Coagulation

Jason Ryan, MD, MPH

Thrombus Formation

Vasoconstriction

- 1st line of defense against bleeding
- Occurs in response to endothelial damage
- Key mediator: endothelins
 - Proteins
 - Potent vasoconstrictors
 - Released by **endothelial cells** near site of damage
 - Endothelin receptor blockers used in pulmonary hypertension

Coagulation Factors

- Proteins synthesized in liver
- Soluble in plasma
- Activate when triggered by endothelial damage
- Form an insoluble protein: Fibrin
- Fibrin mesh prevents blood loss

Coagulation Factors

- Most circulate as inactive enzymes (zymogens)
- Many activate to become serine proteases
 - Serine: amino acid
 - Protease: cleaves proteins
 - Serine protease: protein cleavage enzyme, contains serine

- **Sequential** activation of clotting factor zymogens
- Constant low level of activation in serum
- Amplification occurs with endothelial damage
- Leads to fibrin generation

- Center of cascade is activation of X \rightarrow Xa
- Xa converts prothrombin (II) \rightarrow thrombin (IIa)
- Thrombin (IIa): Fibrinogen (I) \rightarrow fibrin (Ia)
- Fibrin forms plug to stop bleeding
- Activation $X \rightarrow Xa$ makes fibrin

$$X \longrightarrow Xa$$

Tissue Factor

Thromboplastin

Glycoprotein

- Constitutively expressed in sub-endothelial cells
- Not expressed by endothelial cells
- No significant contact of with circulating blood
- Exposed by endothelial damage
- Major activator of coagulation system
- Basis for Prothrombin Time and INR
 - Tissue factor added to blood sample
 - Time to form clot = PT

- Primary event: Exposure of tissue factor
- Interacts with factor VII \rightarrow VIIa
- TF:VIIa activates Xa

TF:VIIa

Thrombin

- Thrombin (IIa) makes more thrombin
- Can activate cascade (positive feedback)
 - Factor V → Va
 - Factor XI → XIa
 - Factor VIII → VIIIa
- Factor XIa activates IX → IXa
 - IX uses VIIIa as a co-factor
- IXa can also activate Xa
 - More amplification

Factor VIII

- Produced in endothelial cells (not the liver)
- Circulates bound to von Willebrand Factor
 - vWF critical for platelet aggregation
 - vWF produced by endothelial cells and megakaryocytes
 - Binding to vWF increases VIII plasma half life
- Released from vWF in response to vascular injury
 - Vascular injury \rightarrow \uparrow thrombin \rightarrow becomes VIIIa

VIII—vWF

Multicomponent Complexes

- Two complexes for conversion $X \rightarrow Xa$
- Three components bound together:
 - Active clotting factor functioning as enzyme
 - Co-factor
 - Substrate
- Require phospholipids and calcium
 - Phospholipid: Occur on surfaces of cells
 - TF-bearing cells or platelets
 - Calcium: Co-factor

Multicomponent Complexes

- Extrinsic Xase
 - Phospholipid: TF-bearing cells
 - Enzyme: Factor VIIa
 - Co-factor: Tissue factor
 - Substrate: Factor X

Multicomponent Complexes

- Intrinsic Xase
 - Phospholipid: Platelets
 - Enzyme: Factor IXa
 - Co-factor: Factor VIII (VIIIa)
 - Substrate: Factor X

Calcium

- Factor IV
- Required for clot formation
- Activated platelets release calcium
- EDTA binds calcium in blood samples
- Prevents clotting

Tannim101/Wikipedia-

Factor XIII

- Crosslinks fibrin
- Stabilizes fibrin plug
- Absence of XIII \rightarrow inadequate clot formation
- Requires calcium as co-factor
- Activated by thrombin (IIa) formation

Factor XII

Hageman factor

- Can activate factor XI (XIa)
- Physiologic significance unclear
- Important for testing of coagulation system
- Activated by contact with negatively charges
- Factor XII \rightarrow XIIa via contact with silica
- Basis for partial thromboplastin time (PTT)

Prothrombin Time (PT)

Add Plasma to TF Time to form clot

Intrinsic Pathway

Contact Pathway

- Requires kinins for normal function
- Kinins = peptide hormones/signaling molecules
- Short half lives
- Circulate as inactive precursors: kininogens
- Activated by kallikreins
- Kinins link coagulation with inflammation

Intrinsic Pathway

Kinin System

• Bradykinin

- Vasodilator
- Increases vascular permeability
- Pain
- Degraded by angiotensin converting enzyme (ACE)
 - ACE inhibitors can raise bradykinin levels
 - Dangerous side effect: angioedema
- Also degraded by C1 inhibitor (complement system)
 - C1 inhibitor deficiency → hereditary angioedema

Intrinsic Pathway

Factor XII

- Activates clotting and produces bradykinin
- Requires PK, HMWK for normal function

Prekallikrein Deficiency

- Rare condition
- Results in markedly prolonged PTT
- XII cannot activate normally
- No bleeding problems

Kinin System

Key Points

- Activated by factor XII
- Link between coagulation and inflammation
- Bradykinin
 - ACE inhibitors
 - Hereditary angioedema
- Prekallikrein Deficiency: 1PTT

