Genetic Principles

Jason Ryan, MD, MPH

- Genome
 - DNA contained in nucleus of cells
 - "Hereditary material"
 - Passed to successive generations of cells
- Genes
 - Portions of DNA/genome
 - Code for proteins that carry out specific functions

- Chromosome
 - Rod-shaped, cellular organelles
 - Single, continuous DNA double helix strand
 - Contains a collection of genes (DNA)
- 46 chromosomes arranged in 23 pairs
 - Chromosomes 1 through 22 plus X/Y (sex)
 - Two copies each chromosome 1 through 22 (homologous)
- Key point: Two copies of any gene of a chromosome

Chromosomes

Cell Types

- Somatic cells (most body cells)
 - Diploid: two sets of chromosomes (23 pairs)
- Gametes (reproductive cells)
 - "Haploid": one set of chromosomes

Somatic Cell Replication

Mitosis

- S phase of cell cycle
 - Chromosomes replicate → two sister chromatids
- M phase (mitosis): Cell divides
- Daughter cells will contain copies of chromosomes

Meiosis

- Gametes (reproductive cells)
 - "Haploid": one set of chromosomes
 - Produced by meiosis of germ line cells
 - Male and female gametes merge in fertilization
 - New "diploid" organism formed
- Key point: one gene from mother, one from father

- Allele
 - Alternative forms of gene
 - Many genes have several forms
 - Often represented by letter (A, a)
- Genetic polymorphism
 - Genes exist in multiple forms (alleles)
- Locus (plural loci)
 - Location of allele on chromosome
- DNA \rightarrow gene \rightarrow allele \rightarrow locus \rightarrow chromosome

- Genotype
 - Genetic makeup of a cell or individual
 - Often refers to names of two copies of a gene
 - Example: Gene A from father, Gene B from mother
 - Genotype: AB
 - Or two alleles of gene A (A and a): AA, Aa, aa
- Phenotype
 - Physical characteristics that result from genotype
 - Example: AB = blue eyes; BB = green eyes

- Wild type gene/allele
 - Common in most individuals
 - Example: A = wild type
- Mutant gene/allele
 - Different from wild type
 - Caused by a mutation
 - Example: a = mutant
 - Individual: AA, Aa, aa

- Homozygous
 - Two identical copies of a gene (i.e. AA)
- Heterozygous
 - Two different copies of a gene (i.e. Aa)

- Germ line mutations
 - DNA of sperm/eggs
 - Transmitted to offspring
 - Found in every cell in body
- Somatic mutations
 - Acquired during lifespan of cell
 - Not transmitted to offspring

- Dominant gene/allele
 - Determines phenotype even in individuals with single copy
 - Often denoted with capital letters
 - Example: Gene has two alleles: A, a
 - Aa, AA all have A phenotype
- Recessive gene/allele
 - Requires two copies to produce phenotype
 - Often denoted with lower case letters
 - Example: aa = a phenotype; Aa and AA = A phenotype

Codominance

- Both alleles contribute to phenotype
- Classic example: ABO Blood Groups
 - A gene = A antigen on blood cells
 - B gene = B antigen
 - O gene = No A or B antigen
- AB individuals
 - Express A and B antigens

α-1 Antitrypsin Deficiency

- May cause early COPD and liver disease
- Mutations in AAT gene (produces α1 antitrypsin)
 - M = normal allele
 - S = moderately low levels protein
 - Z = severely reduced protein levels
- Combination of alleles determines protein levels
 - MM = normal
 - ZZ = severe deficiency
 - Other combinations = variable risk of disease

Penetrance

- Proportion with allele that express phenotype
- Incomplete penetrance
 - Not all individuals with disease mutation develop disease
 - Commonly applied to autosomal dominant disorders
 - Not all patients with AD disease gene develop disease
- Example BRCA1 and BRCA2 gene mutations

BRCA1 and BRCA2

- Genetic mutations that lead to cancer
- Germline gene mutations
- Autosomal dominant
- Not all women with mutations develop cancer
- Implications:
 - Variable cancer risk reduction from prophylactic surgery

Expressivity

- Variations in phenotype of gene
- Different from penetrance
- Classic case: Neurofibromatosis type (NF1)
 - Neurocutaneous disorder
 - Brain tumors, skin findings
 - Autosomal dominant disorder
 - 100% penetrance (all individuals have disease)
 - Variable disease severity (tumors, skin findings)

Pleiotropy

- One gene = multiple phenotypic effects and traits
 - Example: single gene mutation affects skin, brain, eyes
- Clinical examples:
 - Phenylketonuria (PKU): skin, body odor, mental disability
 - Marfan syndrome: Limbs, eyes, blood vessels
 - Cystic fibrosis: Lungs, pancreas
 - Osteogenesis imperfecta: Bones, eyes, hearing

- Mutations in tumor suppressor genes
 - Genes with many roles
 - Gatekeepers that regulate cell cycle progression
 - DNA repair genes
- Heterozygous mutation = no disease
- Mutation of both alleles → cancer
- Cancer requires "two hits"
 - "Loss of heterozygosity"

Wpeissner/Wikipedia

- Classic example: Retinoblastoma
 - Rare childhood eye malignancy
- Hereditary form (40% of cases)
 - One gene mutated in all cells at birth (germline mutation)
 - Second somatic mutation "hit"
 - Cancer requires only one somatic mutation
 - Frequent, multiple tumors
 - Tumors at younger age

Wikipedia/Public Domain

- Retinoblastoma: Sporadic form (non-familial)
 - Requires two somatic "hits"
 - Two mutations in same cell = rare
 - Often a single tumor
 - Occurs at a later age

Other Examples

- HNPCC (Lynch syndrome)
 - Hereditary nonpolyposis colorectal cancer
 - Inherited colorectal cancer syndrome
 - Germline mutation in DNA mismatch repair genes
 - Second allele is inactivated by mutation

Other Examples

- Familial Adenomatous Polyposis (FAP)
 - Germline mutation of APC gene (tumor suppressor gene)
 - Always (100%) progresses to colon cancer
 - Treatment: Colon removal (colectomy)

