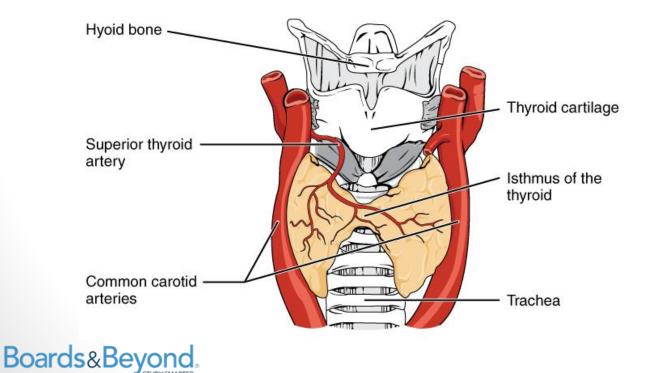
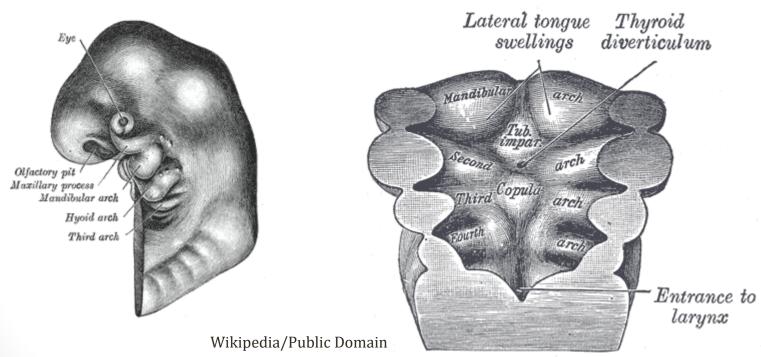

Thyroid Gland

Jason Ryan, MD, MPH

Thyroid Anatomy


- Two lobes (left, right)
- Isthmus: thin band of tissue between lobes
- Sometimes pyramidal lobe above isthmus

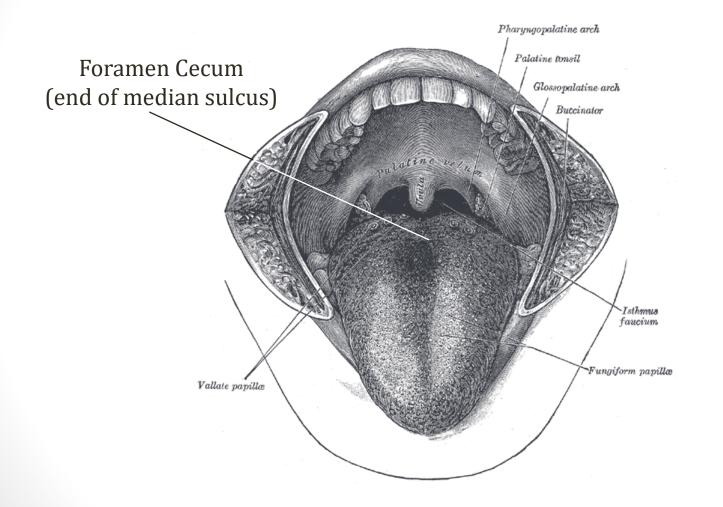

Thyroid Anatomy

- Blood supply: superior and inferior thyroid arteries
- Superior thyroid: 1st branch external carotid artery
- Inferior thyroid: Thyrocervical trunk (off subclavian)

Thyroid Embryology

• Forms from floor of pharynx (epithelial cells)

24-28 Day Old Embryo



Thyroid Embryology

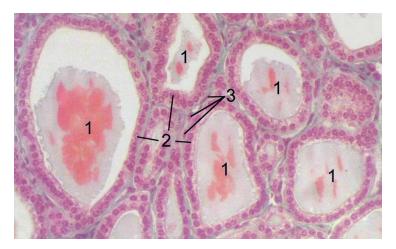
- Descends into neck
- Initially maintains connection to tongue
 - Thyroglossal duct
 - Disappears later in development
- Two remnants of duct in child/adult
 - Foramen cecum in tongue
 - Pyramidal lobe of thyroid

Foramen Cecum

Thyroglossal Duct Cyst

- Persistent remnant of thyroglossal duct
- Midline neck mass; usually painless
- Usually discovered in childhood
- Classically, move up with swallowing or tongue protrusion
- May contain thyroid cells

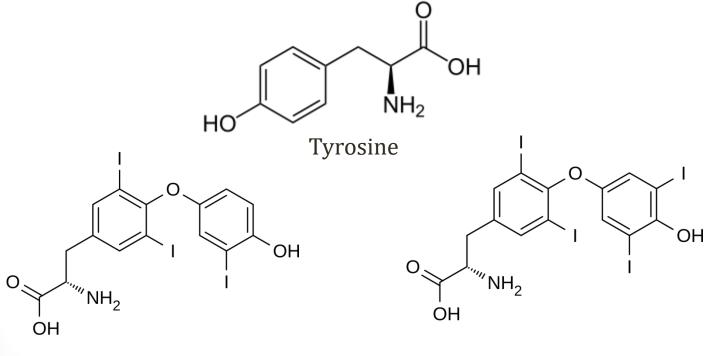
Klaus D. Peter, Gummersbach, Germany


Ectopic Thyroid

- Functioning thyroid tissue outside of gland
- Most common location is base of tongue
- Presents as a mass in the tongue
 - Commonly detected during increased demand for hormones
 - Puberty and pregnancy
- May be the only functioning thyroid tissue
 - May under-produce thyroid hormone → hypothyroidism
 - \uparrow TSH \rightarrow growth of ectopic tissue

Thyroid Histology

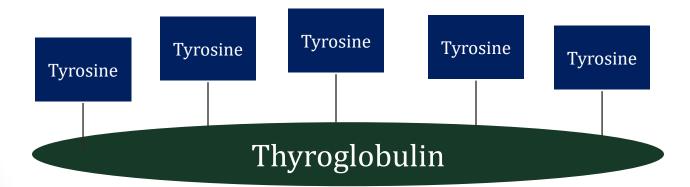
- Thyroid gland contains "follicles"
- Filled with colloid (protein material)
- Single layer of epithelial cells lines each follicle
 - "Follicular cells"
- Hormone synthesized by follicular cells



Uwe Gille/Wikipedia

- Contain the element iodine
- Iodized salt
 - Table salt (NaCl) mixed with small minute amount of iodine
 - Done in many countries to prevent iodine deficiency
 - Added to salt in US in 1924

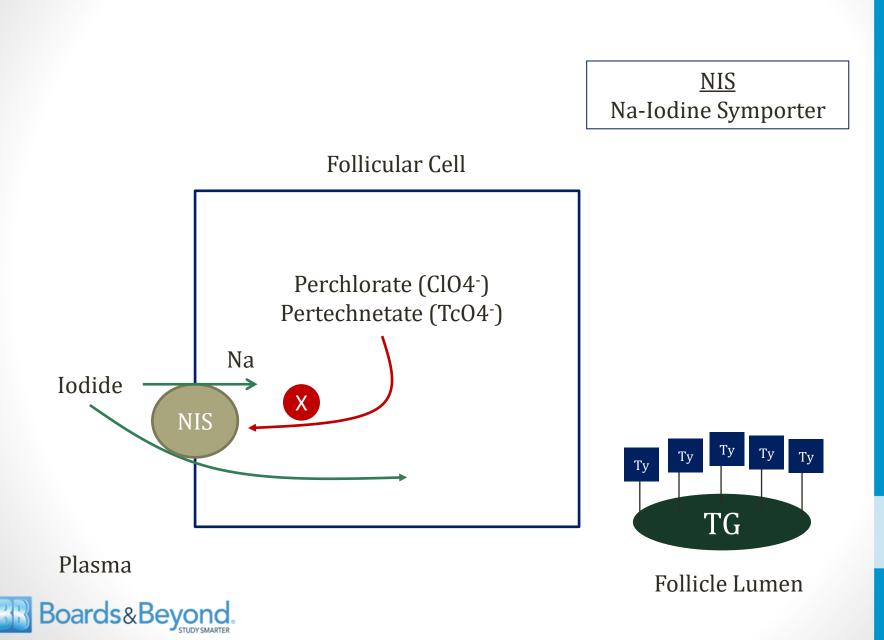
- Two hormones: T3 and T4
- Synthesized from tyrosine and iodine

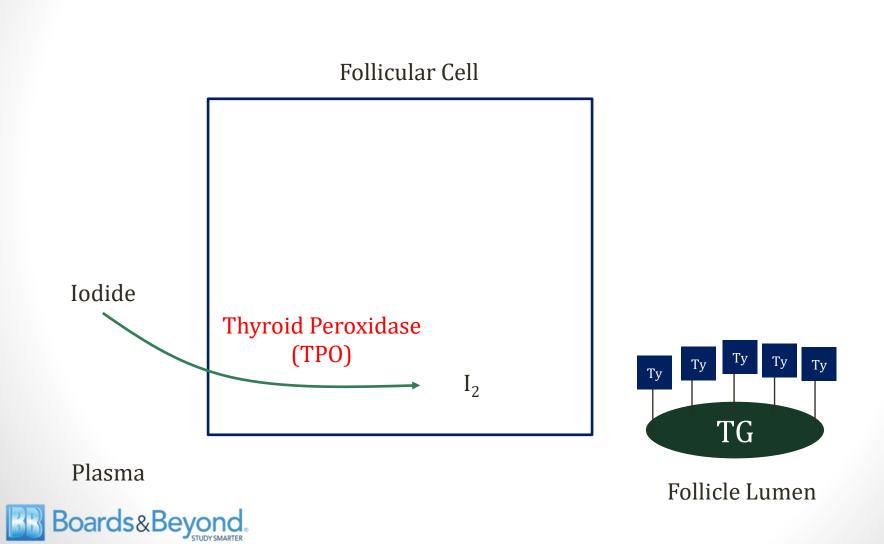

Triiodothyronine (T₃)

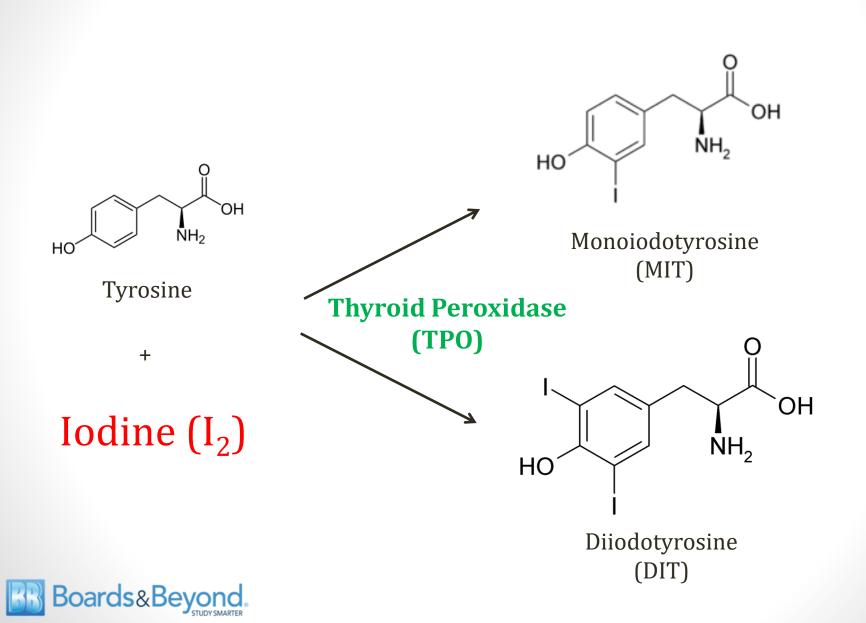
Thyroxine (**T**₄)

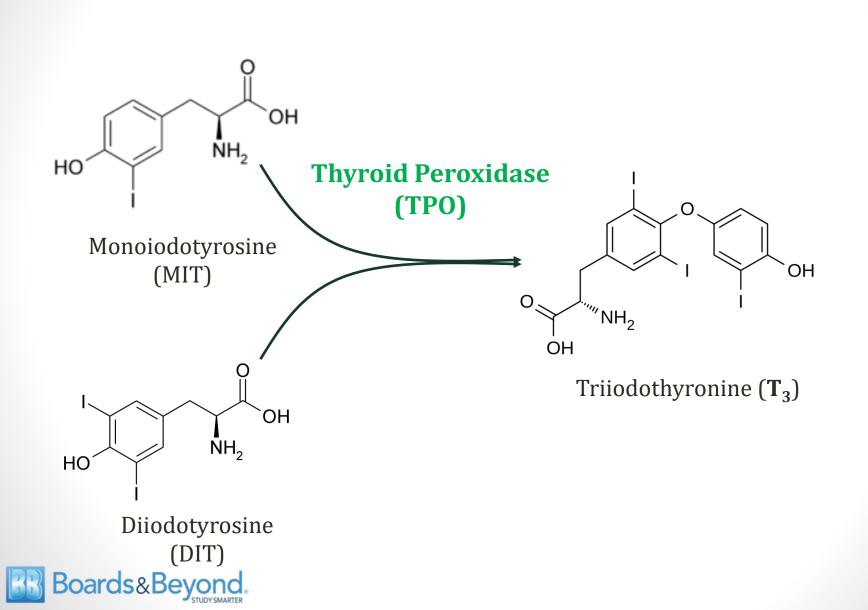
Thyroglobulin

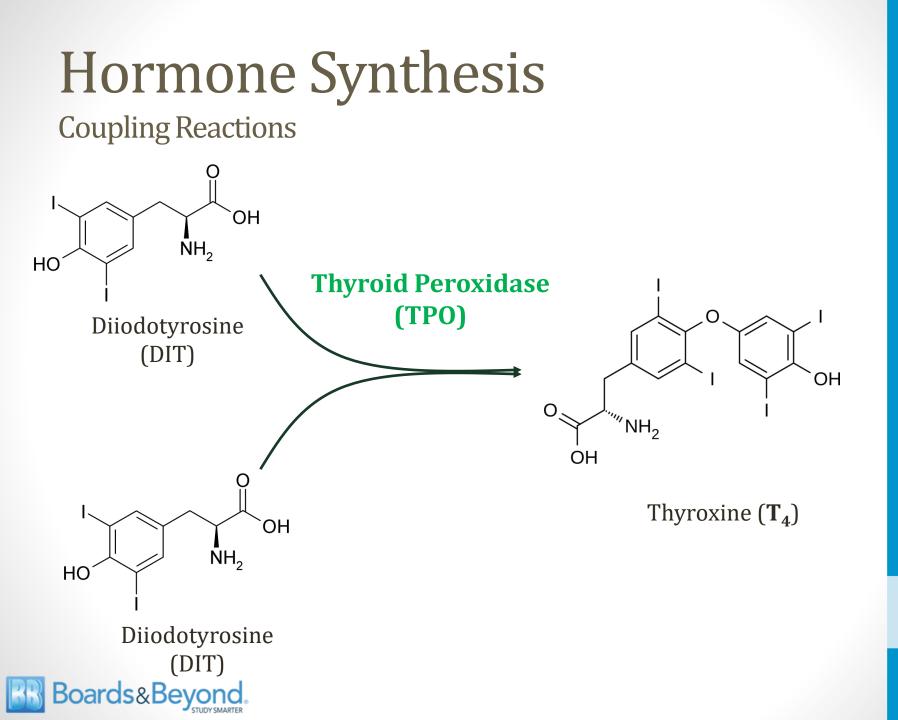
- Large protein
- Produced by thyroid follicular cells
- Contains numerous tyrosine molecules

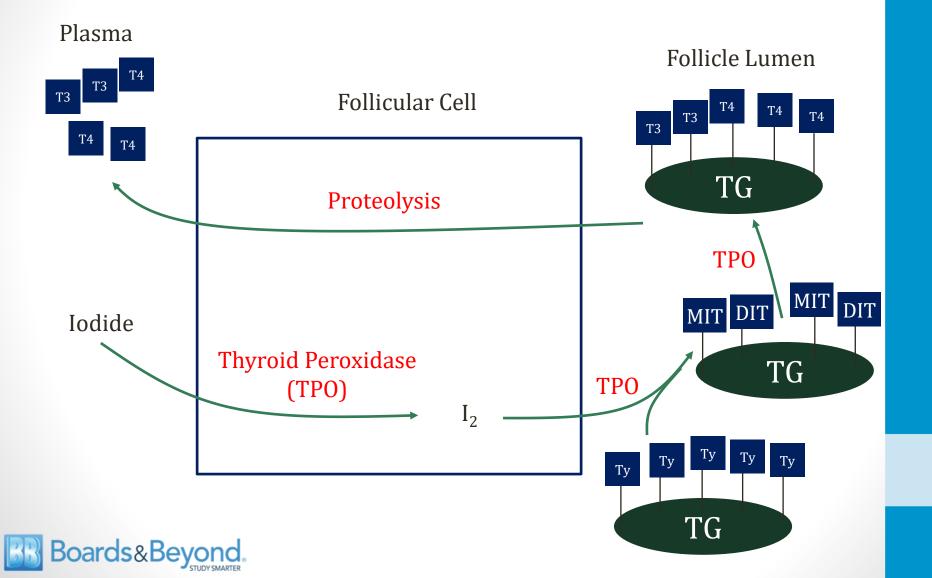




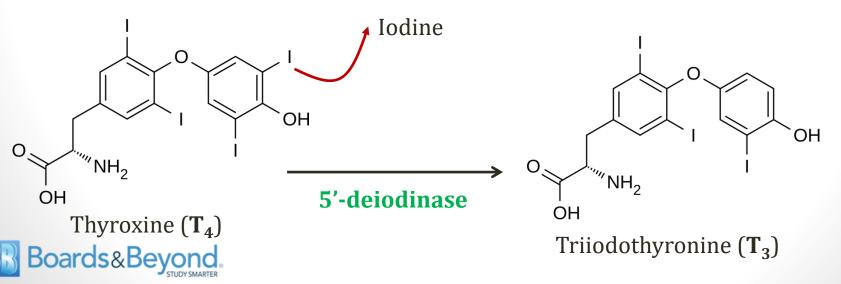

Iodine


- Iodine = I (chemical element, atomic number 53)
- **Iodide** = iodine bound to another atom
 - "Iodide salt" with negative charge (I⁻)
 - Potassium iodide = KI
 - Plasma iodine exists as iodide salt
- For thyroid hormone, iodide in our diet needs to be:
 - Taken up by follicular cells
 - Oxidized to I₂ (undergo "oxidation")
 - Added to organic/carbon structures ("organification")




TPO

Thyroid Peroxidase


- Multifunctional enzyme
- Catalyzes:
 - Oxidation of iodide
 - Organification of iodine into MIT/DIT
 - Coupling of MIT/DIT into T3/T4
- TPO antibodies common in autoimmune thyroid disease

Hormone Synthesis

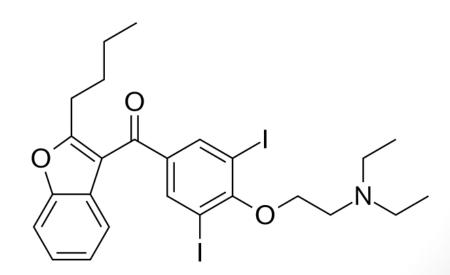
- T4 is major hormone produced by thyroid gland
 - >90% of thyroid hormone produced is T4
- T3 more potent hormone
- T4 is a "prohormone" for T3
- 5' deiodinase converts T4 → T3
- Most conversion occurs in peripheral tissues

Hyperthyroid Medications

Propylthiouracil (PTU)

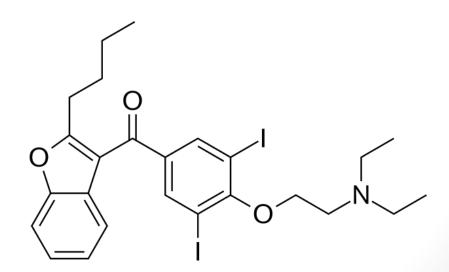
- Inhibits TPO: \downarrow T3/T4 from thyroid gland
- Inhibits 5'-deiodinase: \downarrow T4 to T3 conversion peripherally
- Methimazole
 - Inhibits TPO
- Propranolol
 - Beta blocker
 - Weak inhibitor of 5'-deiodinase
 - Excellent drug in thyrotoxicosis
 - Blocks catecholamines and T4-T3 conversion

PTU and Methimazole are both "thioamides"


Wolff-Chaikoff Effect

- Excessive iodide in diet could lead to hyperthyroidism
- Thyroid protects itself via Wolff-Chaikoff Effect
- Organification inhibited by 1 iodide
 - Less synthesis of MIT/DIT

Amiodarone


- Class III antiarrhythmic drug
- Commonly used in atrial fibrillation
- Contains iodine
- Can cause hypothyroidism via excess iodine
 - Wolff-Chaikoff Effect

Amiodarone

- Mimics T4
 - Inhibits 5'-deiodinase
 - \downarrow T3 \rightarrow \uparrow TSH from pituitary gland
 - TSH rises after start of therapy then normalizes

Radioactive Iodine

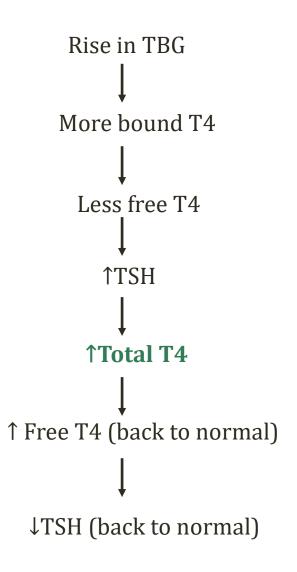
- I¹³¹ is an isotope of iodine
 - Has 53 protons like elemental iodine
 - Extra neutrons
- Emits radiation (β-decay)
- Exposure \rightarrow radioactive iodine in thyroid gland
 - Competes with elemental iodine for uptake
 - Will concentrate in thyroid gland
- Small dose: Used for imaging (I¹²³)
- Large dose: Destroys thyroid tissue
 - Used as therapy for hyperthyroidism

TBG

Thyroxine-Binding Globulin

- Most plasma thyroid hormone is T4
- Thyroid hormones poorly soluble in water
- Most T4 is bound to TBG
 - Some with transthyretin and albumin
 - TBG present in small amount but has high affinity
 - TBG produced in liver
- Key point:
 - Less TBG \rightarrow less available T4/T3 to tissues

TBG-T4 \rightarrow T4


TBG

Thyroxine-Binding Globulin

- Estrogen raises TBG levels
 - Modifies TBG molecules
 - Slows clearance from plasma
 - Pregnancy, OCP users
 - Will raise total T4 levels
- Liver failure lowers TBG levels
 - Less production of protein
 - Can lower total T4 levels

TBG Thyroxine-Binding Globulin

Boards&Beyond.

Thyroid Hormone Receptor

- Family of nuclear receptors
- Hormone-activated transcription factors
- Modulate gene expression

Effects of Thyroid Hormone

- Major regulator of metabolic activity and growth
- Glucose, lipid metabolism
- Cardiac function
- Bone growth
- CNS development

Metabolic Effects

- ↑ Carbohydrate Metabolism
 - ↑ glycogenolysis, gluconeogenesis
- ↑ Fat Metabolism
 - 1 lipolysis
 - ↓ concentrations of cholesterol, triglycerides
 - ↑ low-density lipoprotein receptors in liver (↓ LDL)
 - ↑ cholesterol secretion in bile
- Hypothyroid patients: 1 cholesterol
- Hyperthyroid patients: hyperglycemia

Metabolic Effects

- ↑ basal metabolic rate
 - Basal rate of energy use per time
 - Amount of energy burned if you slept all day
- ↑ Na/K ATPase pumps
 - More pumps = more ATP consumed
 - ↑ oxygen demand to replenish ATP
 - ↑ respiratory rate
 - 1 body temperature
- Hyperthyroid patients: weight loss

McDonough AA, et al. **Thyroid hormone coordinately regulates Na+-K+-ATPase alpha- and beta-subunit mRNA levels in kidney.** <u>Am J Physiol.</u> 1988 Feb;254(2 Pt 1):C323-9.

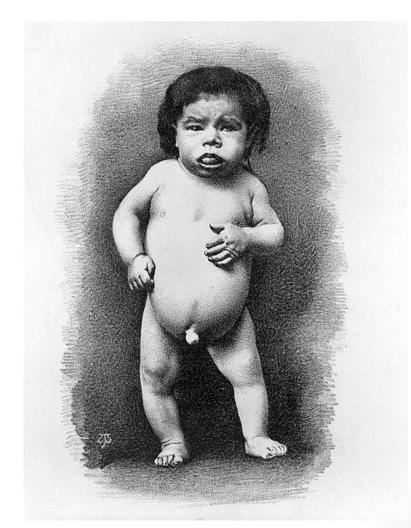
Cardiac Effects

- ↑ CO/HR/SV/contractility
- $\uparrow \beta 1$ receptors in heart
- Hyperthyroid patients: Tachycardia

CNS and Bone effects

- TH required for normal bone growth/CNS maturation
- Childhood hypothyroidism \rightarrow cretinism
 - Stunted growth
 - Mental retardation
- Causes
 - Iodine deficiency (3rd world)
 - Thyroid dysgenesis
 - Inborn errors of hormone synthesis (dyshormonogenesis)
 - TPO most common

CNS and Bone effects


- Most common treatable cause of mental retardation
- Most babies appear normal
 - Maternal T3/T4 crosses placenta
- Newborn screening programs
 - Measure T4 or TSH from heel-stick blood specimens

Thyroid Hormone

CNS and Bone effects

- Mental retardation
- Coarse facial features
- Short stature
- Umbilical hernia
- Enlarged tongue

Wellcome Images/Wikipedia

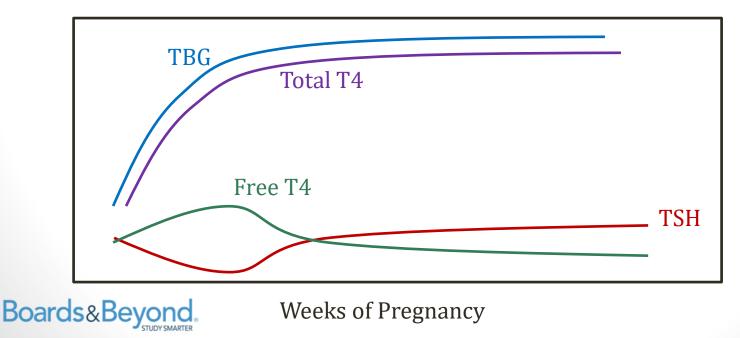
Thyroid Hormone Regulation

- **TSH (thyrotropin)** released by anterior pituitary
- Binds to receptors on follicular cells
- Activates cAMP/PKA 2nd messenger system
- T3/T4 release
 - ↑ rate of proteolysis of thyroglobulin
 - Leads to rapid release of more T3/T4
 - Also stimulates thyroid cell growth, TG synthesis

Thyroid Hormone Regulation

- Serum T4/T3 level sensed by hypothalamus
- Releases thyroid releasing hormone (TRH)

Hypothalamus Anterior pituitary gland Thyrotropin-releasing hormone (TRH) Negative feedback Thyroid-stimulating hormone (TSH)


Thyroid gland

Mikael Häggström/Wikipedia

Pregnancy

- Multiple effects on thyroid hormone production
 - Rise in total plasma T4/T3 levels
 - Rise in TBG levels (estrogen)
- hCG stimulates thyroid (same alpha unit as TSH)
- Raises free T4 \rightarrow lower TSH

Thyroid Panel

Four standard measurements to assess thyroid


Test	Normal Value
TSH	0.4 to 5.0 mU/L
Total T4	60 to 145 nmol/L
Total T3	1.1 to 3 nmol/L
Free T4	0.01-0.03nmol/L

Note: T4 > T3 Total T4 >> Free T4 (most bound to TBG)

Calcitonin

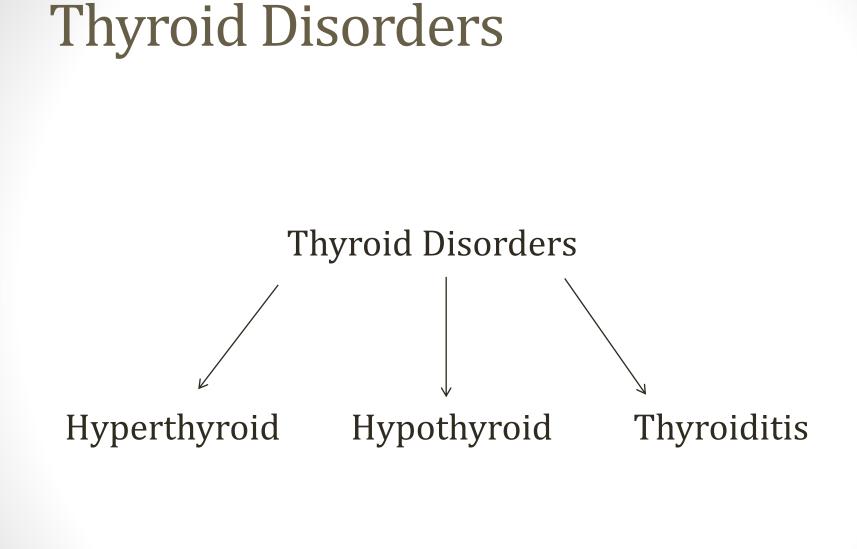
- Hormone produced by thyroid
- Synthesized by parafollicular cells (C-cells)

Boards&Beyond.

Andrea Mazza/Wikipedia

Calcitonin

Lowers serum calcium


- Suppresses resorption of bone; inhibits osteoclasts
- Inhibits renal reabsorption of calcium, phosphorus
- Increased calcium in urine
- Probably minor role in calcium handling in humans
- Used as pharmacologic therapy for hypercalcemia

Thyroid Disorders

Jason Ryan, MD, MPH

Hypothyroidism

- Metabolism SLOWS DOWN
- Lethargy, fatigue
- Weakness; dyspnea on exertion
- Cold intolerance
- Weight gain with loss of appetite
- Constipation
- Hyporeflexia
- Dry, cool skin
- Coarse, brittle hair
- Bradycardia

Hyperlipidemia

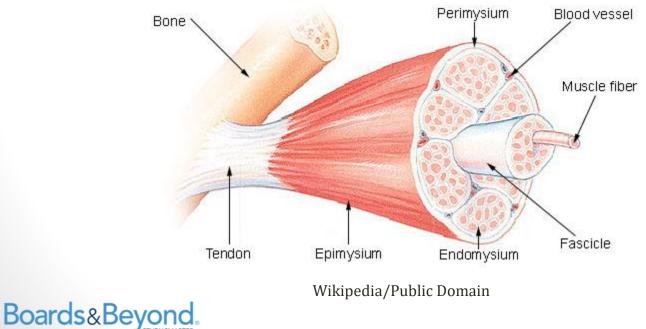
- Classic feature of hypothyroidism
- ↑ total cholesterol
- ↑ LDL cholesterol
- Primary mechanism:
 ↓ LDL receptor density
 - T₃ upregulates LDL receptor gene activation

Myxedema

Thyroid dermopathy

- Non-pitting edema of the skin from hypothyroidism
- Hyaluronic acid deposits in dermis
- Draws water out \rightarrow swelling
- Usually facial/periorbital swelling
- Pretibial myxedema
 - Special form of myxedema over shin
 - Seen in Grave's disease (hyperthyroidism)
- Myxedema coma = coma from hypothyroidism

Myxedema Thyroid dermopathy



Herbert L. Fred, MD and Hendrik A. van Dijk

Hypothyroid Myopathy

- Muscle symptoms common in hypothyroid
- Weakness, cramps, myalgias
- ↑ serum creatine kinase (CK) common (up to 90%)

Structure of a Skeletal Muscle

Hyponatremia

- Hypothyroidism is a well-described cause \downarrow Na
- High levels of ADH (SIADH)
- May lead to confusion

Thyroid Replacement

- Levothyroxine (Synthroid): synthetic T4
- Liothyronine (Cytomel): synthetic T3
- Levothyroxine preferred
 - T3 absorbed from intestines rapidly
 - Can cause mild hyperthyroidism symptoms
 - Tachycardia, tremor
 - Also, T4 converted to T3
- Titrate dose until TSH is normal

Hyperthyroidism

- Metabolism SPEEDS UP
- Hyperactivity
- Heat intolerance
- Weight loss with increased appetite
- Diarrhea
- Hyperreflexia
- Warm, moist skin
- Fine hair
- Tachycardia (atrial fibrillation)

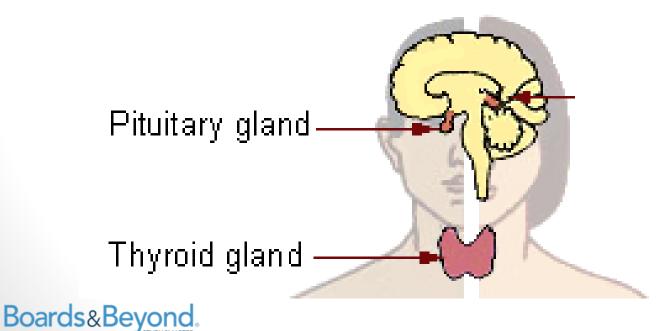
Thyroid Storm

- Life-threatening hyperthyroidism (thyrotoxicosis)
- Usually precipitated by acute event
 - Patient with pre-existing hyperthyroid disease
 - Grave's or toxic multinodular goiter
 - Surgery, trauma, infection
- Massive catecholamine surge
- Fever, delirium
- Tachycardia with death from arrhythmia
- Hyperglycemia (catecholamines/thyroid hormone)
- Hypercalcemia (bone turnover)

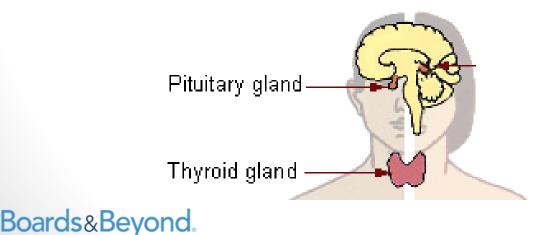
Goiter

- Enlarged thyroid
- High TSH, inability to produce T3/T4
- Thyroid stimulating antibodies (Grave's)

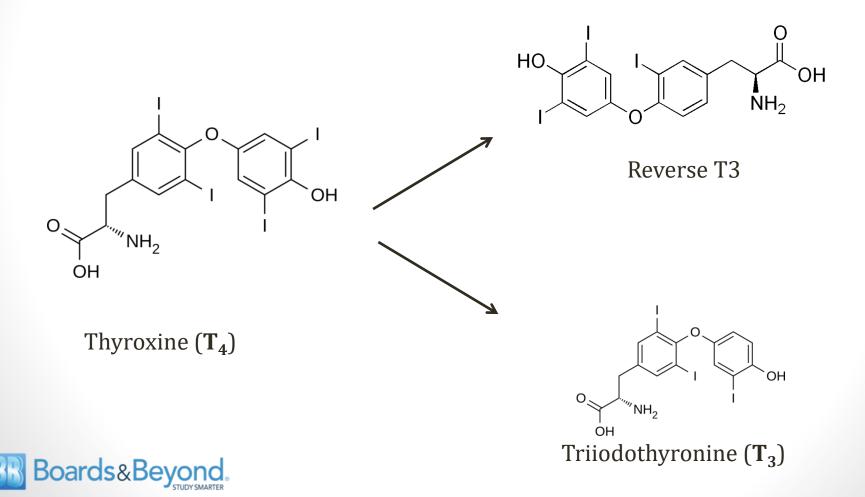
Lab Findings


Best initial test is TSH

TSH


Lab Findings

- Most disorders are primary disease
 - Disorder of the thyroid gland
 - TSH is opposite thyroid hormone
 - Hypothyroidism = \uparrow TSH with low T3/T4
 - Hyperthyroidism = \downarrow TSH with high T3/T4


Lab Findings

- Central hyper/hypo thyroid disease
 - Low TSH and low T3/T4; High TSH and high T3/T4
 - Rare disorders of the pituitary, hypothalamus
 - Usually hypothalamic-pituitary tumors
 - Tumors block secretion TRH/TSH (hypothyroidism)
 - Rarely a TSHoma can secrete TSH (hyperthyroidism)
 - Pituitary resistance to thyroid hormone (hyperthyroidism)

Reverse T3

• Isomer of T3 also derived from T4

Reverse T3

- Level usually parallels T4
 - Low T4 \rightarrow Low rT3
- One special use: Euthyroid sick syndrome
 - Critically ill patients \rightarrow low TSH \rightarrow Low T3/T4
 - Can look like central hypothyroidism
 - rT3 rises in critical illness (impaired clearance)
- Critically ill patient with low TSH/T4/T3
 - Check rT3
 - Low \rightarrow central hypothyroidism
 - High \rightarrow sick euthyroid syndrome

Hyperthyroidism

- Grave's disease (#1 cause)
- Toxic multinodular goiter
- Amiodarone
- Iodine load
- Early thyroiditis

- Autoimmune disease
- Thyroid stimulating antibodies produced
- Symptoms of hyperthyroidism occur

- Exophthalmos (bulging eyes)
 - Proptosis (protrusion of eye) and periorbital edema
 - Usually no ocular symptoms
- Pretibial myxedema (shins)
- T-cell lymphocyte activation of fibroblasts
- Fibroblasts contain TSH receptor
- Stimulation \rightarrow secretion of glycosaminoglycans
 - Hydrophilic substances, mostly hyaluronic acid
 - Draws in water \rightarrow swelling

Jonathan Trobe, M.D./Wikipedia

Herbert L. Fred, MD and Hendrik A. van Dijk

- Diagnosis:
 - Usually hyperthyroid labs plus exophthalmos
 - Can measure TSH receptor antibodies
 - "Thyroid stimulating immunoglobulins"
- Treatment
 - Symptoms: beta blockers, thionamides
 - Drugs often started in preparation for definitive therapy
 - Radioactive iodine ablation or surgery