Coagulation Inhibitors

- Important **deactivators** of coagulation
 - Antithrombin III
 - Proteins C and S
 - Tissue factor pathway inhibitor

Antithrombin III

- Serpin (inhibitor of serine proteases)
- Inhibits serine proteases: factors II, VII, IX, X, XI, XII
- Produced by liver
- Activated by endothelium
 - Endothelium makes heparan sulfate molecules
 - Activate antithrombin
 - Basis for role of **heparin drug therapy**
- Deficiency: Hypercoagulable state

Proteins C and S

- Glycoproteins synthesized in liver
- Protein C: zymogen
- Active form: activated protein C (APC)
- APC primarily inactivates factors Va and VIIIa

Proteins C and S

- Protein C activated by thrombomodulin
 - Cell membrane protein
 - Found on endothelial cells
- Thrombomodulin binds thrombin
 - Complex activates protein C to APC

Proteins C and S

- APC requires protein S as co-factor
- Protein S circulates in active form (not a zymogen)

Thrombomodulin: Thrombin

TFPI

Tissue factor pathway inhibitor

Inactivates Xa via two mechanisms

- Directly binds Xa
- Binds TF/FVIIa complex \rightarrow prevents X activation
- Plasma levels increased with heparin administration
 - May contribute to antithrombotic effect

Plasminogen and Plasmin

- Plasminogen synthesized by liver (zymogen)
- Converted to active enzyme: plasmin
- Main role of plasmin is breakdown of fibrin
 - Broad substrate specificity
 - Also degrades clotting factors, fibrinogen

Plasminogen Activators

• Tissue plasminogen activator (tPA) and urokinase

- Synthesized by endothelial and other cells
- Used as drug therapy for **acute MI and stroke**
- **Streptokinase**: Streptococcal protein; activates plasminogen

- Fibrinogen has two domains: E (central) and D (side)
- Crosslinking of fibrin (XIII) creates E linked two Ds

- D-dimer is a special type of FDP
- Presence of D-dimers indicates clot breakdown
 - Breakdown of *crosslinked* fibrin from XIII
 - Elevated D-dimer used for diagnosis of DVT/PE

- ↑ FDPs seen in breakdown of clot
- Also seen in absence of clot from fibrinogen breakdown
- Plasmin can convert fibrinogen \rightarrow FDPs
- FDPs indicate plasmin activity only
- Not necessarily clot breakdown

Primary Fibrinolysis

- Rarely phenomena: **Plasmin overactive**
- Causes **↑** FDP with *normal D-dimer*
 - "Hyperfibrinolysis"
 - Plasmin breakdown of fibrinogen (not fibrin) \rightarrow FDPs
 - No clot or crosslinked fibrin \rightarrow No d-dimers
 - Plasmin can deplete clotting factors
 - Increased PT/PTT with bleeding (like DIC)
 - Prostate cancer: release of urokinase
 - Cirrhosis: Loss of alpha2 antiplasmin from liver

Key Points

- Clot breakdown: FDPs and D-dimers
- Hyperfibrinolysis: FDPs with normal D-dimer levels
- ↑ D-dimer used to diagnosis thrombotic disorders
- Elevated levels seen in DVT/PE
 - Sensitive but not specific
 - Elevated in many other disorders

Vitamin K

- Required for synthesis of many clotting factors
 - "Vitamin K dependent clotting factors"
- Vitamin K dependent factors: II, VII, IX, X, C, S
- Vitamin K deficiency: bleeding
- Warfarin: Vitamin K antagonist

Boards&Beyond.

Gonegonegone /Wikipedia

ESR

Erythrocyte Sedimentation Rate

- Rate of RBC sedimentation in test tube
 - Normal 0-22 mm/hr for men; 0-29 mm/hr for women
- Increased in inflammatory conditions

MechESR/Wikipedia

ESR

Erythrocyte Sedimentation Rate

- ESR increased by **"acute phase reactants"** in plasma
 - Serum proteins that rise in inflammation or tissue injury
 - Driven by cytokines
 - Most come from liver
- Key acute phase reactants
 - Fibrinogen
 - Ferritin
 - C-reactive protein (binds bacteria; activates complement)

Platelet Activation

Jason Ryan, MD, MPH

Platelets

- Small cells derived from megakaryocytes
- Do not contain a nucleus
- Short lifespan: about 8-10 days
- Production regulated by thrombopoietin (TPO)
 - Glycoprotein produced mostly in liver

Graham Beards/Wikipedia

Platelets

- Aid in hemostasis after vascular injury
- Circulate in "inactive" form
- Can "activate" due to:
 - Endothelial injury
 - Stimuli from other activated platelets
- Activated platelets seal damaged vessels

Platelets Actions

- Adhesion to sub-endothelium
- Aggregation: Platelet-platelet binding
- Secretion: Release of granule contents
- Net result: Seal openings in vascular tree

Von Willebrand Factor

- Large **glycoprotein**
- Synthesized by endothelial cells and megakaryocytes
 - Stored in Weibel–Palade bodies in endothelial cells
- Present in platelets (stored in alpha granules)
- Some found in plasma
- Released on vascular injury
 - Activated platelets degranulate
 - Endothelial cells release vWF