Other Examples

- Li-Fraumeni syndrome
 - Syndrome of multiple malignancies at an early age
 - Sarcoma, Breast, Leukemia, Adrenal Gland (SBLA) cancer syndrome
 - Germline mutation in tumor suppressor gene *TP53*
 - Codes for tumor protein p53
 - Delays cell cycle progression to allow for DNA repair

Mosaicism

- Gene differences in cells of same individual
- Mutations in cells → genetic changes
- Individual will be a mixture of cells

Mosaicism

- Germline mosaicism
 - Can be passed to offspring
 - Pure germline mosaicism difficult to detect
 - Not present is blood/tissue samples used for analysis
 - Offspring disease may appear sporadic
 - Can present as recurrent "sporadic" disease in offspring

Mosaicism

- Somatic mosaicism
 - Gene differences in tissues/organs
 - 45X/46XX mosaic Turner syndrome (milder form)
 - Rare forms of Down syndrome

McCune-Albright Syndrome

- Rare disorder
- Affects many endocrine organs
- Precocious puberty
 - Menstruation may occur 2 years old
- Fibrous growth in bones
 - Fractures, deformity
- Skin pigmentation
 - Café-au-lait spots
 - Irregular borders ("Coast of Maine")

Alexrk2

Claudia E Dumitrescu, Michael T Collins

McCune-Albright Syndrome

- Caused by sporadic mutation in development
 - Not inherited
- Somatic mutation of GNAS gene
 - Codes for alpha subunit of G3 protein
 - Activates adenylyl cyclase
 - Continued stimulation of cAMP signalling

McCune-Albright Syndrome

- "Postzygotic" mutation
 - Occurs after fertilization
 - Only some tissues/organs affected (mosaicism)
 - Clinical phenotype varies depending on which tissues affected
- Germline occurrences of mutation are lethal
 - Entire body effected
 - Cells with mutation survive only if mixed with normal cells

Genetic Heterogeneity

- Same phenotype from different genes/mutations
 - Different mutations of same allele → same disease
 - Different gene (loci) mutations → same disease
- Multiple gene mutations often cause same disease
- Many diseases have multiple genotypes

Allelic heterogeneity

- Allele = Alternative form of gene
 - Allele 1 = mutation X
 - Allele 2 = mutation Y
 - Both X and Y cause same disease
 - X and Y found at same chromosomal locus (position)
- Many alleles possess multiple mutant forms
- One disease = multiple genes = single location

Allelic heterogeneity

- Beta Thalassemia
 - Mutation in beta globin gene
 - Wide spectrum of disease depending on mutation
 - β^{o} = no function; β^{1} = some function
- Cystic Fibrosis
 - Mutation in CFTR gene
 - Over 1400 different mutations described

Locus heterogeneity

- Mutations in different loci cause same phenotype
- Example: Retinitis Pigmentosa
 - Causes visual impairment
 - Autosomal dominant, recessive, and X-linked forms
 - Mutations at 43 different loci can lead to disease
- One disease = multiple genes = multiple locations

Genetic Mapping

Jason Ryan, MD, MPH

Genetic Recombination

- During meiosis chromosomes exchange segments
- Child inherits "patchwork" of parental chromosomes
- Never exact copy of parental chromosomes

- Suppose father has two alleles of F and M genes
 - F and f
 - M and m
- F and M found on different chromosomes
- Independent assortment
 - Occurs if F and M genes can independently recombine
 - 25% chance of each combination in gamete

Father

- What if genes on same chromosome?
- If very far apart, **crossover** may occur in meiosis
- Result: Same combinations as separate chromosomes

- What if genes on same chromosome?
- If very far apart, crossover may occur in meiosis
- Result: Same combinations as separate chromosomes

- What if genes on same chromosome?
- If very far apart, **crossover** may occur in meiosis
- Result: Same combinations as separate chromosomes

- If alleles close together: little crossover
- Low occurrence of recombination (Fm or fM)

Recombination

Two copies of parental chromosome

Recombination Frequency

- Frequency of recombined genes (Fm or fM)
- Denoted by Greek letter theta (θ)
- Ranges from zero to 0.5
- Key point: recombination frequency α distance
 - Close together: $\theta = 0$
 - Far apart: $\theta = 0.5$
 - Used for genetic mapping of genes

Genetic Mapping

Linkage Mapping

- Done by studying families
- Track frequency of genetic recombination
- Use frequency to determine relative gene location

Combination	Frequency
A-B	0.16
A-C	0.08
C-B	0.08

Linkage

- Tendency of alleles to transmit together
 - More linkage = less independent assortment
 - Close together $(\theta = 0)$ = tightly linked
 - Far apart ($\theta = 0.5$) = unlinked

- Used to study genes that are very close together
 - Recombination very rare
 - Family studies impractical
- Done by studying large populations

Linkage Equilibrium

A = 0.5 a = 0.5 B = 0.9 B = 0.1

- Gene A has two polymorphisms: A and a
 - A found in 50% of individuals
 - a in 50%
- Gene B has two polymorphisms: B and b
 - B found in 90% of individuals
 - b in 10%

Linkage Equilibrium

A = 0.5 a = 0.5 B = 0.9 B = 0.1

- Population frequencies should be:
 - $AB = (0.5) \times (0.9) = 0.45$
 - $aB = (0.5) \times (0.9) = 0.45$
 - $Ab = (0.5) \times (0.1) = 0.05$
 - $ab = (0.5) \times (0.1) = 0.05$
- This is linkage equilibrium

- Population frequencies higher/lower than expected
 - AB = 0.75 (higher than expected 0.45)
 - This haplotype (AB) is in linkage disequilibrium

- Consider new gene mutation A
 - Initially close to gene B
 - AB transmitted together in a population
 - Eventually A and B genes may recombine
 - Depends on distance apart and size of population
 - LD greatest when gene first enters population (i.e. mutation)
 - Fades with successive generations (i.e. population size)
 - Fades if distance between genes is greater

- Linkage disequilibrium affected by:
 - Genetic distance
 - Time alleles have been present in population
- Different populations: different degrees of linkage disequilibrium

Meiosis

Jason Ryan, MD, MPH

Meiosis

- Diploid cells give rise to haploid cells (gametes)
- Unique to "germ cells"
 - Spermatocytes
 - Oocytes
- Two steps: Meiosis I and Meiosis II

