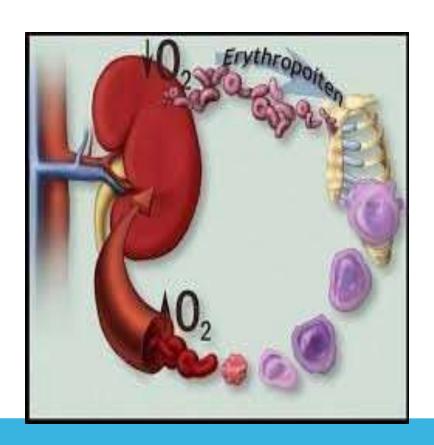
Dr Gul Muhammad Senior Lecturer

Department of Physiology KGMC

LEARNING OBJECTIVES


- To know the factors required for the RBC synthesis and maturation
- To know about the secretion, functions and regulation of Erythropoietin
- To identify the conditions in which recombinant erythropoietin is used
- To know other factors necessary for the development and maturation of RBC and Haemoglobin

REGULATION OF ERYTHROPOIESIS

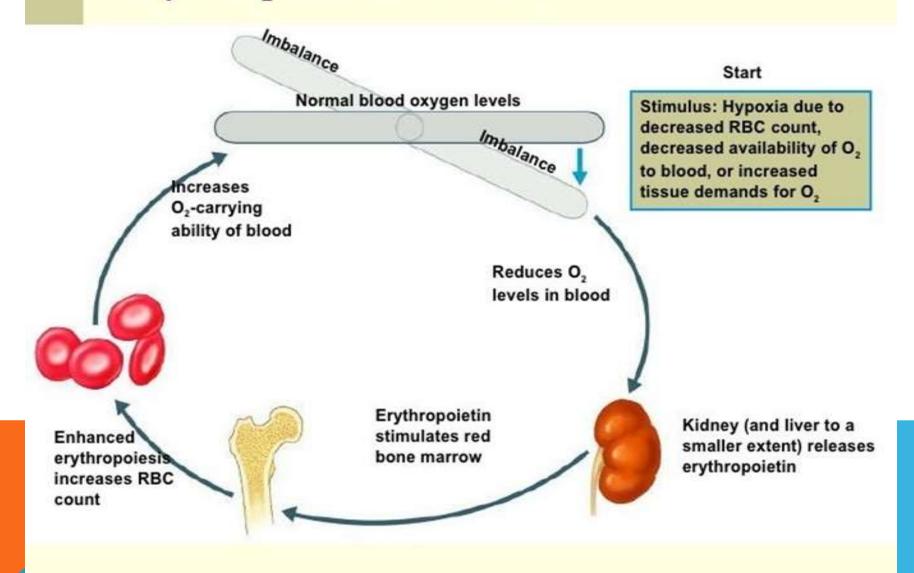
- ☐ General factors
- Hypoxia → Erythropoietin
- Growth inducers
- Vitamins
- Maturation factors
- Vitamin B 12
- Folic acid
- ☐ Factors necessary for hemoglobin production
- Vitamin C \rightarrow Helps in iron absorption (Fe+++ \rightarrow Fe++)
- Proteins → Amino Acids for globin synthesis
- Iron & copper → Heme synthesis
- calcium, bile salts, cobalt & nickel.

GENERAL FACTORS.

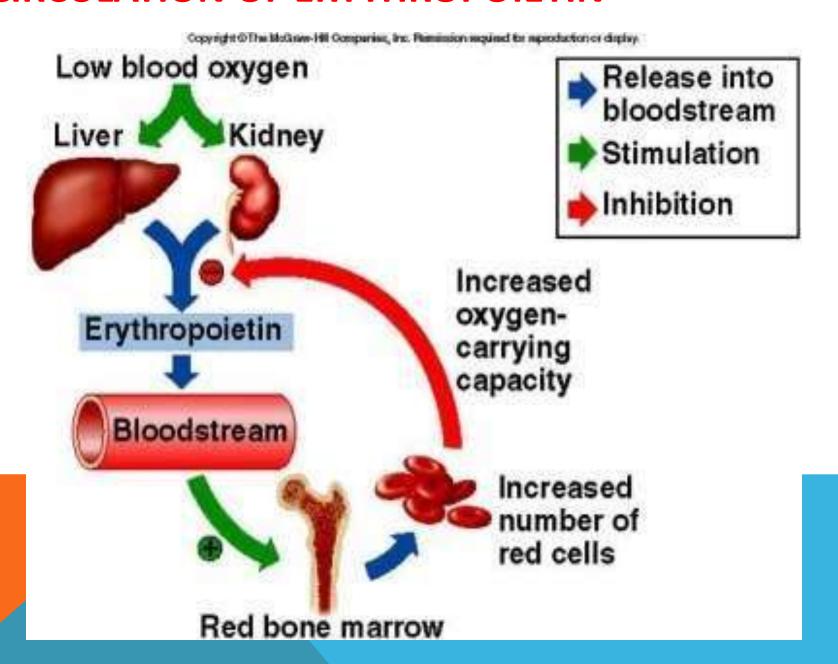
 Optimum levels of hormone
 Erythropoietin & efficient feedback mechanism controlling erythropoietin.