Thionamides

- Methimazole
 - Inhibits thyroid peroxidase (TPO)
 - Organification of iodine
 - Coupling of MIT/DIT
- Propylthiouracil (PTU)
 - Inhibits TPO
 - Also inhibits 5'-deiodinase
 - Blunts peripheral conversion $T4 \rightarrow T3$

Thionamides

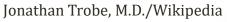
- Skin rash (common)
- Agranulocytosis
 - Rare **drop in WBC**
 - May present as fever, infection after starting drug
 - WBC improves with stopping drug
 - Aplastic anemia cases reported
- Hepatotoxicity

Thionamides

- Methimazole: teratogen
 - Associated with congenital malformations
 - Especially 1st trimester
 - PTU often used during early pregnancy

Thyroid Storm

Treatment


- Propranolol
 - Beta blocker
 - Blocks T4 \rightarrow T3 conversion
- Thionamides (PTU, Methimazole)
- SSKI (saturated solution of potassium iodide)
 - Iodide load \rightarrow shuts down T4 production
 - Wolff-Chaikoff effect
- Steroids
 - Reduce T4 \rightarrow T3 conversion
 - Suppress auto-immune damage
 - Treat possible concomitant adrenal insufficiency

Grave's Ophthalmopathy

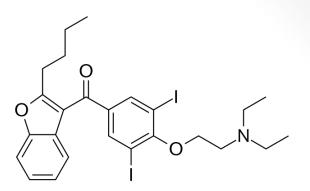
- Sometimes worsens despite treating hyperthyroidism
- Can cause irritation, excessive tearing , pain
- Symptoms often worse by cold air, wind, bright lights
- Severe inflammation treatments:
 - Steroids
 - Radiation
 - Surgery

Toxic Adenomas

- Nodules in thyroid that function independently
 - Usually contain mutated TSH receptor
 - Do not respond to TSH
 - One nodule: Toxic adenoma
 - Multiple: Toxic multinodular goiter
- Findings:
 - Palpable nodule
 - Hyperthyroidism symptoms/labs
- Treatment: Radioactive iodine or surgery

Radioactive Iodine Uptake

- Important test for thyroid nodules
- Administration of I¹³¹ (lower dose than ablation)
- Contraindicated in pregnancy/breast feeding
- "Hot" nodule
 - Takes up I¹³¹
 - Not-cancerous
- "Cold" nodule
 - Chance of cancer (~5%)
 - Often biopsied (Fine-needle aspiration)



Jod-Basedow Phenomenon

- Iodine-induced hyperthyroidism
- Often occurs in regions of iodine deficiency
 - Introduction of iodine \rightarrow hyperthyroidism
- Often occurs in patients with toxic adenomas
 - Drugs administered with high iodine content
 - Expectorants (potassium iodide)
 - CT contrast dye
 - Amiodarone

Amiodarone

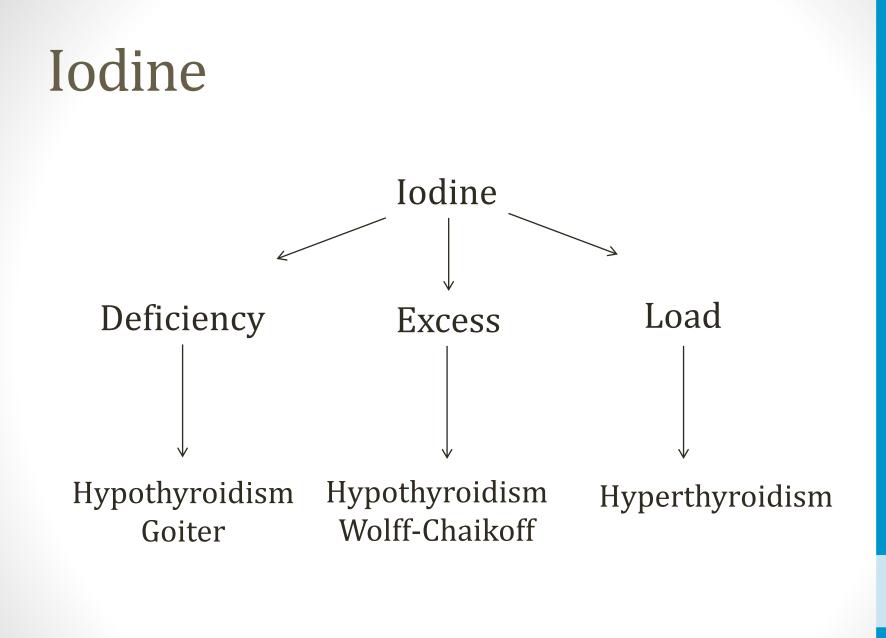
- Two types of hyperthyroidism
- Type I
 - Occurs in patients with pre-existing thyroid disease
 - Grave's or Multi-nodular goiter
 - Amiodarone provides iodine \rightarrow excess hormone production
- Type II
 - Destructive thyroiditis
 - Excess release T4/ T3 (no ↑ hormone synthesis)
 - Direct toxic effect of drug
 - Can occur in patients without pre-existing thyroid illness

Hypothyroidism

- Iodine deficiency
- Iodine excess
- Congenital hypothyroidism
- Amiodarone
- Thyroiditis
 - Hashimoto's (#1 cause when dietary iodine is sufficient)
 - Subacute
 - Riedel's

Iodine Deficiency

- "Endemic goiter"
 - Goiter in region with widespread iodine deficiency
 - Common in mountainous areas (iodine depleted by run-off)
- Constant elevation of TSH \rightarrow enlarged thyroid

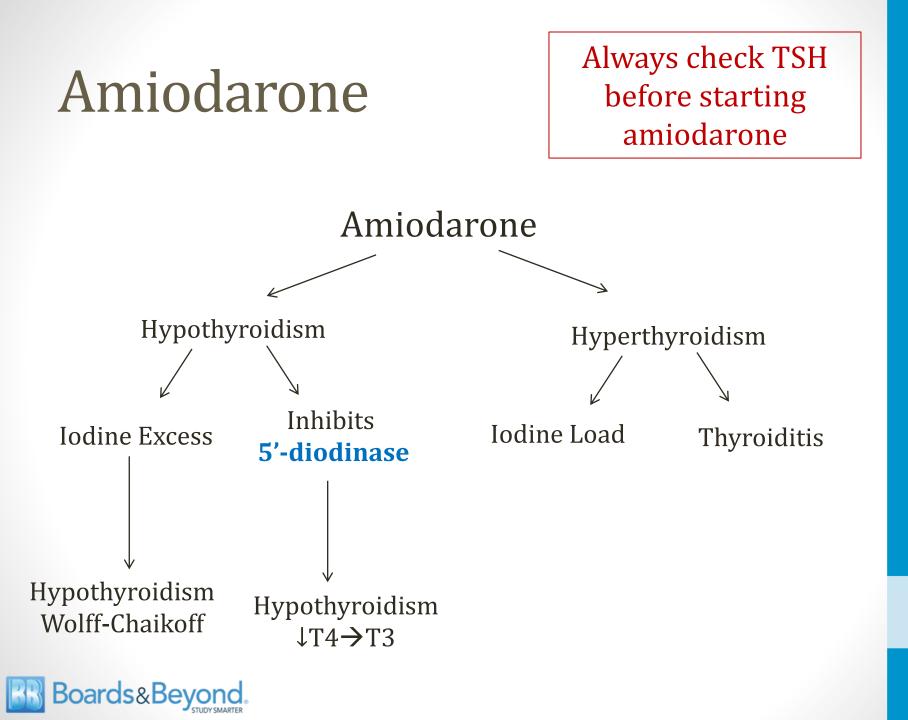


Wellcome Images

Iodine Excess

- Excessive iodide in diet could lead to hyperthyroidism
- Thyroid protects itself via Wolff-Chaikoff Effect
- Organification inhibited by 1 iodide
 - Less synthesis of MIT/DIT
- Chronic, high iodine intake \rightarrow goiter/hypothyroidism

Goitrogens


- Substances that inhibit thyroid hormone production
- Most common is iodine
- Lithium (inhibits release of thyroid hormone)
- Certain foods (cassava and millet)

Amiodarone

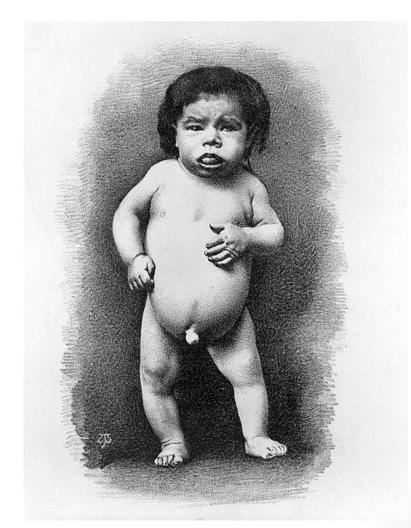
- Can cause hypothyroidism
- Excess iodine \rightarrow Wolff-Chaikoff Effect
 - Suppression of thyroid hormone synthesis
 - Normal patients "escape" in few weeks
 - Pre-existing subclinical thyroid disease \rightarrow "failure to escape"
- Also mimics T4
 - Inhibits 5'-diodinase

Congenital Hypothyroidism

- TH required for normal bone growth/CNS maturation
- Childhood hypothyroidism \rightarrow cretinism
 - Stunted growth
 - Mental retardation
- Causes
 - Iodine deficiency (3rd world)
 - Thyroid dysgenesis
 - Inborn errors of hormone synthesis (dyshormonogenesis)
 - TPO most common

Thyroid Hormone

CNS and Bone effects


- Most common treatable cause of mental retardation
- Newborn screening programs
 - Measure T4 or TSH from heel-stick blood specimens

Thyroid Hormone

CNS and Bone effects

- Mental retardation
- Coarse facial features
- Short stature
- Umbilical hernia
- Enlarged tongue

Wellcome Images/Wikipedia

Iatrogenic Hypothyroidism

- Thyroid surgery
 - Often done for Grave's or malignancy
- Radioiodine therapy
 - I¹³¹ administered orally as solution or capsule
 - Beta-emissions \rightarrow tissue damage
 - Ablation of thyroid function over weeks
 - Done for Grave's or malignancy
- Neck radiation
 - Hodgkin's lymphoma
 - Head and neck cancer

Hashimoto's Thyroiditis

Chronic Autoimmune Thyroiditis

- Most common cause of hypothyroidism (non-diet)
- Lymphocytes infiltrate thyroid gland
 - Autoimmune disorder (T-cell attack thyroid; B cell activation)
 - HLA-DR3, HLA-DR5 and others

Hashimoto's Thyroiditis

Chronic Autoimmune Thyroiditis

- Antibodies produced
 - Anti-TPO
 - Anti-thyroglobulin
- Histology:
 - Massive lymphocytic infiltrate (germinal centers)
 - Hurthle cells (enlarged eosinophilic follicular cells)

Hashimoto's Thyroiditis

Chronic Autoimmune Thyroiditis

- Primarily occurs in women
- Enlarged non-tender thyroid gland
- Gradual loss of thyroid function \rightarrow symptoms
- Symptoms/labs of hypothyroidism
- Treatment: thyroid hormone replacement
- Increased risk of Non Hodgkin B cell lymphoma

Subacute Thyroiditis

de Quervain's/granulomatous thyroiditis

- Granulomatous inflammation of thyroid
- Occurs in young females
- Tender, enlarged thyroid gland
- Hyperthyroid \rightarrow euthyroid \rightarrow hypothyroid
- Treatment:
 - Anti-inflammatories (aspirin, NSAIDs, steroids)
 - Thyroid symptoms usually mild (no treatment)
 - Usually resolves in few weeks

Riedel's Thyroiditis

- Fibroblast activation/proliferation
- Fibrous tissue (collagen) deposition in thyroid
- "Rock hard" thyroid
- Often extends beyond the thyroid
 - Parathyroid glands \rightarrow hypoparathyroidism
 - Recurrent laryngeal nerves \rightarrow hoarseness
 - Trachea compression \rightarrow difficulty breathing
- Associated with IgG4 plasma cells
 - May be an "IgG4-related disease" (autoimmune pancreatitis)
 - IgG4 plasma cells identified in biopsy specimens

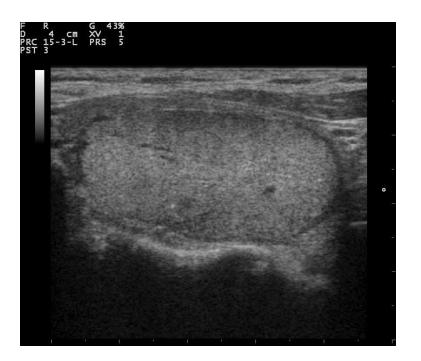
Lymphocytic Thyroiditis Painless Thyroiditis

- Variant of Hashimoto's
- Lymphocytic infiltration of thyroid gland
- Transient hyperthyroidism
 - Can look like Grave's without eye/skin findings
 - Serum thyroid stimulating immunoglobulins not elevated
- Followed sometimes by hypothyroidism
 - Can look like Hashimoto's
- Usually self-limited (weeks)

Thyroid Cancer

Jason Ryan, MD, MPH

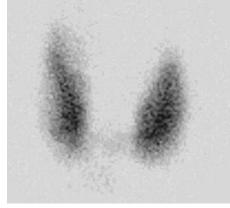
General Principles


- Thyroid cancer usually no hyper/hypo symptoms
- Often presents as nodule
- Differential is benign adenoma versus cancer
- Biopsy done by fine needle aspiration

Thyroid Imaging

Ultrasound

- Some characteristics suggest cancer
- Borders, vascularity, calcifications



Nevit Dilmen/Wikipedia

Radioactive Iodine Uptake

- Small oral dose I¹³¹ given to patient
- Scintillation camera \rightarrow image of thyroid
- Normal: diffuse, even uptake
- Diffuse high uptake: Grave's
- Diffuse low uptake: Hashimoto's
- Multiple areas of high uptake: nodular goiter
- Single "hot" nodule: adenoma
- Single "cold" nodule: Possible cancer
 - Most cancers do not make hormone
 - About 10% cold nodules are malignant

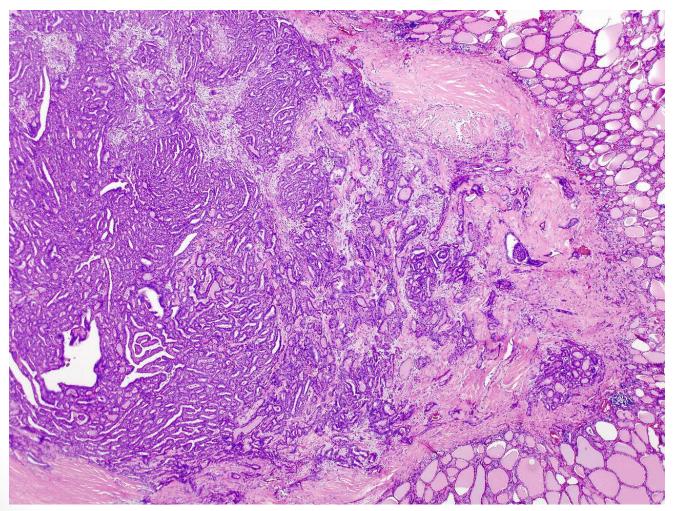
Myohan /Wikipedia

Follicular Adenoma

- Common cause of thyroid nodules
- Benign proliferation of follicles
- Normal follicular tissue seen on biopsy
- Completely surrounded by fibrous capsule
- FNA cannot distinguish between adenomas/cancer
 - Cannot see entire capsule
 - Follicular carcinoma has similar histology by FNA
- FNA follicular pathology followed over time
 - Growth, suspicious new findings \rightarrow surgery

Thyroid Cancer

- Papillary
- Follicular
- Medullary
- Anaplastic

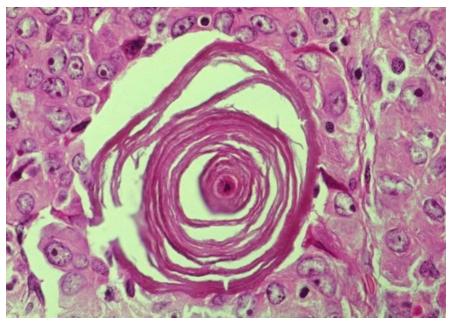


Papillary Carcinoma

- Most common form thyroid cancer (~80%)
- Increased risk with prior radiation exposure
 - Childhood chest radiation for mediastinal malignancy or acne
 - Survivors of atomic bomb detonation (Japan)
 - Nuclear power plant accidents (Chernobyl)
- Presents as thyroid nodule
 - Sometimes seen on chest/neck imaging (CT/MRI)
 - Diagnosis made after fine needle aspiration (FNA)
- Excellent prognosis
 - Treated with surgery plus radioactive iodine ablation

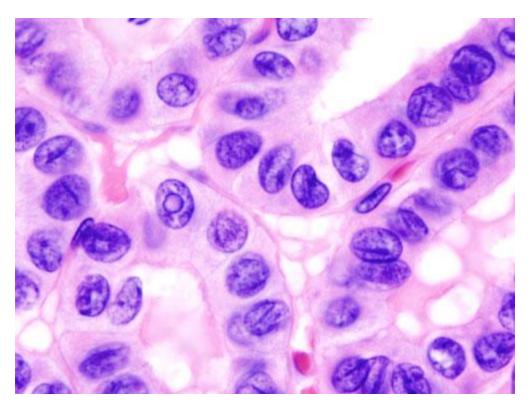
Papillary Carcinoma

KGH/Wikipedia


Papillary Carcinoma

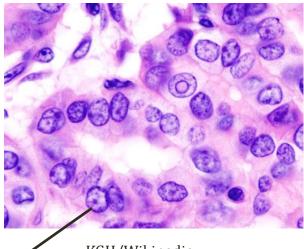
- Three key pathology findings:
 - Psammoma bodies
 - Nuclear grooves
 - Orphan Annie's Eye Nuclei
- Diagnosis made by nuclear findings

Psammoma Bodies


- Calcifications with an layered pattern
- Seen in other neoplasms but only papillary for thyroid

Wikipedia/Public Domain

Nuclear Grooves

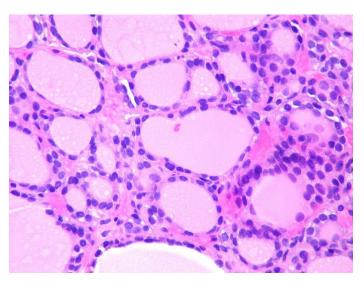


KGH/Wikipedia

Orphan Annie's Eyes

• Empty-appearing nuclei

KGH/Wikipedia



William Creswell/Flikr

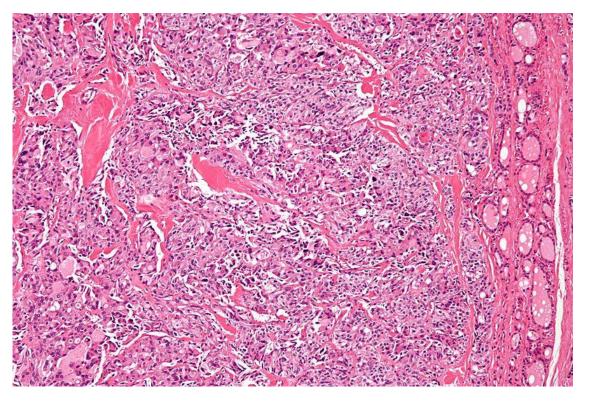
Follicular Carcinoma

- Similar to follicular adenoma
- Breaks through ("invades") fibrous capsule
- FNA cannot distinguish between adenomas/cancer
- Follicular pathology followed over time
 - Growth, suspicious new findings \rightarrow surgery

Yale Rosen/Wikipedia

Follicular Carcinoma

- Possible hematogenous metastasis
- Treatment:
 - Thyroidectomy
 - I¹³¹ to ablate any remaining tissue or metastasis


Medullary Carcinoma

- Cancer of parafollicular cells (C cells)
- Produces calcitonin
 - Lowers serum calcium
 - Normally minimal effect on calcium levels
 - Used for monitoring
- Amyloid deposits in thyroid
 - Amyloid = protein deposits
 - Calcitonin = peptide
 - Appearance of amyloid on biopsy

Medullary Carcinoma

Malignant cells/Amyloid "stroma"

Nephron/Wikipedia

MEN Syndromes

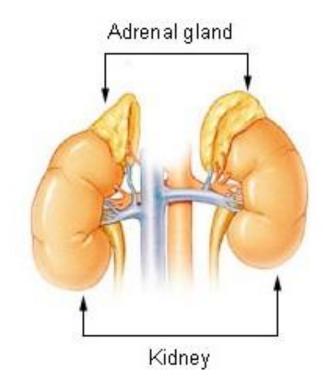
Multiple Endocrine Neoplasia

- Gene mutations that run in families
- Cause multiple endocrine tumors
- MEN 2A and 2B associated with medullary carcinoma
 - Caused by RET oncogene mutation
 - Some patients have **elective thyroidectomy**

Anaplastic Carcinoma

Undifferentiated Carcinoma

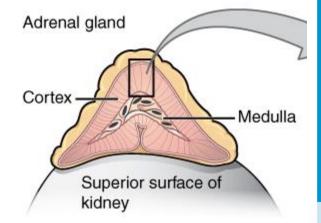
- Occurs in elderly
- Highly malignant invades local tissues
 - Dysphagia (esophagus)
 - Hoarseness (recurrent laryngeal nerve)
 - Dyspnea (trachea)
 - Don't confuse with Riedel's ("rock hard" thyroid/young pt)
- Poor prognosis
- Pathology: Undifferentiated cells
 - No papilla, follicles, or amyloid


Adrenal Glands

Jason Ryan, MD, MPH

Adrenal Glands

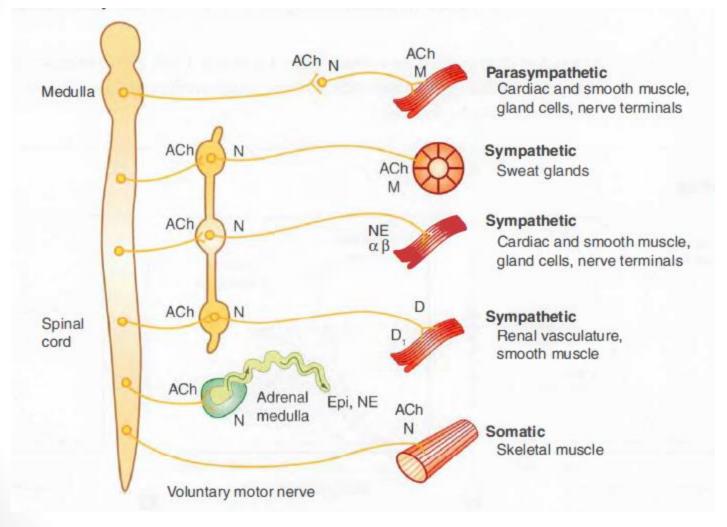
- Located above kidneys
- Arteries: Suprarenal arteries
 - Left and right
 - Superior, inferior, middle
- Veins:
 - Left adrenal \rightarrow renal vein \rightarrow IVC
 - Right adrenal \rightarrow IVC



Wikipedia /Public Domain

Cortex and Medulla

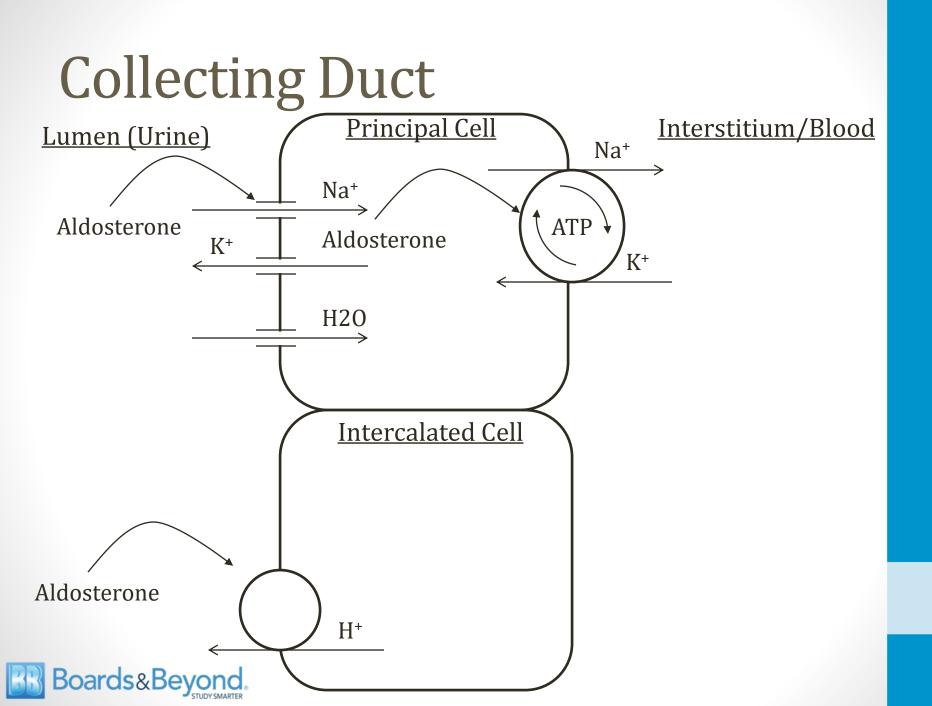
- Cortex: Three groups of hormones
 - Mineralocorticoids (aldosterone)
 - Glucocorticoids (cortisol)
 - Androgens (testosterone)
 - Derived from mesoderm
- Medulla
 - Epinephrine and norepinephrine
 - Sympathetic nervous system control
 - Derived from neural crest



OpenStax College/Wikipedia

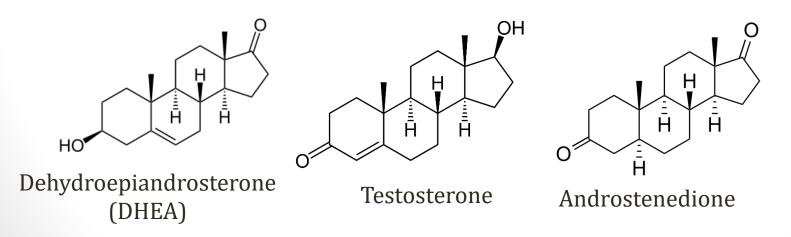
Signal Transmission

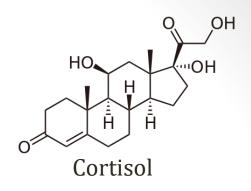
Boards&Beyond



Use with permission, Katzung BG, Basic and Clinical Pharmacology, 10th ed. New York, McGraw Hill, 2007

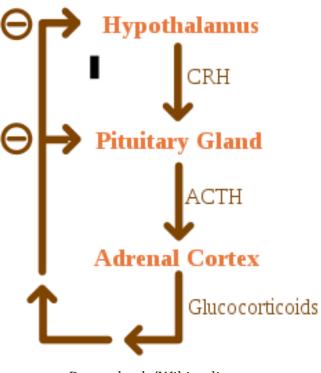
Mineralocorticoids


- Most important is aldosterone
- Key effects on kidney function
- Release controlled by RAA system
 - Renin-angiotensin-aldosterone
- Increase Na⁺/Water resorption
- Promote K⁺/H⁺ excretion



Adrenal Androgens

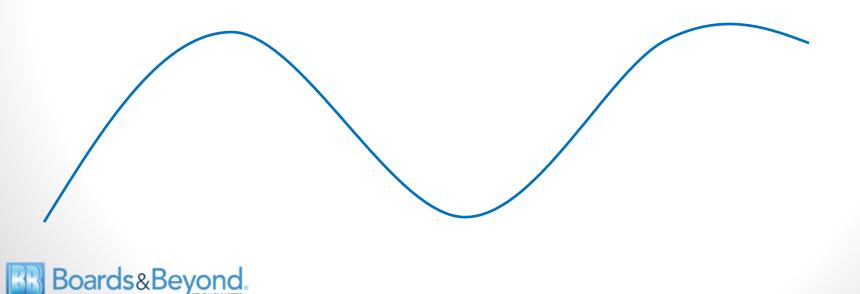
- Small contribution to androgen production in males
- ~50% androgens for females
- Clinical relevance: congenital adrenal hyperplasia
 - Over/underproduction \rightarrow abnormal sexual development
- Production stimulated by ACTH (like cortisol)



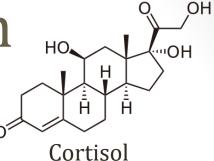
- Major glucocorticoid
- Synthesized by adrenal cortex
- Binds to intracellular receptors (cytosol)
 - Glucocorticoid receptor (GR)
- Translocates to nucleus
- Activates/suppresses gene transcription

Pituitary-Adrenal Axis

- Controls cortisol secretion
- Hypothalamus: CRH
 - Corticotropin releasing hormone
 - Paraventricular nucleus (PVN)
- Anterior pituitary: ACTH
 - Adrenocorticotropic hormone
 - Acts on adrenal gland
 - cAMP/PKA 2nd messenger
- Adrenal: Cortisol



Drosenbach/Wikipedia


Circadian Rhythms

- Serum cortisol highest early morning (about 6 AM)
 - 10 to 20 mcg/dL
- Lowest one hour after sleep onset
 - Less than 5 mcg/dL
- Testing rarely done with single blood test

Cortisol Binding Globulin

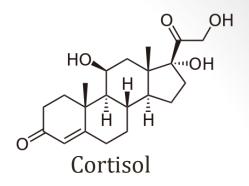
- Cortisol poorly soluble in plasma
- Most (>90%) serum cortisol bound to CBG
- Levels 1 estrogen

Hormone Effects

HO HO HO H H H H H H H H H Cortisol

Maintains blood pressure

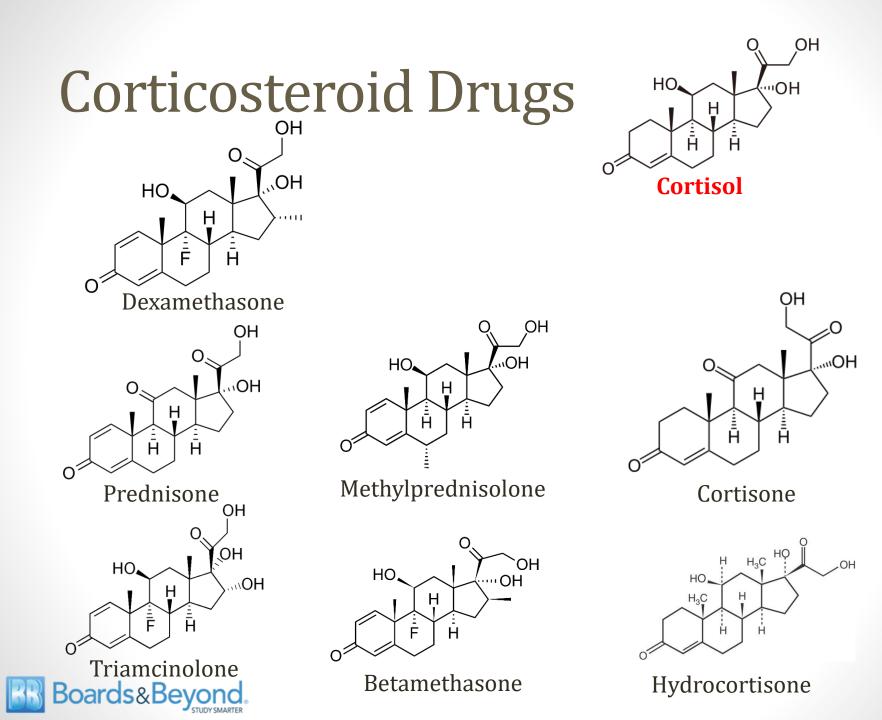
- Effects on vascular smooth muscle
- Increases vascular sensitivity (α 1) to norepi/epi
- ↓NO mediated vasodilation
- ↑ cortisol: hypertension (Cushing's disease)
- ↓ cortisol: hypotension (adrenal insufficiency)

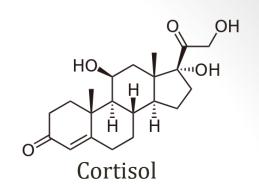


Hormone Effects

HO HO HO H H H H H H H H H Cortisol

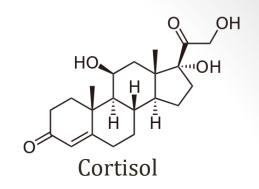
- Suppresses immune system
- Sequester lymphocytes in spleen/nodes
 - Reduce T and B cell levels in plasma
- Block neutrophil migration
 - ↑ peripheral neutrophil count
- Mast cells: blocks histamine release
- \downarrow eosinophil counts
- Basis for steroids as immunosuppressive drug therapy





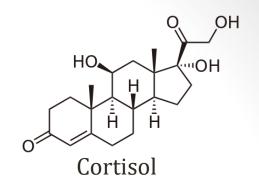
Inactivate NF-KB

- Key inflammatory transcription factor
- Mediates response to TNF-α
- Controls synthesis inflammatory mediators
- COX-2, PLA2, Lipoxygenase

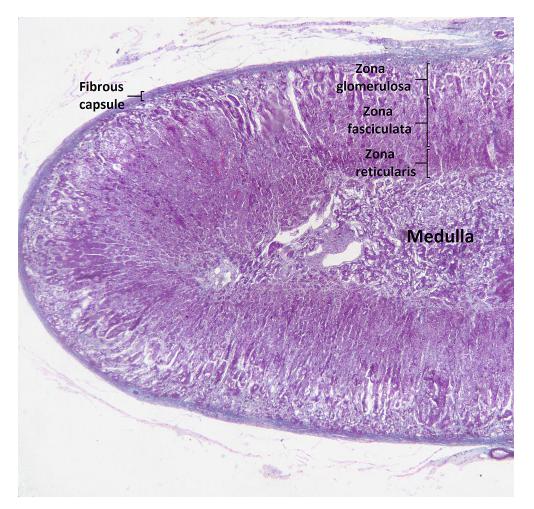


- More glucose produced by liver
 - ↑ synthesis of glucose 6-phosphatase, PEPCK
 - ↑ gluconeogenesis
- Less glucose taken up peripherally (muscle, fat)
- Net results:
 [†] serum glucose
- More glycogen storage in liver
 - ↑ synthesis of glycogen synthase

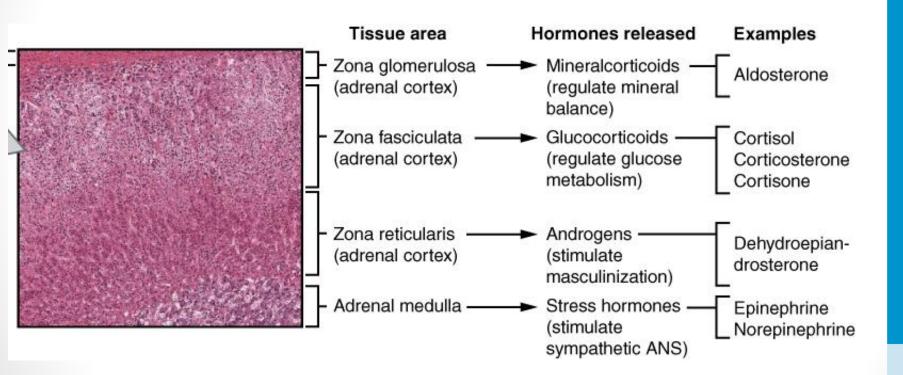
- Activation of lipolysis in adipocytes
 - ↑ free fatty acids
 - ↑ total cholesterol, ↑ triglycerides
- Stimulate adipocyte growth
- Key effect: fat deposition

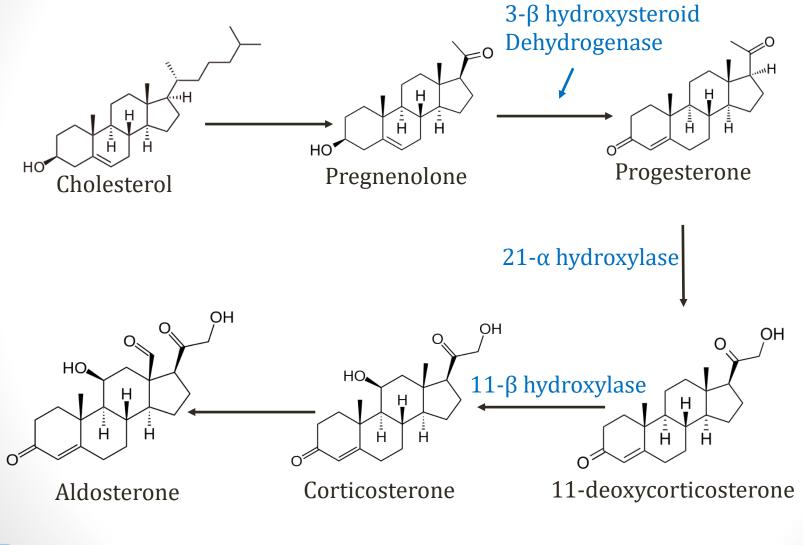


- Enhanced effects of glucagon, epinephrine
- Leads to insulin resistance
- Long term steroid use: **diabetes**