Meiosis I

Boards&Beyond

- Diploid → Haploid ("reductive division")
- Separates homologous chromosomes

Meiosis II

Chromatids separate

Four daughter cells

Meiosis

Spermatogenesis

Begins at puberty

Oogenesis

- "Primary oocytes" form in utero
 - Diploid cells
 - Just beginning meiosis I
 - Arrested in prophase of meiosis I until puberty
- At puberty
 - A few primary oocytes complete meiosis 1 each cycle
 - Some form polar bodies → degenerate
 - Some form secondary oocytes (haploid)
- Fertilization → completion of meiosis II

Aneuploidy

- Abnormal chromosome number
 - Extra or missing chromosome
- Disomy = two copies of a chromosome (normal)
- Monosomy = one copy
- Trisomy = three copies

Meiotic Nondisjunction

- Failure of chromosome pairs to separate
- Most common mechanism of aneuploidy
- Can occur in meiosis I or II

Meiosis I Nondisjunction

Meiosis II Nondisjunction

Nondisjunction

Monosomy

- Fertilization of 1n (normal) and 0n gamete
- Usually not viable
- Turner syndrome (45,X)
 - Only one sex chromosome

Trisomy

- Fertilization of 1n (normal) and 2n gametes
- Not compatible with life for most chromosomes
- Exceptions:
 - Trisomy 21 = Down syndrome (95% cases due to NDJ)
 - Trisomy 18 = Edward syndrome
 - Trisomy 13 = Patau syndrome

Trisomy

- Maternal meiosis I NDJ errors are a common cause
 - Meiosis I protracted in females
 - Begins prenatally, completed at ovulation years later
 - Advanced maternal age \rightarrow \uparrow risk trisomy

Trisomy

- Cause of NJD suggested by trisomy genotype
 - Father = 21A and 21B; Mother = 21C and 21D
 - Trisomy 21 ACD = Meiosis I nondisjunction in mother
 - Trisomy 21 **ACC** = Meiosis II nondisjunction in mother

Uniparental Disomy

- Child has two copies of one parent's chromosomes
- No copies of other parent's chromosomes
- Father = 21A and 21B; Mother = 21C and 21D
- Child AA (isodisomy) = Meiosis II error (father)
- Child CD (heterodisomy) = Meiosis I error (mother)

Uniparental Disomy

- Child is euploid
 - Normal number of chromosomes
 - No aneuploidy
- Usually normal phenotype
- Can lead to phenotype of recessive disease
 - Father = Aa (recessive gene for disease)
 - Child = aa (two copies of a from father)

Robertsonian Translocation

- Fusion of long arms of two chromosomes
- Occurs in acrocentric chromosomes
 - Chromosomes with centromere near end (13, 14, 21, 22)

Robertsonian Translocation

Normal

Robertsonian Translocation

- Carrier has only 45 chromosomes (one translocated)
- Loss of short arms → normal phenotype (no disease)
- 13-14 and 14-21 are most common
- Main clinical consequences
 - Many monosomy and trisomy gametes
 - Frequent spontaneous abortions
 - Carrier may have child with **Down syndrome** (trisomy 21)

Karyotype

- Can be done in couples with recurrent fetal losses
- Used to diagnose chromosomal imbalances

Jason Ryan, MD, MPH

- Used in studies of populations
- Used to derive genotypes from allele frequencies
 - Allelle: one of two or more alternative forms of the same gene
 - Key point: Used to study single genes with multiple forms
 - Not used for different genes at different loci/chromosomes

Example

- Given gene has two possible alleles: A and a
- Allele A found in 40% of genes (p=0.40)
- Allele a found in 60% of genes (q=0.60)
- What is frequency of genotypes AA, Aa, and aa?

$$p+q=1$$

- Frequency of $AA = p^2 = 0.16$
- Frequency Aa = 2pq = 0.48
- Frequency aa = q^2 = 0.36 1.00

$$p = 0.4$$

 $q = 0.6$

$$p^2 + 2pq + q^2 = 1$$

$$p+q=1$$

•
$$p + q = 1$$

- $p = 0.4 \rightarrow 40\%$ of GENES in population are A
- $q = 0.6 \rightarrow 60\%$ of genes in population are a

•
$$p^2 + 2pq + q^2 = 1$$

- $p^2 = 0.16 \rightarrow 16\%$ of INIDIVIDUALS in population are AA
- 2pq = $0.48 \rightarrow 48\%$ of individuals in population are Aa
- $q^2 = 0.36 \rightarrow 36\%$ of individuals in population are aa

Assumptions

- Large population
- Completely random mating
- No mutations
- No migration in/out of population
- No natural selection

- If assumptions met, allele frequencies do not change from one generation to the next
- "Hardy-Weinberg equilibrium"

- Very useful in autosomal recessive diseases
- Disease (aa) frequency often known
 - Example: 1/5000 individuals have disease
- Carrier (Aa) frequency often unknown

- Disease X caused by recessive gene
- Disease X occurs in 1/4500 children
 - $q^2 = 1/4500 = 0.0002$
 - q = SQRT (0.0002) = 0.015
- p + q = 1
 - p = 1 0.015 = 0.985
- Carrier frequency = 2pq
 - 2(0.985)(0.015) = 0.029 = 3%
- Very rare diseases p close to 1.0
- Carrier frequency ≈ 2q

- Special case: X linked disease
- Two male genotypes (X_dY or XY)
- Three female genotypes (XX or X_dX_d or $X_dX)$

X-linked Disease

- Consider males and females separately
- Among males
 - p + q = 1 (all males are either X_d or X)
 - p = frequency healthy males (XY)
 - $q = frequency diseased males (X_dY)$
- Males/females have same allele frequencies
 - p males = p females
 - q males = q females

X-linked Disease

- Among females
 - p^2 = frequency healthy females (XX)
 - $2pq = frequency carrier females (X_dX)$
 - q^2 = frequency diseased females (X_dX_d)

