resistor, and 

thus the total power required by the example meter would be greater than k 

MW and would depend on the voltage range. This doesn‘t sound like much 

power, but many electronic circuits cannot tolerate this much power being 

drained from them: Consider, also, the voltage across a 200- , 50- 



 A meter at full scale, which, by Ohm‘s law, is 10 my. The most sensitive 

voltmeter that could be constructed from the 50-  A meter, without an 

amplifier, would be 10 mV full scale. The schematic of this sensitive meter 

would have no external resistor but only the internal resistance of the meter 

itself. 

As shown above, an amplifier is required to increase the current 

sensitivity below 50  A, the voltage below 10 my, and the power required 

below 
2

1
  W. For the case of ac measurements, the amplifier is even more 

necessary for sensitive measurements. 

In addition to instruments for making measurements of small currents 

and voltages, included in this chapter are electronic instruments for measuring 

other parameters, such as resistance, inductance, and capacitance. - 

6-2 AMPLIFIED DC METER 

A simple amplified voltmeter is shown in Fig. 6-1. This meter decreases 

the amount of power drawn from a circuit under test by increasing the input 

impedance using an amplifier with unity gain. A source follower drives an 

emitter follower. This combination is capable of a thousand-fold or more 

increase in impedance, while maintaining a voltage gain of very nearly one. 

The input impedance of this meter is 10 M , which would require 0.025  W 

of power for a 0.5-V deflection, as compared to 25 MW for an unamplified 

meter, an increase in sensitivity of 100 times. 



Because the emitter follower must have some bias current present, the 

emitter voltage does not go to zero volts with zero input voltage. Thus the 

meter must be returned not to ground, but to a voltage that can be set to be 

equal to the quiescent point of the emitter-follower output. This tends to vary 

somewhat with temperature, and in many practical meters this is made 

adjustable from the front 

 

 



panel of the meter. Because the setting of the Zero control affects the total 

resistance in series with the meter, a Cal (calibrate) control is also supplied. 

This control is not necessary for amplified meters using a differential amplifier 

because there is no interaction between the zero adjustment and the calibration 

of the meter. 

A block diagram of a meter capable of measuring small voltages and 

currents is shown in Fig. 6-2. The input voltage is amplified and applied to a 

meter. If the amplifier has a gain of 10, the sensitivity of the measurement is 

increased by a like amount. A dc-coupled amplifier, that is, an amplifier with 

no coupling capacitors and having a well-controlled dc gain, is used to provide 

the necessary amplification. An amplifier capable of a fixed dc gain of 10 is not 

difficult to construct and to keep stable. A simple op-amp plus the required 

feedback components will do a suitable job for this application. 

De gains of much more than 10 are required to use a standard 

d‘Arsonval meter movement to measure very small currents and voltages such 

as microvolt and nanoamperes. To amplify nanoamperes to drive a milliampere 

meter requires a gain of 10
6
. In theory, this requires an op-amp and two 

resistors, and a simple circuit. However, when gains this large are desired, all 

the defects of an operational amplifier become significant. Offset current, offset 

voltage, and bias currents become so troublesome that it is practically 

impossible to achieve acceptable performance with a standard op-amp. Many 

of these defects can be reduced or eliminated by the use of trim adjustments 



accessible from the front panel in a similar fashion as the Cal and Zero 

functions discussed above. However, temperature- and time-induced drifts 

would soon render the amplifier unusable, and the adjustment would have to be 

repeated. Direct-coupled amplifiers that have been optimized for low-

temperature drift and low offset and bias currents are called instrumentation 

amplifiers and are manufactured by semiconductor suppliers. 

6-2.1 Chopper-Stabilized 

One technique for amplifying direct currents and relatively low-

frequency alternating currents is the chopper-stabilized. This circuit eliminates 

the effects of dc offset currents of other dc parameters by using an ac coupled 

amplifier for the necessary gain. The technique, as shown in Fig. 6-3, is to 

convert the input signal to an ac signal and, after high-gain amplification, 

reconstruct the dc from the amplified ac sigmal. 

The input signal is converted to an ac signal by chopping, which simply 

involves switching the input of an amplifier between the input and ground with 

an electronic switch or an electromechanical chopper, which is similar to a 

relay. The output of the chopper is an ac signal with a peak value equal to the 

input dc voltage. Because the chopped input has a negative peak of zero and a 

positive peak of the input voltage, the resulting ac waveform has a dc 

component of approximately one-half of the input dc voltage. The actual dc 

component of the chopped waveform is not important, as this will be fed to an 

ac-coupled amplifier where the dc component will be lost. 



The amplified signal is chopped in a similar fashion as the input and in 

synchronism with the input chopper. The synchronized chopping restores the 

dc value of the input signal amplified by the ac gain of the amplifier. Because 

the amplifier did not provide any dc gain, the effects of dc offset voltages and 

currents are eliminated. 

Enormous gains can be achieved in this fashion, and the chopper-

stabilized amplifier can provide gains of more than 106 with excellent dc 

stability. All this does not come without problems. First, when dealing with 

very small currents and voltages, unusual problems can occur. One significant 

problem is with the chopper. This device must be specially made to avoid 

generating voltages from 

 



 

thermocouple effects. When two dissimilar metals are joined, depending on the 

temperature, small voltages can be generated. The chopper is specially made to 

reduce these thermally generated voltages. 

The electromechanical chopper, being a mechanical device, has a 

relatively short life span when compared to other electronic devices. Various 

types of all electronic choppers have been devised to replace the venerable 

mechanical chopper. The most important characteristic of the chopper is that it 

must not inject any current into the circuit being chopped, especially for the 

input chopper. Bipolar transistors, light-activated devices, and field effect 

transistors have been used for choppers with the. MOS field effect transistor 

being the most successful. Because the MOS transistor has no junction as a 

source of leakage current, very little current is transmitted from the chopping 

signal to the input. Figure 6-4 shows a series-shunt chopper using two MOS 

field effect transistors. The chopping signal is fed to the inverter, which drives 

the two chopper FETs, one on each half of the chopping cycle. 



The input impedance of the chopper-stabilized amplifier is very high for 

direct current. Looking into the chopper-stabilized amplifier, the series chopper 

switches the input to the ac-coupled amplifier every half-cycle; however, 

because the amplifier is ac coupled, it appears as an infinite resistance to direct 

current. The series chopper switch is always open before the shunt switch is 

closed, and thus there is no path to ground. 

6-3 AC VOLTMETER USING RECTIFIERS 

Electronic ac voltmeters are basically identical to dc voltmeters except 

that the ac input voltage must be rectified before it can be applied to the dc 

meter circuit. In some instances, rectification takes place before amplification, 

in which case a simple diode rectifier circuit precedes the, amplifier and meter, 

as in Fig. 6-5(a). 



 

This approach ideally requires a de amplifier with zero drift characteristics and 

unity voltage gain, and a dc meter movement with adequate sensitivity. 

In another approach the ac signal is rectified after amplification, as in 

Fig. 6-5(b) where full-wave rectification takes place in the meter circuit 

connected to the output terminals of the ac amplifier. This approach generally 

requires an ac amplifier with high open-loop gain and large amounts of 

negative feedback to overcome the nonlinearity of the rectifier diodes. 

Ac voltmeters are usually of the average-responding type, with the meter 

scale calibrated in terms of the rms value of a sine wave. Since so many wave 

forms in electronics are sinusoidal, this is an entirely satisfactory solution and 

certainly much less expensive than a true rms-responding voltmeter. No 



sinusoidal waveforms, however, will cause this type of meter to read high or 

low, depending on the form factor of the waveform. 

A few basic rectifier circuits are shown in Fig. 6-6. The series-connected diode 

of Fig. 6-6(a) provides half-wave rectification, and the average value of the 

half-wave voltage is developed across the resistor and applied to the input 

terminals of the dc amplifier. Full-wave rectification can be obtained by the 

bridge circuit of Fig. 6-6(b), where the average value of the sine wave is 

applied to the amplifier and meter circuit. In some cases, there may be a 

requirement to mea- sure the peak value of a waveform instead of the average 

value; the circuit of Fig. 6-6(c) may then be used. In this circuit the rectifier 

diode charges the small 

 



capacitor to the peak of the applied input voltage and the meter will therefore 

indicate the peak voltage. In most cases, the meter scale is calibrated in terms 

of both the rms and peak values of the sinusoidal input waveform. 

The rms value of a voltage wave that has equal positive and negative 

excursions is related to the average value by the form factor. The form factor, 

as the ratio of the rms value of the average value of this waveform, for a 

sinusoid can be expressed as 
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Therefore when an average-responding voltmeter has scale markings 

corresponding to the rms value of the applied sinusoidal input waveform, those 

markings are actually corrected by a factor of 1.11 from the true (avenge) value 

of applied voltage. 

Nonsinusoidal waveforms, when applied to this voltmeter, will cause the 

meter to read either high or low, depending on the form factor of the waveform. 

An illustration of the effect of nonsinusoidal waveforms on ac voltmeter is 

given in Examples 6-1 and 6-2. 