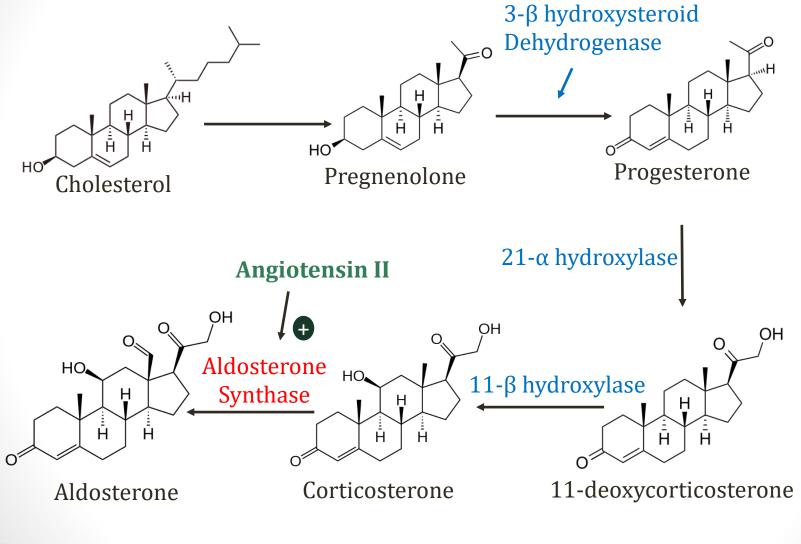


- Muscle atrophy
- Skin effects
 - Blunted epidermal cell division in skin
 - \downarrow collagen, inhibition of fibroblasts
 - Net effects: Thin skin, easy bruising, striae
- Bones: Inhibits osteoblasts
 - Steroids \rightarrow osteopenia and osteoporosis

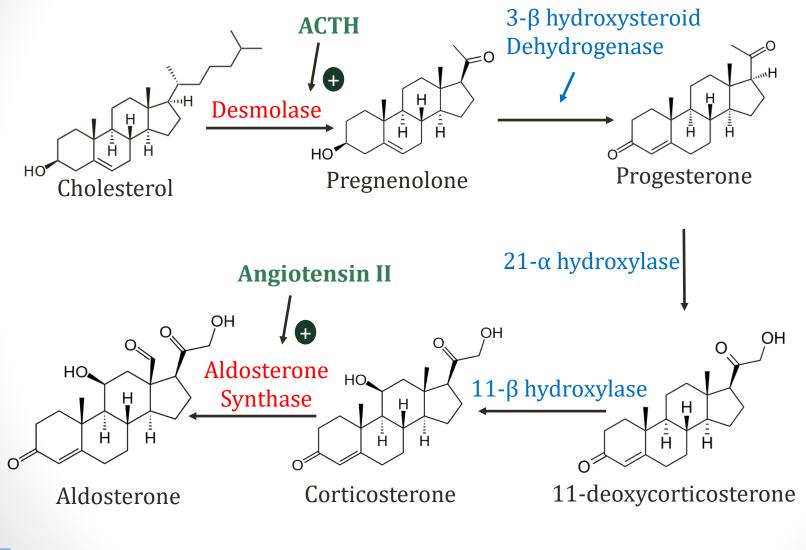

Zones of the Adrenal Glands


Jpogi/Wikipedia /Public Domain

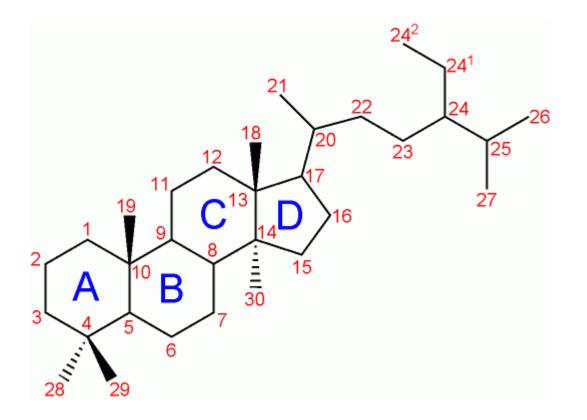
Zones of the Adrenal Glands



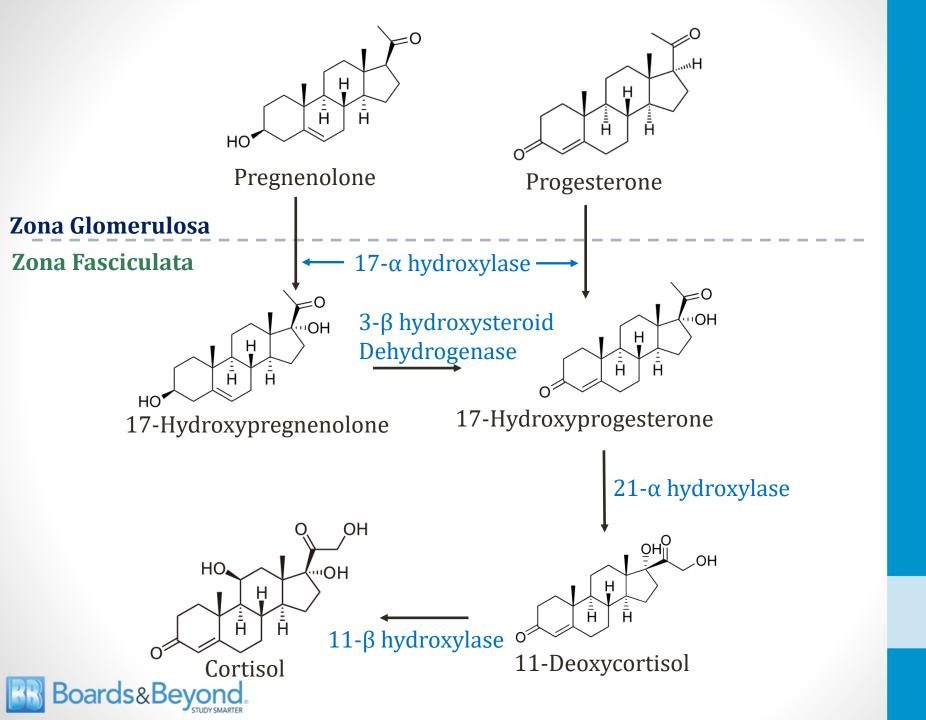
Zona Glomerulosa

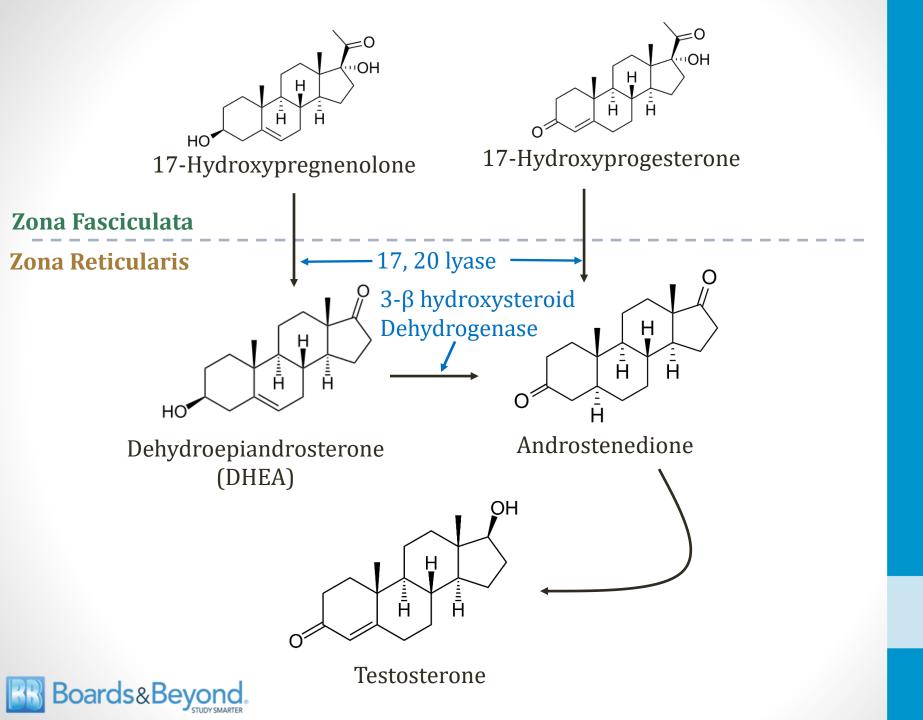


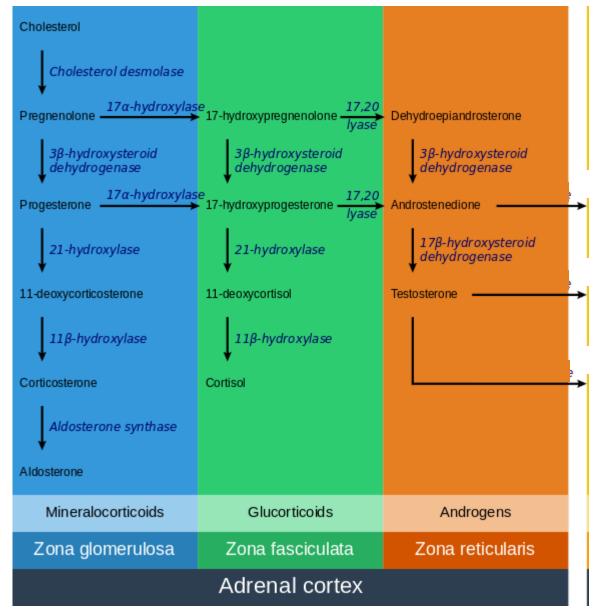
Zona Glomerulosa



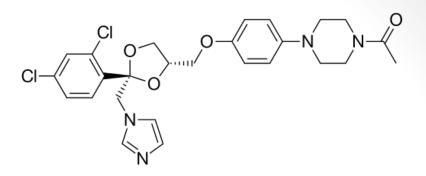
Zona Glomerulosa







Wikipedia /Public Domain



Boards&Beyond.

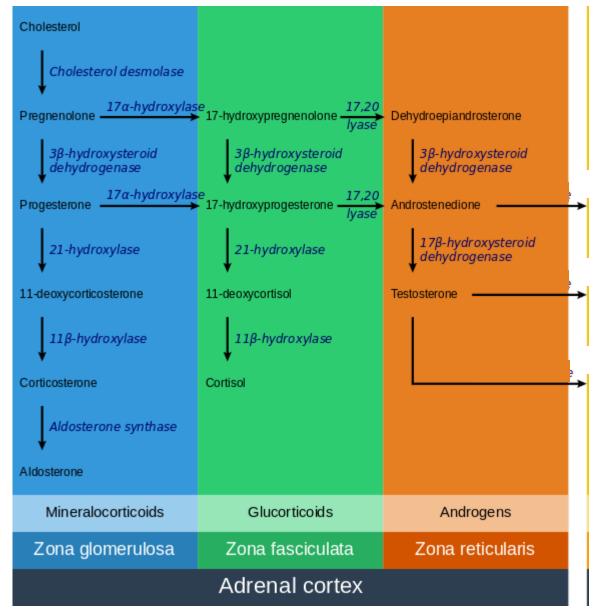
Matthew Colo/Wikipedia

Ketoconazole

- Antifungal
- Blocks ergosterol synthesis in fungi
- Potent inhibitor of 17,20 lyase
 - ↓ androstenedione/testosterone
 - Key side effect: **gynecomastia**
- Also inhibits 17-alpha hydroxylase, desmolase
 - Blocks cortisol synthesis
 - Can be used to treat Cushing's syndrome

Congenital Adrenal Hyperplasia

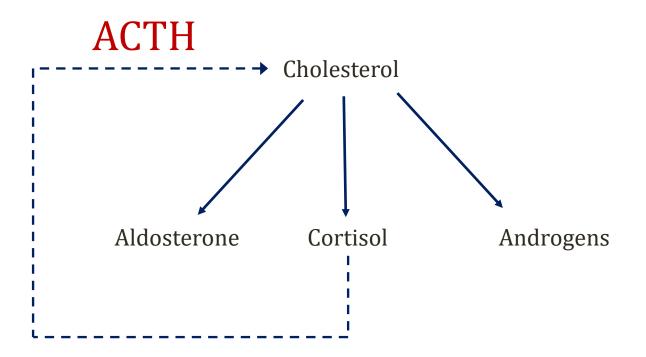
Jason Ryan, MD, MPH



CAH

Congenital Adrenal Hyperplasia

- Enzyme deficiency syndrome
- Loss of one of the four enzymes for cortisol synthesis
 - 21-α hydroxylase
 - 11-β hydroxylase
 - 17-α hydroxylase
 - 3-β hydroxysteroid dehydrogenase



Boards&Beyond.

Matthew Colo/Wikipedia

CAH

Congenital Adrenal Hyperplasia

CAH

Congenital Adrenal Hyperplasia

- All result in low cortisol
- Stimulates ACTH release
- Can cause 1 production of other hormones
 - Mineralocorticoids
 - Androgens

$$\downarrow \text{Cortisol} \longrightarrow \uparrow \text{ACTH} \longrightarrow \begin{array}{c} \text{Adrenal} \longrightarrow & \uparrow \text{Non-cortisol} \\ \text{Hyperplasia} & \text{hormone synthesis} \end{array}$$

Low Cortisol

Signs/Symptoms

- Hypoglycemia
- Nausea/vomiting

Aldosterone

Signs/Symptoms

Deficiency

- Na loss \rightarrow water loss
- Hypovolemia \rightarrow shock
- Hyperkalemia
- 1 renin

• Excess

- Na retention
- Hypertension
- Hypokalemia
- ↓ renin

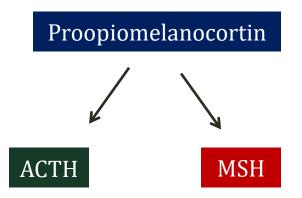
Androgens

Signs/Symptoms

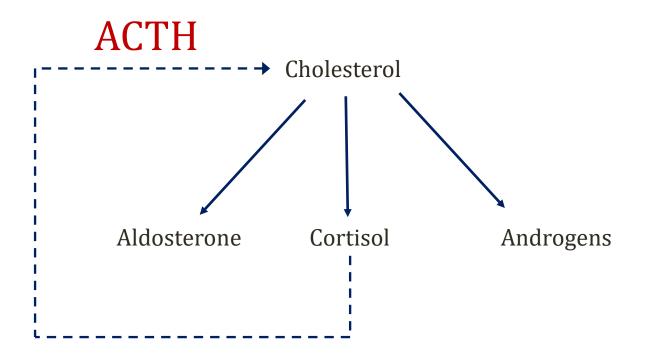
- Depend on chromosomal sex of child (XX/XY)
- Excess androgens
 - Female (XX): Ambiguous genitalia
 - Male (XY): Precocious (early) puberty
- Androgen deficiency
 - Female (XX): Normal genitalia
 - Male (XY): Female or ambiguous genitalia

Ambiguous Genitalia

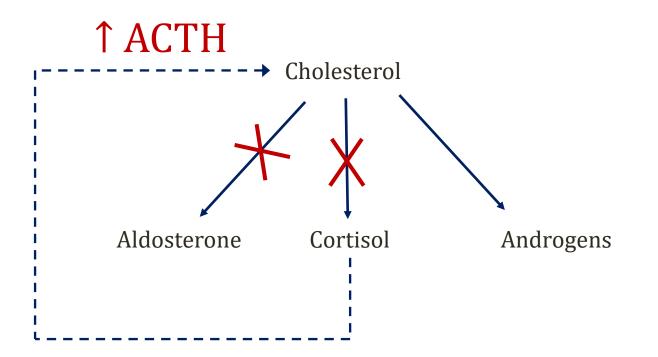
- Females (XX) with excess androgen exposure
- Males (XY) with deficient androgen exposure

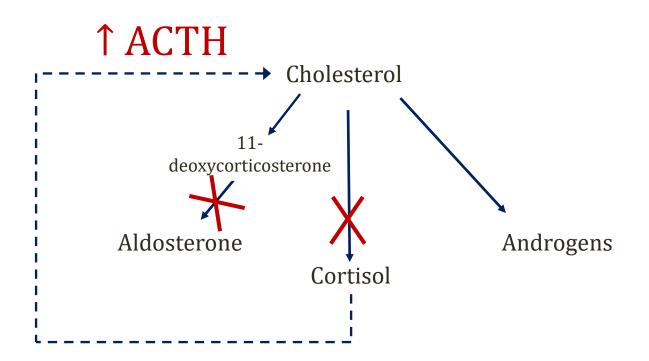


Diabetic fetopathy associated with bilateral adrenal hyperplasia and ambiguous genitalia: a case report. *Journal of Medical Case Reports.* 2008; **2** : 251. doi:10.1186/1752-1947-2-251



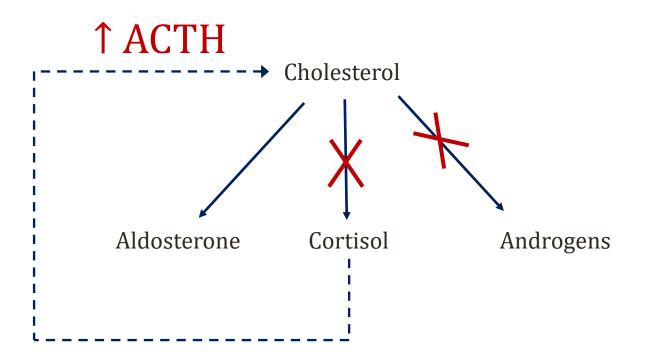
ACTH Effects


- High ACTH can case skin hyperpigmentation
- Melanocyte stimulating hormone (MSH)
 - Common precursor protein in pituitary with ACTH
- ↑ melanin synthesis



- Classic cause of CAH (90% of CAH)
- Low cortisol symptoms
- Low mineralocorticoid symptoms
- Excess androgen symptoms
 - Girls (XX): ambiguous genitalia
 - Boys (XY): precocious puberty (early onset)
- Variable symptoms based on enzyme levels
 - Classic form: 0 to 2% normal enzyme activity
 - Non-classic forms: 20-50% normal enzyme activity

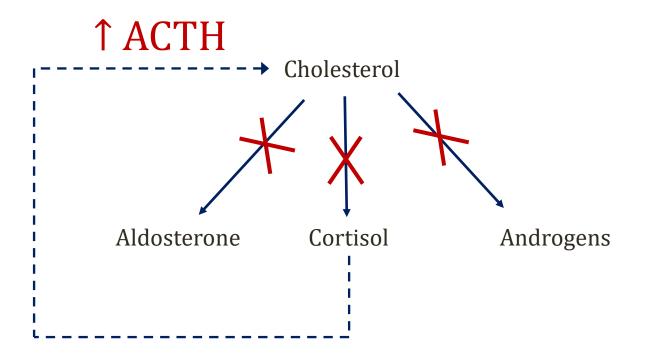
Туре	Clinical Features	
Classic, Salt-losing	Nausea/Vomiting Volume depletion Hyperkalemia 7 to 14 days	
Milder Forms	Females: Ambiguous genitalia Males: Precocious puberty	



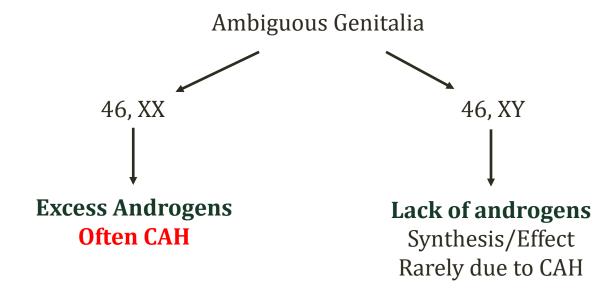
- Similar to 21-α hydroxylase deficiency
 - Low cortisol symptoms
 - Girls: ambiguous genitalia
 - Boys: precocious puberty
- One exception:
 [↑] mineralocorticoid activity
 - 11-deoxycorticosterone (weak mineralocorticoid)
- Hypertension
- Hypokalemia

- Cytochrome P450c17 enzyme (CYP17A1)
- Found in adrenal glands and gonads
- Catalyzes two reactions
 - 17-hydroxylase
 - 17,20-lyase

- Low cortisol
- Excess mineralocorticoids: HTN, ↓K⁺
- Low androgens
 - CYP17A1 : adrenal gland and gonads


- Males (XY):
 - Female or ambiguous external genitalia
 - Absent uterus/fallopian tubes (Sertoli cells \rightarrow MIH)
 - Undescended testes

- Females (XX):
 - Normal at birth
 - Primary amenorrhea at puberty
 - Theca cells lack of and rogens $\rightarrow \downarrow$ estradiol
- Often diagnosed at puberty
 - XX female fails to develop
 - XY phenotypic female or male fails to develop
 - Hypertension, low K⁺ identified



3-β Hydroxysteroid Dehydrogenase Deficiency

Disorders of Sex Development

CAH Screening

- Some states screen with newborn blood testing
- Measure level of **17-Hydroxyprogesterone**
 - Elevated level in 21-α hydroxylase deficiency (most common)

CAH Treatment

- Many forms treated with glucocorticoids
- Replenishes cortisol
- Lowers ACTH
- Stops overproduction of other hormones
- Can also use mineralocorticoids (fludrocortisone)

Adrenal Disorders

Jason Ryan, MD, MPH

Adrenal Disorders

- Excess cortisol
- Insufficient cortisol
- Excess mineralocorticoids
- Tumors

- Syndrome of clinical features due to excess cortisol
- Most common cause: corticosteroid medication
 - Often prescribed for inflammatory conditions
 - i.e. daily prednisone for lupus
- Cushing's disease: Pituitary ACTH-secreting tumor
 - One cause of Cushing's syndrome

Excess Cortisol Effects

- Hypertension
- Hyperglycemia
- Diabetes (insulin resistance)
- Immune suppression
 - Risk of infections, especially opportunistic

Excess Cortisol Effects

- Cortisol alters GnRH release $\rightarrow \downarrow$ FSH,LH
- Menstrual irregularities in women
 - Abnormal cycles (80%)
 - Oligomenorrhea (~30%)
 - Amenorrhea (~30%)
- Hirsutism of face in women
- Males: Erectile dysfunction

Excess Cortisol Effects

- Stimulation of adipocytes \rightarrow growth
- Progressive central obesity
- Face, neck, trunk, abdomen
- "Moon face"
- "Buffalo hump"
 - Fat mound at base of back of neck

SherryC1234

Homini/Flikr

Skin Changes

- Thinning of skin
- Easy bruising
- Striae: Stretch marks
 - Purple lines on skin
 - Fragile skin stretches over trunk, breasts, abdomen
 - Thin skin cannot hide venous blood in dermis
 - Commonly occur on sides and lower abdomen

Causes

- ACTH-independent (↓ACTH)
 - Glucocorticoid therapy
 - Adrenal adenoma
- ACTH-dependent (^ACTH)
 - Cushing's disease (pituitary ACTH secreting tumor)
 - Ectopic ACTH (small cell lung cancer)
 - ↑ACTH → adrenal hyperplasia → ↑cortisol

Causes

- Special note: skin hyperpigmentation
 - Can occur in ACTH-dependent Cushing's syndrome
 - Caused by ↑ ACTH not cortisol
 - \uparrow ACTH \rightarrow \uparrow MSH

Wikipedia/Public Domain

- Measuring plasma cortisol difficult
- Circadian rhythm \rightarrow high levels in AM
- Most cortisol bound to CBG
- CBG levels can affect serum measurement

- 24-hour urine free cortisol
 - Integrates cortisol level over time
- Salivary cortisol
 - No cortisol binding globulin in saliva
 - Free cortisol level measured at night (should be low)

- Low dose dexamethasone suppression test
 - 1mg dexamethasone ("low dose") administered at bedtime
 - Suppresses normal pituitary ACTH release
 - Morning blood test
 - Cortisol level should be low (suppressed)
 - Cortisol remains high in Cushing's syndrome
 - Adenomas, tumors do not suppress cortisol production

- Step 1: Establish Cushing's syndrome
- Step 2: Establish cause
- Key test is serum ACTH level

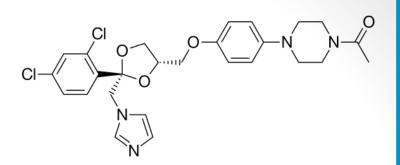
ACTH-Dependent Causes	ACTH-Independent Causes
(High ACTH)	(Low ACTH)
Cushing's disease	Steroid therapy
Ectopic ACTH	Adrenal adenoma

High Dose Dexamethasone

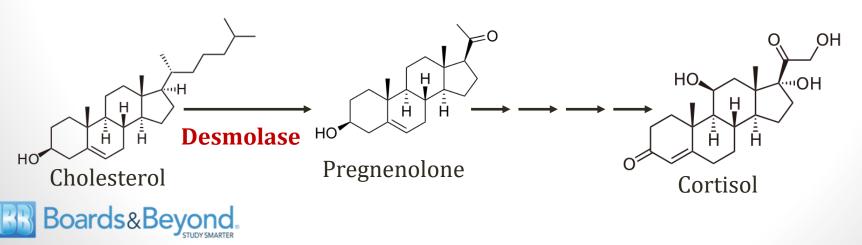
- Low dose testing (1mg)
 - Used to establish diagnosis of Cushing's syndrome
- High dose dexamethasone test (8mg)
 - Differentiate causes of high ACTH Cushing's syndrome
 - Will suppress cortisol in pituitary adenomas (1 set point)
 - Will not suppress cortisol from ACTH tumors

AM Cortisol After Dexamethasone

	Low Dose	High Dose
Normal	\downarrow	\downarrow
Pituitary Adenoma		\downarrow
ACTH Tumor		


Treatment

• Surgery


- Removal of adenoma (adrenal gland, pituitary)
- Removal of lung tumor
- Ketoconazole

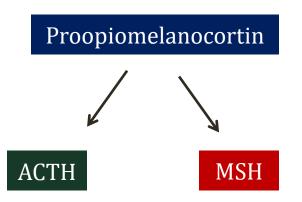
Ketoconazole

- Antifungal
- Blocks ergosterol synthesis in fungi
- Also blocks 1st step in cortisol synthesis
 - Desmolase (side chain cleavage)
- Can be used to treat Cushing's syndrome
- Also potent inhibitor androgen synthesis
 - Key side effect: gynecomastia

Adrenal Insufficiency

- Insufficient cortisol production
- Primary adrenal insufficiency (Addison's disease)
 - Failure of adrenal gland
 - Cortisol and aldosterone will be low
 - ACTH will be high
- Secondary adrenal insufficiency
 - Failure of pituitary ACTH release
 - Only cortisol will be low

Adrenal Insufficiency


Symptoms

- Loss of cortisol
 - Weakness, fatigue
 - Weight loss
 - Postural hypotension
 - Nausea, abdominal pain, diarrhea
 - Hypoglycemia
- Loss of aldosterone
 - Potassium retention \rightarrow hyperkalemia
 - H+ retention \rightarrow acidosis
 - Sodium loss in urine \rightarrow hypovolemia

ACTH Effects

- ACTH is high in primary adrenal insufficiency
- This leads to skin hyperpigmentation
- Melanocyte stimulating hormone (MSH) shares common precursor protein in pituitary with ACTH
- ↑ melanin synthesis

Addison's Hyperpigmentation

- Generalized hyperpigmentation
- Most obvious in sun-exposed areas
 - Face, neck, backs of hands
- Also areas of friction/pressure
 - Elbows, knees, knuckles,
- May occur is palmar creases
- Classic scenario:
 - GI symptoms (nausea, pain)
 - Darkening skin

Wikipedia/Public Domain

Adrenal Crisis

- Acute adrenal insufficiency
- Abrupt loss of cortisol and aldosterone
- Main manifestation is shock
- Hypoglycemia
- Other symptoms: nausea, vomiting, fatigue, confusion
- Often when acute 1 adrenal function cannot be met
 - Infection, surgery, trauma in patient with adrenal insufficiency
 - Patients on chronic steroids
 - "Stress dose steroids" for prevention

Addison's Disease

Common Causes

Autoimmune adrenalitis

- Antibody and cell-mediated disorder
- Antibodies to 21-hydroxylase commonly seen
- Atrophy of adrenal gland
- Loss of cortex
- Medulla is spared

Infections

- Tuberculosis
- Fungal (histoplasmosis, cryptococcus)
- CMV
- Rare: tumor metastasis especially lung

Metastasis from Lung Cancer

- Adrenals
 - Usually found on imaging without symptoms
- Brain
 - Headache, neuro deficits, seizures
- Bone
 - Pathologic fractures
- Liver
 - Hepatomegaly, jaundice

Waterhouse-Friderichsen Syndrome

- Rare cause of acute adrenal insufficiency
- Caused by acute **hemorrhage** into adrenal glands
- Associated with meningococcemia
- Clinical scenario
 - Patient with bacterial meningitis
 - Acute onset of shock

Xishan01/Wikipedia

2º Adrenal Insufficiency

- Most common cause: glucocorticoid therapy
- Chronic suppression ACTH release
- Leads to adrenal atrophy over time
- Sudden discontinuation \rightarrow hypoadrenalism

2º Adrenal Insufficiency

- Basis for "weaning" off steroids
 - Slow discontinuation over time
- Basis for "stress dose steroids"
 - Patients on chronic steroids with infection, trauma, surgery
 - Risk of adrenal crisis
 - High dose of glucocorticoids administered

2º Adrenal Insufficiency

Important Points

- No skin findings
 - ACTH is not elevated
- No hyperkalemia
 - Aldosterone not effected

Adrenal Insufficiency

Diagnostic Tests

- 8 AM serum cortisol
 - Levels should be highest at this time
 - Low level indicates disease
- Serum ACTH
 - High ACTH with low cortisol = primary disease
 - Low ACTH with low cortisol = secondary disease

Adrenal Insufficiency

Diagnostic Tests

- ACTH stimulation test ("cosyntropin stim test")
 - Exogenous ACTH administered
 - Cortisol should rise 30-60 minutes later
 - Failure to rise = primary adrenal insufficiency
 - Normal rise = secondary disorder

Mineralocorticoid Excess

- Hypertension, classically at a young age
- Hypokalemia
 - Weakness, muscle cramps
 - Unreliable finding ightarrow many cases with normal K⁺
- Metabolic alkalosis

Most common causes

- Bilateral idiopathic hyperaldosteronism (~60%)
- Aldosterone-producing adenoma (~30%)
 - Sometimes called Conn's syndrome

Diagnosis

- Plasma aldosterone concentration (PAC)
- Plasma renin activity (PRA)
 - Plasma incubated
 - Renin cleaves angiotensinogen in plasma
 - Angiotensin I produced \rightarrow measured by assay
- ↓ PRA and ↑ PAC = Primary aldosteronism
- ↑ PRA and ↑ PAC = Secondary aldosteronism
 - Renal artery stenosis, CHF, low volume

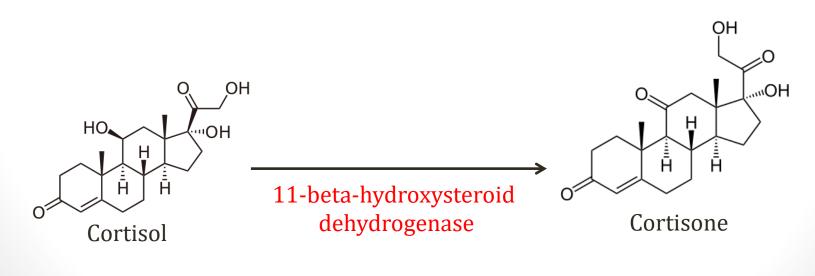
Diagnosis

- Abdominal imaging for adrenal nodules/tumors
- Adrenal vein sampling
 - Differentiates unilateral vs. bilateral disease
 - Measure PAC and PRA in each vein

Treatment

- Surgical adrenalectomy
 - Adenomas
 - Unilateral hyperplasia

Spironolactone

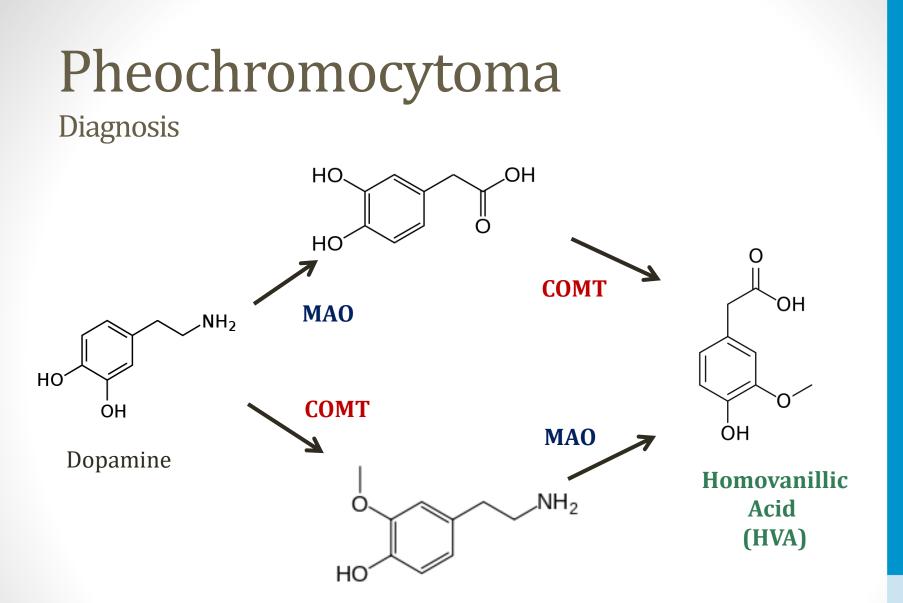

- Drug of choice
- Potassium-sparing diuretic
- Blocks aldosterone effects

Licorice

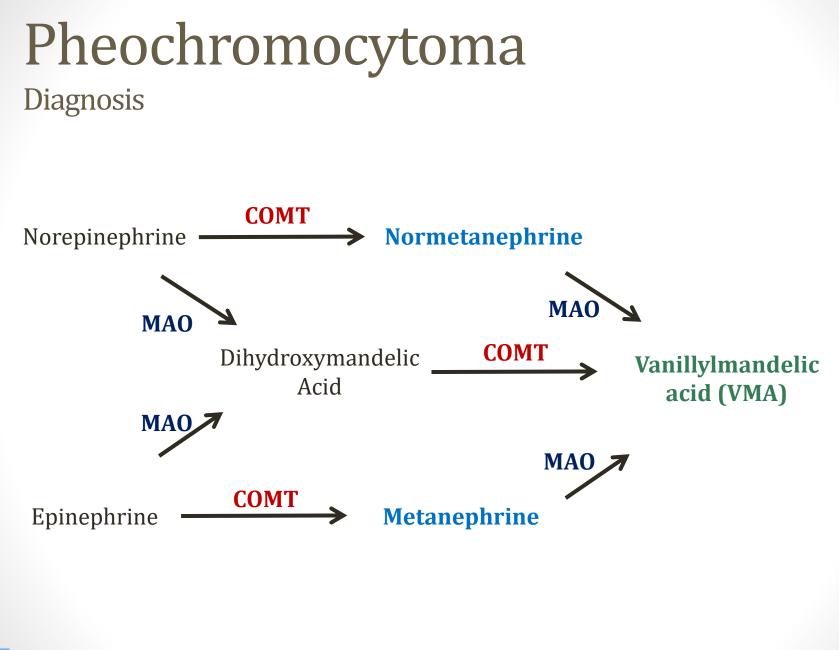
- Contains glycyrrhetinic acid (a steroid)
 - Weak mineralocorticoid effect

- <u>Pikaluk</u>/Flikr
- Inhibits renal 11-beta-hydroxysteroid dehydrogenase
- Large amounts \rightarrow Hypertension, hypokalemia
- Plasma aldosterone level low

- Catecholamine-secreting tumor
 - Secrete epinephrine, norepinephrine, dopamine
- Chromaffin cells of adrenal medulla
 - Derivatives of neural crest


- Clinical presentation
 - Classically episodic symptoms
 - Hypertension
 - Headaches
 - Palpitations
 - Sweating
 - Pallor (pale skin)

Diagnosis


- Serum catecholamine levels not routinely used
 - Levels fluctuate
 - Some metabolism intratumoral
- Breakdown products of catecholamines measured
 - Usually via 24 hour urine collection

Monoamine Oxidase (MAO) Catechol-O-methyltransferase (COMT)

BB Boards&Beyond

Diagnosis

- Metanephrines often measured for diagnosis
 - Metanephrine and normetanephrine
 - 24hour urine collection or plasma
- Older test: 24 hour collection of VMA

Treatment

- Definitive therapy: Surgery
- Pre-operative management:
 - **Phenoxybenzamine** (irreversible α blocker)
 - Non-selective beta blockers (propranolol)

Paraganglioma

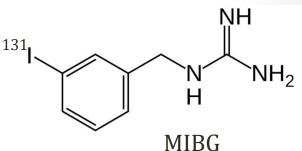
- Catecholamine-secreting tumor
- Arise from sympathetic ganglia (extraadrenal)
- Similar clinical presentation to pheochromocytoma

Neuroblastoma

- Tumor of primitive **sympathetic ganglion cells**
 - Also derived from neural crest cells
- Can arise anywhere in sympathetic nervous system
 - Adrenal gland most common (40 percent)
 - Abdominal (25 percent)
 - Thoracic (15 percent)
- Almost always occurs in children
 - 3rd most common childhood cancer (leukemia, brain tumors)
 - Most common extracranial tumor

Neuroblastoma

- Symptoms related to tumor mass effect
 - Commonly present as abdominal pain
- Can synthesize catecholamines
 - Rarely cause symptoms like pheochromocytoma
 - Urinary HVA/VMA levels used for diagnosis
- Rare feature: Opsoclonus-myoclonus-ataxia (OMA)
 - Rare paraneoplastic syndrome
 - Rapid eye movements, rhythmic jerking, ataxia
 - Half of OMA patients have a neuroblastoma


Neuroblastoma

- Diverse range of disease progression
- Key risk factor: Age at diagnosis
 - Infants with disseminated disease often cured
 - Children over 18 months often die despite therapy
 - Younger age = better prognosis
- N-myc
 - Proto-oncogene
 - Amplified/overexpressed in some tumors
 - Associated with poor prognosis

MIBG

Metaiodobenzylguanidine

- Chemical analog of norepinephrine
- Diagnosis of pheochromocytoma & neuroblastoma
- Concentrated in sympathetic tissues
- Labeled with radioactive iodine (I¹³¹)
- Will concentrate in tumors → emit radiation
- Special note: thyroid gland must be protected
 - Simultaneous administration of potassium iodide
 - Non-radioactive iodine
 - Will be taken up by thyroid instead