Pedigrees

Jason Ryan, MD, MPH

Pedigree

- Visual representation of a family
- Often used to study single gene disorders
 - Gene passed down through generations
 - Some members have disease
 - Some members are carriers
- Several typical patterns
 - Autosomal recessive genes
 - Autosomal dominant genes
 - X-linked genes

Pedigree Symbols

Affected Male

Unaffected Female

Affected Female

Marriage

Children

- Two alleles for a gene (i.e. A = normal; a = disease)
- Only homozygotes (aa) have disease

Mother

Father

	A	a
A	AA	Aa
a	aA	aa

• If both parents are carriers (Aa)

- Child can have disease (aa)
- Only 1 in 4 chance of child with disease
- 2 of 4 children will be carriers (Aa)
- 1 of 4 children NOT carriers (AA)

Mother

Father

	A	a
A	AA	Aa
a	aA	aa

- If both parents are carriers (Aa)
 - 50% chance mother gives a to child
 - 50% chance father gives a to child
 - $(0.5) \times (0.5) = 0.25$ chance child has disease

Mother (1/50)

Father (1/100)

		A	a
_	A	AA	Aa
	a	aA	aa

- Mother 1/50 chance of being carrier
- Father 1/100 chance of being carrier
- Chance BOTH carriers = (1/100) * (1/50) = 1/5,000
- Chance child affected = (1/4) * (1/5000) = 1/20,000

- Males and females affected equally
- Few family members with disease
- Often many generations without disease
- Increased risk: Consanguinity
 - Parents are related
 - Share common ancestors

- Cystic fibrosis
- Sickle cell anemia
- Hemochromatosis
- Wilson's disease
- Many others

Autosomal Dominant

- Two alleles for a gene (i.e. A = disease; a = no disease)
- Heterozygotes(Aa) and homozygotes(AA) have disease

Autosomal Dominant

- Males and females affected equally
- One affected parent → 50% offspring with disease
- Male-to-male transmission occurs

Autosomal Dominant

- Familial hypercholesterolemia
- Huntington's disease
- Marfan syndrome
- Hereditary spherocytosis
- Achondroplasia
- Many others

Incomplete Dominance

Semidominant

- Heterozygote phenotype different from homozygote
 - Heterozygotes: less severe form of disease
 - Homozygotes: more severe

Incomplete Dominance

Semidominant

- Classic example: Achondroplasia
 - Autosomal dominant disorder of bone growth
 - Heterozygotes (Dd): Dwarfism
 - Homozygotes (dd): Fatal
- Familial hypercholesterolemia
 - Heterozygotes: total cholesterol 350–550mg/dL
 - Homozygotes: 650–1000mg/dL

X-linked Disorders

- Disease gene on X chromosome (X_d)
- Always affects males (X_dY)
- Females (X_dX) variable
 - X-linked recessive = females usually NOT affected
 - X-linked dominant = females can be affected

X-linked Recessive

- All males with disease gene have disease
- Most females with disease gene are carriers

X-linked Recessive

- No male-to-male transmission
 - All fathers pass Y chromosome to sons
- Sons of heterozygous mothers: 50% affected
- Classic examples: Hemophilia A and B

X-linked Recessive

- Females very rarely develop disease
 - Usually only occurs if homozygous for gene
 - Father must have disease and mother must be carrier
- Females can develop disease with skewed lyonization

Lyonization

- Results in inactivated X chromosome in females
 - One X chromosome undergoes "Lyonization"
 - Condensed into heterochromatin with methylated DNA
 - Creates a Barr body in female cells

Barr Body

Lyonization

- Random process
- Different inactive X chromosomes in different cells
- Occurs early in development (embryo <100 cells)
- Results in X mosaicism in females
- May cause symptoms in females X-recessive disorders
- "Skewed lyonization"

X-linked Dominant

- Occur in both sexes
- Every daughter of affected male has disease
 - All daughters get an X chromosome from father
 - Affected father MUST give disease X chromosome to daughter

X-linked Dominant

- Can mimic autosomal dominant pattern
- Key difference: No male-to-male transmission
 - Fathers always pass Y chromosome to sons

X-linked Dominant

- More severe among males (absence of normal X)
- Classic example: Fragile X syndrome
 - 2nd most common genetic cause intellectual disability (Down)
 - More severe in males
 - Often features of autism
 - Long, narrow face, large ears and jaw

Mitochondrial Genes

- Each mitochondria contains DNA (mtDNA)
 - Code for mitochondrial proteins
- Organs most affected by gene mutations:
 - CNS
 - Skeletal muscle
 - Rely heavily on aerobic metabolism

Mitochondrial Genes

- Heteroplasmy
 - Multiple copies of mtDNA in each mitochondria
 - Multiple mitochondria in each cell
 - All normal or abnormal: Homoplasmy
 - Mixture: Heteroplasmy
- Mutant gene expression highly variable
 - Depends on amount of normal versus abnormal genes
 - Also number of mutant mitochondria in each cell/tissue

Mitochondrial Disorders

- Mitochondrial DNA inherited from mother
 - Sperm mitochondria eliminated from embryos
- Homoplasmic mothers \rightarrow all children have mutation
- Heteroplasmic mothers → variable

Mitochondrial Myopathies

- Rare disorders
- Weakness (myopathy), confusion, lactic acidosis
- Wide range of clinical disease expression
- Classic hallmark: Red, ragged fibers
 - Seen on muscle biopsy with special stains
 - Caused by compensatory proliferation of mitochondria
 - Accumulation of mitochondria in muscle fibers visualized
 - Mitochondria appear bright red against blue background

Ragged Red Fibers

Nephron/Wikipedia

Polygenic Inheritance

- Many traits/diseases depend on multiple genes
 - Height
 - Heart disease
 - Cancer
- "Run in families"
- Do not follow a classic Mendelian pattern

Polygenic Inheritance

Multifactorial Inheritance

- Genes , lifestyle, environment → disease
- Seen in many diseases
 - Diabetes
 - Coronary artery disease
 - Hypertension

Jason Ryan, MD, MPH

- **Epigenetic** phenomenon
 - Alteration in gene expression
 - Different expression in maternal/paternal genes

- Occurs during gametogenesis (before fertilization)
 - Genes "marked" as being parental/maternal in origin
 - Often by methylation of cytosine in DNA