EXAMPLE 6-1 



 

 

 

EXAMPLE 6-2 



 

 

6-4 TRUE RMS-RESPONDING VOLTMETER 

Complex waveforms are most accurately measured with an rms-

responding voltmeter. This instrument produces a meter indication by sensing 

waveform heating power, which is proportional to the square of the rms value 

of the voltage. This heating power can be measured by feeding an amplified 

version of the input waveform to the heater element of a thermocouple whose 

output voltage is then proportional to E 2

rms  

One difficulty with this technique is that the thermocouple is often 

nonlinear in its behavior. This difficulty is overcome in some instruments by 

placing two thermocouples in the same thermal environment, as shown in the 



block diagram of the true rms-responding voltmeter of Fig. 6-8. The effect of 

the nonlinear behav 

 

ior of the couple in the input circuit (the measuring thermocouple) is canceled 

by similar nonlinear effects of the couple in the feedback circuit (the balancing 

thermocouple). The two couple elements form part of a bridge in the input 

circuit of a dc amplifier. The unknown ac input voltage is amplified and 

applied to the heating element of the measuring thermocouple. The application 

of heat produces an output voltage that upsets the balance of the bridge. The 

unbalance voltage amplified by the dc amplifier and fed back to the heating 

element of the balancing thermocouple. Bridge balance will be reestablished 

when the feedback current delivers sufficient heat to the balancing 

thermocouple, so that the voltage outputs of both couples are the same. At this 

point the dc current in the heating clement of the feedback couple is equal to 

the ac current in the input couple. This dc current is therefore directly 

proportional to the effective, or rms, value of the input voltage and is indicated 



on the meter movement in the output circuit of the dc amplifier. The true rms 

value is measured independently of the waveform of the ac signal, provided 

that the peak excursions of the waveform do not exceed the dynamic range of 

the ac amplifier, A Lypical laboratory-type rms-responding voltmeter provides 

accurate rms readings of complex waveforms having a crest factor (ratio of 

peak value to rms value) of 1011. At 10 per cent of full-scale meter deflection, 

where there is less chance of amplifier saturation, waveforms with crest factors 

as high as 100/1 could be accommodated. Voltages throughout a range of 100 

 V to 300 V within a frequency range of 10 Hz to 10 MHz may be measured 

with most good instruments. 

6-5 ELECTRONIC MULTIMETER 

6.5.1 Basic Circuit 

One of the most versatile general-purpose shop instruments capable of 

measuring dc and ac voltages as well as current and resistance is the solid. state 

electronic multi meter or VOM. Although circuit details will vary from one 

instruments to the next, au electronic multimeter generally contains the 

following elements: 

(a) Balanced-bridge tic amplifier and indicating meter 

(b) Xnput attenuator or RANGE switch, to limit the magnitude of the input 

voltage to the desired value 



(c) Rectifier section. to convert an ac input voltage to a proportional dc value  

(d) Internal battery and additional circuitry, to provide the capability of               

resistance measurement 

(e) FUNCTION switch, to select the various measurement functions of the 

instrument  

Inaddition, the instrument generally has a built-in power supply for ac 

line operation and, in most cases, one or more batteries for operation as a 

portable test instrument. 

Figure 6-9 shows the schematic diagram of a balanced-bridge dc 

amplifier using field effect transistors or FETs. This circuit also applies to a 

bridge amplifier with ordinary bipolar transistors or BJTs. The circuit shown 

here consists of FETs which sould be reasonably well matched for current gain 

to ensure thermal stability of the circuit. The two FETs form the upper arms of 

a bridge circuit. Source resistors R1 and R2, together with ZERO adjust resistor 

R3, form the lower bridge arms. The meter movement is connected between the 

source terminals of the FETs, representing two opposite corners of the bridge. 

Without an input signal, the gate terminals of the FETs are at ground 

potential and the transistors operate under identical quiescent conditions. In this 

case, the bridge is balanced and the meter indication is zero. In practice, 

however, small differences in the operating characteristics of the transistors, 

and slight tolerance differences in the various resistors, cause a certain amount 



of unbalance in the drain currents, and the meter shows a small deflection from 

zero. To return the meter to zero, the circuit is balanced by ZERO adjust 

control R3 for a true null indication. 

When a positive voltage is applied to the gate of input transistor Q1, its 

drain current increases which causes the voltage at the source terminal to rise. 

The resulting unbalance between the Q1 and Q2 source voltages is indicated by 

the meter movement, whose scale is calibrated to agree with the magnitude of 

the applied input voltage. 

The maximum voltage that can be applied to the gate of Q1 is determined by 

the operating range of FET and is usually on the order of a few volts. The range 

of input voltages can easily be extended by an input attenuator or RANGE 

switch, as shown in Fig. 6-10. The unknown dc input voltage is applied through 

a large resistor in the probe body to a resistive voltage divider. Thus, with the 

RANGE switch in the 3-V position as shown, the voltage at the gate of the 

input FET is 



 

 

developed across 8 M  of the total resistance of 11.3 M  and the circuit is so 

arranged that the meter deflects full scale with 3 V applied to the tip of the 

probe. With the RANGE switch in the 12-V position, the gate voltage is 



developed across 2 M  of the total divider resistance of 11.3 M  and an 

input voltage of 12 V is required to cause the same full-scale meter deflection. 

6-5.2 Resistance Ranges 

When the function switch of the multimeter is placed in the OHMS 

position, the unknown resistor is connected in series with an internal battery, 

and the meter simply measures the voltage drop across the unknown. A typical 

circuit is shown in Fig. 6-11, where a separate divider network, used only for 

resistance measurements, provides for a number of different resistance ranges. 

When unknown resistor Rx is connected to the OHMS terminals of the 

multimeter, the 1.5-V battery supplies current through one of the range 

resistors and the unknown resistor to ground. Voltage drop Vx and Rx is applied 

to the input of the bridge amplifier and causes a deflection on the meter. Since 

the voltage drop across Rx is directly proportional to its resistance, the meter 

scale can be calibrated in terms or resistance. 

Note chat the resistance scale of the multimeter reads increasing 

resistance from left to right, opposite to the way resistance scales read on 

conventional multimeters (Sec. 4-9). This can be expected because the 

electronic multimeter 



 

reads a larger resistance as a higher voltage, whereas the ordinary multimeter 

indicates a higher resistance as a smaller current. 



6-5.3 Commercial Multimeter 

The simplified metering circuit of a commercial solid-state VOM is 

given in Fig. 6-12. The dc voltage from the input voltage divider (Fig. 6-9) is 

applied to the 

 

 



bases of bridge preamplifier transistors Q3 and Q4. These emitter followers pro- 

vide nearly infinite input impedence and therefore present a minimum load to 

the high-resistance input voltage divider. Preamplifier transistors Q3 and Q4, 

drive the bases of bridge amplifier transistors Q1 and Q2, respectively. The 

input impedances of Q1 and Q2 are very high because of their unbypassed 

emitter resistors, which prevent loading of the Q3 and Q4. emitters. The output 

voltage of the bridge amplifier is indicated on the 200-  A meter, connected 

between the collectors of Q1 and Q2. The front-panel ZERO control balances 

the meter amplifier output with zero input signal. Internal adjustments allow for 

meter calibration with two accurate test voltages of 0.5 V and 1.5 V, 

respectively. Also note that bypass capacitors C1 and C2 prevent ac signals 

from reaching the amplifier and affecting the meter reading. 

Ac voltages being measured are applied to a full-wave peak-to-peak 

rectifier that charges a capacitor to the peak-to-peak value of the ac signal. A 

circuit of this type is also known as a voltage doubler and is shown in Fig. 6-

13. The rectified ac voltage is then fed to the amplifier through the regular 

RANGE voltage divider. 

When resistance is being measured, 1.5 V dc is applied to the unknown 

resistor through one of the resistance range resistors, as shown in Fig. 6-11. 

The known and the unknown resistances form a voltage divider whose output is 

fed to the amplifier and read on the meter in terms of resistance. 

6-6 CONSIDERATIONS IN CHOOSING AN ANALOG 



VOLTMETER 

The most appropriate instrument for a particular voltage measurement 

depends on the performance required in a given situation. Some important 

considerations in choosing a voltmeter are summarized below. 

6-6. 1 Input Impedance 

To avoid loading effects, the input resistance or impedance of the voltmeter 

should be at least a-n order of magnitude higher than the impedance of the 

circuit under measurement. For example, when a voltmeter with a 10-M  

input resistance is used to measure the voltage across a 100-k  reads a larger 

resistance as a higher voltage, whereas the ordinary multimeter indicates a 

higher resistance as a smaller current. resistor, the circuit is hardly disturbed 

and the loading effect of the meter on the circuit is negligible. The same meter 

placed across a 10-M  resistor, however, seriously loads the circuit and 

causes an error in -measurement of approximately 50 per cent. 

The input impedance of the voltmeter is a function of the inevitable 

shunt capacitance across the input terminals. The loading effect of the meter is 

particularly noticeable at the higher frequencies, when the input shunt 

capacitance greatly reduces the input impedance. 

In some applications, a passive voltage-divider probe can be used to 

reduce the input capacitance at the point of measurement at the sacrifice of 



perhaps 20 dB of sensitivity. With such a probe, measurements can be easily 

made at random points without disturbing the circuit under test. 

6-6.2 Voltage Ranges 

The voltage ranges on the meter scale may be in the 1-3-10 sequence 

with 10dB of separation, or in the 1.5-5-15 sequence, or in a single scale 

calibrated in decibels. In any case, the scale divisions should be compatible 

with the accuracy of the instrument. For example, a linear meter with a 1 per 

cent full-scale accuracy should have 100 divisions on the 1.0-V scale so that 1 

per cent can be easily resolved. An instrument with an accuracy of 1 per cent or 

less should also have a mirror-backed scale to reduce parallax and improve 

accuracy. 

6-6.3 Decibels 

Use of the decibel scale can be very effective in measurements that 

cover a wide range of voltages. A measurement of this kind is found, for 

example, in the frequency response curve of an amplifier or a filter, where the 

output voltage is measured as a function of the frequency of the applied input 

voltage Almost all voltmeters with dB scales are calibrated in dBm, referenced 

to some particular impedance. The 0-dBm reference for a 600-  system is 

0.7746 V; for a 50-  system it is 0.2236 V. In many applications only a 0-dB 

reference is needed. In this case, 0 dBv (relative to 1 V) can be used for any 

impedance system. 



6-6.4 Sensitivity Versus Bandwidth 

Noise is a function of bandwidth. A voltmeter with a broad bandwidth 

will pick up and generate more noise than one operating over a narrow range of 

frequencies. In general, an instrument with a bandwidth of 10 Hz to 10 MHz 

has a sensitivity of 1 mV. A voltmeter whose bandwidth extends only to 5 

MHz could have a sensitivity of 100  V. 

6-6.5 Battery Operation 

For field work, a voltmeter powered by an internal battery is essential. If 

an area contains troublesome groundloops, a battery-powered instrument is 

preferred over a mains-powered voltmeter to remove the groundpaths. 