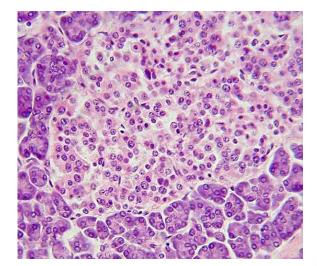
Adrenal Adenomas

- Often discovered on abdominal imaging
 - "Adrenal incidentaloma"
- Concern for malignancy and/or functioning adenoma

Adrenal Adenomas

- May secrete cortisol or aldosterone
- Common functional tests
 - 24 hour urine metanephrines (pheochromocytoma)
 - 24 hour urine free cortisol (Cushing's)
 - Low dose dexamethasone suppression (Cushing's)
 - Serum PRA/aldosterone (aldosteronism)
- Often followed for growth over time (non-functional)
- Large (>5cm) often removed

Endocrine Pancreas

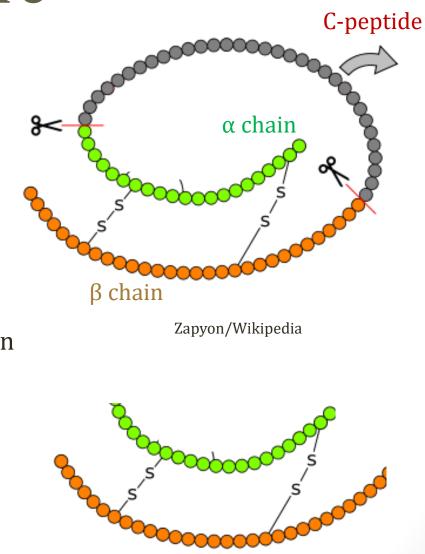

Jason Ryan, MD, MPH

Pancreatic Islets

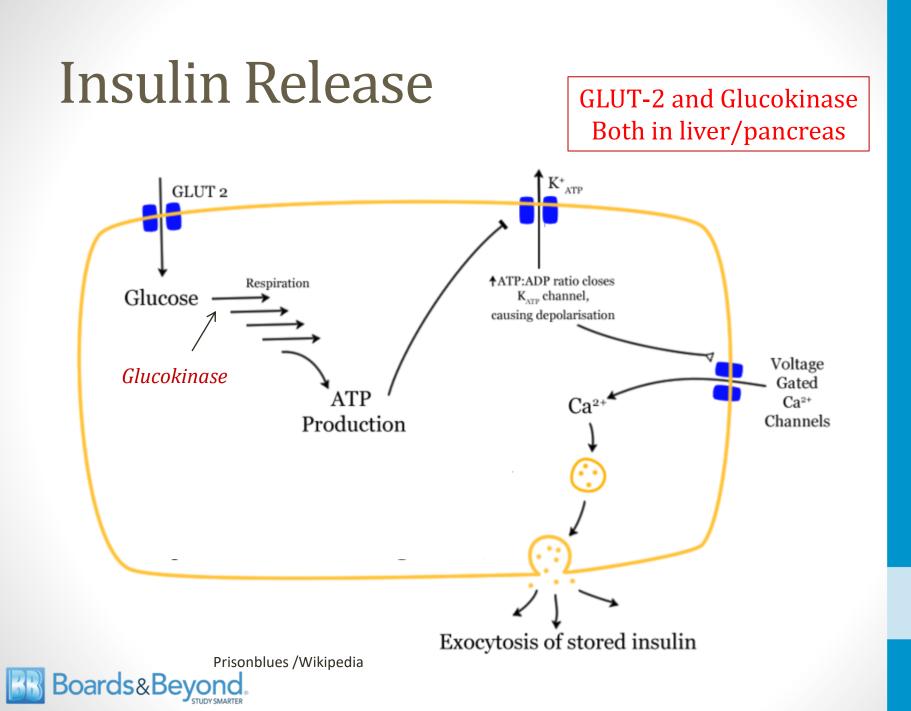
Islets of Langerhans

- Millions of islets found in pancreatic tissue
- Endocrine portion of pancreas
- Beta cells: Insulin
 - Most abundant cell type
 - Centrally located
- Alpha cells: Glucagon
- Delta cells: Somatostatin
- Alpha/delta cells: Outer islet

Polarlys/Wikipedia

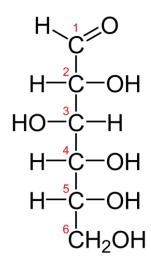

Insulin

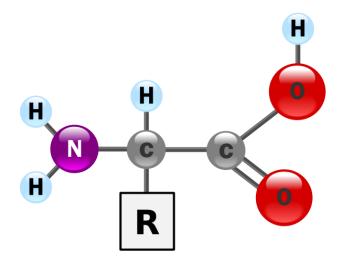
- Protein hormone
- Synthesized by beta cells
- Synthesized as preproinsulin
 - Made by ribosomes of rough endoplasmic reticulum
- Preproinsulin cleaved to proinsulin
 - Transported to Golgi apparatus
- Packaged into secretory granules
 - Proinsulin cleaved to insulin and C-peptide in granules



Insulin Structure

- Alpha chain
- Beta chain
- Disulfide bridges
- C-peptide
 - "Connecting" peptide
 - Long half-life
 - Indicator insulin production





Insulin Release

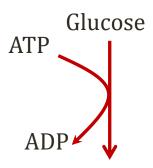
Produced in response to: glucose, amino acids

Glucose

Amino Acid

Wikipedia/Public Domain

Insulin Release


Production inhibited by epinephrine

- Beta-2 receptors: ↑ insulin
- Alpha-2 receptors: ↓ insulin release
- Alpha effect is dominant effect in pancreas
- Fight or flight response $\rightarrow \uparrow$ plasma glucose

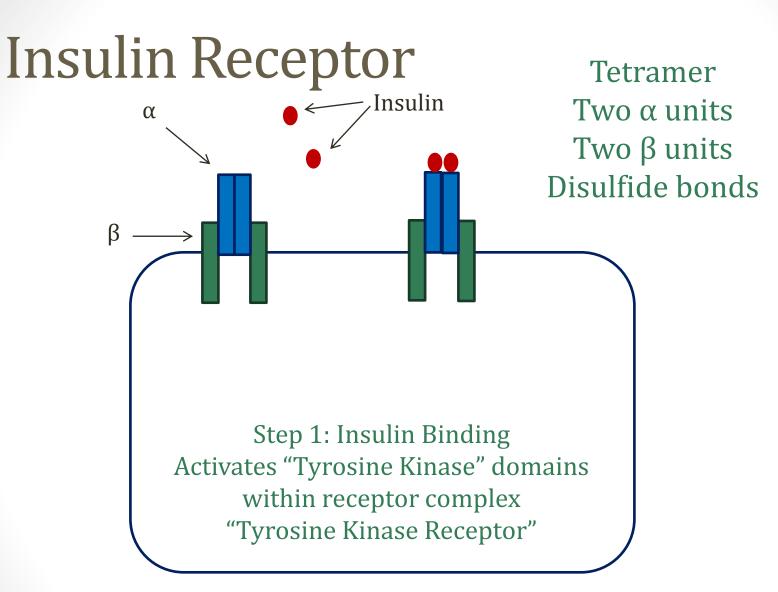
Glucokinase

- Beta cell enzyme
- 1st step of glycolysis
- Found in liver and pancreas
- Induced by insulin
- Insulin promotes transcription
- High Km (rate varies with glucose)
- High Vm (can convert lots of glucose)

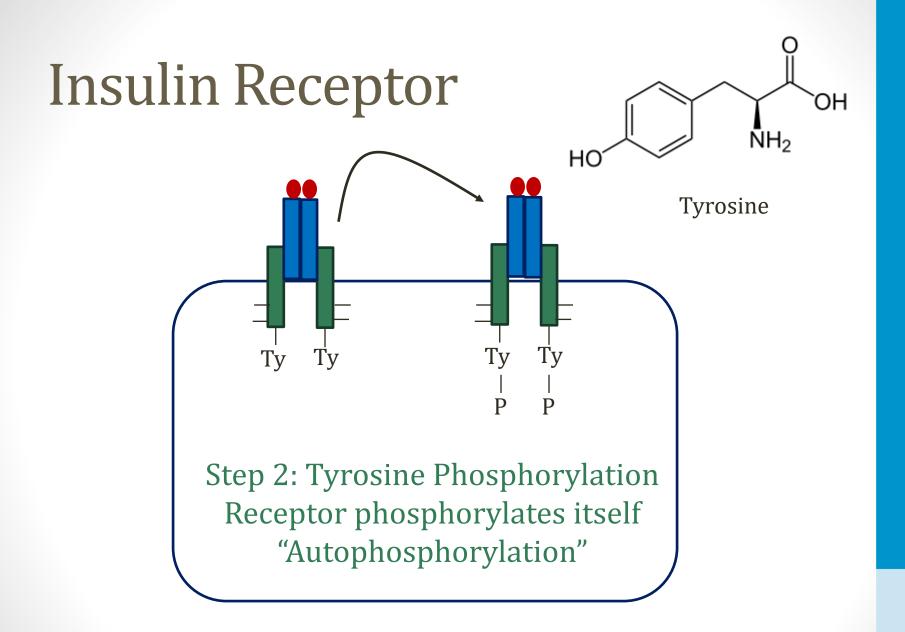
Glucose-6-phosphate

GLUT-2 Transporter

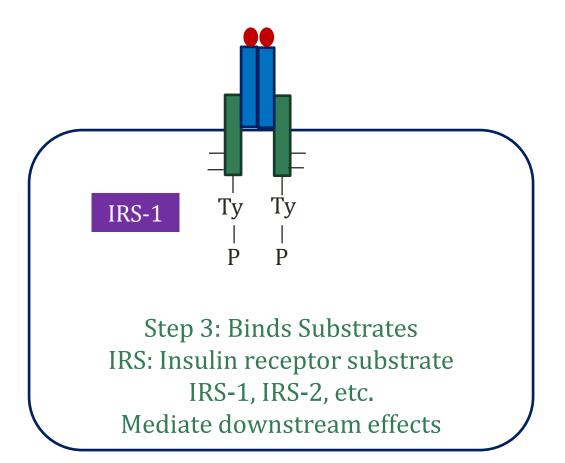
- Bidirectional glucose transporter
- Found in liver, kidney, beta cells
 - Liver, kidney: Gluconeogenesis
 - Beta cells: Glucose in/out based on plasma levels
- Also found in intestine, other tissues

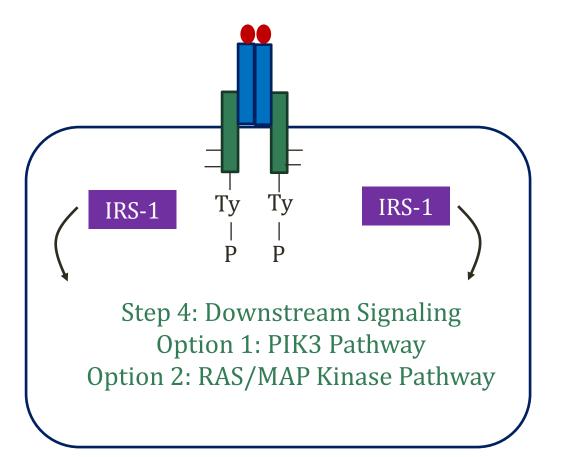


Insulin Release


Key Points

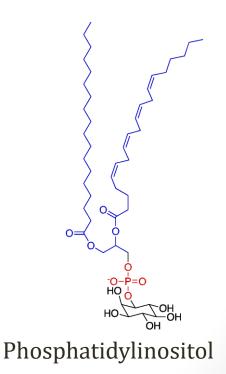
- Glucose into beta cells via GLUT-2
- Glucose → G-6P via glucokinase
- ATP produced \rightarrow Closure of K⁺ channels
- Depolarization
- Voltage-gated calcium channels open
- Calcium \rightarrow insulin release from vesicles





Insulin Receptor

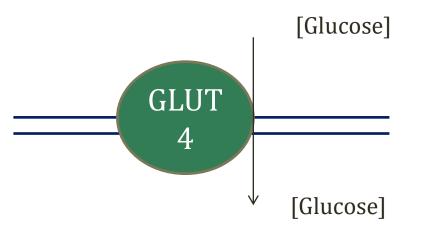
Insulin Receptor



PIK3 Pathway

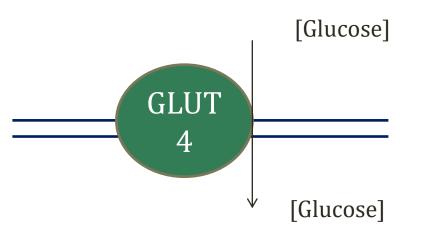
Phosphatidylinositol 3-kinase Pathway

- Intracellular lipid kinases
- Phosphorylate 3'-hydroxyl group of phospholipids
 - Forms PIP₃ from PIP₂



PIK3 Pathway

Phosphatidylinositol 3-kinase Pathway


- Catalyzes many intracellular processes
 - Glycogen formation
 - Fatty acid synthesis
 - GLUT-4 glucose transporter

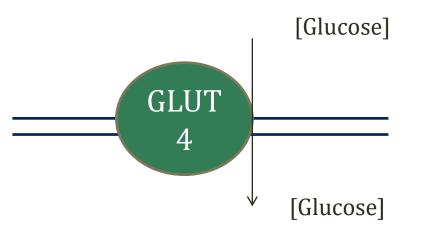
GLUT-4 Transporter

- Stored in vesicles in cells, especially muscle
- Insulin \rightarrow PIK3 pathway \rightarrow GLUT-4 Activation
- Major mechanism for increased glucose uptake
- Important muscle/fat
- Insulin exposure \rightarrow GLUT-4 on surface

RAS/MAP Kinase Pathway

- Insulin receptor can activate RAS
 - G protein
- RAS can activate many growth pathways
 - Raf
 - MEK (mitogen-activated extracellular kinase)
 - MAP (mitogen-activated protein)
- Modify cell growth and gene expression

Insulin Receptor


Key Points

- Tetramer of α/β subunits with disulfide bridges
 - α: extracellular
 - β: transmembrane
- Insulin binding → tyrosine kinase activity
- Autophosphorylation of tyrosine residues
- PIK3 Pathway → GLUT-4 glucose transporter
- RAS/MAP Kinase Pathway: growth/gene transcription

Insulin Dependent Organs

- Muscle and fat
 - Use GLUT-4 for glucose uptake
 - **Depend on insulin** (no insulin = no GLUT-4)

Insulin Independent Organs

- Brain and RBCs
 - Use **GLUT-1** for glucose uptake
 - Not dependent on insulin
 - Takes up glucose when available
 - RBCs: No mitochondria (depend on glycolysis)
 - Brain: No fatty acid metabolism (glucose/ketones)
- Liver, kidney, intestines
 - Also insulin independent (GLUT-2)
- Other organs: nerves, lens

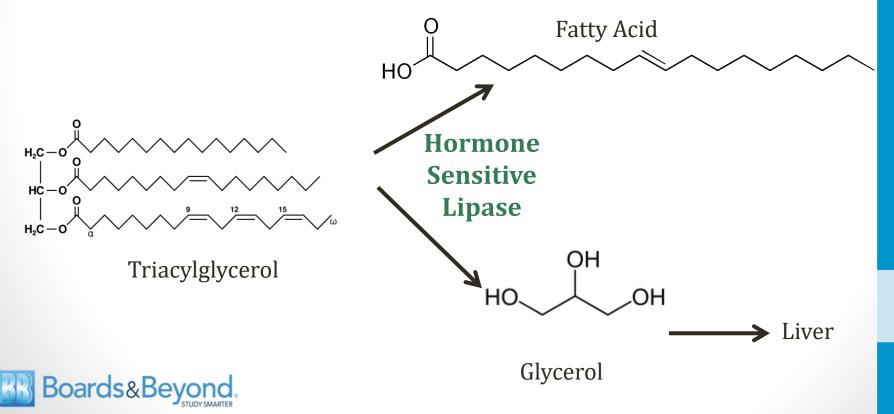
Insulin Effects

- Glucose uptake (skeletal muscle, adipose tissue)
- Glycogen synthesis
 - Activates glycogen synthase
 - Inhibits glycogen phosphorylase
- Inhibits gluconeogenesis
 - ↑ Fructose-2,6-bisphosphate levels
 - Inhibit Fructose 1,6 bisphosphatase 1

Insulin Effects

Fatty acid synthesis

- Activates acetyl-CoA carboxylase
- Inhibits hormone sensitive lipase


Protein synthesis

- Stimulates entry of amino acids into cells \rightarrow protein synthesis
- Important for muscle growth
- Key side effect insulin therapy: weight gain

Hormone Sensitive Lipase

- Removes fatty acids from TAG in adipocytes
- Inhibited by insulin
- Activated by glucagon and epinephrine

Insulin Effects

- Na⁺ retention
 - Increases Na⁺ resorption in the nephron
- Lowers potassium
 - Enhanced activity of Na-K-ATPase pump in skeletal muscle
 - Insulin plus glucose used in treatment of hyperkalemia
- Inhibits glucagon release

Glucagon

- Protein hormone
- Single polypeptide chain
- Synthesized by **alpha cells**
- Opposes actions of insulin
- Main stimulus release: low plasma glucose

Glucagon

- Increases liver (not muscle) glycogen breakdown
 - Raises blood glucose level
- Increases gluconeogenesis

Glucagon

Increases amino acid uptake in liver

- More carbon skeletons for glucose via gluconeogenesis
- Plasma amino acid levels fall
- Activates lipolysis via hormone sensitive lipase

Glucagon Receptor

- G-protein receptor
- Activates adenylyl cyclase
- Increases cAMP
- Activates protein kinase A (PKA)

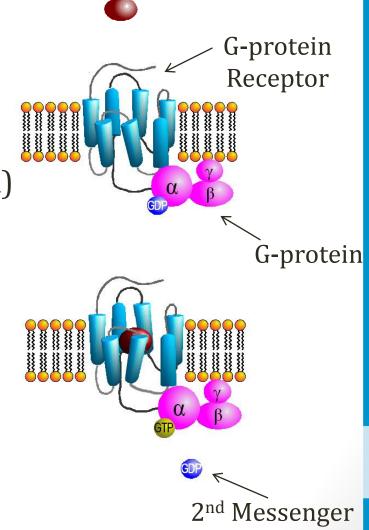


Image: "Activation cycle of G-proteins by G-protein-coupled receptors" by Sven Jähnich

Glucagon Receptor

- Glucagon receptors mostly in liver
 - Many activated processes occur in liver
 - Breakdown of glycogen to raise plasma glucose
 - Gluconeogenesis
- Most other tissues have lower density than liver
- Not found in skeletal muscle

Watanabe M, et al. Histologic distribution of insulin and glucagon receptors. Brazilian Journal of Medical and Biological Research (1998) 31: 243-256

Hypoglycemia

- Unconscious patient with hypoglycemia
- Treatment:
 - #1: IV dextrose
 - #2: Intramuscular glucagon
- Useful when IV access cannot be established
- Raises plasma glucose level

Beta Blocker Overdose

- Causes bradycardia and hypotension
- Drug of choice: Glucagon
 - Activates adenylyl cyclase
 - Different site from beta-adrenergic agents
 - Raises cAMP \rightarrow \uparrow myocyte calcium
 - Same mechanism as beta stimulation (via Gs proteins)

Insulinoma

- Rare, pancreatic islet-cell tumor
- Occurs in adults (median age ~50 years)
- Key feature: fasting hypoglycemia
 - Insulin levels remain elevated when fasting
- "Neuroglycopenic symptoms"
 - Confusion, odd behavior
- Sympathetic activation from low glucose
 - Palpitations, diaphoresis, tremor

Insulinoma

- Diagnosis: fasting insulin level
- Also elevated
 - C-peptide
 - Proinsulin
- Need to exclude exogenous insulin administration

Fasting Hypoglycemia

- Differential diagnosis
 - Exogenous insulin
 - Oral hypoglycemics (sulfonylureas \rightarrow \uparrow insulin)
 - Insulinoma

	Exogenous Insulin	Insulinoma	Oral Hypoglycemics
Insulin	+	+	+
C-peptide		+	+
Hypoglycemic Agent Screen			+

- Rare pancreatic tumors
- Excess glucagon secretion
- Leads to glucose intolerance
 - Elevated fasting glucose levels
 - Rare to develop DKA (insulin function intact)

Weight loss

- Liver gluconeogenesis
- Consumption of proteins/amino acids

Necrolytic migratory erythema

- Red, blistering rash
- Itchy, painful
- Fluctuates in severity
- Genitals, buttocks, groin

Key clinical scenario: new diabetes and rash

- Diagnosis: 1 plasma glucagon level
- Treatment: **somatostatin analogs** (octreotide)
 - Inhibit glucagon secretion
 - Improves symptoms

MEN Syndromes

- Multiple endocrine neoplasia
- Rare inherited disorders
- Numerous endocrine tumors
- **MEN Type 1**: Insulinomas/glucagonomas
 - 3 P's: Pituitary, Parathyroid, and Pancreas
 - Mutations of MEN1 tumor suppressor gene

Diabetes

Jason Ryan, MD, MPH

Diabetes

- Chronic disorder of elevated blood glucose levels
- Caused by:
 - Insufficient insulin
 - Insufficient response to insulin ("insulin resistance")
 - Both

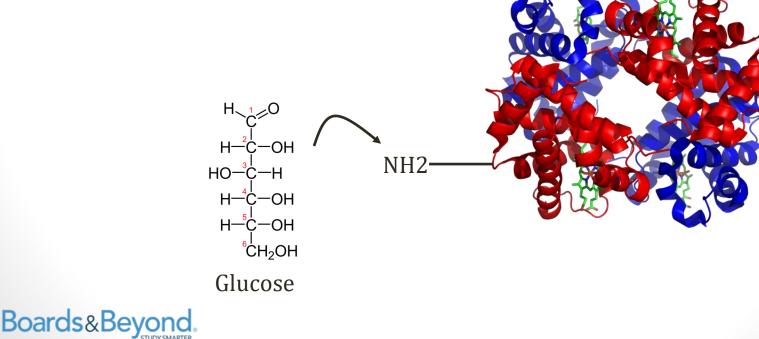
Diabetes Symptoms

- Often asymptomatic
 - "Silent killer"
 - Often no symptoms until complications develop
 - Basis for screening
- Classic hyperglycemia symptoms
 - Polyuria (osmotic diuresis from glucose)
 - **Polydipsia** (thirst to replace lost fluids)

Terminology

- Diabetes Mellitus
 - Mellitus = sweet
 - Common disorder of blood glucose
- Diabetes insipidus
 - Insipid = lacking flavor
 - Rare disorder of low ADH activity
- Both can cause polyuria, polydipsia
- Completely different mechanisms

Diabetes Diagnosis


- Symptoms
 - Symptoms plus glucose >200mg/dl = diabetes
- Asymptomatic
 - Fasting blood glucose level (no food for 8 hours)

State	Fasting plasma glucose
Normal	<100mgl/dl
Pre-diabetes	100 to 125mg/dl
Diabetes	>=126mg/dl

Hemoglobin A1C

- Small fraction of hemoglobin is "glycated"
 - Glucose combines with alpha/beta chains
- Subfraction HbA1c used in diabetes
 - Non-enzymatic glycation of beta-chains
 - Occurs at amino-terminal valines

Hemoglobin A1C

- Reflects average glucose over past 3 months
 - Normal < 5.7%
 - Pre-diabetes: 5.7 to 6.4%
 - Diabetes: >=6.5%
- Sometimes used for diagnosis
- Important for monitoring therapy
 - Higher value = worse control of blood sugar

Glucose Tolerance Test

- Oral glucose load administered
- Plasma glucose measured 1-3 hours later
- High glucose indicates diabetes
- Often used to screen for **gestational diabetes**
 - Some insulin resistance normal in pregnancy
 - Need to study response to glucose load for diagnosis

Type 1 Diabetes

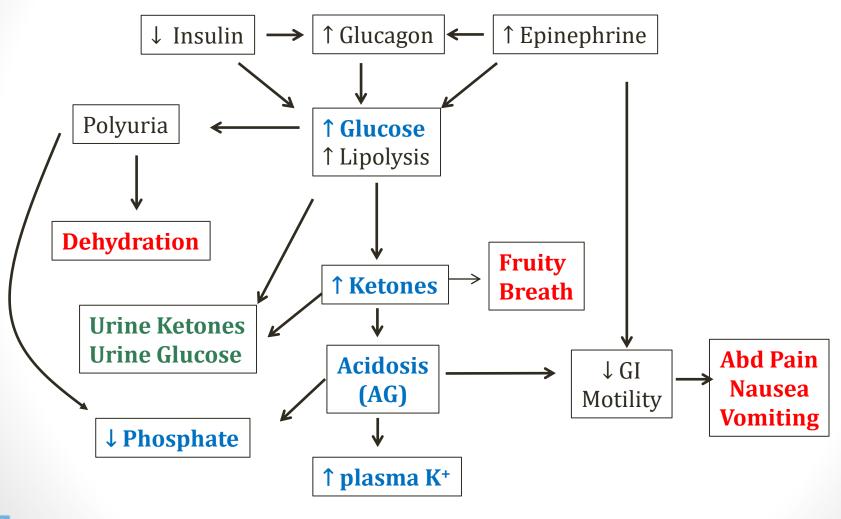
- Autoimmune disorder
- Type IV hypersensitivity reaction
- T-cell mediated destruction of beta cells
 - Inflammation of islets
 - Lymphocytes on biopsy ("Insulitis")
 - Decreased number of beta cells
 - Loss of insulin
- Associated with HLA-DR3 and HLA-DR4
- Autoantibodies may be present
 - Islet-cell antibodies
 - Insulin antibodies

Type 1 Diabetes

- Mostly a childhood disorder
 - Bimodal distribution
 - Peak at 4-6 years
 - 2nd peak 10 to 14 years of age

Wikipedia/Public Domain

- Often presents with symptomatic hyperglycemia
 - Polyuria
 - Polydipsia
 - Glucose in urine
- Treatment: Insulin

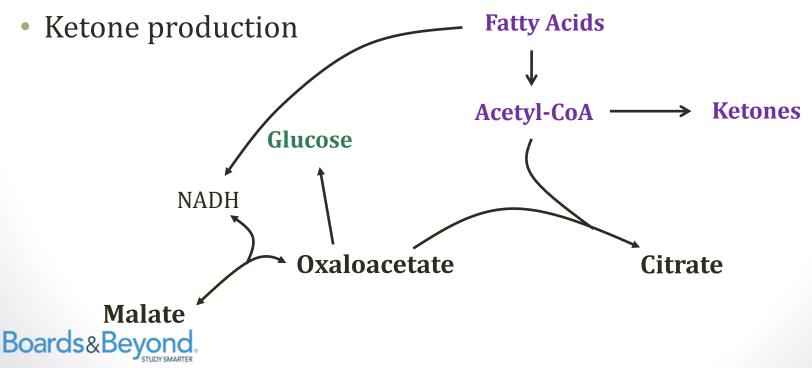


DKA

- Life-threatening complication of diabetes
- More common type 1
- Common initial presentation type 1
- Often precipitated by infection/trauma
- Can occur when type 1 diabetic **skips insulin therapy**

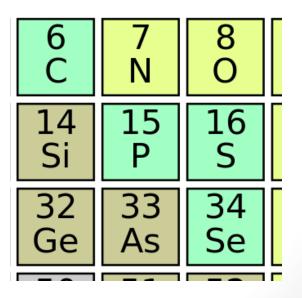
DKA

Boards&Beyond


Clinical Presentation

- Abdominal pain/nausea/vomiting
- Dehydration
- Hyperglycemia
- Hyperkalemia
- Elevated plasma/urine ketones
- Glucose in urine
- Anion gap metabolic acidosis
 - Kussmaul breathing: deep, labored breathing
 - Hyperventilation to blow off CO2 and raise pH
- Fruity smell on breath

DKA


- Low insulin/high epinephrine
- High fatty acid utilization
- Oxaloacetate depleted \rightarrow TCA cycle stalls
- ↑ acetyl-CoA

Phosphate

Risk of hypophosphatemia

- Acidosis \rightarrow shifts phosphate to extracellular fluid
- Phosphaturia caused by osmotic diuresis
- Loss of ATP
 - Muscle weakness (respiratory failure)
 - Heart failure (↓ contractility)

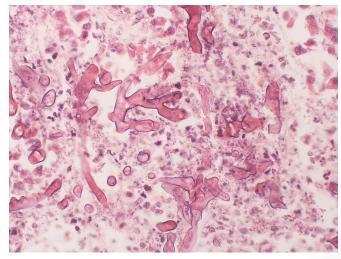
Clinical Presentation

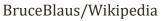
- Arrhythmias (hyperkalemia)
- Cerebral edema
 - Mechanism poorly understood
 - Common cause of death in children with DKA

DJ/Wikipedia

Mucormycosis

- Fungal infection
- Caused by Rhizopus sp. and Mucor sp.
- Classically starts in sinuses
- Spreads to adjacent structures
- Thrives in high glucose, ketoacidosis conditions
- Classic complication of DKA
 - Patient with DKA
 - Fever, headache, eye pain




Image courtesy of Yale Rose/Flickr

Treatment

- Insulin
 - Lowers blood glucose levels
 - Shifts potassium into cells
- IV fluids
 - Treats dehydration

Harmid/Wikipedia

Treatment

- Careful monitoring potassium
 - Total body potassium is low despite hyperkalemia
 - Insulin shifts into cells \rightarrow can lead to hypokalemia
 - Usually need to administer potassium
- Careful monitoring glucose
 - Continue insulin until acidosis resolves
 - Often add glucose while insulin infusion continues

Type 2 Diabetes

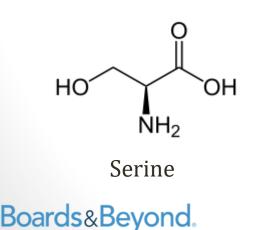
Insulin resistance

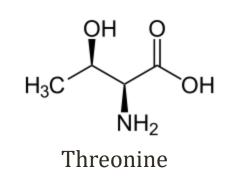
- Muscle, adipose tissue, liver
- Reduced response to insulin \rightarrow hyperglycemia
- Pancreas responds with 1 insulin
- Eventually pancreas can fail $\rightarrow \downarrow$ insulin

- Most common form of diabetes
- Common in adults
 - Prevalence is rising
 - Also becoming more common among children

- Major risk factor: Obesity
 - Central or abdominal obesity carries greatest risk
- Intra-abdominal (visceral) fat > subcutaneous fat
 - Visceral fat breakdown less inhibited by insulin
 - More lipolysis → more free fatty acids
 - Decreased glucose transport into cells
- "Apple shape" worse than "pear shape"
 - Apple shape due to increased visceral adipose tissue
 - More subcutaneous adipose tissue in pear shape
- Weight loss improves glucose levels

- Major risk factor: Obesity
 - Central or abdominal obesity carries greatest risk
- Intra-abdominal (visceral) fat > subcutaneous fat
 - Visceral fat breakdown less inhibited by insulin
 - More lipolysis → more free fatty acids
 - Decreased glucose transport into cells
- "Apple shape" worse than "pear shape"
 - Apple shape due to increased visceral adipose tissue
 - More subcutaneous adipose tissue in pear shape
- Weight loss improves glucose levels


- Family history
 - Strong genetic component (more than type I)
 - Any first degree relative with T2DM: ↑ 2-3x risk



Type 2 Diabetes

Insulin Resistance Mechanism

- Reason for insulin resistance not known
- Many data suggest insulin receptor abnormalities
- Fatty acids may activate serine-threonine kinases
 - Phosphorylate amino acids on beta chain of insulin receptors
 - Inhibiting tyrosine phosphorylation
- \uparrow **TNF-** α may be synthesized by adipocytes
 - TNF- α can activate serine-threonine kinases

Type 2 Diabetes Histology

- Classic finding is **amyloid** in pancreatic islets
- Amylin peptide normally made by beta cells
 - Precise function not known
 - Packaged and secreted with insulin
 - Pramlintide: amylin analog used for diabetes treatment
- Accumulates in islets in patients with type 2 diabetes

HHS

Hyperglycemic Hyperosmolar Syndrome

- Life-threatening complication of diabetes
- More common type 2
- High glucose \rightarrow diuresis
 - Markedly elevated glucose (can be >1000)
- Severe dehydration
- Different from DKA
 - Few or no ketone bodies (insulin present)
 - Usually no acidosis
 - Very high serum osmolarity → CNS dysfunction

HHS

Hyperglycemic Hyperosmolar Syndrome

- Polyuria, polydipsia
- Dehydration
- Mental status changes
 - Confusion
 - Coma
- Treatment similar to DKA (insulin, IVF)

Acanthosis Nigricans

- Hyperpigmented plaques on skin
- Intertriginous sites (folds)
- Classically neck and axillae
- Associated with insulin resistance
 - Often seen obesity, diabetes
- Rarely associated with malignancy
 - Gastric adenocarcinoma most common

Madhero88/Dermnet.com

Diabetic Complications

- Chronic hyperglycemia \rightarrow complications
 - Cardiac disease
 - Renal failure
 - Neuropathy
 - Blindness

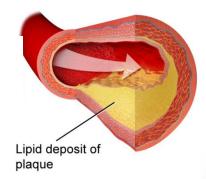
Two key underlying mechanisms

- Non-enzymatic glycation
- Sorbitol accumulation

Non-enzymatic Glycation

- Glucose added to amino groups on proteins
- No enzyme required
- Driven by high glucose levels
- Leads to crosslinked proteins
- "Advanced glycosylation end products" (AGEs)

Atherosclerosis


Diabetic Macroangiopathy

- AGEs trap LDL in large vessels \rightarrow atherosclerosis
- Coronary artery disease
 - Angina, myocardial infarction
- Stroke/TIA

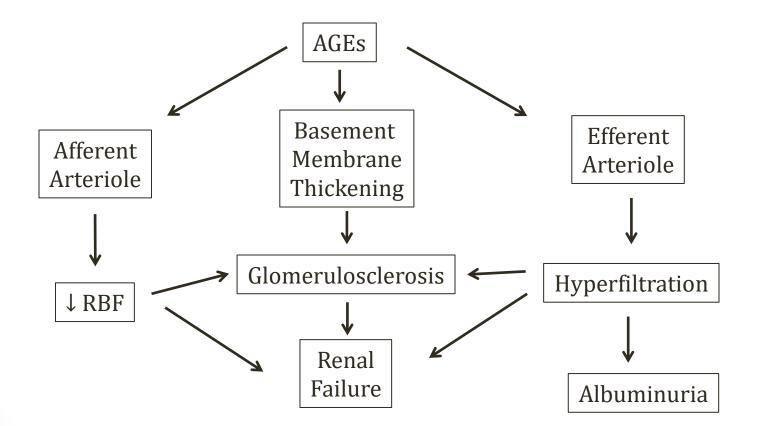
Peripheral vascular disease

- Claudication
- Arterial ulcers
- Poor wound healing
- Gangrene

Narrowing of Artery

BruceBlaus/Wikipedia

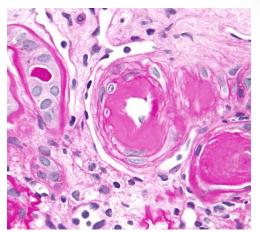
Diabetic Kidney Disease


Diabetic Microangiopathy

- AGEs → damage to glomerulus and arterioles
- Leads to end stage kidney disease in many diabetics

Diabetic Kidney Disease

Diabetic Microangiopathy



Renal Arterioles

- Hyaline arteriosclerosis
 - Thickening of arterioles
 - Also seen in HTN

Boards&Beyond

- Can result from AGEs
 - Crosslinking of collagen

Nephron/Wikipedia

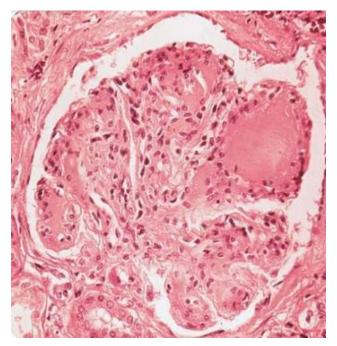
- Commonly occurs in kidneys of diabetics
 - Can involve afferent AND efferent arteriole
 - Afferent arteriole: Ischemia
 - Efferent arteriole: Hyperfiltration
 - Efferent arteriosclerosis rarely seen except in diabetes

Proteinuria in Diabetics

- Annual screening for albumin in urine
- Evidence of protein is indication for ACE-inhibitor
- ACEi shown to reduce progression to ESRD
 - Potential mechanism is dilation of efferent arteriole
 - Reduction in hyperfiltration

Glomerular Basement Membranes

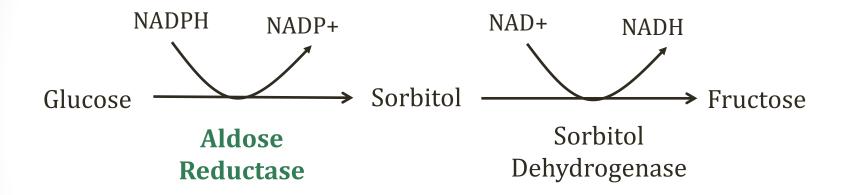
- AGEs → diffuse basement membrane thickening
- Visible on electron microscopy
- Can lead to mesangial proliferation in glomeruli
- End result is glomerulosclerosis


Glomerulosclerosis

- Diffuse glomerulosclerosis
 - Deposits of proteins (collagen IV)
 - Diffusely on basement membranes of glomeruli capillary loops
 - Mesangial cell proliferation
 - Also occurs with aging and hypertension
 - If severe → nephrotic syndrome
- Nodular glomerulosclerosis
 - Nodules form in periphery of glomerulus in mesangium
 - Rarely occurs except in diabetes
- Can lead to fibrosis/scarring of entire kidney

Kimmelstiel-Wilson Nodules

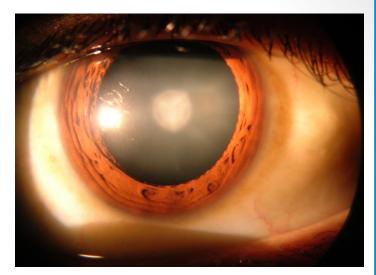
- Hallmark of nodular sclerosis of diabetes
- Pathognomonic of diabetic kidney disease



bilalbanday

Sorbitol Accumulation

Polyol Pathway


Polyol Pathway

- Little activity at physiologic glucose levels
- Chronic hyperglycemia can lead to 1sorbitol
- Sorbitol is osmotic agent
- Draws in fluid → osmotic damage
- Likely involved in many diabetic complications
 - Cataracts
 - Neuropathy

Cataracts

- Sorbitol accumulates in lens
- ↑ osmolarity
- Fluid into lens
- Opacification over time

Rakesh Ahuja, MD/Wikipedia

Neuropathy

• **Sorbitol** can accumulate in **Schwann cells**

- Myelinating cells of peripheral nerves
- Osmotic damage \rightarrow neuropathy

Neuropathy

- Classically causes "stocking-glove" sensory loss
 - Longest axons affected most
 - Often feet/legs
 - Worse distally; better proximally
- Loss of vibration sense, proprioception
- Impairment of pain, light touch, temperature
- Autonomic neuropathy
 - Postural hypotension
 - Delayed gastric emptying

Diabetic Foot Disease

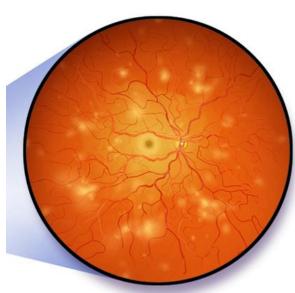
- Neuropathy + ischemia can lead to:
 - Ulcers
 - Infection
 - Amputation
- Made worse by poor wound healing from PVD
- Prevention: Regular foot exams
- Ulcer treatment:
 - Wound management
 - Sometimes antibiotics
 - Hyperbaric oxygen chamber

DrGnu/Wikipedia

Diabetic Retinopathy

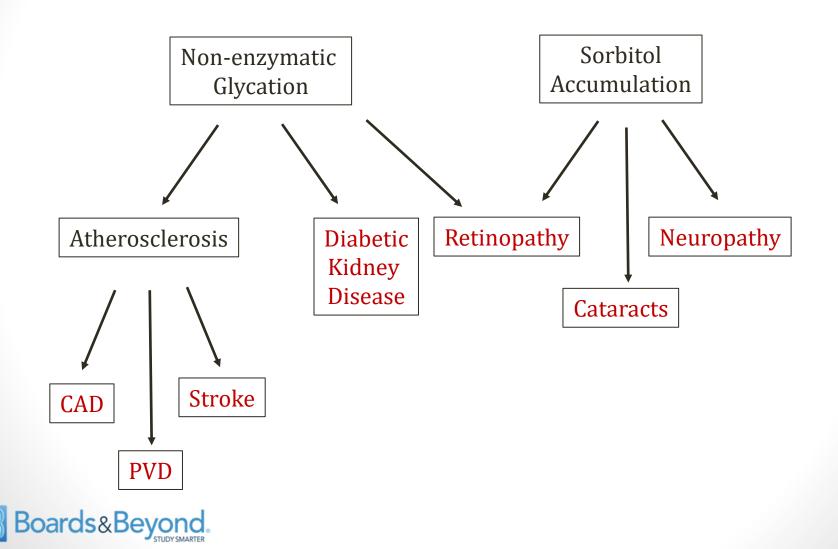
- Can cause blindness among diabetics
- Multiple factors likely involved:
 - Capillary basement membrane thickening (AGEs)
 - Hyaline arteriosclerosis

Pericyte degeneration


- Cells that wrap capillaries
- Evidence of sorbitol accumulation
- Microaneurysms
- Rupture → hemorrhage
- Annual screening for prevention

Diabetic Retinopathy

Findings


- Microaneurysms, Hemorrhages
 - Loss of pericytes
- Exudates
 - Leakage proteins, lipids
- Cotton-wool spots
 - Nerve infarctions
 - Occlusion of precapillary arterioles
- Vessel proliferation ("proliferative retinopathy")
 - Retinal ischemia \rightarrow new vessel growth
 - "Neovascularization"

"Blausen gallery 2014" Wikiversity Journal of Medicine.