Methylcytosine

- After conception, imprinting controls gene expression
- "Imprinted genes": Only one allele expressed
- Non-imprinted genes: Both alleles expressed

Imprinting Syndromes

- Prader-Willi and Angelman syndromes
- Both involve abnormal chromosome 15q11-q13
 - "PWS/AS region"
- Paternal copy abnormal: Prader-Willi
- Maternal copy abnormal: Angelman
- Differences due to imprinting

Imprinting Syndromes

- PWS genes
 - Normally expressed on paternal chromosome 15
 - NOT normally expressed on maternal copy
- UBE3A
 - Normally expressed on maternal chromosome 15
 - NOT normally expressed on paternal copy

Prader-Willi Syndrome

PWS

Loss of function of paternal copy of PWS gene

Prader-Willi Syndrome

- ~75% cases from deletion of paternal gene
 - Most cases due to sporadic mutation
- ~25% from maternal **uniparental disomy**
 - Two copies of maternal gene inherited
 - No copies of paternal gene

Prader-Willi Syndrome

PWS

- Most common "syndromic" cause of obesity
- Hypotonia
 - Newborn feeding problems
 - Poor suck reflex
 - Delayed milestones
- Hyperphagia and obesity
 - Begins in early childhood
- Intellectual disability (mild)
 - Contrast with AS (severe)
- Hypogonadism
 - Delayed puberty

Fanny Cortés et al. Rev. méd. Chile v.133 n.1 Santiago ene. 2005

Angelman Syndrome

- Abnormal maternal chromosome 15q11-q13
 - Lack of expression of UBE3A

Angelman Syndrome

- Majority of cases caused by deletions
- Only about 3-5% from uniparental disomy
 - Paternal disomy much less common than maternal
 - Non-disjunction less common

Angelman Syndrome

- Frequent laughter/smiling
 - "Happy puppet"
- Seizures (80% patients)
- Ataxia
- Severe intellectual disability

Down Syndrome

Jason Ryan, MD, MPH

Trisomy Disorders

- Down syndrome (21)
- Edward syndrome (18)
- Patau syndrome (13)

Down Syndrome

- Most common liveborn chromosome abnormality
- Most common form intellectual disability
- Other key features
 - "Dysmorphic" features (face, hands, stature)
 - Congenital malformations (heart, GI tract)
 - Early Alzheimer's disease
 - Increased risk of malignancy
- Clinical phenotype variable
 - Range of features from mild to severe

Dysmorphic Features

- "Flat" facial profile
- Flat nasal bridge
- Low-set small ears
- Short neck
- Brachycephaly
 - Posterior skull is flat (not rounded)

Dysmorphic Features

- Prominent epicanthal folds
 - Skin of the upper eyelid
 - Covers the inner corner of the eye
- Upslanting palpebral fissures
 - Separation upper/lower eyelids
 - Outer corners higher than inner

Brushfield Spots

White spots on iris

Erin Ryan/Wikipedia/Public Domain

Dysmorphic Features

- Short, broad hands
- Transverse palmar crease
- "Sandal gap"
 - Space between 1st/2nd toes

Wikipedia/Public Domain

Other Physical Features

- Hypotonia
 - Often identified at birth
- Short stature

Intellectual Disability

- Almost all patients affected
- Wide range of cognitive impairment
- Normal IQ ~100
- Mild Down syndrome: 50 to 70
- Severe Down syndrome: 20 to 35

Congenital Heart Disease

- Occurs in 50% of patients
- Most commonly endocardial cushion defects
 - Involves atrioventricular septum
 - Forms base of interatrial septum
 - Forms upper interventricular septum

Congenital Heart Disease

- Common defects:
 - Primum ASD
 - VSD (holosystolic murmur)

Gastrointestinal Anomalies

- Occur in 5% of patients
- Duodenal atresia or stenosis (most common)
- Hirschsprung disease
 - More common than in general population

Olek Remesz/Wikipedia

Alzheimer's Disease

- Occurs early
- Average age of onset in 50s
- Amyloid Precursor Protein (APP)
 - Found on chromosome 21
 - Breakdown forms beta amyloid
 - Amyloid plaques form in AD

Malignancy

- Lifetime risk of leukemia about 1 to 1.5%
- Often occurs in childhood
- Acute lymphoblastic leukemia
 - Risk 10 to 20 times higher in DS
- Acute myeloid leukemia
 - M7 subtype
 - Megakaryoblastic leukemia

VashiDonsk / Wikipedia

Genetics

- Meiotic nondisjunction
 - Two chromosomes from one parent; one from other
 - Most common cause of Down syndrome (95% cases)
 - Usually meiosis I (90% of cases)
- Extra chromosome from mother in 90% cases
 - Increased risk with advanced maternal age

Genetics

- Rarely caused by Robertsonian translocation
 - 2-3% of cases
 - Chromosome 21 fused with another chromosome
 - Most commonly chromosome 14 or 10
 - Two copies 21 passed to fetus from one parent
- No increased risk with advanced maternal age
- High recurrence risk within families

Genetics

- Rarely (<2% cases) caused by mitotic error
 - Error in mitosis of somatic cells after fertilization
 - May result in somatic mosaicism
 - Some cells trisomy 21, others normal
 - Can lead to milder features of DS
 - No association with advanced maternal age

Prenatal Screening

- Definitive test: Fetal karyotype
 - Chorionic villus sampling (placental tissue)
 - Amniocentesis (amniotic fluid)

Karyogram

Normal

Karyogram

Prenatal Screening

- Noninvasive tests
 - Ultrasound
 - Maternal serum testing

First Trimester Screening

- Fetal ultrasound
- Small, poorly-formed nasal bones
- Nuchal translucency
 - Fluid under at back of neck

Wolfgang Moroder/Wikipedia

First Trimester Screening

- Maternal blood testing
- Pregnancy-associated plasma protein-A (PAPP-A)
 - Glycoprotein produced by placenta
 - Lower levels in pregnancies with fetal Down syndrome
- Free or total β-hCG
 - Hormone produced by placenta
 - Levels are higher in pregnancies with fetal Down syndrome