6-6.6 AC Current Measurements 

Current measurements can be made by a sensitive ac voltmeter and a 

series resistance. In the usual case, however, an ac current probe is used which 

enables the operator to measure an ac current without disturbing the circuit 

under test. The current probe simply clips around the wire carrying the 

unknown current and in effect makes the wire the one-turn primary of a 

transformer formed by a ferrite core and a many-turn secondary within the 

current-probe body. The signal induced in the secondary winding is amplified 

and the output voltage of the amplifier is applied to a suitable ac voltmeter for 

measurement. Normally, the amplifier is designed so that 1 mA in the wire 



being measured produces I mV at the amplifier output. The current is then read 

directly on the voltmeter, using the same scale as for voltage measurements. 

In summarizing the preceding considerations, the following general 

guidelines can be stated: 

(a) For measurements involving dc applications, select the meter with the 

broadest capability meeting the circuit‘s requirements. 

(b) For ac measurements involving sine waves with only modest amounts of 

distortion (<10 per cent), the average-responding voltmeter provides the 

best accuracy and most sensitivity per dollar investment. 

(c) For high-frequency measurements (>10 MHz), the peak-responding 

voltmeter with a diode-probe input is the most economical choice. Peak-

responding circuits are acceptable if the inaccuracies caused by 

distortion in the input waveform can be tolerated. 

(d) For measurements where it is important to determine the effective power 

of waveforms which depart from the true sinusoidal form, the rms-

responding voltmeter is the appropriate choice. 

6-7 DIGITAL VOLTMETERS 

6-7.1 General Characteristics 

The digital voltmeter (DVM) displays measurements of dc or ac 

voltages as discrete numerals instead of a pointer deflection on a continuous 



scale as in analog devices. Numerical readout is advantageous in many 

applications because it reduces human reading and interpolation errors, 

eliminates parallax error, increases reading speed, and often provides outputs in 

digital form suitable for further processing or recording. 

The DVM is a versatile and accurate instrument that can be used in 

many laboratory measurement applications. Since the development and 

perfection of integrated circuit (IC) modules, the size, power requirements, and 

cost of the  

>>>>>>>>>>>>>>> 

DVM have been drastically reduced so that DVMs can actively compete with 

conventional analog instruments, both in portability and price. 

 The DVM‘s outstanding qualities can best be illustrated by quoting• 

some typical operating and performance characteristics. The following 

specifications do not all apply to one particular instrument, but they do 

represent valid information on the present state of the art: 

a. Input range: from ± 1.000000 V to ± 1,000.000 V, with automatic range 

selection and overload indication 

b. Absolute accuracy: as high as ± 0.005 percent of the reading 

c. Stability: short-term. 0.002 percent of the reading for a 24-hr period; long 

term, 0.008 percent of the reading for a 6-month period. 

d. Resolution: 1 part in l0
6
 (1 μV can be read on the 1-V input range) 



e. Input characteristics: input resistance typically 10 MΩ; input capacitance 

typically 40 pF 

f. Calibration: internal calibration standard allows calibration independent of 

the measuring circuit; derived from stabilized reference source 

g. Output signals: print command allows output to printer; BCD (binary-

coded-decimal) output for digital processing or recording. 

 Optional features may include additional circuitry to measure current, 

resistance, and voltage ratios. Other physical variables may be measured by 

using suitable transducers. 

Digital voltmeters can be classified according to the following broad 

categories: 

a. Ramp-type DVM 

b. Integrating DVM 

c. Continuous-balance DVM 

d. Successive-approximation DVM 

6-7.2 Ramp-Type DVM 

 The operating principle of the ramp-type DVM is based on the 

measurement of the time it takes for a linear ramp voltage to rise from 0 V to 

the level of the input voltage, or to decrease from the level of the input voltage 

to zero. This time interval is measured with an electronic time-interval counter, 

and the count is displayed as a number of digits on electronic indicating tubes. 



 Conversion from a voltage to a time interval is illustrated by the 

waveform diagram of Fig. 6-14. At the start of the measurement cycle, a ramp 

voltage is initiated; this voltage can be positive-going or negative-going. The 

negative-going ramp, shown in Fig. 6-1,4, is continuously compared with the 

unknown input voltage. At the instant that the ramp voltage equals the 

unknown voltage, a 

 

coincidence circuit, or comparator, generates a pulse which opens a gate. This 

gate is shown in the block diagram of Fig. 6-15. The ramp voltage continues to 

decrease with time until it finally reaches 0 V (or ground potential) and a 

second comparator generates an output pulse which closes the gate. 

 An oscillator generates clock pulses which are allowed to pass through 

the gate to a number of decade counting units (DCUs) which totalize the 

number of pulses passed through the gate. The decimal number, displayed by 

the indicator tubes associated with the DCUs, is a measure of the magnitude of 

the input voltage. 



 The sample-rate multivibrator determines the rate at which the 

measurement cycles are initiated. The oscillation of this multivibrator can 

usually be adjusted by a front-panel control, marked rate, from a few cycles per 

second to as high as 

 

1,000 or more. The sample-rate circuit provides an initiating pulse for the ramp 

generator to start its next ramp voltage. At the same time, a reset pulse is 

generated which returns all the DCUs to their 0 state, removing the display 

momentarily from the indicator tubes. 

6-7.3 Staircase-Ramp DVM 

 The staircase-ramp DVM is given in block diagram form in Fig. 6-16. It 

; a variation of the ramp-type DVM but is somewhat simpler in overall design. 

resulting in a moderately priced general-purpose instrument that can he used in 

the laboratory, on production test-stands, in repair shops, and at inspection 

stations. 



 This DVM makes voltage measurements by comparing the Flit voltage 

to an internally generated staircase-ramp voltage. The instrument shown in Fig. 

6-16 contains a 10-MΩ input attenuator, providing five input ranges from 100 

mV to 1,000 V full scale. The dc amplifier, with a fixed gain of 100, deliver, 10 

V to the comparator at any of the full-scale voltage settings of the input divider. 

The comparator senses coincidence between the amplified input voltage and 

the staircase-ramp voltage which is generated as the measurement proceeds 

through its cycle. 

 When the measurement cycle is first initiated, the clock (a 4.5-kHz 

relaxation oscillator) provides pulses to three DCUs in cascade. The units 

counter provides a carry pulse to the tens decade at every tenth input pulse. The 

tens decade counts the carry pulses from the units decade and provides its own 

carry pulse after it has counted ten carry pulses. This carry pulse is fed to the 

hundreds decade which provides a carry pulse to an overrange circuit. The 

ovcrrange circuit causes a front panel indicator to light up, warning the 

operator that the input capacity of the instrument has been exceeded. The 

operator should then switch to the next higher setting on the input attenuator. 

 Each decade counter unit is connected to a digital-to-analog (DIM 

converter. The outputs of the D/A converters are connected in parallel and 

provide an output current proportional to the current count of the DCUs. The 

staircase amplifier converts the DIA current into a staircase voltage which is 

applied to the comparator. When the comparator senses coincidence of the 

input voltage and the staircase voltage, it provides a trigger pulse to stop the 



oscillator. The current content of the counter is then proportional to the 

magnitude of the input voltage. 

 The sample rate is controlled by a simple relaxation oscillator. This 

oscillator triggers and resets the transfer amplifier at a rate of two samples per 

second. The transfer amplifier provides a pulse that transfers the information 

stored In the decade counters to the front panel display unit. The trailing edge 

of this pulse triggers the reset amplifier which sets the three decade counters to 

zero and initiates a new measurement cycle by starting the master oscillator or 

clock. 

 The display circuits store each reading until a new reading is completed, 

eliminating any blinking or counting during the computation. 

 The ramp type of AID converter requires a precision ramp to achieve 

accuracy. Maintaining the quality of the ramp requires a precision, stable 

capacitor and resistor in the integrator. In addition, the offset voltages and 

currents of the operational amplifier used in the integrator are critical in the 

accurate ramp generator. One method of reducing the dependence of the 

accuracy of the conversion on the resistor, capacitor, and operational amplifier 

is to use a technique called the dual-slope converter. 

 



 



 



 In the dual-slope technique, an integrator is used to integrate an accurate 

voltage reference for a fixed period of time. The same integrator is then used to 

integrate with the reverse slope, the input voltage, and the time required to 

return to the starting voltage is measured. 

 It does not matter which of the two integrations occurs first, and for ease 

of understanding. the case where the unknown is used to integrate first and then 

the reference will be considered. 

 The output of an integrator shown in Fig. 6-17(a) is 

   
RC

tV
V x

out       (6-2) 

where  Vx   = steady input voltage relative to ground 

 Vout = the output voltage from the integrator 

 R, C = integrator time-constant components 

       t = elapsed time from when the integration began 

 Equation (6-2) also assumes that the integrator capacitor started with no 

charge and thus the output of the integrator started at zero volts. 



 

 

 If the integration were allowed to continue for a fixed period of time T1, 

the output voltage would be 

   11 T
RC

V
V x       (6-3) 

 Notice that the integrator output has gone in the opposite polarity as the 

input. That is, a positive input voltage produces a negative integrator output. 

 If a reference voltage, 141, were substituted for the input voltage Vx, as 

shown in Fig. 6-17(b), the integrator would begin to ramp toward zero at a rate 

of Vref/RC assuming that the reference voltage was of the opposite polarity as 

the unknown input voltage. The integrator for this situation does not start at 

zero but at an output voltage of V1 and the output voltage can be represented as 



   t
RC

V
VV

ref

out  1      (6-4) 

 Notice that the second term in Eq. (6-4) has a negative sign due to its 

polarity. Setting the output voltage of the integrator to zero and solving for Vx 

yields 

   ref

x

x V
T

T
V

1

       (6-5) 

 where Tx is the time required to ramp down from the output level of V1 

to zero volts. 

 Notice that the relationship between the reference voltage and the input 

voltage does not include R or C of the integrator but only the relationship 

between the two times. Because the relationship between the two times is a 

ratio, an accurate clock is not required but only that the clock used for the 

timing be stable enough that the frequency does not change appreciably from 

the up ramp to the down ramp. 