ERYTHROPOIETIN

A hormone which is needed for Erythrogenesis


SOURCES OF ERYTHROPOIETIN

- **Erythropoietin** Glycoprotein with molecular wt 34000.
- Site of formation-
 - 90% epithelial linings and fibroblasts of peritubular capillaries.
 - 10% liver & cells of tissue macrophage system.
 (Kupffer cells),
 - Fetal liver produce more EPO than kidneys, but in adult kidney production is more
 - Breakdown
 - In liver. Half life is 5 hours


THEORY ERYTHROPOIETIN FORMATION

- **Mainly hypoxia** is a stimulus for secretion of erythropoietin
- Which causes release of Renal Erythropoietic Factor *(hypoxic inducible factor-1)*
- Which transcript *hypoxia inducible gene-*
- This binds to hypoxia response element on erythropoietin gene
- Inducing transcription of *mRNA*
- form Erythropoietin

Erythropoietin Mechanism

CIRCULATION OF ERYTHROPOIETIN

ERYTHROPOIETIN FUNCTIONS

- Main effect on stem cells in bone marrow is differentiation
- Promotes every stage of RBC synthesis
- Promote Hb synthesis
- Promotes release of RBC from Bone Marrow to Peripheral Circulation.

Mechanism of action:

Erythropoietin acts on specific receptors on stem cells

Erythropoietin causing speeding up of all the stages of development of proerythroblasts into mature erythrocytes

ERYTHROPOIETIN (EPO) FACTS

- Erythropoietin (EPO) is a hormone produced by the kidney in response to Hypoxia (low Oxygen)
- Erythropoietin promotes the formation of red blood cells by the bone marrow.
- The erythropoietin hormone level can be detected and measured in the blood (the EPO test).
 - Normal level = 4 to 24 mu/ml

ERYTHROPOIETIN (EPO) FACTS

- Measurement of the blood erythropoietin level can be used to detect certain medical conditions.
- Erythropoietin can be synthesized and used as a treatment of some forms of anemia.
- Erythropoietin has been misused as a performance- enhancing drug by some athletes.

REGULATION OF ERYTHROPOIETIN

Stimuli for production

- Hypoxia
- Products of RBC destruction
- High altitude
- Anemia
- Chronic lung or heart diseases
- Catecholamines
- Prostaglandins
- Androgens

Inhibition

Blood transfusion

FACTORS AFFECTING ERYTHROPOIETIN

Increase secretion

- Hormones Androgen ,
 Thyroxine, GH, ACTH,
 Prolactin, Adrenocortical
 Steroids.
- Haemolysates products of RBC destruction.
- Nucleotides cAMP, NAD, NADP
- Vasoconstrictor drugs that causes renal hypoxia

Decrease secretion.

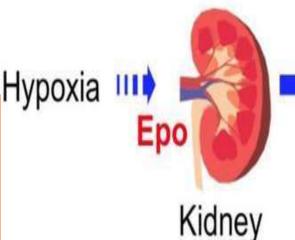
- Adenosine antagonistsTheophylline.
- Oestrogen decreases synthesis of Globin & depressing erythropoietic response to hypoxia

CLINICAL USES OF ERYTHROPOIETIN

Uses of erythropoietin may include treatment of anemia related to

- Chronic Renal Failure
- During medication in <u>AIDS</u>
- During <u>chemotherapy</u>,

 anemia caused by
 dysfunctional bone marrow
 (where the blood cells are made), and
- Anemia associated with cancer


CHRONIC RENAL FAILURE (CRF)

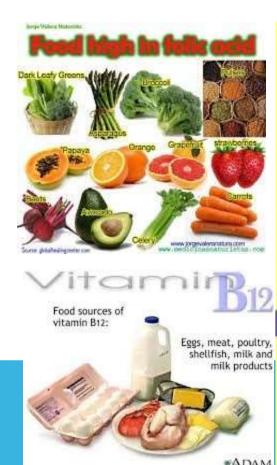
- RENAL INSUFFICIENCY -

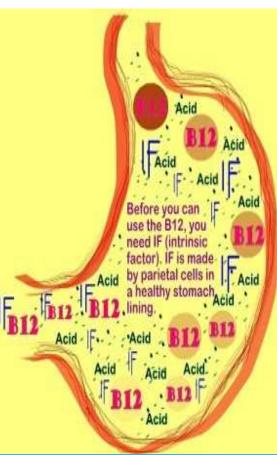
- Headaches
- 1 Ability to Concentrate Urine
- Polyuria → Oliguria
- † BUN & Serum Creatinine