Second Trimester Screening

- α-fetoprotein and estriol (uE3)
 - Reduced in pregnancies with fetal Down syndrome
 - AFP: protein produced by yolk sac and liver
 - NOTE: Increased AFP associated with neural tube defects
- β-hCG and inhibin A
 - Increased in pregnancies with fetal Down syndrome
 - Inhibin A synthesized by placenta
- "Quad screen"

Trisomy

Jason Ryan, MD, MPH

Trisomy Disorders

- Down syndrome (21)
- Edward syndrome (18)
- Patau syndrome (13)

Trisomy Disorders

- All associated with advanced maternal age
- All most commonly due to meiotic nondisjunction
- Common features
 - Intellectual disability
 - Physical deformities
 - Congenital heart defects

- 2nd most common trisomy in live births
- Severe intellectual disability
- Often female (3:1 female to male ratio)

- Poor intrauterine growth low birth weight
- Abnormally shaped head
 - Very small
 - Prominent back of skull (occiput)
- Low set ears
- Small jaw and mouth
- Clenched fists with overlapping fingers
- "Rockerbottom" (curved) feet

Bobjgalindo/Wikipedia

- Congenital heart disease (50% babies)
 - Ventricular septal defects
 - Patent ductus arteriosus
- Gastrointestinal defects (75% cases)
 - Meckel's diverticulum
 - Malrotation
 - Omphalocele

- Many cases die in utero
- 50% affected infants die in first two weeks
- Only 5 to 10% survive first year

Screening

- Physical features often diagnosed by fetal ultrasound
 - Limb deformities, congenital heart defects

First Trimester

	Down	Edward
PAPP-A	\	\
B-hCG	↑	\

Screening

Second Trimester

	Down	Edward
AFP	→	↓
Estriol	\	\
B-hCG	↑	\
Inhibin-A	↑	\

- Rare
- Severe intellectual disability
- Severe structural malformations
- Detected by fetal ultrasound >90% of cases

- Eye abnormalities
 - Microphthalmia: abnormally small eyes
 - Anophthalmia: absence of one or both eyes
- Cleft lip and palate
- Post-axial polydactyly
 - Polydactyly: extra finger or toe
 - Extra digit away from midline (ulnar)

Pre-axial

Post-axial

Trisomy 13

Holoprosencephaly

- CNS malformation
- Failure of cleavage of prosencephalon
- Left/right hemispheres fail to separate
- May result in "alobar" brain

- Congenital heart disease (80% cases)
 - Ventricular septal defect (VSD)
 - Patent ductus arteriosus (PDA)
 - Atrial septal defect (ASD)

- Most cases die in utero
- Median survival 7 days
- 91% die within 1st year of life

Trisomy 13

Usually diagnosed by fetal ultrasound

First Trimester

	Down	Edward	Patau
PAPP-A	\	\	\
B-hCG	1	↓	\

Muscular Dystrophy

Jason Ryan, MD, MPH

Muscular Dystrophies

- Group of genetic disorders
- More than 30 types
- All result from defects in genes for muscle function
- Main symptom: Progressive muscle weakness

Muscular Dystrophies

- Duchenne: Most common
- Becker: Milder variant of Duchenne
- Myotonic: Trinucleotide repeat disorder

Duchenne and Becker

- Both X-linked
 - "X-linked muscular dystrophies"
- Both involve DMD gene and dystrophin protein
- Myotonic dystrophy
 - Different gene
 - Different protein
 - Not X-linked (autosomal dominant)

DMD

Duchenne Muscular Dystrophy

- X-linked recessive disorder
 - All male carriers affected
 - 1/3 cases new mutations in fertilized egg (no parental carrier)
 - 2/3 inherited from carrier mothers

DMD

Duchenne Muscular Dystrophy

- Abnormal DMD gene
 - Massive gene (2300kb)
 - 1.5% of the X chromosome
 - Among largest known genes
 - High mutation rate
- Codes for dystrophin

Dystrophin

- Maintains muscle membranes
 - Connects intracellular actin to transmembrane proteins
 - Binds α and β -dystroglycan in membrane
 - Connected to the extracellular matrix (laminin)

Dystrophin

- Also found in cardiac and smooth muscle
- Also found in some brain neurons

Dystrophin Gene Mutations

- Most mutations are deletions
- Duchenne: Frameshift mutation
 - Deletion disrupts reading frame
 - Early stop codon
 - Truncated or absent dystrophin protein
- Becker: Non-frameshift mutation
 - Some functioning protein
 - Less severe disease

Dystrophin Gene Mutations

Normal

1 2 3 4 5

Dystrophin Gene

Normal Protein

Duchenne

- 1 **-** 2 **-** 3 **-** 4 **-** 5

Dystrophin Gene

Frameshift Mutation

Absent or Truncated Protein

Becker

-1 2 3 4 5

Dystrophin Gene

Non-Frameshift Mutation

Abnormal Protein

- Loss of dystrophin → myonecrosis
- Creatine kinase elevation
 - Common in early stages
 - Released from diseased muscle
- Other muscle enzymes also elevated
 - Aldolase
 - Aspartate transaminase (AST)
 - Alanine transaminase (ALT)

- Affected boys normal first few years
- Weakness develops age 3-5
- Wheelchair usually by age 12
- Death usually by age 20
 - Usually due to respiratory failure
 - Sometimes heart failure

- Proximal muscles affected before distal limb muscles
- Lower limbs affected before upper extremities
- Affected children:
 - Difficulty running, jumping, climbing stairs
 - Use hands to push themselves up from chair (Gower's sign)
 - Waddling gait
- Muscle replaced with fat/connective tissue
 - Calf enlargement
 - "Pseudohypertrophy"

- Cardiomyopathy
 - Depressed LVEF
 - Systolic heart failure
 - Myocardial fibrosis
- Conduction abnormalities
 - AV block
 - Arrhythmias

- Muscle biopsy (rarely done in modern era)
 - Degeneration of fibers
 - Replacement of muscle by fat and connective tissue

Duchenne Muscular Dystrophy

- Western blot
 - Absence of dystrophin in Duchenne
 - Altered dystrophin in Becker

Normal Becker Duchenne

- Diagnosis: Genetic testing
 - Usually with variations of polymerase chain reaction
 - Identify most common DMD gene abnormalities