 Because the integrator responds to the average of the input, it is not 

necessary to provide a sample and hold, as changes in the input voltage will not 

cause significant errors. Although the integrator output will not be a linear 

ramp. the integration will represent the end value obtained by a voltage equal to 

the average of the unknown input voltage. Therefore, the dual-slope analog-to-

digital conversion will produce a value equal to the average of the unknown 

input. 



 

 The dual-slope type of A/D conversion is a very popular method for 

digital voltmeter applications. When compared to other types of analog-to-

digital conversion techniques, the dual-slope method is slow but is quite 

adequate for a digital voltmeter used for laboratory measurements. For data 

acquisition applications, where a number of measurements are required, faster 

techniques are recommended. Many refinements have been made to the 

technique and many large- scale-integration (LSI) chips are available to 

simplify the construction of DVMs. 

 When a dual-slope AID converter is used for a DVM the counters may 

be decade rather than binary and the segment and digit drivers may be 

contained in the chip. (Multiplexed counter displays are discussed in Chapter 

10.) When the converter is to interface to a microprocessor, and many high-

performance DVMs use microprocessors for data manipulation, the counters 

employed are binary. 

 One significant enhancement made to the dual-slope converter is 

automatic zero correction. As with any analog system, amplifier offset 

voltages, offset currents, and bias currents can cause errors. In addition, in the 

dual-slope AID converter, the leakage current of the capacitor can cause errors 

in the integration and consequentially, an error. These effects, in the dual-slope 



AID converter, will manifest themselves as a reading of the DVM when no 

input voltage is present. Figure 6-17 shows a method of counteracting these 

effects. The input to the converter is grounded and a capacitor, the auto zero 

capacitor, is connected via an electronic switch to the output of the integrator. 

The feedback of the circuitry is such that the voltage at the integrator output is 

zero. This effectively places an equivalent offset voltage on the automatic zero 

capacitor so that there is no integration. When the conversion is made, this 

offset voltage is present to counteract the effects of the input circuitry offset 

voltages. This automatic zero function is performed before each conversion, so 

that changes in the offset voltages and currents will be compensated. 



Figure 6-18 shows a complete dual-slope AID converter. Electronic 

 

switches, usually PET switches, are used to switch the input of the integrator 

alternately between the reference voltage and the unknown. Another pair of 

switches apply the integrator output to the automatic zero capacitor and ground 

the input for the automatic zero function. 

 All of the switch timing and the counting of the clock pulses to 

determine the unknown voltage are under control of the control logic. The 

output is made available to the external electronics after the conversion is 

complete. 

 If, in this example, the reference voltage were 1.000 V and the integrator 

were allowed to integrate the reference for 1,000 counts, the display would read 

1V full scale with a resolution of 1 mV. 

 The actual frequency of the clock is not critical, as previously explained, 

but has an effect on the speed of the conversion. As an example, a l0-kHz clock 



would allow a maximum conversion time of 0.2 s for the example described 

above. 

6-7.4  Successive-Approximation Conversion 

 A very effective and relatively inexpensive method of analog-to-digital 

conversion is the method of successive approximation. This is an electronic 

implementation of a technique called binary regression. 

 Assume that one is to determine the value of a number and is allowed to 

make estimates. Each estimate would be evaluated and it would be known if 

the estimate was (1) equal 10 or less than or (2) greater than the number to be 

determined. The maximum and minimum value of the possible number is also 

known. 

 Consider, as an example, that a number to he determined is between 0 

and 511. The best first guess would be some number midway between the 

extremes and, ideally, 256. To further the example. assume that the number to 

be determined is 499. The number is greater than the estimate of 256 and this 

information is provided. It is now known that the number to be determined is 

between 256 and 511, and, again, something midway makes the most sense for 

a guess, which is 384. The number to be determined is greater than this 

estimate, and the next range of estimates is from 384 to 511 for which the 

midpoint is 448. The number is larger than this and the next range of possible 

numbers is from 448 to 511, with a midpoint of480. The number is larger than 

this, leaving the next range of possibilities from 480 to 511 with the midpoint 

guess of 496. Again the number is larger and the next range is from 496 to 511, 



with a midpoint guess of 504. For the first time the unknown number is smaller 

and the range for (he next estimate is from 496 to 504 with a midpoint of 500. 

The number is smaller than this estimate, leaving a range of possibilities from 

496 to 500. The result of the midpoint guess of 498 is the unknown number is 

greater. The last possible range is from 498 to 500. With a midpoint of 499. 

This is the ninth estimate and it is known that the number is less than 500 from 

the seventh guess and greater than 498 from the results of the eighth guess, and 

therefore, the number has to be 499. A tabular synopsis of the guesses and the 

results follows. 

 

There are some interesting observations to be made from the tabulation. 

First, there were eight estimates set forth when the actual answer was known, 

After the eighth estimate the actual value was known to lie between 598 and 

500, which is knowing the answer to an 8-bit accuracy plus or minus one bit. 

Can all numbers between 0 and 512 be determined in eight guesses or less 

using this method? To determine the answer to this question, consider the 

following. The first estimate cannot be in error by more than 256. The second 

estimate cannot be in error by more than 128, the third by more than 64, and so 



on. A total of nine estimates are required to produce the final estimate, which is 

in error by no more than I, which is the minimum possible error. Numbers from 

0 to 511 can be represented by 9 binary bits. It is clear that this analysis can be 

extended to any number of binary bits, and the number of estimates required is 

exactly equal to the number of bits required of the analog-to-digital conversion. 

A graphical representation of the estimates of the successive 

approximation conversion illustrates the converging nature of this technique. 

Figure 6-19 shows a graphical representation of the example of 499. As can be 

seen, the estimates approach the value from below, oscillating around the 

desired answer before settling on the correct answer. The oscillation is difficult 

to see as the error quickly becomes small and the amplitude of the oscillation 

is, likewise, small. As a comparison, Fig. 6-19 also shows a graphical 

representation of the estimates used to arrive at the value 320. There is more 

oscillation, but the actual value is arrived at within nine estimates. 

The electronic implementation of the successive-approximation 

technique is relatively straightforward and is shown in Fig. 6-20. A D/A 

converter is used to provide the estimates. The ―equal to or greater than‖ or 

―less than‖ decision is made by a comparator. The DIA converter provides the 

estimate and is compared to the input signal. A special shift register called a 

successive-approximation register (SAR) is used to control the D/A converter 

and consequentially the estimates. At the beginning of the conversion all the 

outputs from the SAR are at logic zero. If the estimate is greater than the input, 

the comparator output is high and the first SAR output reverses state and the 



second output changes to a logic ―one.‖ If the comparator output is low, 

indicating that the estimate is lower than the input signal, the first output 

remains in the logic one state and the second 

 

output assumes the logic one state. This continues to all the states until the 

conversion is complete. 

This sequence of events performs, electronically, the same estimating 

procedure that was outlined previously. An estimate is made on the edge of the 

SAR clock. For an N-bit conversion after N clocks, the actual value of the input 

is known. The least significant bit is the state of the comparator. In some 

systems 



 

an additional clock is used to store the last bit in the SAR and thus N + 1 clocks 

are required for a conversion. 

6-7.5 Quantizing Error 

An electrical parameter, whether it is voltage, current, power, or 

something else, can assume any value within the possible range of that 

parameter. When the quantity is converted to a digital form, there are only a 

finite number of values that the quantity may assume. As an example, if a 

digital number consists of four bits, which has 16 different combinations, there 

are 16 levels that the analog quantity can be described. 

Consider a voltage range of zero to 15 V to be digitized to a 4-bit 

number. There is a binary number for each volt of that range. What if the actual 

analog value is between the quantizing levels such as 2.25 V? The digitizing 

can produce a value equal to 2 V, which is represented as 0010, or 3 V, 

represented as 0011. The solution is simple. Round off the number to 2.0 and 

accept the digitized value of 0010. There is an error, however. The difference 



between the actual value of the analog quantity and the digitized value is 0.25. 

The number of bits of the quantized number could be increased by two, to 6 

bits, and the number could be represented as 0010.01, which is exact with no 

error. What if the actual analog value were 2.27. Now the closest possible 

values of the binary number would be 2.25 or 2.50. Clearly, the closest is 2.25, 

which expresses the analog quantity with an error of only 0.02. 

It would be clear, regardless of how many bits are used to express an 

analog quantity, that there is always a possibility of error when the quantities to 

be digitized fall between the exact digital values. The maximum error is equal 

to plus or minus one-half of the value of the least significant bit, which is called 

the quantizing error. 

Older analog meters that used a meter scale as an indicator device 

required some sort of ranging circuitry so that the meter could be used over a 

large range of input parameters. As an example, if the full scale of a meter is 

1,000 V, it would be nearly impossible to see the effects of a 1-V input. 

Therefore, a switched attenuator was used in the meter to provide a 1,000-, 

100-, 10- and 1-V full-scale reading so that the desired meter deflections could 

be easily readable. 

In the case of a digital meter, if a four-digit meter had a full-scale 

reading of 999.9 V, a 1-V reading would appear as 001.0. This represents two 

significant digits for the 1W reading. The meter, however, is a four-digit meter, 

and 99 percent of the meter capability is not used when reading I V. This is 

based on the fact that a four-digit meter can resolve 1 part in 10,000, while the 



two significant digits reflected by the 001.0-V display would represent 1 part in 

100 or only 1 percent of 1 part in 10,000,. A switchable attenuator in the digital 

meter would achieve a similar effect. If an attenuator were used so that the full-

scale readings of the digital meter were 999.9, 99.99, 9.999, and 0.9999 V, the 

1-V reading would be 1.000, which is four significant digits and does not waste 

any of the capability of the meter. 

Modern digital meters are capable of electronically switching the input 

attenuator, which makes the meter fully automatic. The electronics must 

determine if the present reading is less than the next-lower range of higher than 

full scale. 

 If the present reading is less than the full scale of the next-lower range, 

the attenuation is reduced. The attenuation continues to be reduced until the 

reading is between the next lower range and the full scale of the present range. 