- Edema
- GFR progressively decreases from 90 to 30 ml/min
- Mild Anemia
- 1 BP
- Weakness
 & Fatigue

Epo

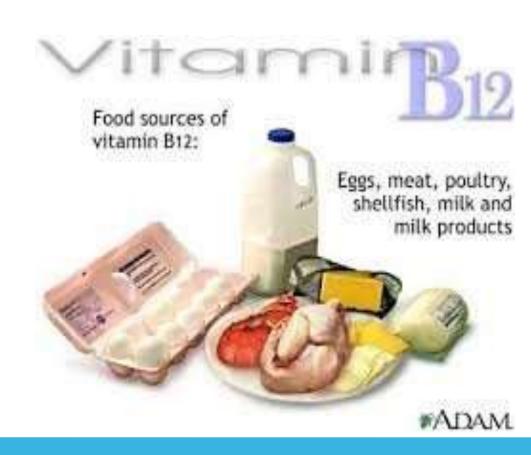
O₂ transport Lungs → tissues


(200 X 109 RBCs/day)


Bone marrow

Red cells

SPECIAL MATURATION FACTORS.


- Vit B 12 (extrinsic factor)
- Folic acid
- Intrinsic factor of Castle.

VIT B 12 (EXTRINSIC FACTOR)

- Vit B12 –
 Cyanocobalamin or extrinsic factor.
- **Daily need** 1-2 μg.
- **Sources** Milk, Meat, Liver of Animals
 - Also synthesized by bacterial Flora.

VIT B 12 (EXTRINSIC FACTOR)


ABSORPTION – need Intrinsic Factor Of Castle, a glycoprotein secreted by parietal cells of gastric mucosa.

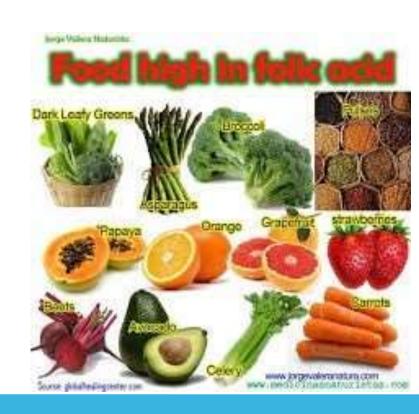
With it form **Intrinsic**

Factor- Cyanocobalamin complex

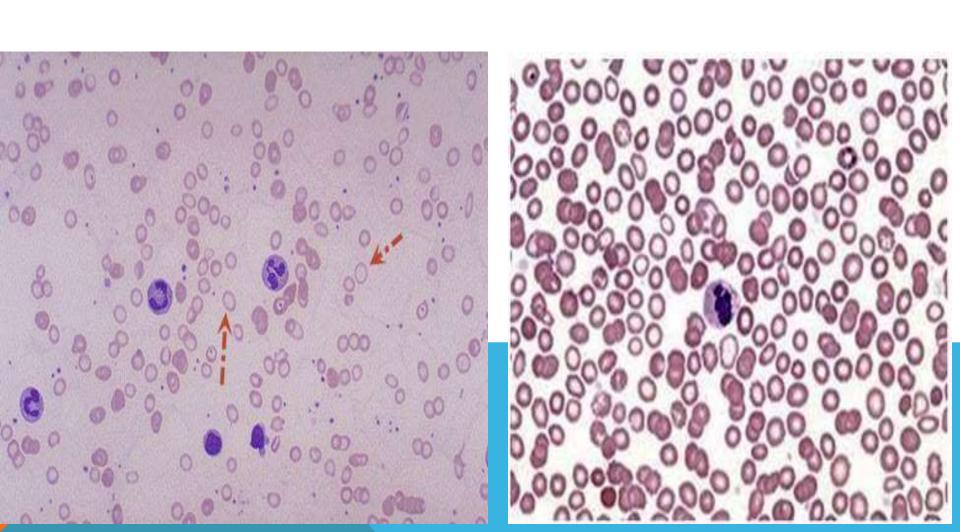
Bound to sp receptors in

ileum & absorbed by Endocytosis.

VIT B 12 (EXTRINSIC FACTOR)


■ **TRANSPORT** – in blood transported by combining with Transcobalamin-II

■ **STORAGE** – In liver & Muscle


■ **ROLE** – required for synthesis of DNA & maturation of cell.

FOLIC ACID

- **Folic acid** Pteroylglutamic acid.
- Daily requirement 100 μg.
- Sources leafy veg, pulses, yeasts, liver.
- From breakdown of Polyglutamate to Monoglutamates.

IRON DEFICENCY ANEMIA

THANK YOU