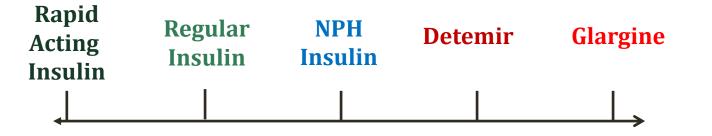
Diabetes Complications

Type 1 versus Type 2

	Type 1	Type 2
Pathophysiology	Loss of insulin	Insulin Resistance
Insulin	Low	High then low
Biopsy	Insulitis	Amyloid
Age	Children	Adults
Genetic Predisposition	Weaker	Stronger
Complications	DKA	HHS

Insulin

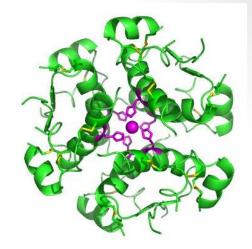
Jason Ryan, MD, MPH


Type 1 and Type 2

- Type 1 diabetes treated mainly with insulin
- Type 2 diabetes: oral or SQ drugs +/- insulin
 - Initial stages: Oral and/or SQ drugs
 - Advanced disease: Insulin

Insulin

- Many different types available for diabetes therapy
- All vary by time to peak and duration of action
- Also vary by peak effect



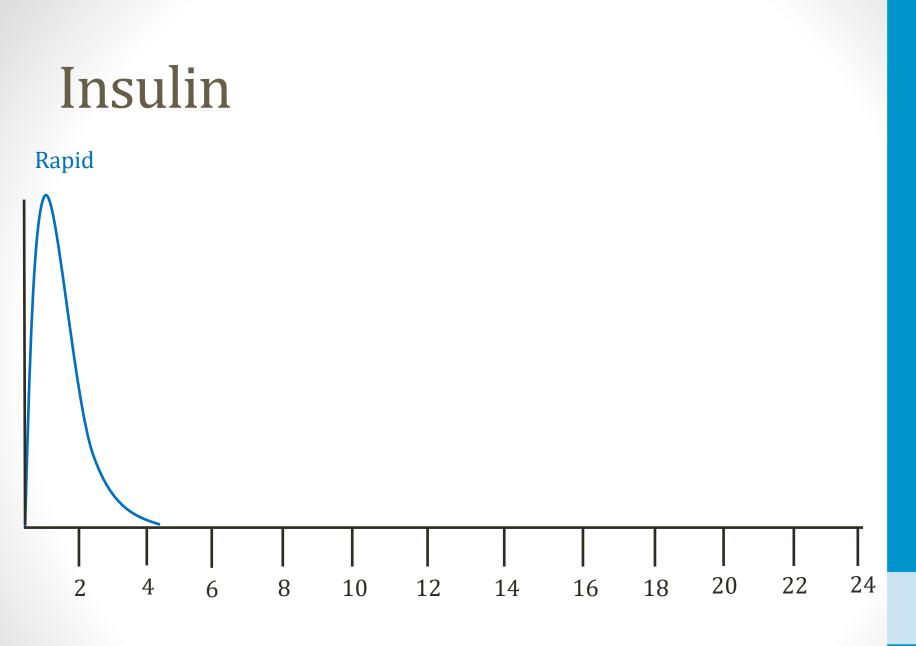
Fast Peak Short Duration Slow Peak Long Duration

Insulin Hexamers

- Insulin forms **hexamers** in the body
 - Six insulin molecules linked
 - Stable structure

Isaac Yonemoto /Wikipedia

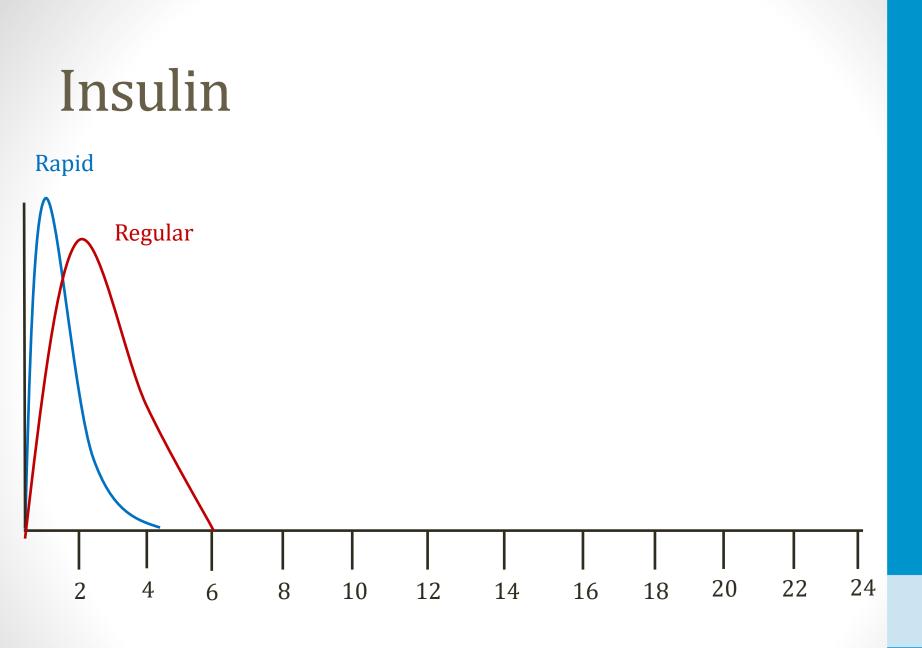
- Insulin usually administered subcutaneously
- Activity related to speed of absorption
- Insulin hexamers \rightarrow slower onset of action
- Insulin monomers \rightarrow faster onset of action



Rapid Acting Insulin

Lispro, Aspart, and Glulisine

- Modified human insulin
- Contain insulin with modified amino acids
- Reduced hexamer/polymer formation
- Rapid absorption, faster action, shorter duration
 - Onset: 15 minutes
 - Peak: 1 hour
 - Duration: 2 to 4 hours
- Often used pre-meal


Hours After Administration

Regular Insulin

- Synthetic analog of human insulin
- Made by recombinant DNA techniques
- Onset: 30 minutes
- Peak: 2 to 3 hours
- Duration: 3 to 6 hours

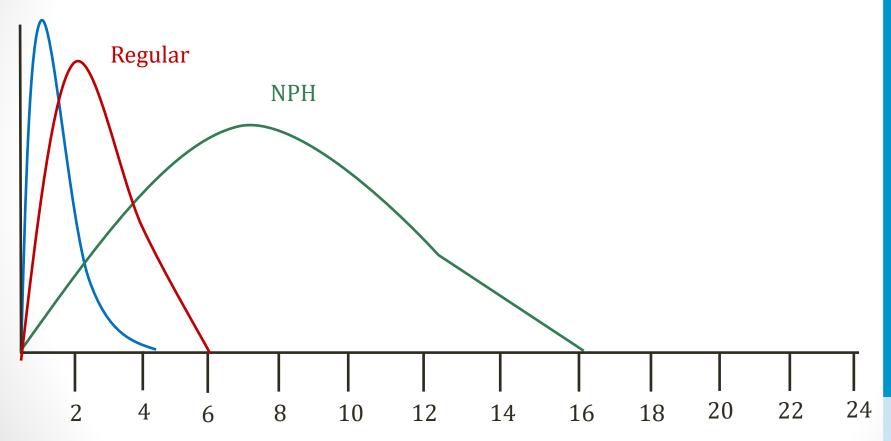
Hours After Administration

Boards&Beyond.

Regular Insulin

- Commonly used in hospitalized patients
 - Blood sugar elevations common with infection/surgery
 - Sliding scale dose given based on finger stick blood sugar
 - "Regular insulin sliding scale"
- Only type of insulin that is given IV
- IV regular insulin used in **DKA/HHS**
- Used to treat hyperkalemia
 - Given IV with glucose to prevent hypoglycemia

NPH Insulin

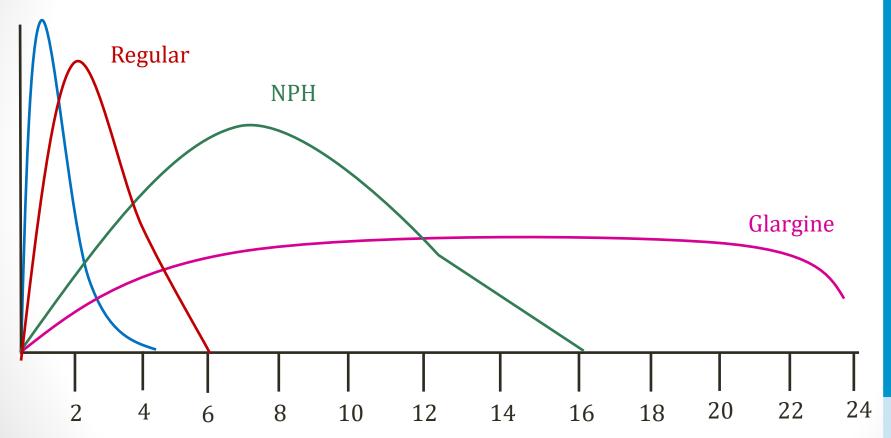

Neutral Protamine Hagedorn

- Regular insulin combined with neutral protamine
- Slows absorption
- Peak: 4-8 hours
- Duration: 12-16 hours

Insulin

Rapid

Hours After Administration


Glargine

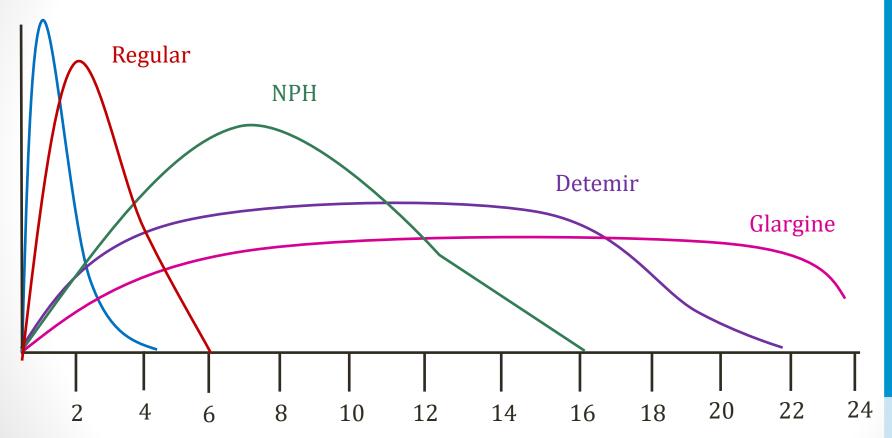
- Insulin with modified amino acid structure
- Soluble in acidic solution for dosing
- Precipitates at body pH after SQ injection
- Insulin molecules slowly dissolve from crystals
- Low, continuous level of insulin
 - Onset: 1–1.5 hours
 - Duration: 11–24 hours
- Often given once daily

Insulin

Rapid

Hours After Administration

Boards&Beyond.


Detemir

- Insulin with **fatty acid side chain** added
- Slow rate of absorption
 - Aggregation in subcutaneous tissue
 - Also binds reversibly to albumin
- Onset:1–2 hours
- Duration: > 12 hours
- Usually given once or twice daily
- May cause less weight gain

Insulin

Rapid

Hours After Administration

Insulin

- Rapid-acting
 - Pre-meal
- Regular
 - Sliding scale
 - IV for treatment of DKA, hyperkalemia
- NPH, Glargine, Detemir
 - Often given as background therapy

Insulin Analogs

- Do not contain human insulin molecules
 - Modified insulin structure
 - Rapid acting, Detemir, Glargine
- Regular insulin, NPH
 - Contain human insulin molecules
 - Regular: made by recombinant techniques
 - NPH: Regular added to neutral protamine to slow absorption

Hypoglycemia

- Major side effect of all insulin regimens
 - Tremor, palpitations, sweating, anxiety
 - If severe: seizure, coma
- Always check blood sugar in unconscious patients
- Dosages, frequency adjusted to avoid low glucose

Weight Gain

- Occurs in most patients on insulin
- Insulin promotes fatty acid and protein synthesis

Wikipedia/Public Domain

Treatment of Diabetes

Jason Ryan, MD, MPH

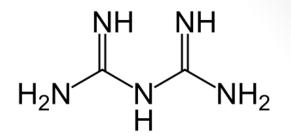
Type 1 and Type 2

- Type 1 diabetes treated mainly with insulin
- Type 2 diabetes: oral or SQ drugs +/- insulin
 - Initial stages: Oral and/or SQ drugs
 - Advanced disease: Insulin

Hemoglobin A1C

- Used to monitor therapy
- Too high = 1 complications
- Too low = Risk of hypoglycemia
- Goal of \leq 7.0% often used in many patients

Lifestyle Modifications


- Newly diagnosed type 2 diabetes
- Weight loss, exercise improve glucose levels
- First line treatment usually lifestyle modification
 - Usually a 3-6 month trial if initial A1c not markedly \uparrow

Oral/SQ Antidiabetic Agents

- Biguanides (Metformin)
- Sulfonylureas/Meglitinides
- Glitazones
- Glucosidase Inhibitors
- Amylin Analogs
- GLP-1 Analogs
- DPP-4 Inhibitors
- SGLT2 inhibitors

- Oral therapy
- Exact mechanism unknown
- - Inhibits gluconeogenesis

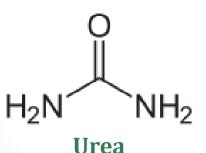
- Lowers serum free fatty acids
 - ↓ substrates for gluconeogenesis
 - ↓ triglycerides
 - Small↓LDL
 - Small ↑ HDL

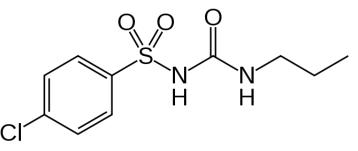
- Other effects
 - Reduced glucose absorption from GI tract
 - Direct stimulation of glycolysis in tissues $\rightarrow \uparrow$ glucose uptake
 - Reduced glucagon levels
- Leads to **↑** insulin effect (insulin sensitivity)
 - Insulin levels fall slightly on therapy

- Usually 1st line in type 2 diabetes
 - Associated with weight loss
 - Rarely causes hypoglycemia (unlike insulin/sulfonylureas)
- Does not depend on beta cells
 - Can be given to patients with advanced diabetes

- Most common adverse effect is GI upset
 - Nausea, abdominal pain
 - Can cause a metallic taste in the mouth

- Rarely can cause lactic acidosis
 - Exact mechanism unclear/controversial
 - Metformin can increase conversion of glucose to lactate
 - Beneficial for lowering glucose levels
 - Too much \rightarrow lactic acidosis
 - Can be life threatening


Metformin


Lactic Acidosis

- Almost always occurs associated with:
 - Renal insufficiency
 - Liver disease or alcohol abuse
 - Acute heart failure
 - Hypoxia
 - Serious acute illness
- Metformin not used in patients with low GFR
- Often "held" when patients acutely ill
- Also held during IV contrast tests

- Bind to sulfonylurea receptor in pancreas
 - Associated with ATP-dependent K+ channel in beta cells
- Sulfonylureas close K⁺ channels in beta cells
 - Changes resting potential
 - Results in depolarization (Ca influx)
- More sensitive to glucose/amino acids
- ↑ insulin release ("insulin secretagogues")

Sulfonylurea

Boards&Beyond

- Oral drugs
- Each generation more potent
- \downarrow dosage used $\rightarrow \downarrow$ side effects
- First generation
 - Tolbutamide, Chlorpropamide, Tolazamide
- Second generation
 - Glyburide, glipizide
- 3rd generation: Glimepiride

Adverse Effects

- Hypoglycemia is the most common side effect
 - Glucagon levels fall (unclear mechanism)
 - May occur with exercise or skipping meals

Adverse Effects

- Can also cause weight gain
 - More insulin release
 - Insulin causes weight gain

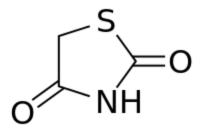
Wikipedia/Public Domain

Adverse Effects

- Chlorpropamide
 - Flushing with alcohol consumption
 - Inhibits acetaldehyde dehydrogenase (disulfiram)
 - Hyponatremia (↑ADH activity)

Meglitinides

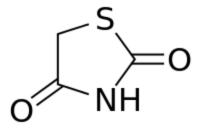
Repaglinide, Nateglinide


- Oral therapy
- Different chemical structure from sulfonylureas
- Similar mechanism
- Close K⁺ channels in beta cells \rightarrow \uparrow insulin secretion
- Short acting
- Given prior to meals
- Major side effect is hypoglycemia
- No sulfur → can be used in sulfa allergy

Thiazolidinediones (TZDs)

Pioglitazone, Rosiglitazone

- Oral therapy
- Decreases insulin resistance



Thiazolidinediones (TZDs)

Pioglitazone, Rosiglitazone

- Act on PPAR-γ receptors
 - Nuclear receptor
 - Highest levels in **adipose tissue**
 - Also found in muscle, liver, other tissues
 - Modulate expression of genes
- TZDs bind PPAR-gamma

- TZD-PPAR bind **retinoid X receptors** (RXR)
- Complex modifies gene transcription

NOTE: Fibrates activate PPAR-α Lower triglycerides

Thiazolidinediones

Potential mechanisms

• GLUT-4

- Glucose transporter
- Transcription upregulated

Adiponectin

- Adipocyte secretory protein
- **† insulin sensitivity** via several mechanisms
- Signaling may lead to improved glucose levels
- Antagonism of **TNF alpha** insulin resistance
 - TNF-α levels fall

Thiazolidinediones

Adverse Effects

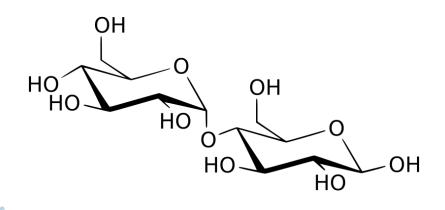
Weight gain

- May cause proliferation of adipocytes
- Also lead to fluid retention
- Risk of hepatotoxicity
 - Troglitazone removed from market due to liver failure

Thiazolidinediones

Adverse Effects

- Edema
 - Occurs in ~5% patients
 - Due to PPAR- γ effects in nephron \rightarrow \uparrow Na retention
 - Risk of **pulmonary edema**
 - Not used in patients with advanced heart failure



Glucosidase Inhibitors

Acarbose, Miglitol, Voglibose

- Competitive inhibitors of intestinal α -glucosidases
 - Sucrase, maltase, glucoamylase, dextranase
 - Enzymes of brush border of intestinal cells
 - Hydrolyze starches, oligosaccharides, disaccharides
- Slows absorption of glucose
 - Less absorption upper small intestine
 - More in distal small intestine

Boards&Beyon

Glucosidase Inhibitors

Acarbose, Miglitol, Voglibose

- Taken orally before meals
- Less spike in glucose after meals
- Lowers mean glucose level \rightarrow lowers A1c
- Less insulin used ("insulin sparing")
- Main side effect: GI upset
 - Flatulence
 - Diarrhea

Amylin Analogs

Pramlintide

- Amylin: protein stored in beta cells
- Co-secreted with insulin
- Several effects (mechanisms poorly understood)
 - Suppresses glucagon release
 - Delays gastric emptying
 - Reduces appetite
- Allows insulin to work more effectively

Amylin Analogs Pramlintide

- Given SQ with meals
- Always given with insulin (type I or type 2)
- **Hypoglycemia** may result \rightarrow need to \downarrow insulin dose
- Can also cause nausea

Incretins

- Hormones that **↑** insulin secretion
- GIP (glucose-dependent insulinotropic peptide)
 - Produced by K cells of small intestine
- GLP-1 (glucagon-like peptide-1)
 - Produced by L-cells of small intestine
 - Secreted after meals
 - Stimulates insulin release (similar to GIP)
 - Also blunts glucagon release, slows gastric emptying
- Oral glucose metabolized faster than IV glucose

GLP-1 Analogs

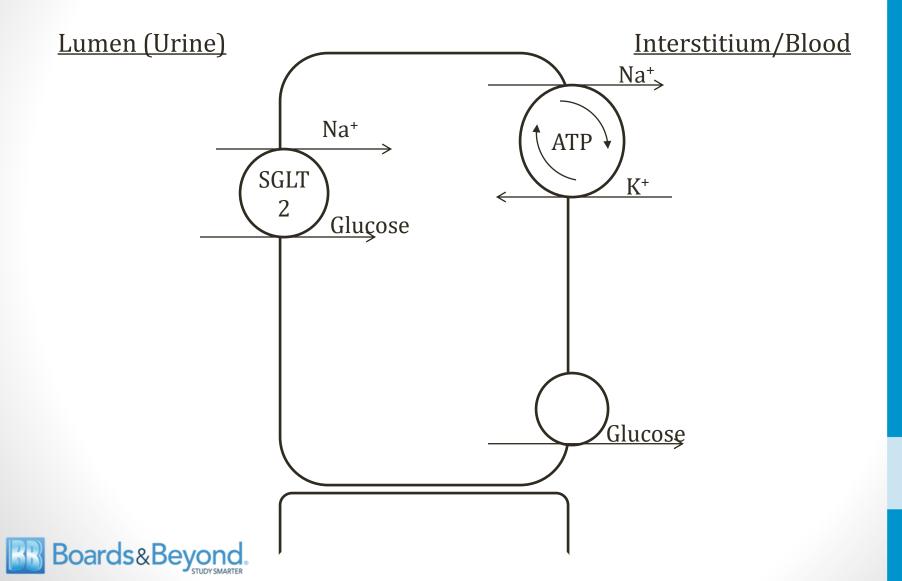
Exenatide, Liraglutide

- Exenatide: Usually given SQ prior to meals
 - Once weekly version available
- Liraglutide: SQ once daily
- GI side effects: nausea, vomiting, diarrhea

DPP-4 Inhibitors

Sitagliptin, Linagliptin

- DPP-4: Dipeptidyl peptidase 4
 - Enzyme expressed on many cells
 - Inhibits release of GIP and GLP-1
- Inhibition $\rightarrow \uparrow$ GLP-1
- Oral drugs, once a day
- Side effects: Infections
 - Reports of urinary and respiratory infections


SGLT2 Inhibitors

Canagliflozin, Dapagliflozin

- SGLT2
 - Expressed in proximal tubule
 - Reabsorbs ~90% percent filtered glucose
- Inhibition \rightarrow loss of glucose in urine
 - Lowers glucose levels
 - Also causes mild osmotic diuresis

Proximal Tubule

SGLT2 Inhibitors

Canagliflozin, Dapagliflozin

- Oral drugs taken once daily
- Lead to mild weight loss
- May improve outcomes in heart failure
- Adverse effects
 - Vulvovaginal candidiasis
 - UTIs
- Not recommended with advanced renal disease

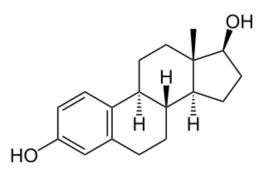
Diabetes Therapy

Helpful Tips

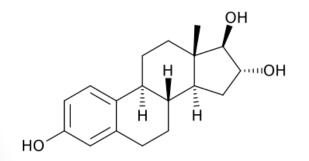
- Renal failure: Avoid metformin (lactic acidosis)
- Advanced heart failure
 - Avoid TZDs (fluid retention)
 - Avoid metformin (lactic acidosis)
- Insulin generally safe with any comorbidity

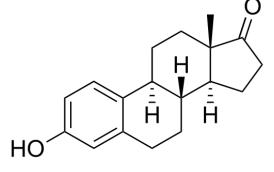
Reproductive Hormones

Jason Ryan, MD, MPH


Reproductive Hormones

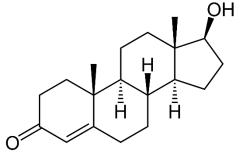
- Estrogens and androgens
- Development and function of sex organs
- Secondary sexual characteristics (puberty)

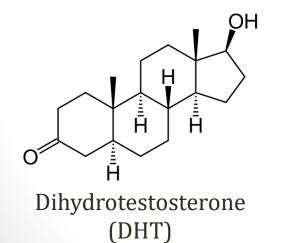



Estrogens

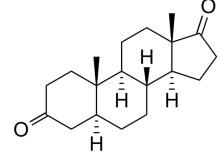
<u>Potency</u> Estradiol> Estrone > Estriol

Estradiol (17β-estradiol)


Estrone



Androgens


<u>Potency</u> DHT > Testosterone > others

Testosterone

Boards&Beyond.

Androstenedione

HO

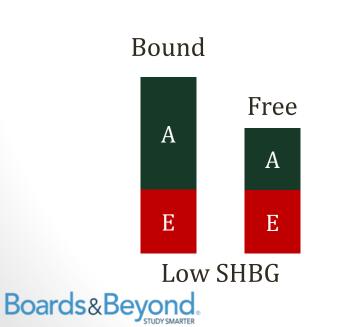
Dehydroepiandrosterone (DHEA)

Reproductive Hormones

- Steroid hormones (from cholesterol)
- Poorly soluble in plasma
- Carried by sex hormone binding globulins (SHBGs)
 - Smaller amount by albumin
- Cross lipid bilayer of cells
- Bind to intracellular receptors

SHBG

Sex Hormone Binding Globulins


- Glycoproteins
- Produced by the liver
- Binds androgens more than estrogens

A > E

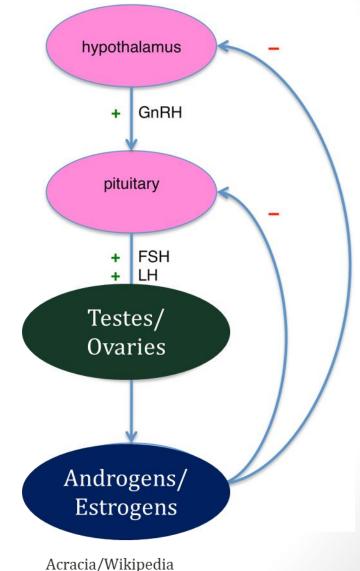
Estrogen Amplification

- Free hormones \rightarrow clinical effects
- \uparrow SHBG \rightarrow \downarrow free and rogens and estrogens
 - More effect on androgens
 - ↑ ratio estrogens to androgens
- "Amplification" of estrogen effects

Bound A Free E A E A E E

SHBG Sex Hormone Binding Globulins

	↑ SHBG	↓SHBG
Causes	Estrogens Hyperthyroidism	Androgens Hypothyroidism Nephrotic Syndrome
Hormones	↑ Estrogen effects	↑ Androgen effects
Clinical Effects	Gynecomastia (men)	Hirsutism (women)

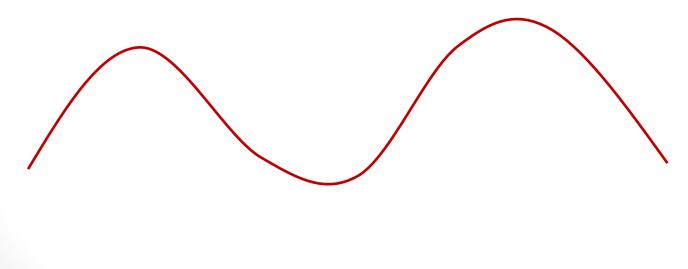

Cirrhosis

- ↑ estrogen effects
 - Gynecomastia
 - Spider nevi
 - Palmar erythema
 - Testicular atrophy
 - Impotence
- Altered metabolism/excretion \rightarrow \uparrow estrogen
- ↑ SHBG → ↑ estrogen effects
- Clinical features of *festrogens/landrogens*

Reproductive Hormones

- Hypothalamus: GnRH
- Pituitary:
 - Follicle stimulating hormone
 - Luteinizing Hormone
- Testes/Ovaries
- Androgens/estrogens

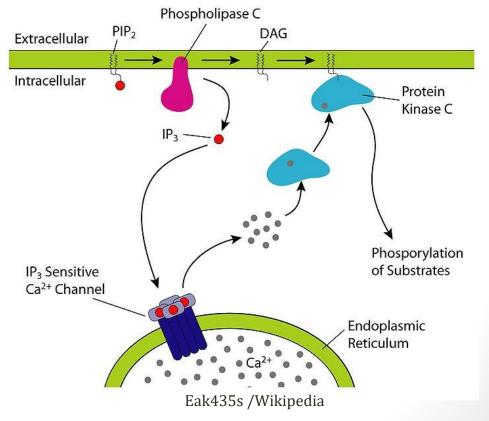
Puberty


- FSH and LH are low before puberty
- Rise at puberty in boys and girls

GNRH

Gonadotropin-releasing hormone

- Peptide produced by hypothalamus
- Released in pulses ("pulsatile")
 - Frequency and amplitude of pulses varies
 - Changes effect release of LH/FSH from pituitary


GNRH

Boards&Beyond

Gonadotropin-releasing hormone

Gq protein system with IP3 second messenger

- PIP2 = Phosphatidylinositol bisphosphate
- IP3 = Inositol trisphosphate
- DAG = Diacylglycerol

- GnRH agonists
 - Derived from GnRH
 - **D-amino acid substitution** for native L-amino acid
 - Resistant to degradation
 - \uparrow half-life \rightarrow occupies receptors for prolonged period of time

- Initial binding can stimulate LH/FSH release
- Chronic treatment $\rightarrow \downarrow$ LH/FSH
 - Down-regulation of GnRH receptor
 - Pituitary desensitization
- Suppresses ovarian follicular growth and ovulation
- Low levels of estradiol and progesterone
 - Similar to menopause

Uses

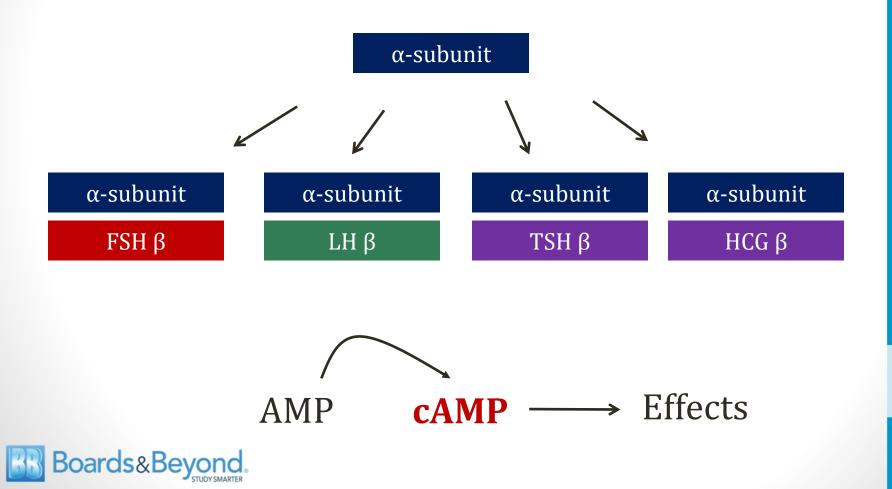
- Pulsatile (rarely done)
 - **Stimulation** of LH/FSH release
 - Administered by infusion pump
 - Dose varies about every 90 minutes
 - Used to create LH surge for ovulation (infertility)

Uses

- Continuous
 - **Suppression** of LH/FSH release
 - Endometriosis
 - Uterine fibroids (leiomyomata)
 - Prostate cancer
 - Precocious puberty

Kallmann Syndrome

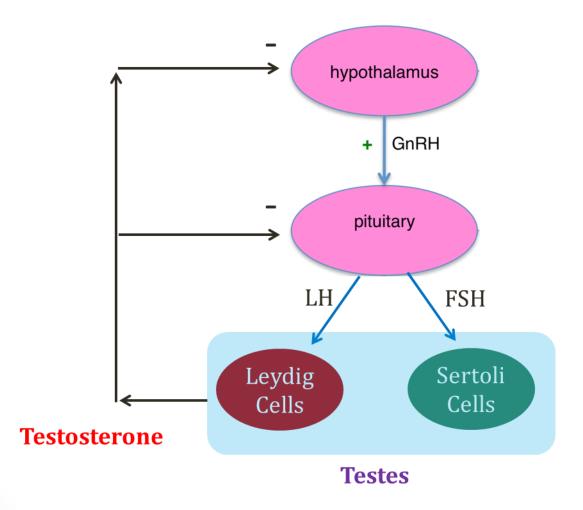
- Absence of GnRH secretion from hypothalamus
- Impaired migration of GnRH neurons from origin in olfactory bulb to hypothalamus
- Almost always occurs in males (5:1 ratio)
- Key features: hypogonadism and anosmia
- Low GnRH/FSH/LH/Testosterone
- Delayed puberty
- Small testes