BMD

Becker Muscular Dystrophy

- Also X-linked recessive disorder
- 90% cases inherited from carrier mothers
 - Less severe disease
 - More males pass gene on to female offspring

BMD

Becker Muscular Dystrophy

- Milder form of muscular dystrophy
- Late age of onset
- Some patients remain ambulatory
- Often survive into 30s

Trinucleotide Repeat Disorders

Jason Ryan, MD, MPH

Trinucleotide Repeat Disorders

- Occur in genes with repeat trinucleotide units
 - Example: CAGCAGCAGCAG
- Most disorders involve nervous system
- Key examples
 - Fragile X syndrome
 - Friedreich's ataxia
 - Huntington's disease
 - Myotonic dystrophy

Trinucleotide Repeat Disorders

- Wild-type (normal) allele
 - Found in most individuals
 - Polymorphic
 - Variable number of repeats from person to person
 - Overall number of repeats relatively low
- Disease (abnormal) allele
 - Found in affected individuals
 - Increased ("expanded") number of repeats
 - Beyond the normal range
 - Likely due to slipped DNA mispairing

Trinucleotide Repeat Disorders

- Disease gene: "Unstable repeat expansions"
 - Number of repeats may increase in offspring
 - One generation to next: more repeats
 - Key point: genetic abnormality changes over time

Anticipation

- Disease severity worse in subsequent generations
- Earlier onset in subsequent generations
- Associated with more repeats in abnormal gene

Fragile X Syndrome

- X-linked dominant disorder
- Abnormal FMR1 gene
 - Fragile X mental retardation 1 gene
 - Found on long arm of X chromosome
- Most commonly an increase in CGG repeats
 - Normal <55 repeats
 - Full mutation: >200 repeats
 - Leads to DNA methylation of FMR1 gene
 - Gene silenced by methylation

Fragile X Syndrome

- More severe among males (absence of normal X)
- 2nd most common genetic cause intellectual disability
 - Down syndrome most common
- Anxiety, ADHD
- Often has features of autism
- Long, narrow face, large ears and jaw
- Macroorchidism (large testicles)
 - Classic feature

Peter Saxon/Wikipedia

Friedreich's Ataxia

- Hereditary ataxia disorder
- Autosomal recessive
- Mutation of frataxin gene on chromosome 9
 - Needed for normal mitochondrial function
 - Increased number GAA repeats
 - Leads to decreased frataxin levels
- Frataxin: mitochondrial protein
 - High levels in brain, heart, and pancreas
 - Abnormal frataxin → mitochondrial dysfunction

Friedreich's Ataxia

- Begins in adolescence with progressive symptoms
- Cerebellar and spinal cord degeneration
 - Loss of balance
 - Weakness
- Associated with hypertrophic cardiomyopathy
- Physical deformities:
 - Kyphoscoliosis
 - Foot abnormalities

Huntington's Disease

- Movement (CNS) disorder
- Autosomal dominant
- Mutation in the HTT gene
 - Codes for protein huntingtin
- Mutation → Increased CAG repeat
 - CAG codes for glutamine
 - "Polyglutamine disorders:" Huntington's, other rare CNS diseases
- Normal 10-35 repeats
- Huntington's 36 to 120 repeats

Huntington's Disease

- Degeneration in **basal ganglia** (striatum)
- Leads to chorea, dementia
- Onset of symptoms 30s-40s
- Death after 10-20 years

- Muscle disorder
- Autosomal dominant

- Type I (most common)
 - Abnormal DMPK gene (chromosome 19)
 - Dystrophia myotonica protein kinase
 - CTG expansion
 - Codes for myotonic dystrophy protein kinase
 - Abnormal gene transcribed to mRNA but not translated
- Type 2: abnormal CNBP gene
 - Rare type
 - Usually less severe than type I
 - CCTG (tetranucleotide) repeat (not a trinucleotide disorder)

- Most common MD that begins in adulthood
 - Often starts in 20s or 30s
- Progressive muscle wasting and weakness
- Prolonged muscle contractions (myotonia)
 - Unable to relax muscles after use
 - Cannot release grip
 - Locking of jaw

- Facial muscles often affected
- Characteristic facial appearance
- Caused by muscle weakness and wasting
- Long and narrow face
- Hollowed cheeks

- Multisystem disorder
- Many non-muscle features
- Hypogonadism
- Cataracts
- Cardiac arrhythmia
- Frontal balding

Endocrine Involvement

- Primary hypogonadism
 - Low testosterone
 - Elevated FSH
 - Oligospermia
 - Infertility
 - Testicular atrophy
- Insulin resistance

Cardiac Involvement

- Arrhythmias and conduction disease common
- First degree atrioventricular block (20 to 30%)
- Bundle branch block (10 to 15%)
- Atrial flutter and atrial fibrillation

Cataracts

- High prevalence
- Occur at younger age
- Regular slit-lamp exams for screening

Image courtesy of Rakesh Ahuja, MD

Lung Involvement

- Respiratory complications common
- Weakness/myotonia of respiratory muscles
- Decreased vital capacity
- Alveolar hypoventilation
- Respiratory failure may occur

Intellectual Disability

- Common in myotonic dystrophy
- Severity worse with younger age of onset
- Childhood disease → severe cognitive impairment

Deletion Syndromes

Jason Ryan, MD, MPH

Deletion Syndromes

- Partial deletion of chromosome
 - Long or short arm
 - Portion of long/short arm

Deletion Syndromes

- Usually an error in crossover in meiosis
 - Unbalanced exchange of genes
 - One chromosome with duplication; other with deletion

Meiosis Replication/Crossover

Deletion Syndromes

- Most cases sporadic (congenital)
- Key syndromes:
 - Cri-du-chat
 - Williams
 - Thymic aplasia

Cri-du-chat Syndrome

- Deletion of part of short arm (p) of chromosome 5
 - "5p- syndrome"

Short and Long Arms of a Chromosome

Wikipedia/Public Domain

Cri-du-chat Syndrome

- Severe intellectual disability
 - Cognitive, speech, motor delays
- Infants cry like a cat
 - Classically described as "mewing": high-pitched cry
 - Occurs soon after birth then resolves

Cri-du-chat Syndrome

- Microcephaly (small head)
- Characteristic facial features
 - Widely set eyes (hypertelorism)
 - Low-set ears
 - Small jaw
 - Rounded face

Paola Cerruti Mainardi.