 An opposite scenario takes place when the present reading is more than 

full scale. In this case attenuation is increased until the present reading is less 

than full scale. 

 As an example, assume that the 1-V of the previous example was 

measured using a digital voltmeter that was presently on the 999.9-V range. 

The attenuator is in decade steps, which is 999.9, 99.99, 9.999, and 0.9999 V 

full scale. Since the reading is 001.0, this is less than the full scale of the next-

lower range and the attenuation is decreased. This results in a reading of 01.00 

V, which is still less than the full scale of the next-lower range and the 

attenuation is reduced automatically. The next reading is 1.000, which is 



greater than the next-lower-range full- scale reading of 0.9999 and the 

attenuation is reduced no further. 

 Because the variation en input voltage levels can be rather great, the 

input attenuator is often switched with relays rather than electronic switches. In 

addition, there are times when the input voltage is much greater than the full-

scale reading and the input amplifiers and attenuators must be capable of 

withstanding a significant overload for a short period of time before the proper 

attenuation is found. This technique is called auto ranging. 

 A similar technique is used to counteract the effects of various offset 

voltages within a digital meter. The input of the meter is electronically 

switched to ground while the input is disconnected. The meter will now read 

the results of the offset voltages, leakage currents, or other effects. 

 This offset reading is compensated by either subtracting the offset from 

the display or by feeding an analog offset in the opposite polarity. The offset 

check performed at a regular rate to ensure that the change in offset is 

accounted for 

 



 This technique is called auto zero and is necessary for instruments of 

high accuracy. Fig. 6-21 shows a high-performance auto-ranging multimeter 

with a true rms capability for ac measurements. 

6-8 COMPONENT MEASURING INSTRUMENTS 

 Bridges for measuring component values of resistance, inductance, and 

capacitance were discussed in Chapter 5. Bridges are potentially very accurate 

and reliable for component measurements using measuring frequencies to the 

low megahertz region. They have some disadvantages in that they involve a 

variable inductor, resistor, or capacitor, depending on the type of bridge, and 

this usually involves an operator. This adjustment makes it difficult to automate 

or computerize the measurement since an actual mechanical movement is 

required. For manual measurements, this tends to slow down the 

measurements, but for computer interface, this tends to make the task nearly 

impossible. 

6-8.1 All-Electronic Component Measurements 

 Chapter 5 discussed the Wheatstone bridge for resistance measurements, 

and the simple ohmmeter was discussed in Chapter 4. This is an example of a 

bridge and an all-electronic instrument for measuring resistance. (In the case of 

the moving- coil meter, the actual meter movement is mechanical, but this 

could be replaced with a digital readout, making the resistance measurement 

all-electronic.) 



 There are several methods of performing an all-electronic inductance or 

capacitance measurement where the measurement is not performed by a 

comparison, as is the case with a bridge. Fig. 6-22 shows one possible method 

of measuring the value of a capacitor, where a voltage is applied to the 

capacitor and the current through the capacitor can be measured. The 

relationship between the current through a capacitor and the voltage applied to 

the capacitor is 

        (6-6) 

where   V = applied voltage 

   f  = applied frequency 

  C = capacitance 

 

 The meter is simply calibrated in capacitance because of the linear 

relationship between the capacitance and the current. Although in theory this is 

a useful circuit, it is not practical because of the typical values of capacitors 

encountered in the electronics industry. Capacitors of a few picofarads are not 

unusual, and these capacitors typically could have working voltages of less 

than 25 V. RF current measuring devices, essentially thermocouple 



instruments, are not available for currents of less than a few hundred 

milliamperes, and thus the current expected must be greater than a few hundred 

milliamperes. If, as an example, a capacitor of 10 pF were to produce a current 

of 100 mA, with an applied voltage of 10 V rms, which would be safe for a 25-

V capacitor, the frequency would have to be higher than 1,600 MHz. At this 

frequency. most capacitors have ceased to behave as capacitors and lead 

inductance, dissipation resistance, and other parasitic impedances will 

dominate the measurement. In addition, the accuracy of the measurement is 

dependent on the frequency of the generator, which would be difficult to 

control at 1,600 MHz. Therefore, smaller currents must be used for capacitance 

measurements. 

 An alternative method is shown in Fig. 6-23. In this example the current 

through the capacitor is sampled across a known resistance and the resultant 

voltage is amplified and measured. The amplifier provides the necessary gain 

so that the current through the capacitor can be quite small and within 

practicality. The voltage across the resistor can be expressed as 

       (6-7) 

where    R  = resistance 

 Vin = generator voltage 

             V = voltage across the resistor 

 C = capacitance of the unknown capacitor 



 f = frequency of the generator. 

 If Vin, f and R are kept constant, the voltage V is a function of the 

unknown capacitance. The scale would have to be calibrated in a nonlinear 

fashion because of the relationship of Eq. (6-7). An applied frequency of a few 

megahertz can provide a practical system using this technique. The actual 

movement of the meter depends on not only the constants mentioned above, 

but on the gain of the 

  

 

amplifier. It can be difficult to maintain a constant gain in an amplifier at 

several megahertz, especially for the large dynamic range encountered while 

measuring capacitance using this system. An alternative approach is shown in 

Fig. 6-24. In this example the phase angle between the applied voltage and the 

voltage across the capacitor is measured. An amplifier is used in this scheme 

except that the gain of the amplifier is not a factor in the measurement. 

Typically, a limiting amplifier such as that found in an FM receiver would be 

used. The phase angle can be expressed as 



      (6-8) 

 The angle, θ, will be read by the meter in this circuit and the meter can 

be calibrated in capacitance since this angle is a function of the unknown 

capacitance. This would result in a nonlinear but useful display. 

 Using the Taylor expansion, the expression for the angle 0 can be 

rewritten: 

θ = tan
-1

 (2πfRC) = (2πfRC) – 
3

1 (2 fRC ) 3 + 2)2(
5

1
fRC  …..   (6-9) 

 As can be seen from the Taylor expansion, the value of the arctangent 

will approach the angle, in radians, if the value of (2πfRC) is small. To gain an 

idea of how small the arctangent must be so that just one term of the Taylor 

expansion may be used, that is, the first term, consider an arctangent of less 

than 0.1. The value of the Taylor expansion using the first term only is, of 

course, 0.1. The actual value of the arctangent is 0.0996687, which is only 

0.3% less than the actual angle, in radians. If the meter in this technique were 

calibrated directly in capacitance and the phase angle were restricted to less 

than 0.1 rad, the error due to this approximation would not exceed 0.3%. 

Therefore, 0 = (2πfRC) for less than 0.1. 

 The capacitance meter based on the circuit of Fig. 6-24 could be 

configured to cover several ranges by changing the value of fl, such that the 

full-scale reading is 0.1 rad. As an example, assume that it is desired that the 

lowest range cover from 0 to 100 pF full scale, with a source frequency of 1 



MHz. Therefore, at I MHz the phase shift of the resistance, R, and 100 pF must 

be 0.1 rad or 

   0.1 = (2πR x 100 pF)      (6-

10) 

Solving for R gives 

        (6-11) 

 To cover from 10 to 1,000 pF full-scale meter, the resistors could be 

1,5908 for 10 pP full scale, 477 Ω for 30 pF, 159Ω for 100 pF, 417 0 for 300 

pP full scale, and 15.9 Ω for 1,000 pF full scale. It is difficult to measure 

capacitors greater than 100 pF using the 1-MHz source because the impedance 

of a capacitor at 1 MHz is too low to achieve an accurate measurement with 

this type of instrument. 

6-8.2 Sources of Error 

 The accuracy of low-capacitance measurements is limited by the 

distributed Capacitance of the measuring circuits. Figure 6-25 shows the basic 

measuring circuit with the parasitic capacitances added. The series resistance, 

R, has some series inductance and the input of the amplifier will have a certain 

amount of input capacitance. Primarily, the amplifier input capacitance will 

have the greatest effect on the accuracy of the measurement. It would be 

difficult to design an amplifier with an input capacitance low enough to allow 

measurements of capacitors below 10pF without some form of compensation. 



Figure 6-26 shows a modified measuring circuit allowing the effects of the 

input capacitance of the amplifier to be nailed out. In this example, the resistor 

has been placed at the amplifier input, and the signal source is applied to a 

transformer to create an out-of-phase component. The effects of the input 

capacitance are nulled out by injecting some of the out-of-phase signal through 

a variable capacitor. Except for the trimming circuits, the operation of this 

capacitance measuring system is similar to the previous example. 

 Another source of error is the harmonic distortion of the signal source. 

The phase shift of the RC circuit, which is the heart of the capacitance 

measuring system, will satisfy the equations presented only if the signal source 

is a pure sine function without any harmonic distortion. For an accuracy of 0.3 

percent, which was the theoretical limit for the linear approximation using the 

Taylor expansion. the harmonic content of the signal source must he better than 

50dB down from the nominal level. A crystal oscillator is capable of supplying 

a signal purity of this magnitude only if the output is carefully coupled from the 

oscillator. In addition to the coupling point, the signal should be passed through 

a low-pass Jilter. 

 



 

 By far the largest source of error is the equivalent series or parallel 

resistance. The series resistance called equivalent series resistance, or ESR, 

adds to the resistance of the circuit, but the phase measurement is made relative 

not to the capacitance but to the point where the ESR and the circuit resistance 

join, as shown in Fig. 6-27. this causes an error because the phase shift is not 

being measured accurately. Likewise, an equivalent parallel resistance, which 

is due to leakage resistance, will cause an erroneous reading because it changes 

the equivalent resistance as seen by the capacitor and hence changes the phase 

shift. This capacitance measuring method is not suitable for measuring 

capacitors with high dissipation factors or high ESR. Corrections can be made 

if the actual dissipation factor or ESR is known, but capacitance and dissipation 

factor can both be measured in a capacitance bridge. Generally, the quality of 

capacitors in the region of capacitance measured by this instrument is very 

good with insignificant ESR and dissipation factors, and the errors caused by 

these resistances are negligible. 