Pituitary Reproductive Hormones

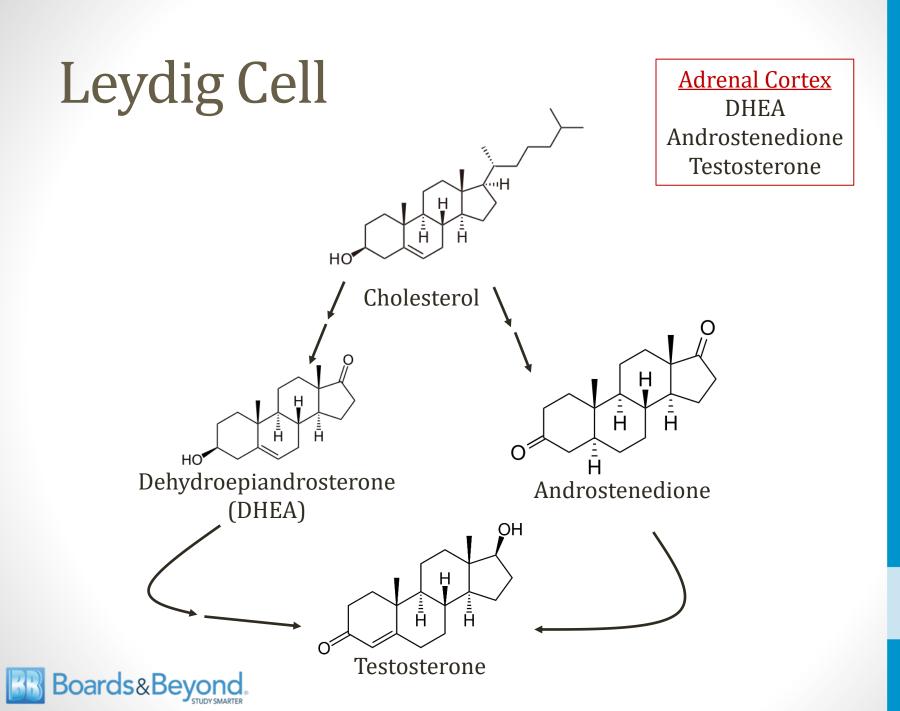
- LH, FSH
- Proteins
- LH, FSH, TSH and HCG are "heterodimers"
 - Dimer = two molecules; hetero = different
- Two chains: α and β
- Same α, different β

Pituitary Hormones

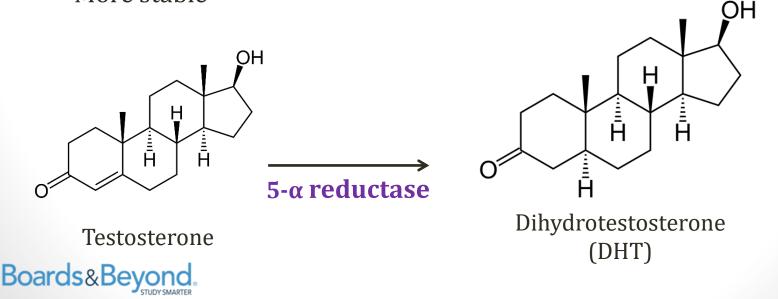
All have a cAMP second messenger system

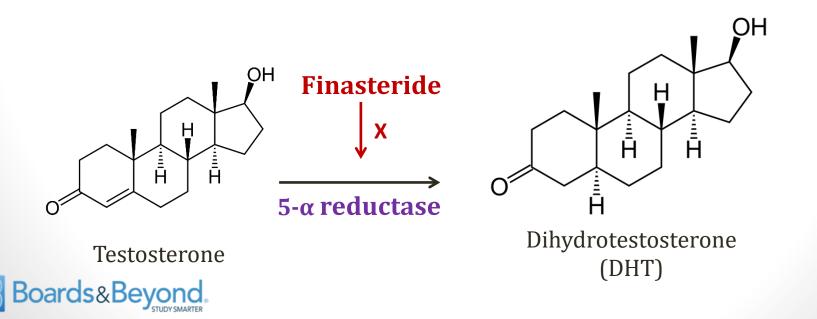


Male Reproductive Hormones

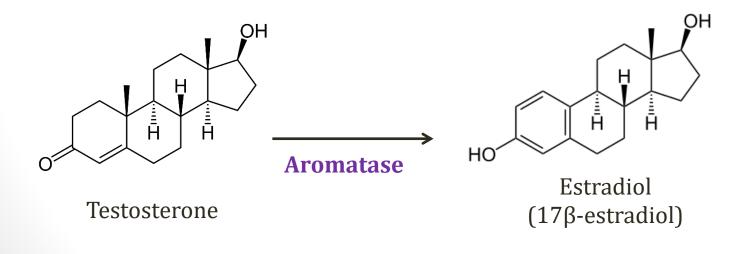

Jason Ryan, MD, MPH

Male Reproductive System

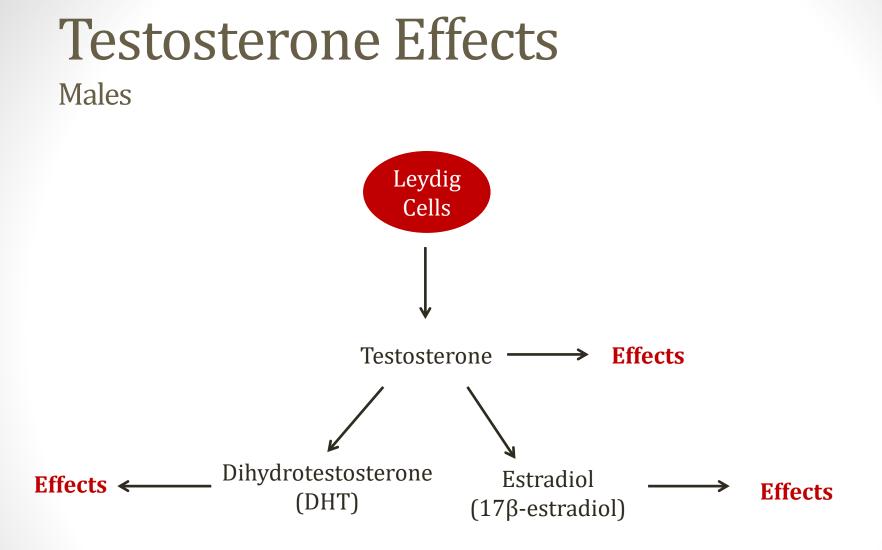



Dihydrotestosterone

- Testosterone converted to DHT in peripheral tissues
- Enzymes: **5-α reductase**
- Many testosterone effects mediated by DHT
- DHT: ↑ potency
 - Binds androgen receptor > testosterone
 - More stable


Finasteride

- $5-\alpha$ reductase inhibited by finasteride
- Used for treatment of **prostatic hyperplasia**
- Also used to treat hair loss in men



Estradiol

- Testosterone also converted to estradiol
- Occurs in adipose tissue and Leydig cells
- Enzyme: Aromatase
- Some testosterone effects mediated by estradiol

Males

- Different effects on different growth stages
 - Fetus
 - Puberty
 - Adult

lunar caustic/Flikr

Boards&Beyond.

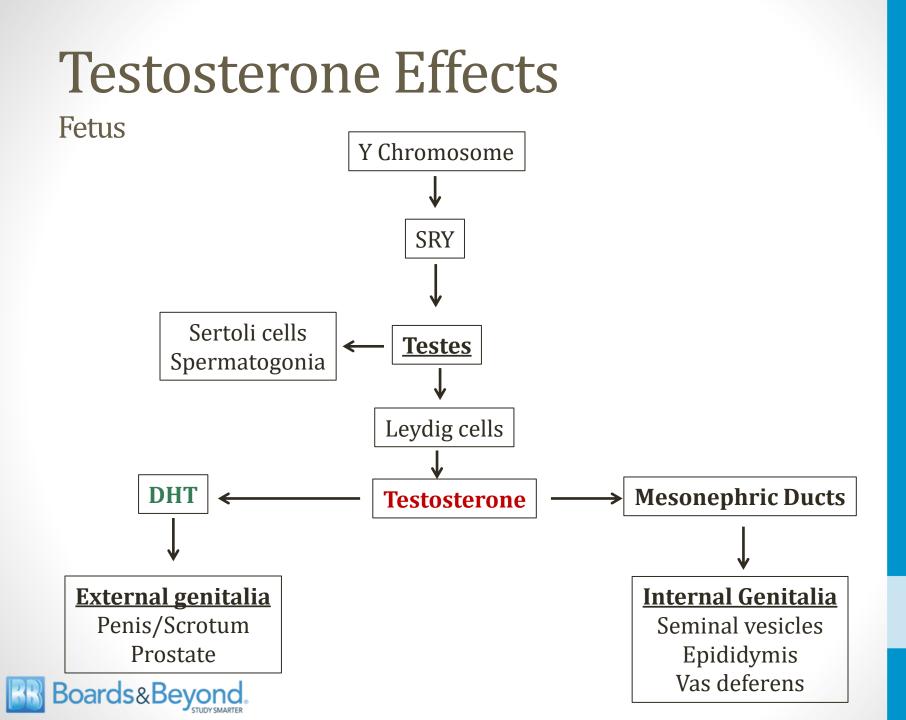
Dtesh71/Public Domain

stokpicc/Public Domain

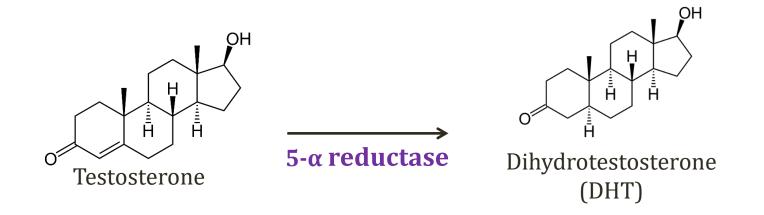
Fetus

- Development of testes requires Y chromosome
 - SRY gene produces testis determining factor
 - All males (XY) born with testes
 - "Chromosomal sex" determined by XX/XY
- Internal/external genitalia requires hormones

lunar caustic/Flikr


Fetus

- Internal genitalia
 - Derived from mesonephric ducts
 - Seminal vesicles, epididymis, vas deferens
 - Requires testosterone
- External genitalia
 - Derived from urogenital sinus
 - Penis, scrotum (also prostate, bladder)
 - Requires **DHT**


lunar caustic/Flikr

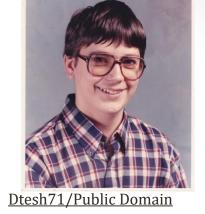
5-α Reductase Deficiency

- Autosomal recessive disorder of sexual development
- 46,XY male able to make testosterone, not DHT

5-α Reductase Deficiency

Normal internal genitalia

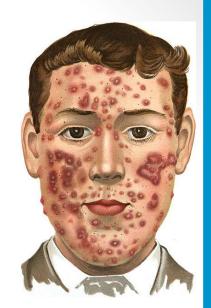
- Normal epididymis, vas deferens, seminal vesicles
- Empty into a blind-ending vagina
- External genitalia predominately female
 - Absent external male genitalia
 - Range of female genitalia seen +/- hypospadius
 - Sometimes diagnosed at birth due to ambiguous genitalia


5-α Reductase Deficiency

- Typical case
 - Male with ambiguous genitalia
 - Female child with masculinization at puberty
 - Blind vagina
 - Absence of uterus
 - Bilateral undescended testes
 - Normal testosterone levels

Puberty

- Enlargement of the scrotum, and testes
- Increased penis size
- Enlargement of seminal vesicles/prostate
- Growth of pubic hair
- Hair on face/underarms
- Deepening of voice


Puberty

- Growth spurt (via estrogens)
 - Increased linear growth
 - Closure of epiphyseal plates

Acne

- Associated with increased sebum
 - Secretion of sebaceous glands
- Androgen receptors on sebaceous glands
 - Androgens stimulate growth/secretions
- Acne common in puberty
- Also common in other forms androgen excess
 - Polycystic ovarian syndrome
 - Congenital adrenal hyperplasia

Wikipedia/Public Domain

Adults

- Prostate growth
 - Finasteride $\rightarrow \downarrow$ DHT \rightarrow Treatment of BPH
 - Testosterone therapy \rightarrow BPH
- May effect lipids
 - Exogenous testosterone $\rightarrow \downarrow$ HDL/ \uparrow LDL
- Male pattern balding

Androgenic Alopecia

"Male Pattern Balding"

- Most common type of hair loss in men
- Anterior scalp, mid scalp, temporal scalp, and vertex
- Caused by androgens
 - Occurs after puberty
 - Will not occur with androgen deficiency
- **DHT** is key androgen
 - Responds to finasteride treatment

Welshsk/Wikipedia

Male Hypogonadism

- Many congenital and acquired causes
- May occur with aging
 - ↓ serum testosterone
 - ↑ sex hormone-binding globulin (SHBG)
 - ↓ serum free testosterone
- May be associated with:
 - \downarrow sexual function
 - ↓ bone mass
 - Anemia
- Limited data on hormone replacement for decreased testosterone due to aging

Testosterone Therapy

- Used in male hypogonadism
- Results in:
 - Increased muscle mass
 - Increased bone density
- Potential adverse effects
 - ↑ hematocrit
 - Acne
 - Balding
 - Worsening BPH

Spermatogenesis

- Suppressed by exogenous testosterone
- Testosterone suppresses LH secretion
- ↓ testosterone from Leydig cells
- Exogenous hormone weak activity in testes
- ↓ spermatogenesis

Anabolic Steroids

- High dosages of androgens used by body builders
 - Exogenous testosterone
 - Androgen precursors
- All lead to \uparrow testosterone effects \rightarrow \uparrow muscle mass
- Adverse effects
 - \downarrow HDL/ \uparrow LDL
 - Erythrocytosis
 - Small testes (suppression of FSH/LH)
 - Azoospermia
 - Gynecomastia

Spironolactone

- Potassium sparing diuretic
- Blocks effects of aldosterone
- Used in hypertension, heart failure
- Key side effect: **gynecomastia** (~10%)
 - Blocks androgen receptor
 - \downarrow and rogen production from and rostenedione
- Result:
 - ↑ estrogen effects
 - ↓ androgen effects

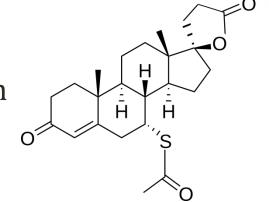
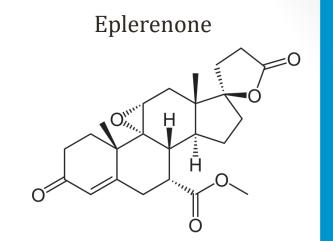


Image courtesy Dr. Mordcai Blau/Wikipedia

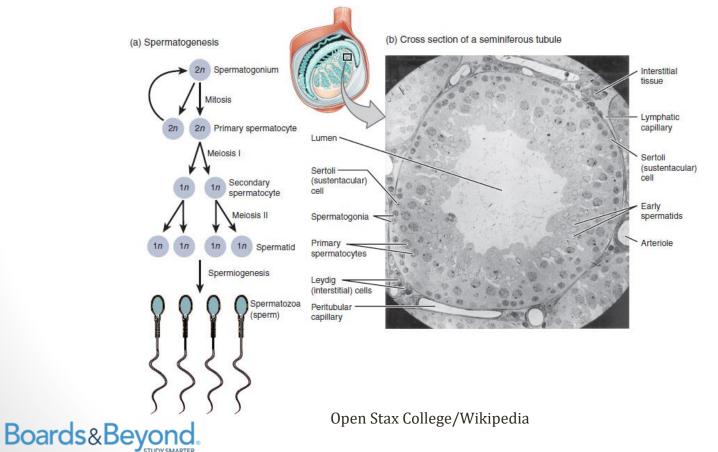
Spironolactone

- Acne, hirsutism, alopecia in women
 - Blunts testosterone effects
 - Enhances estrogen effects
- Amenorrhea
 - Stimulates progesterone receptors

Spironolactone

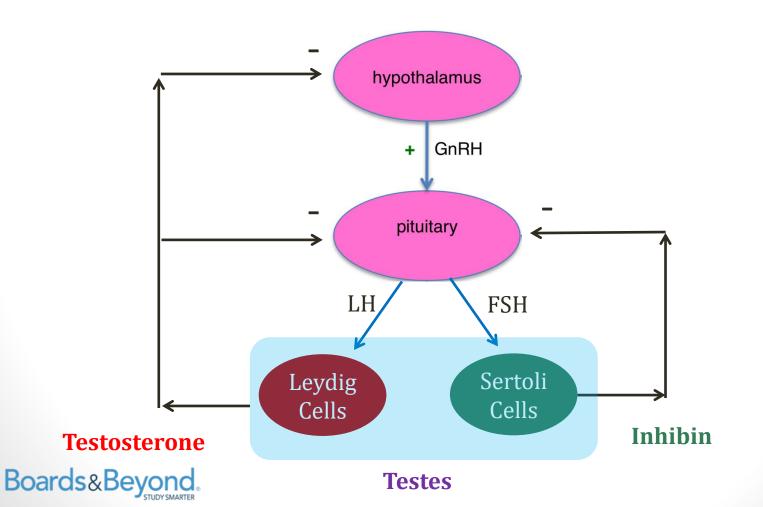


Spironolactone


• Eplerenone

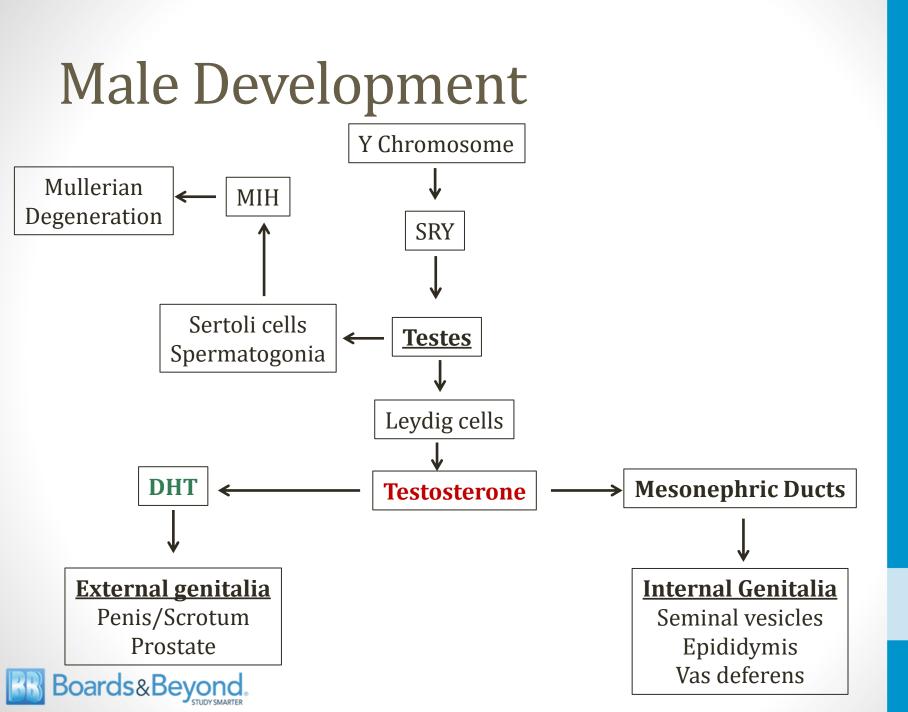
- Alternative to spironolactone
- Does not cause gynecomastia
- Can be used in heart failure

- Support and nourish developing spermatozoa
- Regulate spermatogenesis


- Stimulated by FSH
- Supported by Leydig cell testosterone (paracrine)
- Need **FSH and LH** for normal spermatogenesis

- Form blood-testis barrier
- Tight junctions between adjacent Sertoli cells
- Isolates sperm
- Protection from autoimmune attack

• Secrete **inhibin B**: Inhibits FSH


- Secrete androgen-binding protein (ABP)
 - Raises/maintains local testosterone levels
 - Intra-testicular testosterone concentration 100x peripheral
- Produce anti-mullerian hormone
 - Results in degeneration of mullerian ducts

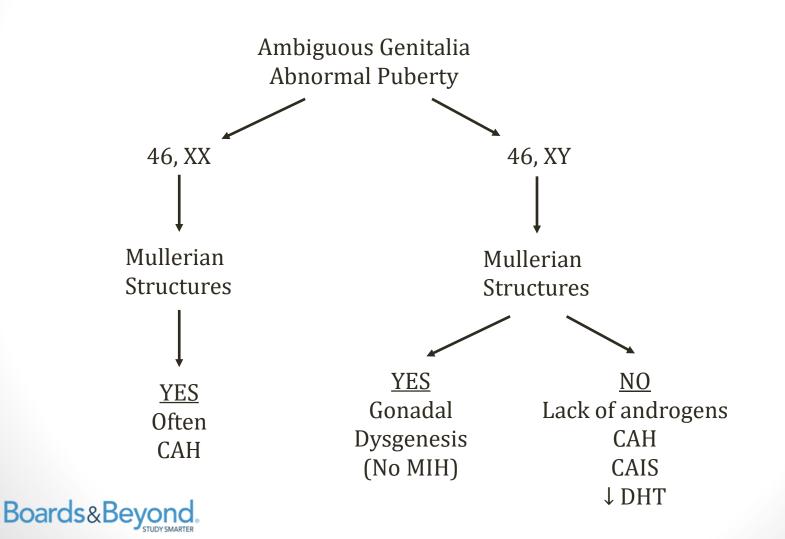
Anti-mullerian Hormone

- In utero (XX or XY): Two systems
 - Indifferent gonad (can develop into ovaries or testes)
 - Paramesonephric (Mullerian) duct: female structure
 - Mesonephric (Wolffian) duct: male structures
- Y chromosome \rightarrow testes \rightarrow Sertoli cells
- Secretion of anti-mullerian hormone
 - Mullerian inhibitory hormone/substance
- Degeneration of mullerian system
- Leaves gonad and mesonephric ducts

CAIS

Complete Androgen Insensitivity Syndrome

- Mutation of androgen receptor in males (XY)
- No ovaries; testes form in utero (SRY gene)
- No cellular response to androgens
 - No internal or external male genital development
- Sertoli cells (testes) present \rightarrow MIH
 - Degeneration of mullerian structures
 - Absent uterus, fallopian tubes


CAIS

Complete Androgen Insensitivity Syndrome

- At puberty:
 - Breasts develop (testosterone \rightarrow estrogen)
 - No armpit/pubic hair (depends on androgens)
- Amenorrhea (no uterus)
- Abdominal testes

Disorders of Sex Development

Temperature Effects

- Spermatogenesis requires ↓ temperature
- Sertoli cells sensitive to temperature
 - \downarrow spermatogenesis with higher temperature
 - ↓ inhibin production with higher temperature (↑FSH)
- Leydig cells less sensitive
 - Testosterone production usually maintained higher temps

Cryptorchidism

- "Hidden testes"
- Usually due to undescended testes
 - Abdominal
 - Inguinal canal
- Can be unilateral/bilateral

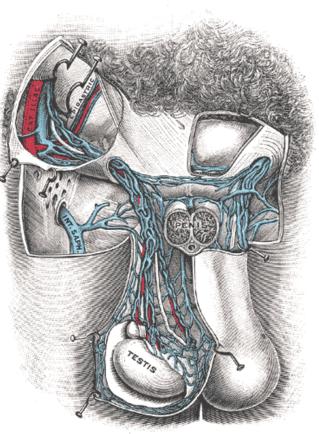
Cryptorchidism Complications

- Low sperm counts
 - temperature effects on Sertoli cells
 - Low inhibin levels
- ↑ risk of germ cell tumors
- Inguinal hernias
- Testicular torsion
 - Testicle rotates \rightarrow twists spermatic cord
 - Compression of veins $\rightarrow \downarrow$ blood flow
 - Hemorrhagic infarction

Cryptorchidism

Treatment

- Testes may descend on their own
 - Usually occurs by 6 months of age
- Orchiopexy
 - Surgical placement of the testis in scrotum
 - Sperm counts usually become normal
 - Done after 6 months of age

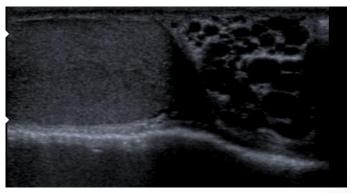


Bilateral Undescended Testes

- Phenotypical male with bilateral non-palpable testes
- Dangerous cause: congenital adrenal hyperplasia
 - Female (XX) exposed to increased androgens
 - Ambiguous genitalia may appear male with absent testes
 - Risk of shock from low cortisol
 - Key tests: ACTH, Cortisol
- Testes may be absent
 - Agenesis or atrophy (intrauterine vascular compromise)
 - Serum testing often done
 - Absent testes: **1**LH/FSH, absence of MIH

• Dilatation of **pampiniform plexus** of spermatic veins

Wikipedia/Public Domain


- Caused by obstruction to outflow of venous blood
- More common on left
 - Left spermatic vein \rightarrow left renal (long course)
 - Compressed between aorta and superior mesenteric artery
 - "Nutcracker effect"
 - Right vein drains directly to IVC
- Associated with renal cell carcinoma
 - Invades renal vein

- Scrotal pain and swelling
 - "Bag of worms"
- More swelling with:
 - Valsalva
 - Standing
- Diagnosed by ultrasound
- Can cause infertility
 - 1 temperature
 - Poor blood flow

Fisch12/Wikipedia

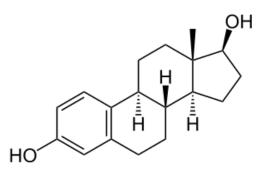
Schomynv /Wikipedia

Treatment

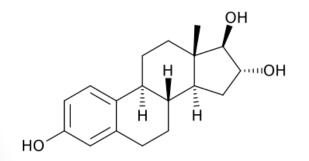
- Surgery (varicocelectomy)
 - Isolate dilated/abnormal veins
 - Redirect blood flow to normal veins
- Embolization
 - Interventional radiology procedure
 - Catheter inserted into dilated/abnormal veins
 - Coil or sclerosants used to clot off veins

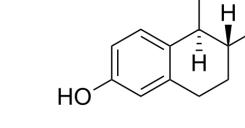
Female Reproductive Hormones

Jason Ryan, MD, MPH



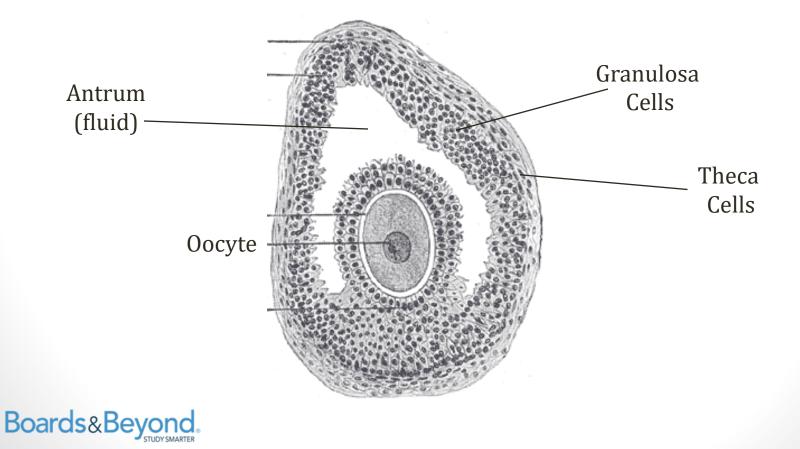
Estrogens


<u>Potency</u> Estradiol> Estrone > Estriol


()

Ē

Estradiol (17β-estradiol)


Estrone

Estriol

Ovarian Follicle

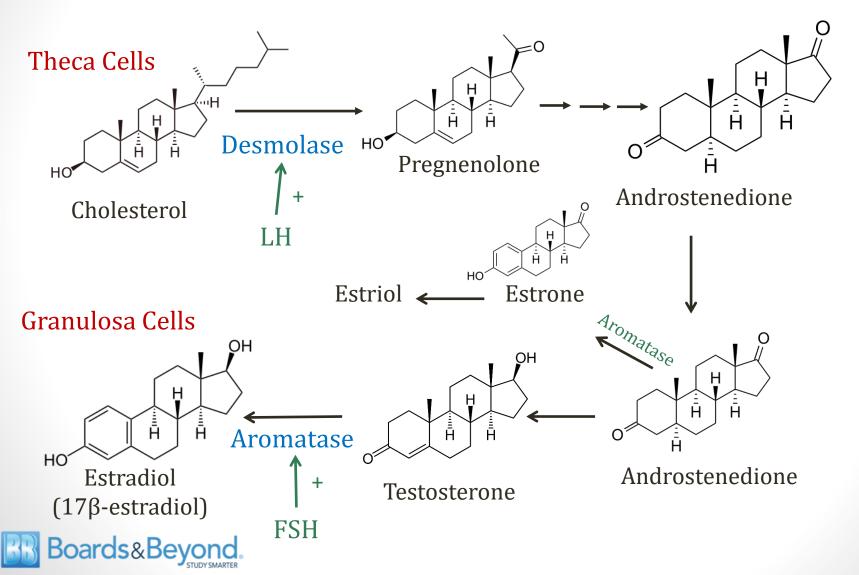
- Egg surrounded by cells
- Two key cell types: **theca and granulosa** cells

Hormone Synthesis

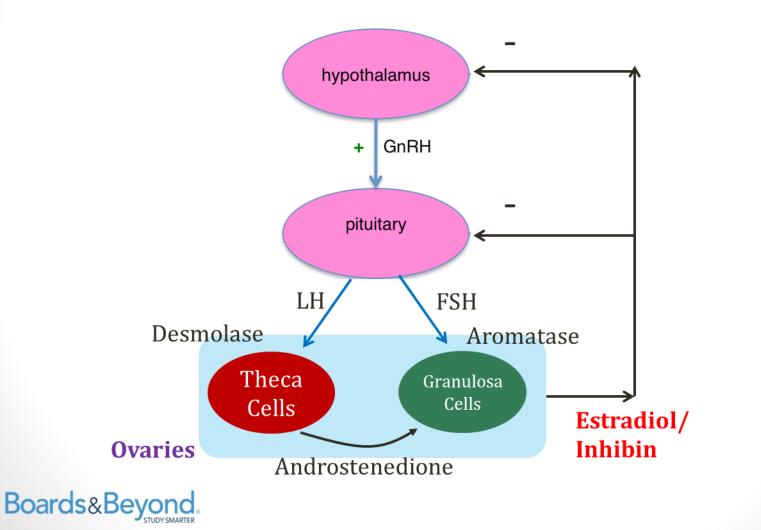
Estrogens

• Theca cells

- Convert cholesterol into androstenedione
- Stimulated by LH (via cAMP 2nd messenger)


• Granulosa cells

- Convert androstenedione into estradiol
- Stimulated by FSH (via cAMP 2nd messenger)
- Also produce inhibin \rightarrow suppresses FSH



Hormone Synthesis

Estrogens

Female Reproductive System

Estrogen Effects

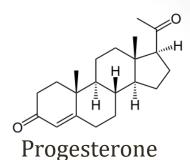
- Growth of follicle
 - Theca/Granulosa cells \rightarrow estradiol \rightarrow follicular growth
- Increase SHBG
 - Amplifies estrogen effects
- Lipids
 - Raises HDL
 - Lowers LDL

Estrogen Effects

Puberty

- Breast enlargement
- Pigmentation of areolas
 - Also seen in pregnancy
- Female body habitus
 - Narrow shoulders, broad hips
 - Female fat distribution in breasts and buttocks
- Note: Pubic and axillary hair from androgens

Estrogen Effects


Pituitary

- ↓ FSH secretion (negative feedback)
- ↓ LH secretion (negative feedback)
- Exception: Can trigger LH surge (positive feedback)

Progesterone

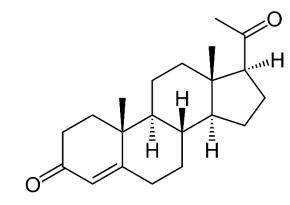
- Synthesized by corpus luteum
 - Also placenta, adrenal glands, testes
- Most bound to albumin
- Short half life \rightarrow metabolized by liver
- Main target is uterus, cervix, vagina

Progesterone Effects

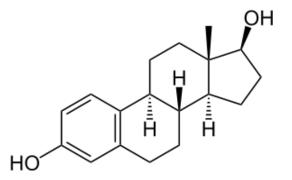
- Many effects oppose estrogen
 - Decreases expression estrogen receptors
- Many effects favorable to pregnancy

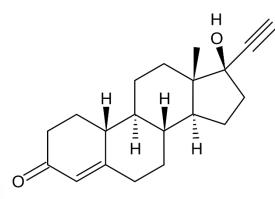
Progesterone Effects

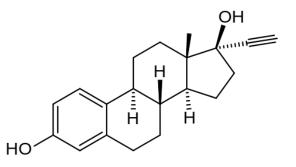
- Secretory phase of uterine cycle
- Thickens cervical mucous
 - Prevents sperm entry
- Prevents uterine contractions
 - ↓ uterine excitability
 - ↑ membrane potential of uterine smooth muscle
 - Uterine smooth muscle relaxation
- Raises body temperature (seen in pregnancy)
- Inhibits LH/FSH release



Oral Contraceptives


- Analogs of estrogens and progesterone
 - "Estrogens and progestins"
- Progestin only
 - Oral "mini pill"
 - Medroxyprogesterone injection (Depo-Provera)
- Combination pills
 - Contain estrogen and progesterone


Oral Contraceptives


Progesterone

Estradiol

Norethisterone

Ethinyl estradiol

Progestin Only

- Suppress ovulation via negative feedback on FSH/LH
- Thickens cervical mucus
 - Obstructs sperm
 - May protect against PID
- Thins endometrium
 - Prevents implantation

Progestin Only

- Disadvantages
 - Same time every day (+/- 3 hours)
 - Irregular bleeding, spotting
- Advantages
 - No estrogen risks/side effects

Medroxyprogesterone

Depo-Provera

- Injectable, progestin-only contraceptive
- Intramuscular or subcutaneous
- Once every 3 months

Combination OCPs

- Combination of progestin and estrogen
- Better suppression of follicular growth
 - Progesterone suppresses LH
 - Estrogen suppresses FSH
- Estrogen stabilizes endothelium
 - Less breakthrough bleeding
- Estrogen increases effect of progesterone
 - More progesterone receptors

Combination OCP Risks

- Breakthrough bleeding
 - Most common side effect
 - More frequent if low estrogen component
- Hypertension (usually mild)

Combination OCP Risks

Thrombosis

- Estrogen increases clotting factors
- Usually venous thrombosis: DVT/PE
- Rarely arterial thrombosis: stroke/MI
- Cancer
 - Conflicting data
 - May \downarrow risk of endometrial and ovarian cancer
 - May ↑ risk breast, cervical, liver cancer

Combination OCPs

Contraindications

- Smokers >35 years of age
 - Risk of CV events
- History of DVT/PE

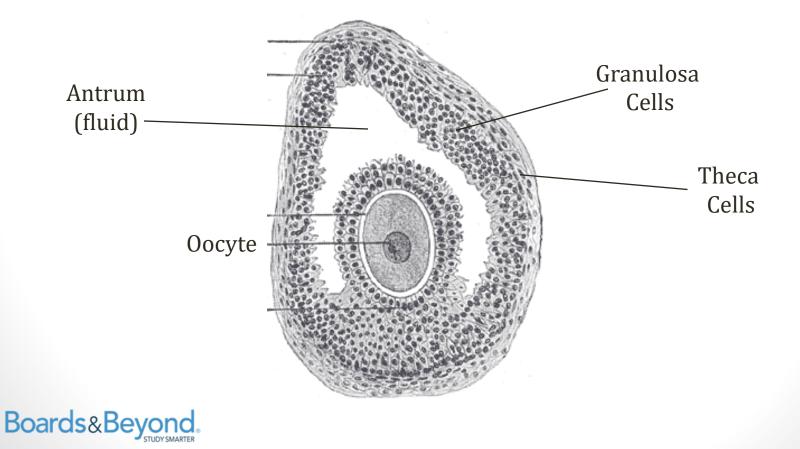

Pixabay/Public Domain

Jason Ryan, MD, MPH

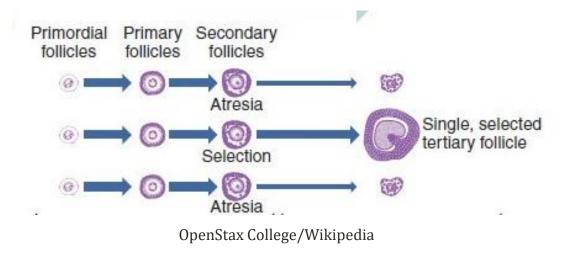
Female Reproductive System

Ovaries

Basic Principles


Contain follicles

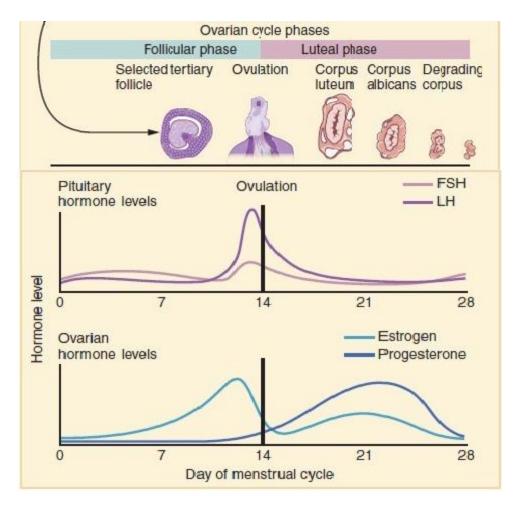
- Spherical collection of cells
- Contains a single oocyte
- Each menstrual cycle one egg matures/releases


Ovarian Follicle

- Egg surrounded by cells
- Two key cell types: **theca and granulosa** cells

Ovarian Follicle

- During menstrual cycle, follicles mature
- One "dominant" follicle will release egg



Basic Principles

- Phases
 - Follicular (growth of follicles)
 - Ovulation
 - Luteal (preparation for pregnancy)

OpenStax College/Wikipedia

Follicular phase

- ↑ GnRH pulse frequency
- \uparrow FSH \rightarrow \uparrow estradiol production from ovaries
- Recruitment of follicles
- \uparrow estradiol \rightarrow \downarrow FSH/LH (negative feedback)
- Selection of one dominant/ovulatory follicle
- 10-14 days (varies in length)

Ovulation

Boards&Beyond

Mid-cycle surge

- Switch from negative feedback to positive feedback
- Estradiol triggers \uparrow frequency GnRH pulses \rightarrow LH surge
- Oocyte released from follicle ~36 hours after LH surge
- Basis for ovulation testing
 - Urine detection of LH

Clearblue OTRS/Wikipedia

Mittelschmerz

- Mid-cycle pain
- Due to:
 - Enlargement of follicle or follicular rupture with bleeding
- Usually mild, unilateral pain
- Usually resolves in hours to days
- Can mimic other disorders (appendicitis)

Luteal phase

Corpus luteum forms

- Temporary endocrine gland formed from follicle
- Produces large amounts of progesterone
- Also some estradiol
- Progesterone/estradiol → ↓LH/FSH
 - Negative feedback

Luteal phase

- Eventually corpus luteum degrades
- \downarrow progesterone \rightarrow menstruation
 - Occurs 14 days after ovulation
- If fertilization occurs:
 - Embryo makes human chorionic gonadotropin (hCG)
 - Maintains the corpus luteum and progesterone production
 - Progesterone maintains suppression of LH/FSH

Uterine Cycle

- Changes in endometrium
- Driven by estrogens and progesterone
- Parallels ovarian cycle
- Two phases:
 - Proliferative phase = follicular phase of ovary
 - Secretory phase = luteal phase of ovary

Uterine Cycle

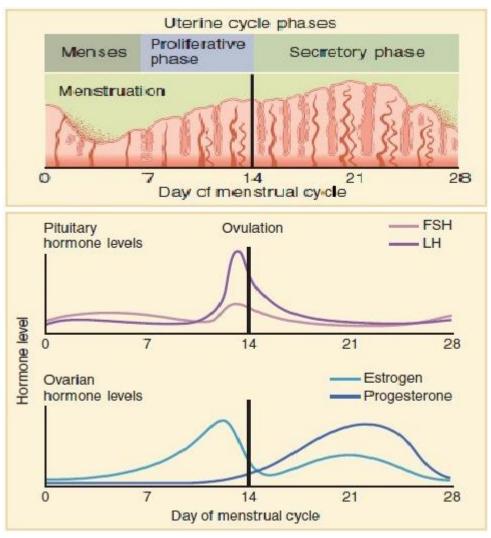
Proliferative Phase

- Menstruation followed by endometrial proliferation
- Stimulated by estrogen
- Endometrial thickness increases (>10x)
- Growth of glands, stroma, blood vessels

Uterine Cycle

Secretory Phase

- Occurs after ovulation
- Progesterone inhibits proliferation of endometrium
- Numerous secretions released to prepare for embryo
- Changes in blood vessels
 - Vessels grow and coil
 - Form "**spiral arteries**" about 9th postovulatory day
 - Critical for implantation, support of fertilized egg

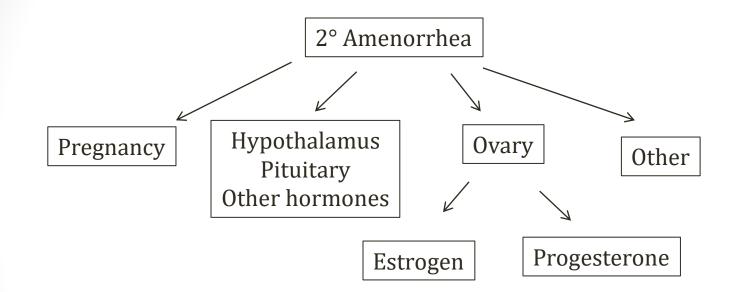


Menstruation

- Progesterone levels fall
- Vasoconstriction of spiral arteries
- Apoptosis of endometrial cells occurs
- Collapse and desquamation of endometrium

Menstrual and Uterine Cycles

Boards&Beyond.