Cri-du-chat Syndrome

Congenital heart defects

- Ventricular septal defect (VSD)
- Patent ductus arteriosus (PDA)
- Tetralogy of Fallot (TOF)
- Others

Williams-Beuren syndrome

- Partial deletion on long arm of chromosome 7
- Deleted portion includes gene for elastin
 - Elastic protein in connective tissue
- Results in elastin "haploinsufficency"

Short and Long Arms of a Chromosome p short arm q long arm

Williams-Beuren syndrome

- Classically an "elfin" facial appearance
 - Small nose
 - Small chin
 - Wide mouth
 - Long philtrum (upper lip length)

Williams-Beuren syndrome

- Intellectual disability
 - Delayed developmental milestones
- Well-developed verbal skills
- Extremely friendly with strangers
 - Unafraid of strangers
 - Great interest in talking with adults

Vascular Manifestations

- Supravalvular aortic stenosis
 - Constriction of ascending aorta above aortic valve
 - High prevalance among children with WS
- Pulmonary artery stenosis
- Renal artery stenosis

Hypercalcemia

- Higher calcium than general pediatric population
 - Evidence of ↑ vitamin D levels and ↑ vitamin D sensitivity
- Usually mild to moderate
- Does not usually cause symptoms
- May lead to constipation

Thymic Aplasia

DiGeorge Syndrome

- Many different names
 - 22q11 deletion syndrome
 - Velocardiofacial syndrome
 - Shprintzen syndrome
 - Conotruncal anomaly face syndrome
- Partial deletion of long arm (q) chromosome 22
- Immune deficiency
- Hypocalcemia
- Congenital heart defects

Short and Long Arms of a Chromosome

Wikipedia/Public Domain

Klinefelter and Turner Syndromes

Jason Ryan, MD, MPH

Klinefelter and Turner

- Sex chromosome aneuploidy disorders
- Klinefelter: Male with extra X (XXY)
- Turner: Female with missing X (XO)

Karyotype

- Diagnosis of both syndromes
- Often multiple cells to look for mosaicism

- Usually 47 XXY (~80% of cases)
 - Usually meiotic nondisjunction of either parent
- Rarely 48,XXXY (more severe)
- Or 46,XY/47,XXY mosaicism (less severe)
 - Nondisjunction during mitosis after conception

- Male with primary hypogonadism
 - Small, firm testes
 - Atrophy of seminiferous tubules
 - Low testosterone
 - Ratio of estrogens:testosterone determines severity

- Increased gonadotropins
 - Loss of inhibin B $\rightarrow \uparrow FSH$
 - \downarrow testosterone $\rightarrow \uparrow LH$

FSH and LH

Low Testosterone Features

- Delayed puberty
- Reduced facial/body hair
- Female pubic hair pattern
- Gynecomastia
- Infertility/reduced sperm count

Genital Abnormalities

- Cryptorchidism (undescended testes)
- Hypospadia
- Micropenis

Midshaft

Penoscrotal

Physical Appearance

- Long legs and arms
 - Extra copy of SHOX gene (X-chromosome)
 - Important for long bone growth
- "Eunuchoid body shape"

Cognitive Findings

- Learning disabilities
 - Delayed speech/language development
- Quiet personality
 - Quiet, unassertive

Barr Body

- Inactivated X chromosome
 - Normally found in cells of females (XX)
 - One X chromosome undergoes "Lyonization"
 - Condensed into heterochromatin with methylated DNA
- Seen in cells of patients with Klinefelter's
 - Not normally seen in males

- Often 45, XO (45% cases)
 - Most cases caused by sperm lacking X chromosome
- Mosaic Turner syndrome (often milder)
 - 45,X/46,XX
 - Mitotic nondisjunction during post-zygotic cell division

General Features

- Female with short stature
 - Loss of one copy of SHOX gene on X-chromosome
 - Growth hormone treatment: given in childhood
- Broad chest (shield chest)
- Widely spaced nipples

General Features

- Lymphatic obstruction in fetal development
- Webbed neck
- Swollen hands/feet (especially at birth)

Wikipedia

Cystic Hygroma

- Congenital lymphatic defect
- Large collection of lymph/cysts
- Often found in head/neck
- Often seen in utero on US

Vardhan Kothapalli

- Hallmark: female with primary hypogonadism
 - Loss of ovarian function
 - "Gonadal dysgenesis"
- May have "streak ovaries"
 - Streaks of fibrous tissue seen in expected location of ovaries
 - No or very few follicles

Wikipedia/Public Domain

- Decreased inhibin B
- Decreased estrogens
- Increased LH/FSH
- Levels can vary during childhood
 - Sometimes within normal range
 - Often abnormal in early childhood (<5) and pre-puberty (>10)

- Delayed puberty
 - Absence of breast development
 - Failure to menstruate
 - Can be treated with estrogen to induce puberty
- Primary amenorrhea (most common cause)
 - "Menopause before menarche"
- Some girls menstruate with menopause in teens/20s
 - More common in cases with mosaicism

- Most women infertile
- Some can become pregnant with donated oocytes

Øyvind Holmstad/Wikipedia

Cardiovascular

- ~30% of children born with bicuspid aortic valve
- 5-10% of children have coarctation of the aorta
- High blood pressure may occur in in childhood
 - Sometimes due to coarctiaton or renal disease
 - Often primary

Renal Manifestations

- Kidney malformations affect ~ 1/3 patients
- Abnormal collecting ducts
- Often a horseshoe kidney

Wikipedia/Public Domain

Osteoporosis

- High incidence of osteoporosis
- Low circulating estrogens
- Estrogen treatments often prescribed

Open Stax College

Endocrine

- Type II Diabetes
 - Turner syndrome 2x risk of general population
- Thyroid disease
 - $\sim 1/3$ have a thyroid disorder
 - Usually hypothyroidism from Hashimoto's thyroiditis