 

 

 The same basic system can be used to measure inductance. Figure 6-28 

shows a modification of the capacitance measuring instrument previously 

discussed to measure inductance. In this circuit the phase shift is 

    
R

X L1tan      (6-12) 

 As in the ease of capacitance measuring, for phase shifts of less than 0.1 

rad, the linearity of the output is sufficiently close to allow the same 0.3 percent 

accurate measurements. The resistor value of 1 μH full scale is 62.8 Ω; for 3 

μH it is 188.4Ω; for 10 μH, 628Ω; for 30 μH, 1.884Ω; and for 100 ΩH, 6.28 

kΩ. As the low impedance of the capacitor made it difficult to measure values 

larger than 1,000 pF with a 1-MHz source signal, the high impedance of the 

inductors greater than 100 μH makes measurements greater than this value 

difficult without changing the source frequency. 

 One of the more important applications of the all-electronic inductance 

or capacitance measuring system is its ability to be interfaced with a computer. 

This would require that the output of the phase detector be digitized and made 



available to the computer. Although there are digital phase detectors that 

supply a digital representation of the phase angle to within 1 part in 10,000 for 

a source frequency as high as 1 MHz, these devices are not practical. For the 

typical computer application, the output of the phase detector would be 

digitized using an analog-to-digital converter. 

 There are sources of error in this system, just as in the capacitor 

measuring system described previously, and, as in the capacitor measurements, 

they are primarily due to resistance. The equivalent series resistance of an 

inductor is expressed indirectly as the inductor Q. Mathematically, Q = XL/R,, 

where XL is the capacitive reactance and R is the equivalent series resistance. 

From the equation it can be seen that, for smaller values of R, the Q or quality 

of an inductor goes up. It must be pointed out that the value of R is not that 

value of resistance that would be obtained if the inductor were measured with a 

do bridge or ohmmeter. The value of R is due to losses in the inductor‘s core 

material and the variation of resistance due to the skin effect. Therefore, the 

ohmic resistance measured at dc would not be as great as the equivalent series 

resistance at 1 MHz, the 

 



measuring frequency. Like the case with the capacitors, using this circuit to 

measure inductors depends on the Q of the inductor, and for components with 

low Q a bridge must be used for the measurement. 

6-9 Q METER 

6-9.1 Basic a-Meter Circuit 

The Q meter is an instrument designed to measure some of the electrical 

properties of coils and capacitors. The operation of this useful laboratory 

instrument is based on the familiar characteristics of a series-resonant circuit, 

namely, that the voltage across the coil or the capacitor is equal to the applied 

voltage times the Q of the circuit. If a fixed voltage is applied to the circuit, a 

voltmeter across the capacitor can be calibrated to read Q directly. 

The voltage and current relationships of a series-resonant circuit are 

shown in Fig. 6-29. At resonance, the following conditions are valid: 

Xc = XL 

Ec = IXc = IXL 

 E = IR 

where E = applied voltage 

I  = circuit current 

Ec= voltage across the capacitor 

Xc= capacitive reactance  

XL= inductive reactance  



R = coil resistance  

The magnification of the circuit, by definition is Q, where 

Q = 
E

E

R

X

R

X CCL        (6- 13) 

 

Therefore if E is maintained at a constant and known level, a voltmeter 

connected across the capacitor can be calibrated directly in terms of the circuit 

Q. 

A practical Q-meter circuit is shown in Fig. 6-30. The wide-range 

oscillator with a frequency range from 50 kHz to 50 MHz delivers current to a 

low-value shunt resistance RSH. The value of this shunt is very low, typically 

on the order of 0.02 0. It introduces almost no resistance into the oscillatory 

circuit and it therefore represents a voltage source of magnitude E with a very 

small (in most cases negligible) internal resistance. The voltage E across the 

shunt, corresponding to E in Fig. 6-29, is measured with a thermocouple meter, 

marked ―Multiply Q by.‖ The voltage across the variable capacitor, 

corresponding to Ec in Fig. 629, is measured with an electronic voltmeter 

whose scale is calibrated directly in Q values. 



To make a measurement, the unknown coil is connected to the test 

terminals of the instrument, and the circuit is tuned to resonance either by 

setting the oscillator to a given frequency and varying the internal resonating 

capacitor or by presetting the capacitor to a desired value and adjusting the 

frequency of the oscillator. The Q reading on the output meter must be 

multiplied by the index setting of the ―Multiply Q by‖ meter to obtain the 

actual Q value. 

The indicated Q (which is the resonant reading on the ―Circuit Q‖ meter) is 

called the circuit Q because the losses of the resonating capacitor, voltmeter, 

and insertion resistor are all included in the measuring circuit. The effective Q 

of the measured coil will be somewhat greater than the indicated Q. This 

difference can generally be neglected, except in certain cases where the 

resistance of the coil is relatively small in comparison with the value of the 

insertion resistor. (This problem is discussed in Example 6-7.) 

The inductance of the coil can be calculated from the known values of 

frequency (f) and resonating capacitance (C), since 

XL = Xc and L = 
Cf 2)2(

1


 henry    (6-14) 

6-9.2 Measurement Methods 

There are three methods for connecting unknown components to the test 

terminals of Q meter: direct, series, and parallel. The type of component and its 

size determine the method of connection. 



Direct connection. Most coils can be connected directly across the 

terminals, exactly as shown in the basic Q-circuit of Fig. 6-30. The circuit 

resonated by adjusting either the oscillator frequency or the resonating 

capacitor. The indicated Q is read directly from the ―Circuit Q‖ meter, 

modified by setting of the ―Multiply Q by‖ meter. When the last meter is set at 

the mark, the ―Circuit Q‖ meter reads the correct value of Q directly. 

 Series connection. Low-impedance components,-such as low-value 

resistors, small coils, and large capacitors, are measured in series with the 

measuring 

 

circuit. Figure 6-31 shows the connections. The component lobe measured, 

here indicated by [Z], is placed in series with a stable work coil across the test 

terminals. (The work coil is usually supplied with the instrument.) Two 

measurements are made: In the first measurement the unknown is short-

circuited by a small shorting strap and the circuit is resonated, establishing a 

reference condition. The values of the tuning capacitor (C1) and the indicated Q 

(Q1) are noted. In the second measurement the shorting strap is removed and 



the circuit is returned, giving a new value for the tuning capacitor (C2) and a 

change in the Q value from Q1 to Q2. 

For the reference condition, 
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and neglecting the resistance of the measuring circuit, 
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 For the second measurement, the reactance of the unknown can be 

expressed in terms of the new value of the tuning capacitor (C2) and the in-

circuit value of the inductor (L). This yields 
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so that 
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Xs is inductive if C1 > C2 and capacitive if C1 < C2. The resistive component of 

the unknown impedance can be found in terms of reactance Xs and the 

indicated values of circuit Q, since 
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 If the unknown is purely resistive, the setting of the tuning capacitor 

would not have changed in the measuring process, and C1 = C2. The equation 

for resistance reduces to 
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 If the unknown is a small inductor, the value of the inductance is found 

from (6-18) and equals 
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 The Q of the coil is found from Eqs. (6-18) and (6-19) since, by 

definition,  
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 If the unknown is a large capacitor, its value is determined from Eq. (6-

18). and  
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The Q of the capacitor may be found by using Eq. (6-22). 

 Parallel Connection. High-impedance components, such as high-value 

resistors, certain inductors, and small capacitors, are measured by connecting 

them in parallel with the measuring circuit. Figure 6-32 shows the connections. 

Before the unknown is connected, the circuit is resonated, by using a suitable 

work coil, to establish reference values for Q and C (Q1 and C1). Then, when 

the component under test is connected to the circuit, the capacitor is readjusted 

for resonance, and a new value for the tuning capacitance (C2) is obtained and a 

change in the value of circuit Q (ΔQ) from Q1 to Q2. 

 In a parallel circuit, computation of the unknown impedance is best 

approached in terms of its parallel components Xp and Rp, as indicated in Fig. 

6-32. At the initial resonance condition, when the unknown is not yet 

connected into the circuit, the working coil (L) is tuned by the capacitor (C1). 

Therefore 
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and 

    
RCR

L
Q

1

1

1




      (6-25) 

 When the unknown impedance is not connected into the circuit and the 

capacitor is tuned for resonance, the reactance of the working coil (XL) equals 

the parallel reactances of the tuning capacitor (
2CX ) and the unknown (Xp). 

Therefore 
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which reduces to 
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 If the unknown is inductive, XP = PL , and Eq. (6-26) yields the value 

of the unknown impedance: 
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If the unknown is capacitive, Xp = 1/ Cp and Eq. (6-26) yields the value of the 

unknown capacitor: 

Cp = C1 - C2       (6-28) 

In a parallel resonant circuit the total resistance at resonance is equal to the 

product of the circuit Q and the reactance of the coil. Therefore 

RT = Q2XL 

or by substitution of Eq. (6-24), 
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The resistance (Rp) of the unknown impedance is most easily found by 

computing the conductance‘s in the circuit of Fig. 6-32. Let 

GT = total conductance of the resonant circuit  

GP = conductance of the unknown impedance 

GL = conductance of the working coil 

Then 

   GT = GP + GL or  GP = GT – GL    (6-30) 

From Eq. (6-29), 

         



Therefore 

    

Substituting Eq. (6-25) in the foregoing expression, we obtain 

    

and after simplifying, we obtain 

 

      (6-31) 

The Q of the unknown is then found by using Eqs. (6-26) and (6-3 1) so that 

   (6-32) 

6-9.3 Sources of Error 

 Probably the most important factor affecting measurement accuracy, and 

the most often overlooked, is the distributed capacitance or self-capacitance of 

the measuring circuit. The presence of distributed capacitance in a coil 

modifies the actual or effective Q and the inductance of the coil. At the 

frequency at which the self-capacitance and the inductance of the coil are 

resonant, the circuit exhibits a purely resistive impedance. This characteristic 

may be used for measuring the distributed capacitance. 