OpenStax College/Wikipedia

Amenorrhea

- Primary amenorrhea
 - Failure of menses at puberty
 - Usually anatomic or genetic abnormality
- Secondary amenorrhea
 - Cessation of normal menses after prior normal periods

Secondary Amenorrhea

Progestin Challenge

- Older test for causes of amenorrhea
- Many false positives
- Administration of progestin (oral or IM)
- Observation of menstrual bleeding within 7 days

Progestin Challenge

- Bleeding
 - Indicates estrogen is present
 - Suggests anovulation
 - Corpus luteum not forming (inadequate progesterone)
 - Classic cause: PCOS
- No bleeding
 - Suggests estrogen not present (ovarian dysfunction)
 - Or menstrual outflow problem
 - Can follow-up with estrogen-progestin challenge
 - Common cause: Menopause

Mullerian Dysgenesis

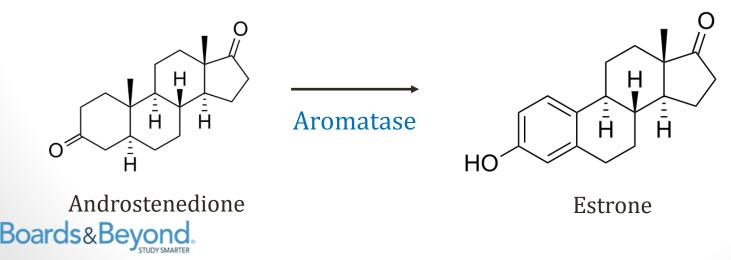
- Cause of primary amenorrhea
- Failure of **Mullerian duct** development
- Absent upper vagina and/or uterus
- Ovaries normal
- Estrogen/progesterone levels normal
- Normal LH/FSH levels

Secondary Amenorrhea

- Most common cause: pregnancy
 - Screen with HCG measurement
- Thyroid disease (hypo/hyper)
- Prolactinoma
 - Inhibition of GnRH release $\rightarrow \downarrow$ LH/FSH
- Cushing syndrome

Secondary Amenorrhea

Low body weight


- "Functional hypothalamic amenorrhea"
- Stress plus low caloric intake $\rightarrow \downarrow$ GnRH/LH/FSH
- Patients respond to pulsatile GnRH
- Can occur in anorexia

- Permanent cessation of menstrual periods
- Cause by depletion of ovarian follicles
- Median age = 51 years
- Usually preceded by abnormal periods
- Loss of estrogens and progesterone from ovaries

- Loss of estradiol production from ovaries
 - Source of estrogen becomes adipose tissue
 - Aromatase coverts androstenedione to **estrone**
- Also loss of inhibin production from follicles
 - Inhibin normally suppresses FSH release
- Eventually FSH and LH levels both elevated

Symptoms

Hot flashes

- Subjective sensation of warmth
- Usually lasts a few minutes and passes
- Associated with drop in estrogen levels
- Can be treated with hormone replacement
- Vaginal atrophy
 - Thin, dry, friable
 - Loss of estrogen stimulation

Symptoms

- Osteoporosis
 - Bone loss from lack of estrogen
- Cardiovascular disease
 - Risk increases after menopause
 - May be due in part due to estrogen deficiency

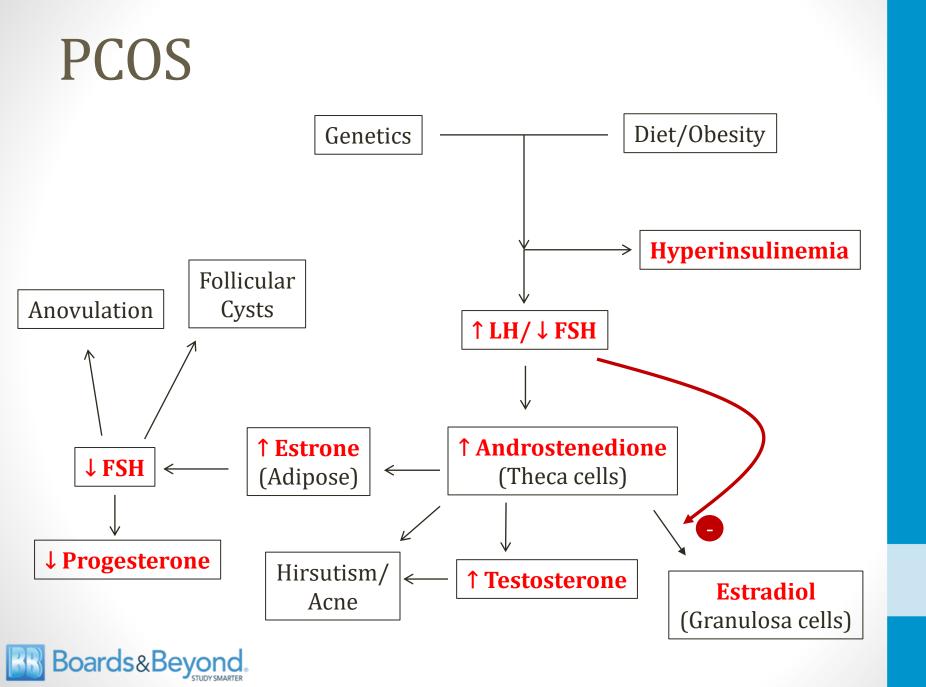
HRT

Hormone Replacement Therapy

- Oral or transdermal estradiol
- Progestin added in women with intact uterus
 - Prevents endometrial hyperplasia

HRT

Hormone Replacement Therapy


- Benefits:
 - Relieves hot flashes
 - Improves bone density
- Possible risks:
 - ↑ risk of DVT/Stroke/MI
 - ↑ risk of breast cancer

Polycystic Ovarian Syndrome

- Common cause secondary amenorrhea
- Genetics plus diet/obesity $\rightarrow \uparrow$ LH:FSH ratio
- LH drives androstenedione from theca cells
- Some and rogens \rightarrow estrone in adipose tissue
- Estrone $\rightarrow \downarrow$ FSH \rightarrow anovulation

Hyperinsulinemia

- PCOS associated with insulin resistance
- More than expected for degree of obesity
- Can lead to diabetes

Clinical features

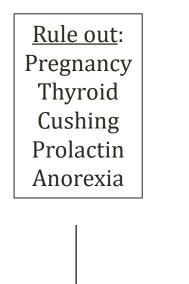
- Occurs in obese females
- Hirsutism (facial hair)
- Acne
- Amenorrhea
- Infertility
- Ultrasound: multiple follicular cysts

Diagnosis

- Usually diagnosed clinically
- Can measure total testosterone
- LH and FSH may be within normal range
 - But LH:FSH ratio usually > 2:1 or 3:1

Treatment

- Weight loss
- Oral contraceptives
 - Suppress LH
 - Estrogen \rightarrow \uparrow SHBG \rightarrow \downarrow and rogens
- Spironolactone
 - Blocks androgens
- Metformin/TZDs
 - Diabetes drugs that improves insulin resistance
 - Not routinely used unless patient develops diabetes

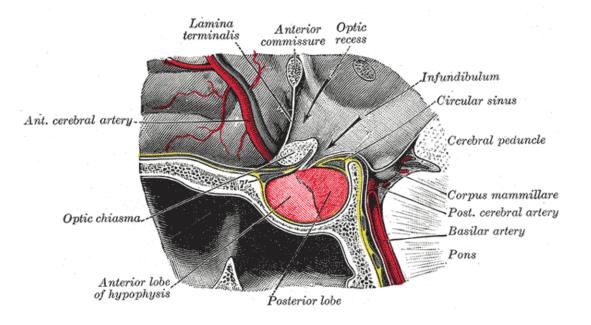


Other Features

- Risk of diabetes
 - $\sim 10\%$ of women with PCOS develop DM by 40 years old
- Acanthosis Nigricans
 - Plaques of darkened skin
 - Associated with insulin resistance
 - Common in diabetes, PCOS, also gastric cancer
- Endometrial cancer
 - Unopposed estrogen (lack of progesterone)
 - ↑ risk of endometrial hyperplasia and carcinoma

Amenorrhea Workup

↓ FSH	↑ FSH	Normal FSH
PCOS	Menopause	Mullerian
(↑LH:FSH)		Dysgenesis


Pituitary Gland

Jason Ryan, MD, MPH

Pituitary Gland

- "Master gland"
- Endocrine gland at base of brain
- Sits in small cavity of sphenoid bone: sella turcica

Wikipedia/Public Domain

Pituitary Gland

- Connected to **hypothalamus** via pituitary stalk
- Connects to median eminence of hypothalamus
 - One of the circumventricular organs (CVOs)
 - Does not contain blood brain barrier

Posterior Pituitary Gland

Neurohypophysis

- Secretes ADH (vasopressin) and oxytocin
- Derived from **neural ectoderm** in floor of forebrain
- Contains axons and nerve terminals
- Neurons originate in hypothalamus
- Paraventricular and supraoptic nuclei
 - Paraventricular: Oxytocin
 - Supraoptic: ADH

Anterior Pituitary Gland

Adenohypophysis

- Derived from Rathke's pouch
 - Outgrowth of oral cavity
- Contains five cell types that make hormones

Cell Type	Hormone	
Corticotrophs	Adrenocorticotropic hormone (ACTH)	
Thyrotrophs	Thyroid-stimulating hormone (TSH)	
Gonadotrophs	Luteinizing hormone (LH) Follicle-stimulating hormone (FSH)	
Somatotrophs	Growth hormone (GH)	
Lactotrophs	Prolactin	

Hypothalamic Portal System

- Main blood supply to anterior pituitary gland
- Delivers releasing/inhibiting hormones

Hypothalamus	Pituitary
Corticotropin-releasing hormone (CRH)	АСТН
Thyrotropin-releasing hormone (TRH)	TSH
Gonadotropin-releasing hormone (GnRH)	LH/FSH
Growth hormone-releasing hormone (GHRH)	GH
Dopamine	Prolactin
Somatostatin	GH, TSH

Prolactin

- Protein hormone
- Regulates milk production in mothers

Øyvind Holmstad/Wikipedia

Prolactin

- Under **inhibitory control** from hypothalamus
 - Hypothalamus releases dopamine
 - Inhibits lactotrophs via binding to D2 receptors
 - Destruction of hypothalamus: ↑ prolactin
- Prolactin feedback on hypothalamus
 - Increases dopamine release $\rightarrow \downarrow$ prolactin

Prolactin

- Many other substances affect prolactin release
 - VIP, Oxytocin, TRH, others
- **TRH** (thyrotropin-releasing hormone)
 - Elevated in hypothyroidism
 - Hypothyroidism predisposes to hyperprolactinemia
- Hypothyroidism in differential for:
 - Pituitary enlargement
 - Hyperprolactinemia

Prolactin in Pregnancy

- Estrogen stimulates prolactin release
 - Stimulates gene transcription
 - Stimulates release from lactotrophs
- Marked increase in lactotrophs during pregnancy
- Pituitary can grow in size

Prolactin in Pregnancy

- Prolactin inhibits GnRH release
- Results in cessation of ovulation/menstruation

Prolactin in Pregnancy

- Prolactin stimulates growth of mammary glands
- Milk production in pregnancy does not occur
 - Estradiol and progesterone block prolactin effect on milk
- After childbirth $\rightarrow \downarrow$ estradiol and progesterone
 - Milk production occurs

Dopamine Agonists

Cabergoline, Bromocriptine

- Can be used to treat Parkinson's disease
- Also used to treat prolactinomas
- Will inhibit prolactin release (via D2 receptors)

Pituitary Adenomas

- Tumors of any cell type of anterior pituitary
- May result in increased secretion of hormones
- Most common secreting tumor: prolactinoma

Cell Type	Disease
Lactotrophs	Hyperprolactinemia
Thyrotrophs	Central hyperthyroidism
Corticotrophs	Cushing's disease
Somatotrophs	Acromegaly/Gigantism

Pituitary Adenomas

General Symptoms

- Headaches
- Classic cause of **bitemporal hemianopsia**
- Compression of optic chiasm

JFW/Wikipedia

Hyperprolactinemia

- Women
 - Amenorrhea (lack of GnRH/LH/FSH)
 - Galactorrhea (prolactin)
- Men
 - "hypogonadotropic hypogonadism"
 - Decreased libido
 - Impotence
 - Infertility
 - Gynecomastia
 - Usually no galactorrhea (not enough breast tissue)

Prolactinoma

- Most common hormone secreting tumor
- Headache, vision loss
- Rarely seizures
- Women: amenorrhea, fractures (low bone density)
- Men: Loss of libido, impotence
- Diagnosis: serum prolactin; CNS imaging
- Treatment: Bromocriptine, cabergoline

Dopamine Antagonists

- Antipsychotics: Haloperidol, Risperidone
- Antiemetics: Metoclopramide
- Blockade of D2: 1 prolactin
- Side Effects:
 - Amenorrhea
 - Breast engorgement
 - Galactorrhea
 - Sexual dysfunction
- Can also cause Parkinsonian symptoms

Hypopituitarism

- Caused by damage to anterior pituitary
 - Mass: Nonfunctional adenoma, craniopharyngioma
 - Ischemia, brain injury, hemorrhage
- ACTH deficiency
 - Low cortisol \rightarrow shock
 - No loss of aldosterone \rightarrow no salt wasting
 - Lack of hyperpigmentation (see in primary adrenal failure)
- TSH deficiency \rightarrow hypothyroidism
- LH/FSH deficiency \rightarrow hypogonadism

Craniopharyngioma

- Benign tumor
- Usually occurs in children 10-14 years old
- Symptoms from compression
 - Hypopituitarism
 - Headache, visual field defects
 - Behavioral change (frontal lobe dysfunction)
- Derived from remnants of Rathke's pouch

Empty Sella Syndrome

- Enlarged sella turcica partially filled with CSF
- Rarely can compress pituitary \rightarrow hypopituitarism
- More common in women with obesity, hypertension

Radiation

- Some head and neck tumors treated with radiation
 - Brain tumors or nasopharyngeal carcinomas
- Some pituitary adenomas treated with radiation
- Can cause damage to hypothalamus or pituitary

Stevenfruitsmaak/Wikipedia

Pituitary Apoplexy

- **Sudden** hemorrhage into the pituitary gland
- Often occurs into pre-existing adenoma
- Risk factors for bleeding may be present (warfarin)
- Sudden onset severe headache
- Diplopia (pressure on oculomotor nerves)
- Hypopituitarism (shock from loss of cortisol)

Sheehan Syndrome

- Pituitary gland enlarged in pregnancy
- Vulnerable to infarction from hypovolemic shock
- Postpartum hemorrhage \rightarrow hypopituitarism
- Can present as shock after delivery
- Also can see **failure to lactate**

Hypopituitarism

Treatment

- Hormone therapy
 - Corticosteroids
 - Thyroid hormone
 - Growth hormone
 - Estrogen/testosterone

Growth Hormone

Somatotropin

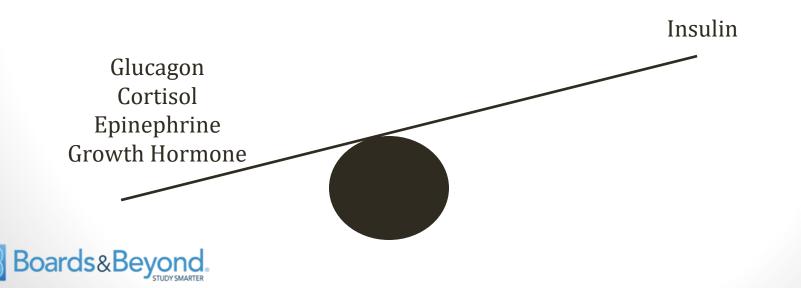
- Protein hormone
- Important for linear (height) growth in childhood
- Released in a pulsatile manner
- Between pulses levels may become undetectable

Somatotropin

- Many stimulants and suppressors
- Pituitary release stimulated by:
 - GHRH
 - Exercise
 - Sleep (very high just after onset of sleep)
- Released inhibited by:
 - Glucose
 - Somatostatin (released in response to IGF-1; GH)
 - IGF-1 (direct and indirect)

Growth Hormone Receptor

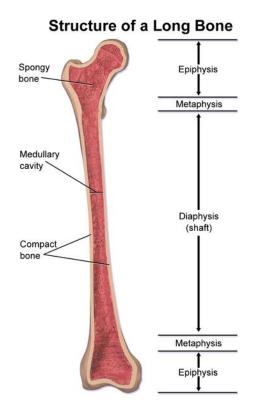
- Bind to a **membrane-bound** receptor
- Activates janus kinase 2 (JAK2) enzyme
 - Cytoplasmic tyrosine kinase
- Phosphorylates tyrosine residues
 - Within JAK 2 itself and on GH receptor
- Forms binding sites for many signaling molecules
- Alters gene expression


- Liver contains many growth hormone receptors
- GH \rightarrow Liver \rightarrow **IGF-1** secreted
 - Insulin-like growth factor 1/Somatomedin
 - Hormone that mediates many growth hormone effects
 - Can be **measured in serum** as indicator of GH function
- IGF-1 also produced in peripheral tissues
 - Paracrine effects on nearby sites

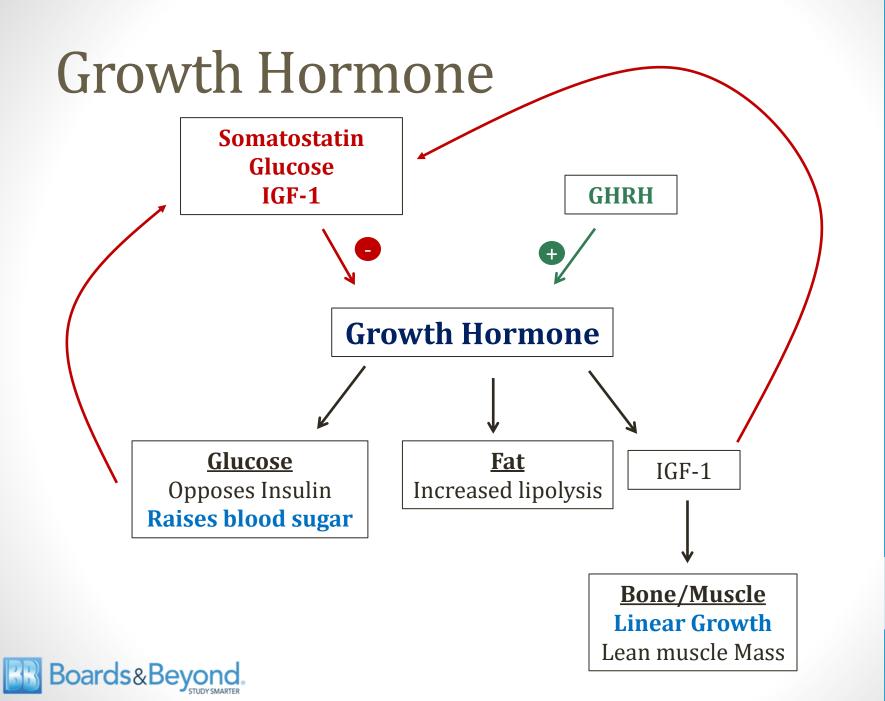
Direct Effects

• ↓ glucose uptake by cells

- Anti-insulin
- Will raise blood sugar ("Diabetogenic")
- Peripheral tissues become insulin resistant
- Hyperinsulinemia


Direct Effects

- Promotes lipolysis
 - Activates hormone sensitive lipase
- Production of IGF-1 from liver


IGF-1 Effects

- Chondrocytes
 - Increased linear growth
- Muscle
 - Lean muscle mass
- Organs
 - Increased organ size

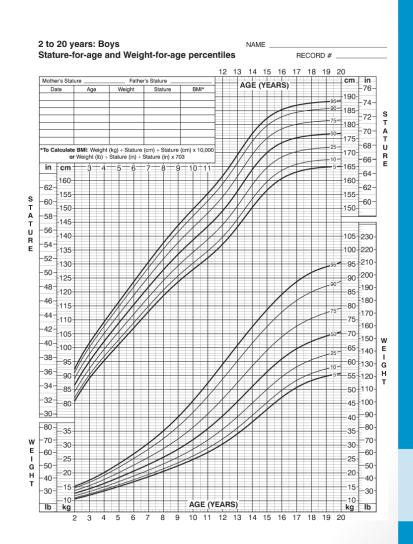
BruceBlaus/Wikipedia

Growth Hormone Deficiency

- Children:
 - Failure to grow
- Adults
 - 1 fat
 - \downarrow lean body mass
 - Low energy

Growth Hormone Deficiency

- Most commonly from pituitary tumor
 - Mass effect
 - Consequence of surgery/radiation
- Treatment: Synthetic growth hormone
- Monitoring: Serum IGF-1 level


Growth Hormone Excess

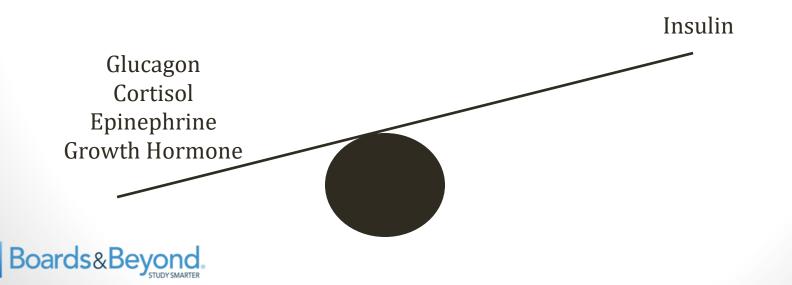
- Most common cause is somatotroph adenoma
 - High GH and IGF-1
 - Low GHRH from hypothalamus (negative feedback)
 - High somatostatin (negative feedback)
 - May present with headache, vision loss
- Rare cause: GHRH secreting tumors
 - Hypothalamic tumors, carcinoid tumors, small-cell lung CA
 - GHRH level will be high

Growth Hormone Excess

- Children:
 - Excessive growth: Gigantism
 - Linear growth: Very tall child
- Adults: Acromegaly

- Insidious onset
 - Average duration symptoms \rightarrow diagnosis = 12 years
- Enlarged jaw
- Coarse facial features
 - Enlargement of nose, frontal bones

Philippe Chanson and Sylvie Salenave



Enlarged hands and feet

- Classic sign: Increasing glove/shoe size
- Rings that no longer fit

- Insulin resistance → ↑ insulin → diabetes
 - Diabetes in 10-15% of patients
 - Abnormal glucose tolerance in 50% of patients

- Visceral organs enlargement
 - Thyroid, heart, liver, lungs, kidneys, prostate
- Synovial tissue/cartilage enlargement
 - Joint pain in knees, ankles, hips, spine
 - Common presenting complaint is joint pain
- Cardiovascular disease
 - Hypertension, left ventricular hypertrophy, cardiomyopathy
 - Mortality increased in acromegaly due to CV disease

Growth Hormone Excess

Diagnosis

Serum IGF-1 concentration

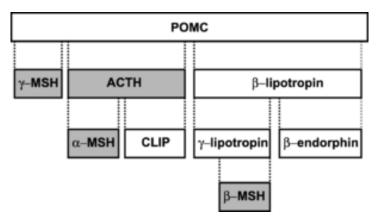
• IGF-1 level is constant (contrast with GH)

Oral glucose tolerance testing

- Glucose should suppress growth hormone levels
- Normal subjects: GH falls within two hours
- Post glucose levels high
- CNS imaging (MRI)

Growth Hormone Excess

Treatment


- Octreotide
 - Analog of somatostatin
 - Suppresses release of growth hormone
- Also surgery, radiation
- Goal: Lower IGF-1 to within reference range
- Bony abnormalities do not regress
- Joint symptoms often continue

MSH

Melanocyte Stimulating Hormone

- **Proopiomelanocortin**: Precursor of ACTH
- Also precursor of MSH ($\alpha/\beta/\gamma$)
- MSH: Stimulates melanocytes to produce melanin
- Causes hyperpigmentation in Cushing's disease

Oxytocin

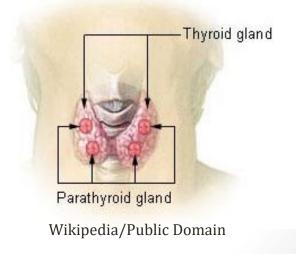
- Produced in **paraventricular nuclei** of hypothalamus
- Causes milk release in response to suckling
 - Afferent fibers nipple \rightarrow spinal cord
 - Triggers release oxytocin from posterior pituitary
 - Oxytocin triggers contraction of myoepithelial cells in breast

Oxytocin

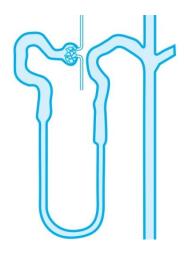
- Also causes contraction of uterus
 - Oxytocin receptors upregulate in uterus near term
- Pitocin (synthetic oxytocin)
 - Induction of labor
 - Postpartum uterine bleeding

Somatostatin

- Inhibits release of many hormones
- Released by D cells throughout GI tract
- Also found in nerves throughout entire body
- Originally discovered in hypothalamus
- Inhibits growth hormone release
- Used therapeutically (Octreotide) :
 - Acromegaly
 - Carcinoid syndrome
 - Glucagonoma/insulinoma
 - Upper GI bleeding (↓ splanchnic blood flow)


Parathyroid Glands

Jason Ryan, MD, MPH


Parathyroid Glands

- Four endocrine glands
- Formed by 3rd/4th pharyngeal pouch
- Located behind thyroid
- Secrete parathyroid hormone (PTH)
- Important for calcium, phosphate homeostasis

- Protein hormone
- Binds to cell surface receptors in bone and kidney
- Synthesized by **chief cells** of parathyroid gland

BruceBlaus/Wikipedia

Parathyroid Hormone Effects

- Net Effects:
 - ↑[Ca²⁺] plasma
 - ↓ [P04³⁻] plasma
 - ↑ [P04³⁻] urine
- Some effects due to direct action PTH
- Some due to activation of vitamin D (indirect)

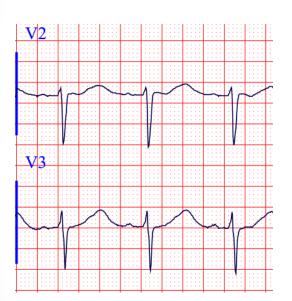
- Secreted in response to:
 - [Ca²⁺] (major stimulus; fastest response)
 - ↑ plasma [P04³⁻]
 - $\downarrow 1$,25-(0H)₂ vitamin D
- Caclium activates calcium-sensing receptors (CaSRs)
 ↓ PTH

Magnesium

- High magnesium
 - ↓ PTH (same effect as calcium)
 - Magensium can activate CaSRs
- Low Mg
 - ↑ PTH release (same effect as calcium)
 - ↑ GI and renal magensium along with calcium

Magnesium

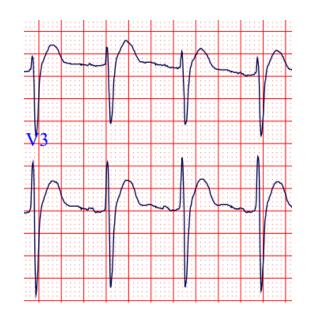
- Very low Mg \rightarrow inhibits PTH release
 - Some Mg required for normal CaSR function
 - Abnormal function \rightarrow suppression of PTH release
 - Hypocalcemia often seen in severe hypomagenesemia


→1 d	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
	*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
	**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
	1 3 Li 11 Na 19 K 37 Rb 55 Cs 87	1 4 3 4 1 12 Mg 20 19 20 S7 38 S7 55 55 56 Cs 88 Fr 88 Ra 84	1 1 3 4 Be 4 11 12 Ma Mg 19 20 21 Sc Sc 37 38 39 S5 56 * S7 88 * 87 88 * Fr 88 * \$ \$57 La \$ \$89 \$	1 1 3 4 Be 4 11 12 Mg 4 19 20 21 22 Sc Ti 37 38 39 40 Sr 72 Sc Ti 55 56 * 72 Sc Ba ** 104 Fr 88 ** 104 Fr 88 ** 57 58 La Se 89 90	1 1 3 4 Be 4 11 12 Mg 4 19 20 21 22 23 17 38 39 40 41 Sc 71 V 73 37 38 39 40 41 S5 56 * 72 73 Rb Sr 7 73 Ta 87 88 ** 104 105 Fr Ra ** 57 58 59 La Ce Pr ** 89 90 91	1 1 3 4 Be 4 11 12 Mg 4 19 20 21 22 23 24 Ca Sc Ti V C 37 38 39 40 41 42 Rb Sr Y Zr Nb Mo 55 56 * 72 73 74 Rb Sr Y Zr Nb Mo 55 56 * 104 105 106 Sr 88 ** 104 Db Sg * 57 58 59 60 Ka 89 90 91 92	1 H 3 4 Be Be 11 12 Mg Mg 19 20 21 22 23 24 25 Mg Sc Ti V Cr Mn 37 38 39 40 41 42 43 Rb Sr Y Zr Nb Mo Tc 55 56 * 72 73 74 75 87 88 ** 104 105 106 107 87 88 ** Rf Db Sg Bh * 57 58 59 60 61 Pm 89 90 91 92 93	1 1 3 4 3 4 Be 4 11 12 Mg 4 19 20 21 22 23 24 25 26 17 V Cr Mn Fe 37 38 39 40 41 42 43 44 Rb Sr Y Zr Nb Mo Tc Ru 55 56 * 72 73 74 75 76 Sr 88 ** 104 105 106 107 108 Fr 88 ** 57 58 59 60 61 62 * 57 58 59 60 61 62 Sm * 89 90 91 92 93 94	1 H 3 4 Be H 11 12 Mg H 19 20 21 22 23 24 25 26 27 K Ca Sc Ti V Cr Mn Fe Co 37 38 39 40 41 42 43 44 45 Rb Sr Y Zr Nb Mo Tc Ru Rh 55 56 * 72 73 74 75 76 77 87 88 ** 104 105 106 107 108 109 Fr Ra ** Rf Db Sg Bh Hs Mt * \$7 58 \$9 60 61 62 63 Eu * 89 90 91 92 93 94 95	1 H 3 4 Be 4 11 12 Mg 5 12 Mg 19 20 21 22 23 24 25 26 27 28 Na Mg 19 20 21 22 23 24 25 26 27 28 Na Mg 5 5 6 27 28 Ni 37 38 39 40 41 42 43 44 45 46 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd 55 56 * 72 73 74 75 76 77 78 Pt 87 88 ** 104 105 106 107 108 109 110 Ds Fr 88 ** 104 105 106 107 108 109 10 Ds Ka	1 H 3 4 Be 11 12 Mg 19 20 21 22 23 24 25 26 27 28 29 19 20 21 22 1	1 1 3 4 Be 11 11 12 Mg 11 19 20 21 22 23 24 25 26 27 28 29 30 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn 37 38 39 40 41 42 43 44 45 46 47 48 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 55 56 * 72 73 74 75 76 77 78 79 80 55 56 * PH Ta W Re Os Ir Pt Au Hg 87 88 ** Rf Db Sg Bh Hs Mt Ds Rg Cn * 57 58 59 60 61 <t< td=""><td>1 H 3 4 Be 5 11 12 Mg </td><td>1 1 3 4 Be 5 11 12 Na Mg 11 12 Na Mg 13 14 Ali Si 19 20 21 22 23 24 25 26 27 28 29 30 31 32 18 Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn 55 56 * 72 73 74 75 76 77 78 79 80 81 82 56 Ba * 104 105 106 107 108 109 110 1111</td><td>1 1 3 4 Be 5 11 12 Na Mg 20 21 22 23 24 25 26 27 28 29 30 31 32 33 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 87 38 39 40 41 42 43 44 45 46 47 48 49 50 51 80 Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb S5 S6 * TT Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb S5 S5 S6 * <t< td=""><td>1 1 3 4 1 Be 3 4 11 12 Mg 13 14 15 16 7 8 6 17 8 18 14 12 13 14 15 16 5 17 73 70 20 21 22 22 23 24 25 26 27 28 29 30 31 32 33 34 14 15 16 5 5 56 7 8 5e 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 58 56 * 72 73 74 75 76 77 78 79 80 81 82 83 84 Po Ba</td><td>1 1 3 4 1 Be 3 4 1 12 Mg 5 6 7 1 12 Mg 5 13 14 15 14 15 16 17 7 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 19 20 21 71 V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 37 38 <t< td=""></t<></td></t<></td></t<>	1 H 3 4 Be 5 11 12 Mg	1 1 3 4 Be 5 11 12 Na Mg 11 12 Na Mg 13 14 Ali Si 19 20 21 22 23 24 25 26 27 28 29 30 31 32 18 Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn 55 56 * 72 73 74 75 76 77 78 79 80 81 82 56 Ba * 104 105 106 107 108 109 110 1111	1 1 3 4 Be 5 11 12 Na Mg 20 21 22 23 24 25 26 27 28 29 30 31 32 33 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 87 38 39 40 41 42 43 44 45 46 47 48 49 50 51 80 Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb S5 S6 * TT Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb S5 S5 S6 * <t< td=""><td>1 1 3 4 1 Be 3 4 11 12 Mg 13 14 15 16 7 8 6 17 8 18 14 12 13 14 15 16 5 17 73 70 20 21 22 22 23 24 25 26 27 28 29 30 31 32 33 34 14 15 16 5 5 56 7 8 5e 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 58 56 * 72 73 74 75 76 77 78 79 80 81 82 83 84 Po Ba</td><td>1 1 3 4 1 Be 3 4 1 12 Mg 5 6 7 1 12 Mg 5 13 14 15 14 15 16 17 7 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 19 20 21 71 V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 37 38 <t< td=""></t<></td></t<>	1 1 3 4 1 Be 3 4 11 12 Mg 13 14 15 16 7 8 6 17 8 18 14 12 13 14 15 16 5 17 73 70 20 21 22 22 23 24 25 26 27 28 29 30 31 32 33 34 14 15 16 5 5 56 7 8 5e 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 58 56 * 72 73 74 75 76 77 78 79 80 81 82 83 84 Po Ba	1 1 3 4 1 Be 3 4 1 12 Mg 5 6 7 1 12 Mg 5 13 14 15 14 15 16 17 7 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 19 20 21 71 V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 37 38 <t< td=""></t<>

Boards&Beyond.

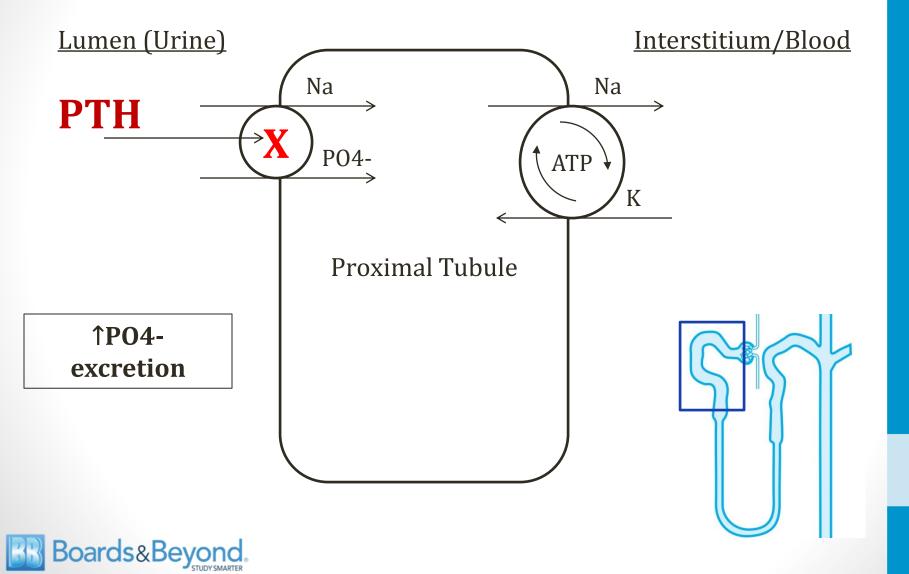
DePiep /Wikipedia

Qt Interval

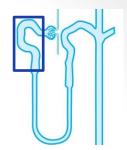

Normal Qt

Prolonged Qt: \downarrow Mg, \downarrow Ca

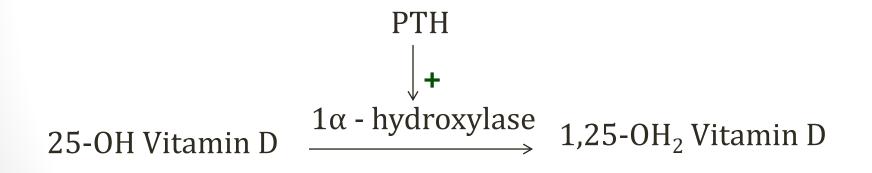
Short Qt: ↑Ca

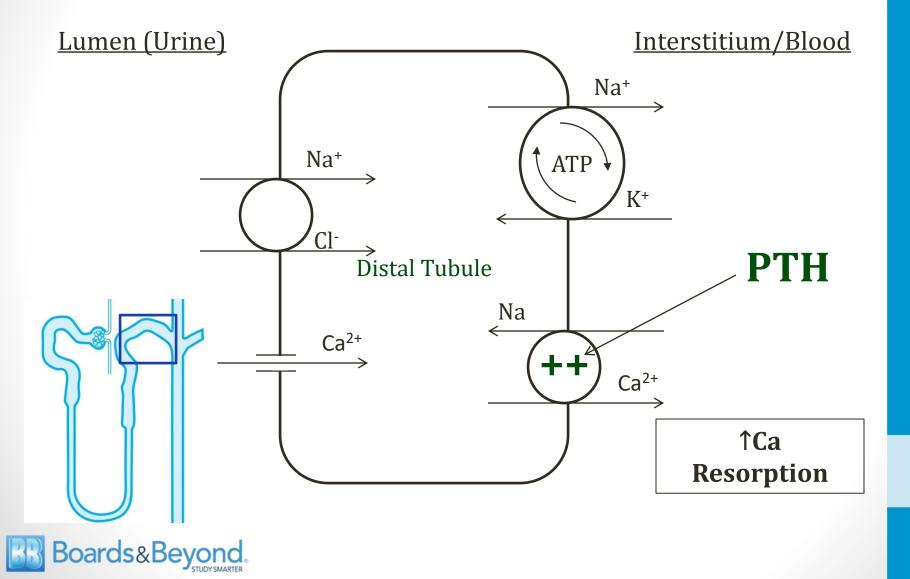


Boards&Beyond.


Parathyroid Hormone Effects

- Kidney:
 - ↑ Ca²⁺ resorption (DCT)
 - \downarrow P04³⁻ resorption (PCT)
 - $\uparrow 1$,25-(0H)₂ vitamin D production
- GI:
 - 1Ca2+ and P04³⁻ absorption (via vitamin D)
- Bone:
 - 1Ca2+ and P04³⁻ resorption (direct and via vitamin D)




Vitamin D and the Kidney

- **Proximal tubule** converts vitamin D to active form
- Can occur independent of kidney in sarcoidosis
 - Leads to hypercalcemia

- Multiple effects on bone
- Stimulates bone resorption and formation
- Dominant effect varies with dosage/timing of administration of PTH to bone

- Continuous administration of PTH
 - Bone resorption \rightarrow f serum calcium
 - Important physiologically
- Low dose once daily bolus administration
 - Increased bone mass (bone formation)
 - **Teriparatide** used to treat osteoporosis

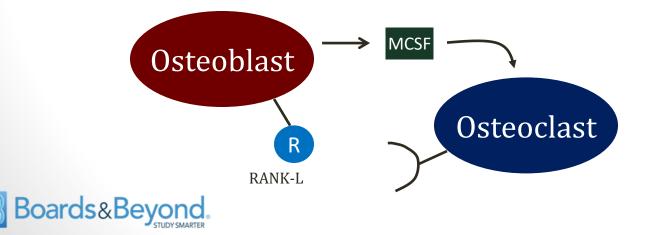
Parathyroid Hormone

Osteoblasts

- Bone forming cells
- Contain PTH receptors
- Can ↑ bone mass in response to PTH

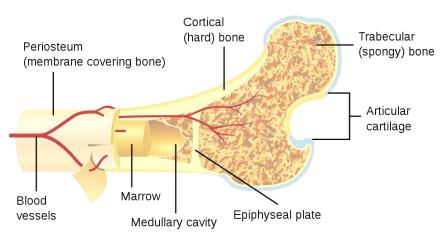
Osteoclasts

- Bone resorbing cells
- No PTH receptors
- Activated indirectly by osteoblasts


Parathyroid Hormone

• M-CSF

- Macrophage colony stimulating factor
- Secreted by osteoblasts


• RANK-L

- Receptor activating nuclear factor kβ ligand
- Expressed on surface of osteoblasts
- Both produced by osteoblasts \rightarrow activate osteoclasts

Types of Bone

- Cortical bone
 - Hard, outer layer of bone
 - \downarrow in response to continuous PTH
- Trabecular bone
 - Spongy, inner layer of bone
 - ↑ in response to intermittent, low dose PTH

Pbroks13/Wikipedia

PTHrP

Parathyroid hormone-related protein

- Produced in many tissues
- Numerous normal effects
- Synthesized in large amounts by some **tumors**
 - Renal cell carcinoma
 - Squamous cell lung cancer
- Leads to **hypercalcemia** in malignancy

Hyperparathyroidism

- Primary (overactive glands)
- Secondary (hypocalcemia)
- Tertiary (seen in renal failure)

- Inappropriate secretion of PTH
- Not due to low calcium
- Commonly caused by parathyroid adenoma

Causes hypercalcemia

- ↑ renal reabsorption of Ca
- ↑ vitamin D activation
- ↑ bone resorption (loss of cortical bone)
- Phosphaturia

†PTH †Ca

- Urinary calcium usually **high or normal**
- \uparrow PTH \rightarrow \uparrow Ca urinary reabsorption \rightarrow \uparrow serum Ca
- ↑ serum Ca → ↑ urinary calcium

Primary Hyperparathyroidism Symptoms

- "Stones, bones, groans, and psychiatric overtones"
 - Largely historical
 - Modern era, most patients diagnosed early
 - Often asymptomatic; diagnosis by routine blood work
 - **Recurrent kidney stones** is common presentation
 - Other signs/symptoms more often seen **malignancy**

Symptoms

- Stones (kidney)
 - High Ca in urine can cause stones
- Dehydration
 - Calcium blunts effects of ADH (nephrogenic DI)
 - Polyuria and polydipsia
 - Can lead to renal failure

Primary Hyperparathyroidism Symptoms

- Bones (bone pain)
 - Adverse effects on bones of long-standing high PTH
- Groans (abdominal pain)
 - Constipation, anorexia, nausea
 - Increased stomach acid production (unclear mechanism)
 - Recurrent peptic ulcers
- Psychiatric overtones
 - Anxiety, altered mental status

Osteitis Fibrosa Cystica

- Classic bone disease of hyperparathyroidism
- Clinical features: Bone pain and fractures

Osteitis Fibrosa Cystica

Subperiosteal bone resorption

- Commonly seen in bones of fingers
- Irregular or indented edges to bones
- Brown tumors (osteoclastoma)
 - Collections of giant osteoclasts in bone
 - Mixed with stromal cells and matrix proteins
 - Appear as black spaces in bone on x ray

Osteitis Fibrosa Cystica

Frank Gaillard/Wikipedia

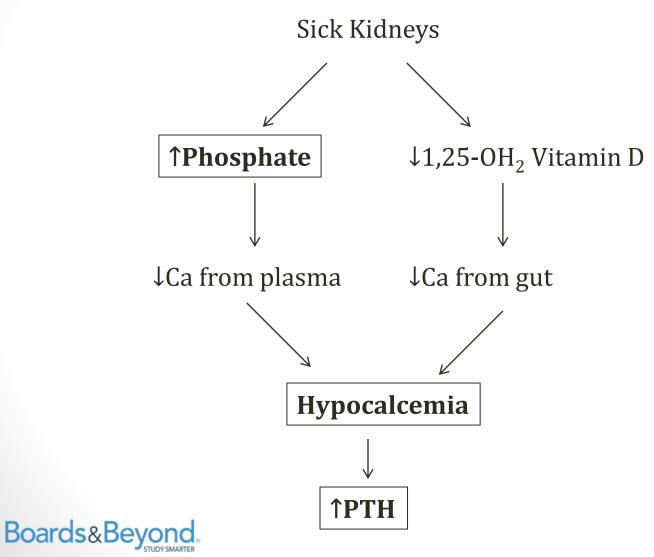
Treatment

- Parathyroidectomy
 - Removal of gland with adenoma
 - Pre-op nuclear imaging often done to identify location
- Risks of recurrent laryngeal nerve damage
 - May result in hoarseness
- Post-op hypocalcemia
 - Remaining parathyroid glands may be suppressed
 - Numbness or tingling in fingertips, toes, hands
 - If severe: twitching or cramping of muscles

2º Hyperparathyroidism

- Occurs in renal failure patients
- Chronically low serum calcium \rightarrow \uparrow PTH
- No symptoms of hypercalcemia
- Results in renal osteodystrophy
 - Bone pain (predominant symptom)
 - Fractures (weak bones 2° chronic high PTH levels)
 - If severe, untreated can lead to osteitis fibrosa cystica

†PTH \downarrow **Ca**



3° Hyperparathyroidism

- Consequence of chronic renal failure
- Chronically low calcium \rightarrow chronically \uparrow PTH
- Parathyroid becomes autonomous
- VERY high PTH levels
- Calcium may become elevated
- Often requires parathyroidectomy

Calcium-Phosphate in Renal Failure

FHH

Familial Hypocalciuric Hypercalcemia

- Rare, autosomal dominant disorder
- Abnormal calcium sensing
 - Abnormal calcium sensing receptors (CaSRs)
 - G-protein membrane receptors
 - Found in parathyroid and also kidneys
- Higher than normal set point for calcium
 - Normal PTH \rightarrow \uparrow calcium
- More renal resorption of calcium
 - Low urinary calcium

FHH

Familial Hypocalciuric Hypercalcemia

- Findings:
 - Usually normal PTH
 - Mildly elevated serum calcium
 - Low urinary calcium (key finding!)
- May looks like 1° hyperparathyroidism
- Real world distinction from 1° disease difficult
- Genetic testing available
- Usually does not require treatment

Hypoparathyroidism

- Inappropriately low PTH secretion
- Not due to hypercalcemia
- Causes hypocalcemia

↓PTH ↓Ca

Hypocalcemia Signs/Symptoms

- Neuromuscular irritability
 - Nerves: **tingling** of fingers, toes, around mouth
 - Muscles: intermittent spasms (tetany)
- Tetany
 - Trousseau's sign: Hand spasm with BP cuff inflation
 - Chvostek's sign: Facial contraction with tapping on nerve
- Seizures

Hypoparathyroidism Causes

- Surgical excision
 - Often accidental after thyroid or neck surgery
 - Key findings: post-op tingling, spasms
- Systemic diseases
 - Hemochromatosis (iron)
 - Wilson's (copper)
 - Metastatic cancer

APS-I

Autoimmune Polyendocrine Syndrome Type 1

- Rare autosomal recessive disorder
- Mutations of autoimmune regulator (AIRE) gene
 - AIRE also associated with chronic mucocutaneous candidiasis
- Triad:
 - Mucocutaneous candidiasis
 - Autoimmune hypoparathyroidism
 - Addison's disease

Thymic Aplasia

DiGeorge Syndrome

- Immunodeficiency syndrome
- Failure of 3rd/4th pharyngeal pouch to form
- Classic triad:
 - Loss of thymus (Loss of T-cells, recurrent infections)
 - Loss of parathyroid glands (hypocalcemia, tetany)
 - Congenital heart defects
- Presents in infancy/childhood with:
 - Hypocalcemia (hypoparathyroidism)
 - Recurrent infections
 - Congenital heart defects

Hypoparathyroidism Treatment

- Calcium and calcitriol (vitamin D3)
- Recombinant human PTH available

Pseudohypoparathyroidism

- Group of disorders
- Kidney and bone unresponsiveness to PTH
 - Abnormal PTH receptor function
 - Many cases due to impaired G protein signaling
- Usually presents in childhood
- Hypocalcemia, hyperphosphatemia
- Elevated PTH (appropriate)

↑PTH ↓Ca

AHO

Albright's Hereditary Osteodystrophy

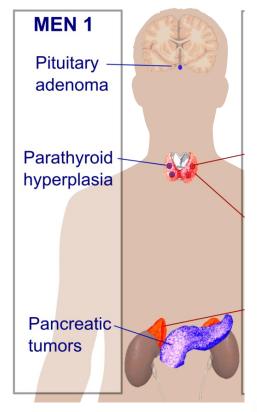
- Form of pseudohypoparathyroidism
- Autosomal dominant
- Hypocalcemia, hyperphosphatemia, ↑ PTH
- Collection of clinical features
 - Short stature
 - Shortened fourth and fifth metacarpals
 - Rounded facies
 - Mild mental retardation

Calcium and PTH

- 1st look at calcium: Low/High
- Next, look at PTH: Low/High
- Same direction = parathyroid problem
 - Both 1: Hyperparathyroidism
 - Both ↓: Hypoparathyroidism
- Opposite direction
 - Normal response to calcium problem
 - Renal failure (low serum calcium 2° hyperparathyroidism)
 - Renal losses (pseudohypoparathyroidism)

MEN Syndromes

Jason Ryan, MD, MPH


MEN Syndromes

Multiple Endocrine Neoplasia

- Group of rare genetic disorders
- All autosomal dominant
- Germline mutations in genes
- Lead to tumors in multiple endocrine glands
- MEN 1, 2A, 2B

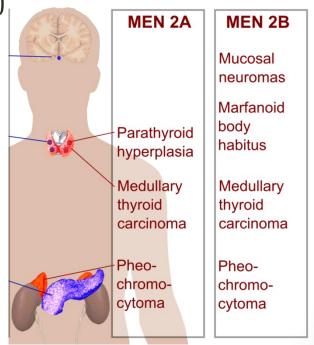
- 3 P's
- Pituitary adenoma
- Parathyroid adenoma
- Pancreatic tumors

Mikael Häggström/Wikipedia

- Autosomal dominant
- Germline mutation of MEN1 gene (11q13)
 - Codes for the protein **menin**
 - Tumor suppressor
- Classic example of 2 hit hypothesis
 - Patients born with 1 abnormal MEN 1 gene
 - Second "hit" occurs in endocrine glands

- Parathyroid adenoma
 - Occurs in 94% of patients
 - First finding in ~90% of patients
 - Will present as hyperparathyroidism
 - Often detected when asymptomatic
 - May cause recurrent kidney stones

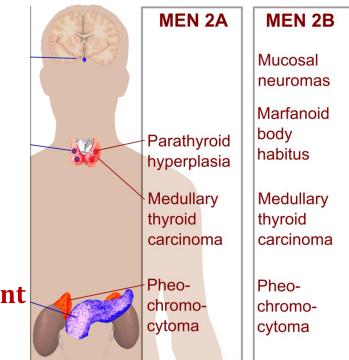
- Pituitary adenoma
 - Occurs in up to 70% of patients
 - Most commonly a prolactinoma
 - 2nd most common: GH secreting adenoma
- Pituitary adenomas not seen in other MEN syndromes
- Pituitary disease = MEN 1



- Pancreatic-duodenal neuroendocrine tumors
 - Most commonly a gastrinomas
 - Zollinger-Ellison syndrome: multiple peptic ulcers
 - Rarely insulinomas, glucagonomas, VIPomas

MEN 2A and 2B

- "Medullary" tumors
 - Medullary thyroid carcinoma
 - Pheochromocytoma (adrenal medulla)



Mikael Häggström/Wikipedia

MEN 2A and 2B

- MEN 2A
 - Medullary plus parathyroid
 - No physical findings
- MEN 2B
 - Medullary plus M's
 - Two key "phenotype" findings
 - Mucosal neuromas
 - Marfanoid appearance
 - Usually no parathyroid involvement

Mikael Häggström/Wikipedia

Medullary Carcinoma

- Cancer of parafollicular cells (C cells)
- Produces calcitonin
 - Lowers serum calcium
 - Normally minimal effect on calcium levels
 - With malignancy \rightarrow hypocalcemia

MEN 2A and 2B

- MTC occurs earlier than sporadic cases
 - Sporadic: 60s
 - MEN: 30s
- $\sim 100\%$ risk of MTC
- Pheochromocytoma usually occurs after MTC

MEN 2B

- Same as 2A except:
 - Usually no parathyroid involvement
 - Two key physical findings

• #1: Mucosal neuromas

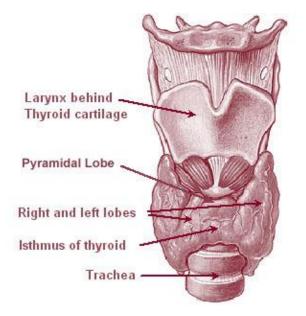
- Lips, tongue
- #2: Marfanoid body habitus

MEN 2B Neuromas

- Benign growth of nerve tissue
- Often lips and tongue
- Sometimes intestinal neuromas

MEN 2B: Marfanoid

- Tall
- Long wing span
- High arched palate
- Skeletal deformations of spine:
 - Kyphoscoliosis: Curve to left/right
 - Lordosis: Curve forward
- No lens or aortic involvement (like Marfan's)

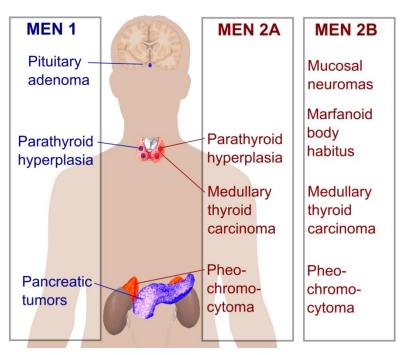

MEN 2A and 2B

- Autosomal dominant disorders
- Germline mutations in RET (chromosome 10)
- Proto-oncogene
- Codes for a receptor tyrosine kinase
- Important for cell growth/differentiation
- Gain of function mutations in MEN 2
 - Contrast with Hirschsprung disease of colon
 - Associated with loss of function mutations in RET

Thyroidectomy

- Often done prophylactically in MEN2 syndromes
- Usually at a young age (<5 years old)

Wikipedia/Public Domain



MEN Syndromes

• Pituitary adenoma = MEN 1

Boards&Beyond.

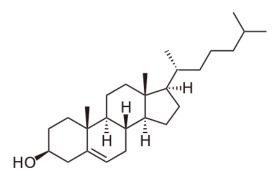
- MTC or pheochromocytoma = MEN 2
- Parathyroid = MEN 1 or MEN 2A

Mikael Häggström/Wikipedia

Signaling Pathways

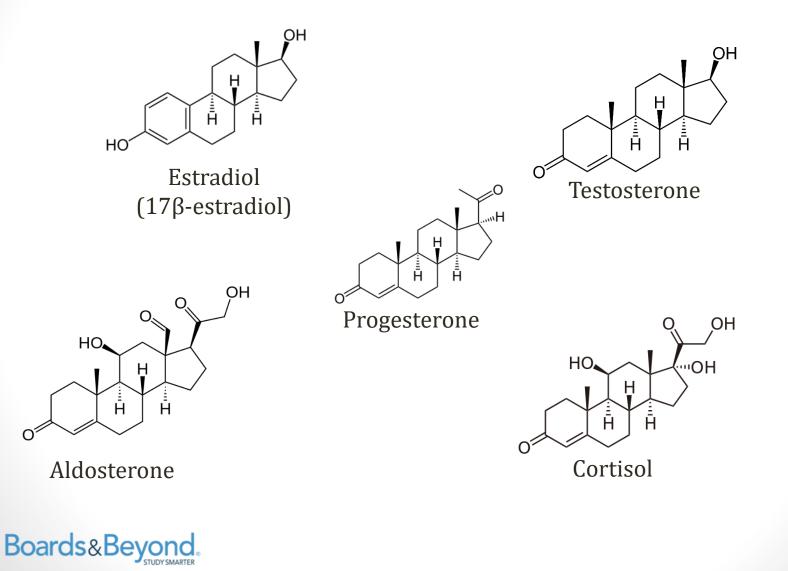
Jason Ryan, MD, MPH

Hormone Effects

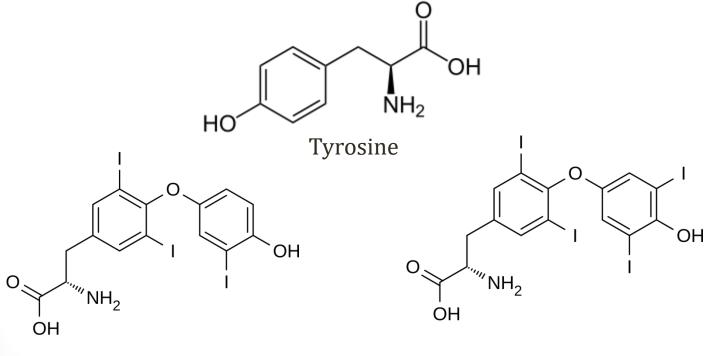


Intracellular Hormones

Receptor in cytoplasm/nucleus


- Progesterone
- Estrogen
- Testosterone
- Cortisol
- Aldosterone
- Thyroid hormone

Cholesterol



Steroid Hormones

Thyroid Hormones

- Two hormones: T3 and T4
- Synthesized from tyrosine and iodine

Triiodothyronine (T₃)

Thyroxine (T_4)

Intracellular Hormones

- All circulate bound to a protein
- Estrogen/testosterone: sex binding globulin (SBG)
- Thyroid hormone: thyroid binding globulin (TBG)
- Cortisol: corticosteroid-binding globulin (CBG)
 - Aldosterone
 - Progesterone



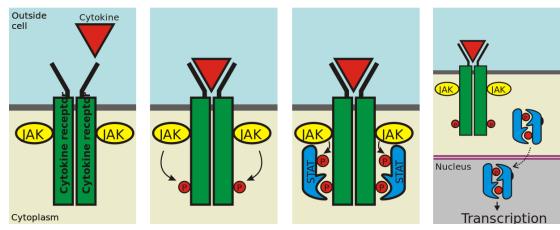
Extracellular Hormones

- Bind to surface receptors
- Use surface receptor to drive cellular changes
 - Tyrosine kinase
 - JAK/STAT
- Use **2nd messengers** to drive cellular changes
 - cAMP
 - cGMP
 - IP3

Receptor Tyrosine Kinase

Receptor Tyrosine Kinase

• Insulin


Growth factors

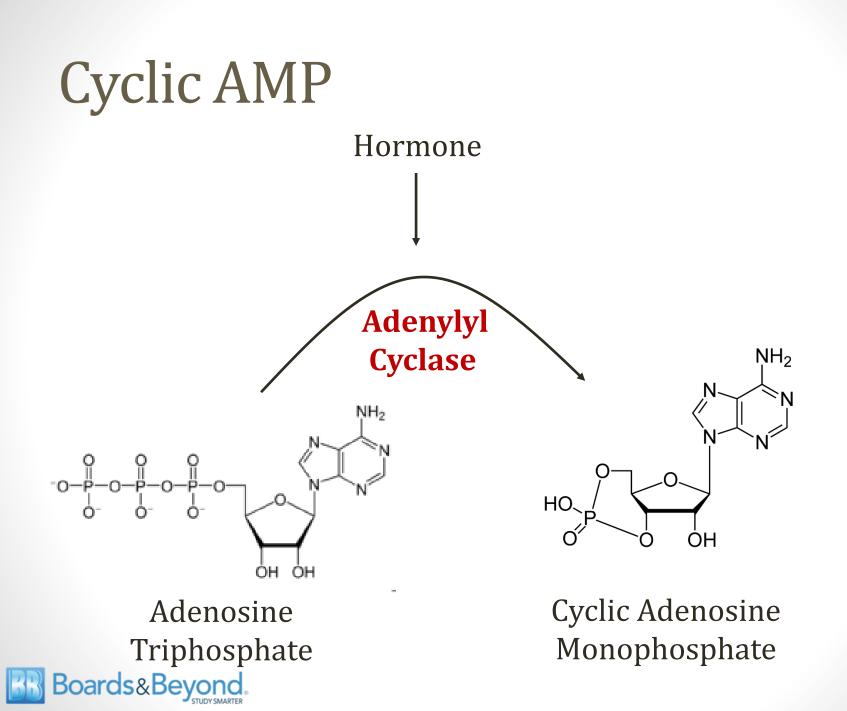
- IGF-1 (insulin-like growth factor)
- FGF (fibroblast growth factor)
- PDGF (platelet-derived growth factor)
- EGF (epidermal growth factor)

JAK/STAT

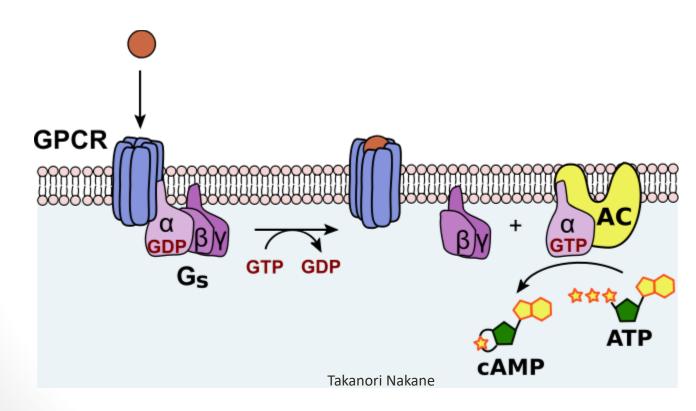
- Janus kinases (JAK)
 - Tyrosine kinase enzymes
- Signal Transducer and Activator of Transcription
 - STAT
 - Protein transcription factors
 - Activated by phosphorylation

Peter Znamenkiy

JAK/STAT


- Many cytokines
 - IFN-γ, IL-2, IL-6
- Bone marrow
 - Erythropoietin
 - G-CSF (granulocyte-colony stimulating factor)
 - Thrombopoietin
- Others
 - Prolactin
 - Growth hormone

JAK2 Mutation


- Associated with myeloproliferative disorders
- Gene for cytoplasmic tyrosine kinase
- Mutation \rightarrow \uparrow tyrosine phosphorylation
- Progenitor cells: hypersensitivity to cytokines
- More growth; longer survival

G-Protein Linked Receptors

- Bind guanosine nucleotides (GDP, GTP)
- Transmit signals

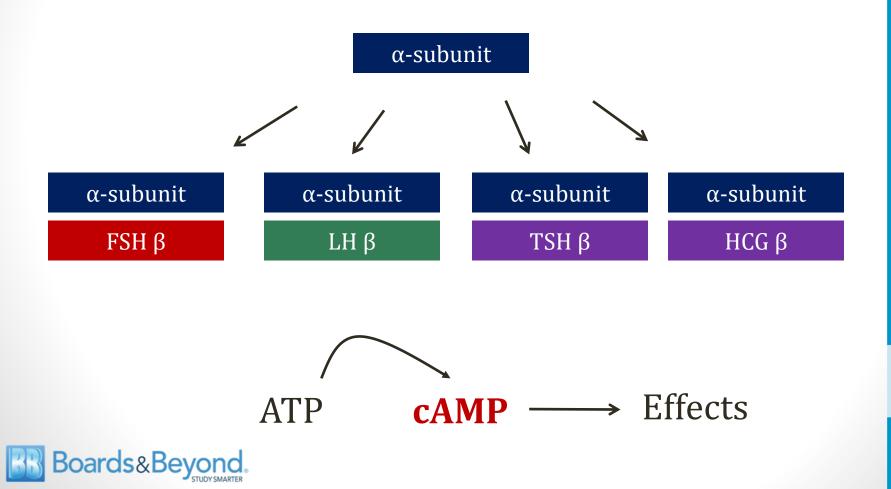
Cyclic AMP

- Hypothalamus
 - CRH, GHRH

Anterior pituitary hormones

• FSH, LH, ACTH, TSH

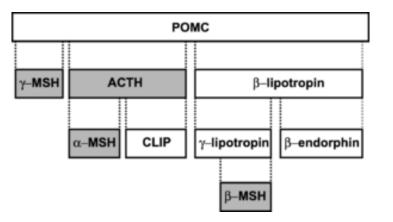
Parathyroid gland

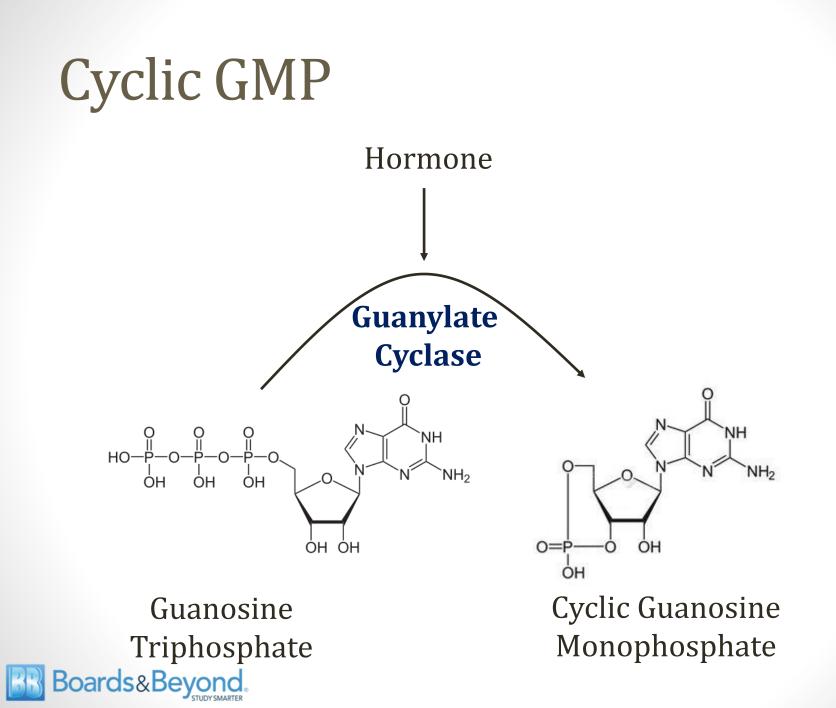

- PTH
- Others
 - Glucagon
 - ADH (V2-receptor water)
 - Histamine (H2-receptor stomach acid)
 - hCG

Boards&Beyond.

• MSH (melanocyte stimulating hormone)

Pituitary Hormones

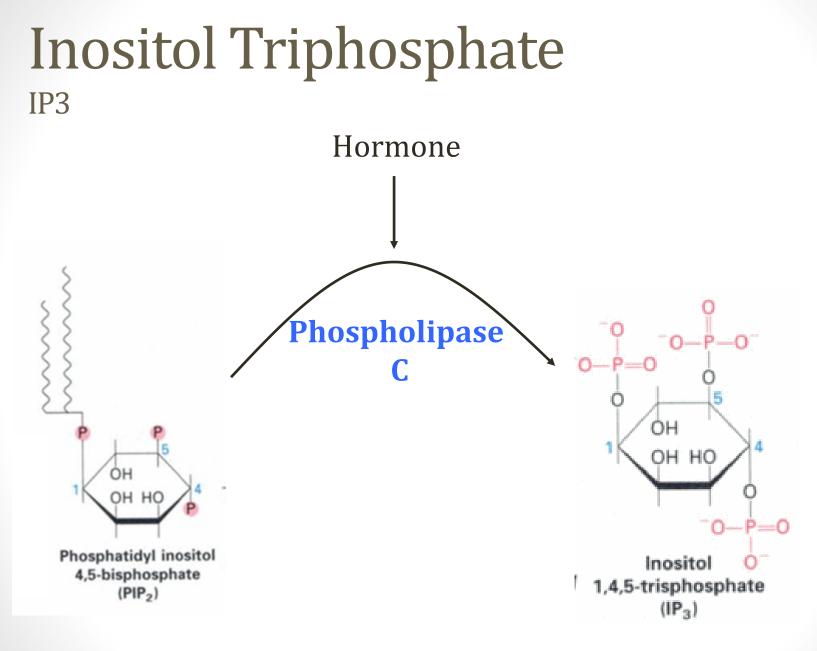

All have a cAMP second messenger system


MSH

Melanocyte Stimulating Hormone

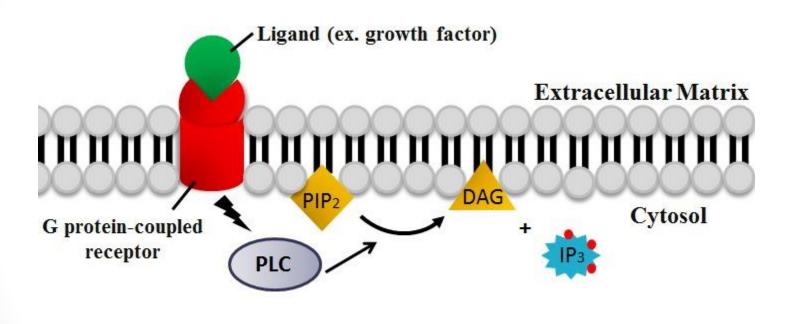
- Causes hyperpigmentation in Cushing's disease
- **Proopiomelanocortin**: Precursor of ACTH
- Also precursor of MSH ($\alpha/\beta/\gamma$)
- MSH: Stimulates melanocytes to produce melanin

Cyclic GMP


• BNP/ANP

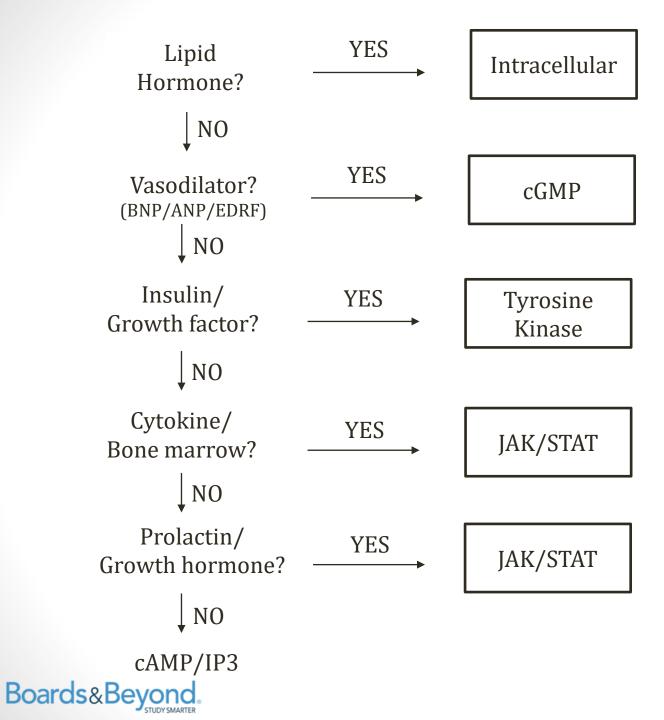
- Release by cardiac myocytes
- Antagonize RAAS system
- Both bind natriuretic peptide receptors (NPR)
- Vasodilation/diuresis

• Nitric oxide


- Endothelium-derived relaxing factor (EDRF)
- Synthesized by endothelial cells
- Activates cGMP \rightarrow smooth muscle relaxation/vasodilation
- All are vasodilators

Boards&Beyond.

G-Protein Linked Receptors


RaihaT

Inositol Triphosphate

- Hypothalamus
 - GnRH, TRH
- Posterior Pituitary
 - Oxytocin
 - ADH (V1 receptor vasoconstriction)
- Others
 - Histamine (**H1**-receptor skin/lungs)
 - Angiotensin II
 - Gastrin

Hypothalamus

Hypothalamus	2 nd Messenger
Corticotropin-releasing hormone (CRH)	cAMP
Thyrotropin-releasing hormone (TRH)	IP3
Gonadotropin-releasing hormone (GnRH)	IP3
Growth hormone-releasing hormone (GHRH)	cAMP

Anterior Pituitary

Hormone	2 nd Messenger
Adrenocorticotropic hormone (ACTH)	cAMP
Thyroid-stimulating hormone (TSH)	cAMP
Luteinizing hormone (LH) Follicle-stimulating hormone (FSH)	cAMP
Growth hormone (GH)	JAK/STAT
Prolactin	JAK/STAT

Others

• IP3

- ADH (V1 receptor)
- Histamine (H1 receptor)
- Gastrin
- Angiotensin II
- cAMP
 - Histamine (H2 receptor)
 - ADH (V2 receptor)