 One simple method of finding the distributed capacitance (Cd) of a coil 

involves making two measurements at different frequencies. The coil under test 

is connected directly to the test terminals of the Q meter, as shown in the circuit 

of Fig. 6-33. The tuning capacitor is set to a high value, preferably to its 

maximum position, and the circuit is resonated by adjusting the oscillator 

frequency. Resonance is indicated by maximum deflection on the ―Circuit Q‖ 

meter. The values of the tuning capacitor (C1) and the oscillator frequency (f1) 

are noted. The frequency is then increased to twice its original value (f2 = 2f1) 

and the circuit is return by adjusting the resonating capacitor (C2). 

 The resonant frequency of an LC circuit is given by the well-known 

equation 

         (6-33) 

 At the initial resonance condition, the capacitance of the circuit equals 

C1 + Cd, and the resonant frequency equals 

        (6-34) 

 After the oscillator and the tuning capacitor are adjusted, the capacitance 

of the circuit is C2 + Cd, and the resonant frequency equals 
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Since f2 = 2f1, Eqs. (6-34) and (6-35) are related so that 
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and 

Solving for the distributed capacitance yields 
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EXAMPLE 6-4 

 



EXAMPLE 6-5 

 

 The effective Q of a coil with distributed capacitance is less than the true 

Q by a factor that depends on the value of the self-capacitance and the 

resonating capacitor. It can be shown that 
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where   Qe  = effective Q of the coil 

  C   = resonating capacitance 

  Cd  = distributed capacitance 

The effective Q can usually be considered the indicated Q. 

 For many measurements, the residual or insertion resistance (RsH) of the 

Q-meter circuit of Fig. 6-26 is sufficiently small to be considered negligible. 

Under certain circumstances, it can contribute an error to the measurement of 

Q. The effect of the insertion resistor on the measurement depends on the 

magnitude of the unknown impedance and, of course, on the size of the 



insertion resistor. For instance, the 0.02Ω of insertion resistance maybe 

neglected in comparison with a coil resistance of 10 Ω, but it assumes 

importance when compared to a coil resistance of 0.1 Ω. The effect of the 0.02-

Ω insertion resistance is illustrated by Examples 6-6 and 6-7. 

EXAMPLE 6-6 

 

EXAMPLE 6-7 

 

 



 Other sources of error include the residual inductance of the instrument, 

which is usually in the order of 0.015 μH and affects the measurement of only 

very small inductors (<0.5 μH). The conductance of the Q voltmeter has a 

slight shunting effect on the tuning capacitor at the higher frequencies, but this 

effect can usually be neglected. 

6-10 VECTOR IMPEDANCE METER 

 Impedance measurements are concerned with both the magnitude (Z) 

and the phase angle (θ) of a component. At frequencies below 100 MHz, 

measurement of voltage and current is usually sufficient to determine the 

magnitude of the impedance. The phase difference between the voltage 

waveform and the current waveform indicates whether the component is 

inductive or capacitive. If the phase angle can be determined, for example, by 

using a CRO displaying a Lissajous pattern, the reactance can be calculated. If 

a component must be fully specified, its properties should be determined at 

several different frequencies, and many measurements may be required. 

Especially at the higher frequencies, these measurements become rather 

elaborate and time consuming, and many steps may be required to obtain the 

desired information. 

 The development of such instruments as the vector impedance meter 

makes impedance measurements over a wide frequency range possible. Sweep-

frequency plots of impedance and phase angle versus frequency, providing 

complete coverage within the frequency band of interest, can also be mad. 



 The vector impedance meter, shown in Fig. 6-34, makes simultaneous 

measurements of impedance and phase angle over a frequency range of from 

400 kHz to 110 MHz. The unknown component is simply connected across the 

input terminals of the instrument, the desired frequency is selected by turning 

the front panel controls, and the two front panel readouts indicate the 

magnitude of the impedance and the phase angle. 

 The operation of the vector impedance meter is best understood by 

referring 

 

to the block diagram of Fig. 6-35 of a representative instrument, Two 

measurements take place: (1) The magnitude of the impedance is determined 

by measuring the current through the unknown component when a known 

voltage is applied across it, or by measuring the voltage across the component 

when a known current is passed through it; (2) the phase angle is found by 



determining the phase difference between the voltage across the component 

and the current through the component. 

 The block diagram of Fig. 6-35 shows that the instrument contains a 

signal source (Wien bridge oscillator) with two front panel controls to select 

the frequency range and to continuously adjust the selected frequency. The 

oscillator output is fed to an AGC amplifier which allows accurate gain 

adjustment by means of its feedback voltage. This gain adjustment is an 

internal control actuated by the setting of the impedance range switch, to which 

the AGC amplifier output is connected. The impedance range switch is a 

precision attenuator network controlling the oscillator output voltage and at the 

same time determining the manner in which the unknown component will be 

connected into the circuitry that follows the range switch. 

 The impedance range switch permits operation of the instrument in two 

modes: the constant-current mode and the constant-voltage mode. The three 

lower ranges (x1, x 10, and x 100) operate in the constant-current ‗mode and 

the four higher ranges (x 1k, x 10k, x 100k, and x 1M) operate in the constant-

voltage‘ mode. 

 In the constant-current mode the unknown component is connected 

across the input of the ac differential amplifier. The current supplied to the 

unknown depends on the setting of the impedance range switch. This current is 

held constant by the action of the trans-resistance or RT amplifier, which 

converts the current through the unknown to a voltage output equal to the 

current times its feedback resistance. The RT amplifier is an operational 



amplifier whose output voltage is proportional to its input current. The output 

of the R1 amplifier is fed to a detector circuit and compared to a de reference 

voltage. The resulting control voltage regulates the gain of the AGC amplifier 

and hence the voltage applied to the impedance range switch. The output of the 

ac differential amplifier is applied to an amplifier and filter section consisting 

of high- and low-band filters that are changed with the frequency range to 

restrict the amplifier band-width. The output of the band pass filter is 

connected, when selected, to a detector that drives the Z-magnitude meter.  



 



 Since the current through the unknown is held constant by the RT 

amplifier, the Z-magnitude meter, which measures the voltage across the 

unknown, deflects in proportion to the magnitude of the unknown impedance 

and is calibrated accordingly. 

 In the constant-voltage mode the two inputs to the differential amplifier 

are switched. The terminal that was connected to the input of the trans-

resistance amplifier in the constant-current mode is now grounded. The other 

input of the differential amplifier that was connected to the voltage terminal of 

the unknown component is now connected to a point on the Z-magnitude range 

switch which is held at a constant potential. The voltage terminal of the 

unknown is connected to this same point of constant potential, or depending on 

the setting of the Z-magnitude range switch, to a decimal fraction of this 

voltage. In any case, the voltage across the unknown is held at a constant level. 

The current through the unknown is applied to the trans-resistance amplifier 

which again produces an output voltage proportional to its input current. 

 The roles of the ac differential amplifier and the trans-resistance 

amplifier are now reversed. The voltage output of the RT amplifier is applied to 

the detector and then to the Z-magnitude meter. The output voltage of the 

differential amplifier controls the gain of the AGC amplifier in the same 

manner that the RT amplifier did in the constant-current mode. 

 Phase-angle measurements are carried out simultaneously. The outputs 

of both the voltage channel and the current channel are amplified and each 

output is connected to a Schmitt trigger circuit. The Schmitt trigger circuits 



produce a positive-going spike every time the input sine wave goes through a 

zero crossing. These positive spikes are applied to a binary phase detector 

circuit. The phase detector consists of a bistable multivibrator, a differential 

amplifier, and an integrating capacitor. The positive-going pulse from the 

constant-current channel sets the multivibrator, and the pulse from the 

constant-voltage channel resets the multivibrator. The ―set‖ time of the MV is 

therefore determined by the zero-crossings of the voltage and current 

waveforms. The ―set‖ and ―reset‖ outputs of the MV are applied to the 

differential amplifier, which applies the difference voltage to an integrating 

capacitor. The capacitor voltage is directly proportional to the zero-crossing 

time interval and is applied to the phase-angle meter which then indicates the 

phase difference, in degrees, between the voltage and current waveforms. 

 Calibration of the vector impedance meter is usually performed by 

connecting standard components to the input terminals. These components may 

be standard resistors or capacitors. An electronic counter is needed to 

accurately determine the period of the applied test frequency. When the value 

of the component under test and the frequency of the test signal are both known 

accurately, the impedance or reactance can be calculated and compared to the 

indication on the Z-magnitude meter. With a standard resistor connected to the 

input terminals, the phase-angle meter should read 0°. 

6-11 VECTOR VOLTMETER 

 A vector voltmeter measures the amplitude of a signal at two points in a 

circuit and simultaneously measures the phase difference between the voltage 



waveforms at these two points. This instrument can be used in a wide variety of 

applications. especially in situations where other methods are very difficult or 

time consuming. The vector voltmeter is useful in VHF applications and can be 

used successfully in such measurements as: 

a. Amplifier gain and phase shift 

b. Complex insertion loss 

c. Filter transfer functions 

d. Two-port network parameters 

 The vector voltmeter basically converts two RF signals of the same 

fundamental frequency (from 1 MHz to GHz) to two IF signals with 20-KHz 

fundamental frequencies. These IF signals have the same amplitudes, 

waveforms, and phase relationships as the original RF signals. Consequently, 

the fundamental components of the IF signals have the same amplitude and 

phase relationships as the fundamental components of the RF signals. These 

fundamental components are filtered from the IF signals and are measured by a 

voltmeter and a phase meter. 

 The block diagram of Fig. 6-36 shows that the instrument consists of 

five major sections as follows: two RF-to-IF converters, an automatic phase 

control section, a phase meter circuit, and a voltmeter circuit. The RF-to-IF 

converters and the phase control section produce two 20-kllz sine waves with 

the same amplitudes and the same phase relationship as the fundamental 

components of the RF signals applied to channels A and B. The phase meter 



section continuously monitors these two 20-kHz sine waves and indicates the 

phase angle between them. The voltmeter section can be switched to channel A 

or channel B to provide a meter display of the amplitude. 

 Each RF-to-IF converter consists of a sampler and a tuned amplifier. 

The sampler produces a 20-kHz replica of the RF input waveform, and the 

tuned amplifier extracts the 20-kHz fundamental component from this 

waveform replica. Sampling is a time-stretching process, with which a high-

frequency repetitive signal is duplicated at a much lower frequency. The 

process is illustrated in 



 



the diagram of Fig. 6-37. An electronic switch is connected between the RF 

input waveform and a storage capacitor. Each time the switch is momentarily 

closed, the capacitor is charged to the instantaneous value of the input voltage 

and holds this until the next switch closure. With appropriate timing, samples 

are taken at progressively later points on the RF waveform. Provided that the 

RF waveform is repetitive, the samples reconstruct the original waveform at a 

much lower frequency. Each input channel has a sampler consisting of a 

sampling gate and a storage capacitor. The sampling gates are controlled by 

pulses from the same pulse generator. Samples are taken in each channel at 

exactly the same instant, and the phase relationship of the input signals is 

therefore preserved in the IF signals. 

 The phase control unit is a rather sophisticated circuit that generates the 

sampling pulses from both RF-to-IF converters and automatically controls the 

pulse rate to produce 20-kHz IF signals. The sampling pulse rate is controlled 

by a voltage-tuned oscillator (VTO) for which the tuning voltage is supplied by 

the automatic phase control section. This section locks the IF signal of channel 

A to a 20-kHz reference oscillator. To get initial locking, the phase control 

section applies a ramp voltage to the VTO. This ramp voltage sweeps the 

sampling rate until channel A IF is 20 kHz and in phase with the reference 

oscillator. Then the sweep stops and channel A IF is held in phase with the 

reference oscillator. 

 The tuned amplifier passes only the 20-kHz fundamental component of 

the IF signal of each channel. The output of each tuned amplifier then consists 



of a signal that has retained its original phase relationship with respect to the 

signal in the other channel and also its correct amplitude relationship. The two 

filtered IF signals can be connected to the voltmeter circuit by a front panel 

switch, marked channel A and channel B. The voltmeter circuit contains an 

input attenuator to provide the appropriate meter range. This attenuator is also a 

front panel control, marked amplitude range. The meter amplifier consists of a 

stable fixed-gain feedback amplifier, followed by a rectifier and a filter section. 

The rectified signal is applied to a dc voltmeter. 

 To determine the phase difference between the two IF signals, the tuned 

amplifiers are followed by the phase meter circuit. Each channel is first 

amplified and then limited, resulting in square-wave signals at the inputs to the 

IF phase- shifting circuits. The circuit in channel A shifts the phase of the 

square-wave signal by +600
o
; the circuit in channel B shifts the phase of its 

signal by -120
o
. Both phase shifts are accomplished by a combination of 

capacitive networks and 

 

inverting and non-inverting amplifiers whose vector-sum outputs provide the 

desired phase shift. The outputs of the phase-shift circuits are amplified and 

clipped. producing square waveforms, and applied to the trigger amplifiers. 



These circuits convert the square-wave input signals to positive spikes with 

very fast rise times. The bistable multivibrator is triggered by pulses from both 

channels. Channel A is connected to the set input of the MV; channel B is 

connected to the reset input of the MV. If the initial phase shift between the RF 

signals at the probes was 0
o
, the trigger pulses into the multivibrator are 180° 

out of phase owing to the action of the phase-shift circuits. The MV then 

produces a square-wave output voltage which is symmetrical about zero. Any 

phase shift at the RF probes carries through the entire system and varies the 

trigger pulses from their 1800 relationship, producing an asymmetrical 

waveform. 

 The (asymmetrical) square wave controls the current switch, which is a 

transistor switched into conduction by the negative portion of the square wave. 

The switch connects the constant current supply to the phase meter. At 0° phase 

shift at the RF input, the switch is turned off and on for equal amounts of time 

and the current supply is adjusted to cause the meter to read 0° or center scale. 

Any RF phase shift results in an asymmetrical waveform and allows either 

more or less current to the phase meter, depending on whether the phase shift 

caused the negative half-cycle of the square wave to be larger or smaller. An 

input phase shift of 180° would cause the square wave to collapse into either a 

positive or a negative dc voltage and the switch would then allow no current or 

maximum current to the phase meter. These maximum deviations from the 

center reading of 0° are marked on the meter face as + 180° and   -180°. The 



phase range can be selected by a front panel switch that places a shunt across 

the phase meter and changes its sensitivity. 

 The instrument contains a power supply section, which is not shown on 

the block diagram of Fig. 6-36. The power supply generates all the necessary 

supply voltages for the various sections of the instrument. 

 Calibration procedures and the testing of performance specifications 

vary from one instrument to the next. Complete descriptions of the various tests 

are given in the manual of the instrument and usually include the procedure and 

instrumentation needed for such tests. 

6-12 RF POWER AND VOLTAGE MEASUREMENT 

 One example of the amplified meter is the RF voltmeter, such as the unit 

shown in Fig. 6-38. Radio-frequency energy is essentially ac voltage, except 

that the frequencies involved are much greater than that which would be 

experienced in power distribution, audio frequency amplifiers, or control 

systems. Radio frequencies extend well into the gigahertz region, where it is 

difficult to amplify and great care must be taken because normal components 

are often useless. 

 Radio-frequency voltage is measured by rectifying the alternating 

voltage and amplifying the resulting dc output. Because of the difficulty in 

amplifying the RF signal itself, the RF voltage is first rectified and the dc 

output is amplified. 



 

 The diodes used to rectify the RF waveform are not like the rectifiers 

used in a conventional ac meter, discussed in Chapter 4. The diodes used to 

rectify the RF signal are either Schottky barrier or point contact diodes. 

Conventional junction diodes with small geometries can be used for lower 

frequencies, but most detector diodes are not PN junction diodes. There are two 

significant problems with diodes used for RF rectification. First, most diodes 

have excessive capacitance for high-frequency RF rectification, and, second, 

most diodes have excessive reverse recovery time. 

 When diodes are operated at low forward-biased potentials, the rectified 

output does not equal the peak of the input. This means that for rather low 

amplitude RF voltages the resulting dc output is even lower, and a chopper-



stabilized amplifier or other amplifier stabilized for dc drifts is required. Figure 

6-39 shows a block diagram of a sensitive RF millivoltmeter. The actual RF 

rectifier or detector is usually mounted on a probe so that measurements can be 

made with the least amount-of interconnecting RF cable, as even the losses of 

coaxial cable can cause significant errors at very high frequencies. The detected 

output is in the very low millivolt region, and often even lower, and is 

amplified via a chopper-stabilized amplifier, digitized and displayed on a 

digital readout. 

 

 The type of measurement made by the RF millivoitmeter depends on the 

type of probe used. Voltage measurements are made with a probe similar to the 

one shown in Fig. 6-40(a). Voltage measurements are made with a relatively 

high impedance, but some capacitance is inescapable. This probe would be 

used within circuits where the impedances vary and the circuit cannot be 

isolated and terminated externally. 

 Many high-frequency circuits can be disconnected and terminated, 

usually in 50 Ω. externally, and the probe of Fig. 6-40(b) is used. This probe is 

more a power measuring probe rather than a voltage probe and can be used to 



measure powers to the nanowatt region. This power measurement is not a true 

rms measurement, and care must be taken in interpreting measurements, 

especially when the signal being measured has modulation applied. 

 

 



REFERENCES 

6-1 Gothimann, William H., Digital Electronics: An Introduction to Theory 

 and Practice, 2
nd

 ed., chap. 11. Englewood Cliffs, N.J.: Prentice-Hall, 

 Inc., 1982. 

6-2. Graeme, Jerald G., Huelsman, Lawrence P., and Tobey, Gene E. 

 Operational.  Amplifiers: Design and Applications. New York: 

 McGraw-Hill Book Company, 1971. 

6-3. Lenk. John D., Handbook of Practical Electronic Circuits, chap. 6. 

 Englewood Cliffs, NJ.: Prentice-Hall, Inc., 1982. 

6-4. Oppenheimer, Samuel, Fundamentals of Electric Circuits, chap. 23. En 

 Cliffs, N.J.: Prentice-Hall. Inc., 1984. 

6-5. Prensky, Sol D., and Castellucis, Richard L.. Electronic Instrumentation, 

 3
rd

 chap. 7. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1982. 

6-6. Rutkowski, George B., Integrated Circuit Operational Amplifiers, 2
nd

 ed. 

 Engle Cliffs, N.J.: Prentice-Hall, Inc., 1984. 

PROBLEMS 

6-1. What are the advantages of a chopper-stabilized amplifier? 

6-2. What is the lowest voltage that could be displayed with a 100-μA meter 

 movement with an resistance of 150 Ω? What would the sensitivity of 

 this meter be in ohms per volt? Is there any way this meter could be used 

to  construct a Lower full-scale voltage reading? 



6-3. A 25-mA full-scale current meter with an internal resistance of 100 Ω is 

 available for constructing an ac voltmeter with a voltage range of 200 V 

 rms, Using four diodes in a bridge arrangement, where each diode has a 

 forward resistance of 500 Ω and infinite reverse resistance, calculate the 

 necessary series-limiting resistance for the 200-V rms range. 

6-4. For measuring small values of capacitance, a 60-MHz signal source is to 

 be used in a capacitance meter. What value of series resistance is 

 required if the phase shift is to kept below 5.7 degrees for full-scale 

 capacitance readings of 1, 10, and 100 pF? 

6-5. What would a true-rms reading meter indicate if a pulse waveform of 5 

 V peak and a 25 percent duty cycle were applied? What would the meter 

 indicate if a 5-V dc input were applied (assume the meter has dc 

 capability)? 

6-6. To check the distributed capacitance of a coil, the coil is resonated at 10 

 MHz with 120 pF and then is resonated at 15MHz with 40 pF. What is 

 the inductance of the coil and what is the equivalent distributed 

 capacitance? 

6-7. A coil with a resistance of 3 Ω is connected to the terminals of the Q-

 meter of Fig. 6-34. Resonance occurs at an oscillator frequency of 5 

 MHz and resonating capacitance of 100 pF Calculate the percentage of 

 error introduced by the insertion resistance, RSH = 0.1Ω. 

 