Von Willebrand Factor

- Several roles in hemostasis
- #1: Carrier protein for **factor VIII**
 - Factor VIII released in presence of thrombin (VIIIa)
- #2: Binds platelets to damaged endothelium
- #3: Binds activated platelets together (aggregation)

VIII—vWF

Membrane Glycoproteins

- Glycoproteins (amino acids and glucose molecules)
- Found on surface of platelets
- Interact with other structures/molecules
- Important for hemostasis
- GPIb, GPIIb/IIIa

Platelets Actions

- Adhesion to sub-endothelium
- Aggregation: Platelet-platelet binding
- **Secretion**: Release of granule contents

Platelet Adhesion

- Vascular damage: exposure of collagen
- Subendothelial collagen binds vWF
- vWF binds GPIb on platelets

Platelet Aggregation

- Mediated by GPIIb/IIIa receptor
 - Most abundant surface receptor on platelets
- Platelet activation \rightarrow GPIIb/IIIa changes conformation
 - Becomes capable of binding
 - Will not bind when platelets are inactive
 - "Inside-out" signaling (cell activity \rightarrow altered receptor)

Active IIB/IIIA

Platelet Aggregation

- GPIIb/IIIa binds fibrinogen or vWF
- Links platelets together (aggregation)
- Basis for IIB/IIIA receptor blocking drugs

Platelet Secretion

- Platelets activated by:
 - Binding to subendothelial collagen
 - Stimulation by activating substances
- Secretion of stored activators \rightarrow more activation

Platelet Granules

- Two types of platelet granules: alpha and dense
- Contents promote hemostasis
- Released on activation by:
 - Platelet binding to collagen
 - Granule contents from other platelets

Dr Graham Beards/Wikipedia

Platelet Granules

• Alpha granules (most abundant)

- Fibrinogen
- von Willebrand factor
- platelet factor 4

Dense granules

- ADP
- Calcium
- Serotonin

Dr Graham Beards/Wikipedia

Platelet Factor 4

PF4

- Released from alpha granules
- Binds to endothelial cells
- Numerous biologic effects described
- Heparin induced thrombocytopenia
 - Rare, life-threatening effect of heparin administration
 - Antibodies formed to PF4 complexed with heparin
 - Antibodies bind PF4-heparin \rightarrow platelet activation
 - Diffuse thrombosis
 - Low platelets from consumption

Serotonin

- Stored in **dense** granules
- Released on platelet activation
- Basis for serotonin release assay
 - Diagnostic test for HIT
 - Donor platelets radiolabeled with ¹⁴C-serotonin
 - Patient serum and heparin added
 - HIT antibodies \rightarrow excessive serotonin release

Adenosine Diphosphate

- Released from **dense** granules
- Also released by red blood cells when damaged
- Binds to two G-protein receptors: P2Y₁ and P2Y₁₂
- Binding leads to ↓ cAMP formation
 - ↑ cAMP blocks platelet activation
 - Phosphodiesterase inhibitors → ↑ cAMP

Adenosine Diphosphate

- P2Y₁
 - Calcium release, change in platelet shape
- P2Y₁₂
 - Platelet degranulation, ↑ aggregation
- Many P2Y₁₂ receptor blocking drugs
 - "ADP receptor blockers"
 - Inhibit platelet activity
 - Clopidogrel, prasugrel, ticlopidine, ticagrelor

Thromboxane A2

TXA2

- Powerful platelet activator
- TXA2 receptors found on platelets
- Basis for aspirin therapy

Shizhao/Wikipedia

Thromboxane A2

TXA2

- Lipids in cell membranes \rightarrow arachidonic acid (AA)
 - Enzyme: phospholipase A2
 - Occurs in endothelial cells near damaged endothelium
 - AA released at sites of vascular injury
 - Also stored in platelets
- AA converted by platelets to TXA2
 - Enzyme: Cyclooxygenase (COX)
- **Aspirin**: Inhibits $COX \rightarrow \downarrow TXA2 \rightarrow platelet activation$

Bleeding Time

- Test of platelet function
- Small cut to patient's arm
- Filter paper applied/removed until bleeding stops
- Rarely done in modern era

Crystal/Flikr

Jason Ryan, MD, MPH

- Predisposition to venous or arterial thrombi
- Often DVT/PEs ("Venous thromboembolism")
- Sometimes arterial thrombosis
 - Stroke
 - Myocardial infarction
 - Ischemic limb

Virchow's Triad

Endothelial damage

- Endothelium makes numerous natural anticoagulants
- Nitric oxide, prostaglandins, antithrombin, tPA, APC
- Stasis of blood
 - Normal blood flow prevents pooling of clotting factors
- Hypercoagulability
 - Conditions that increase clot formation

• Post-op

- Hypercoagulable (inflammation from surgery)
- Stasis (immobile)
- Endothelial damage (surgery)
- Fall/Hip Fracture/Trauma
 - Hypercoagulable (inflammation from trauma)
 - Stasis (immobility)
 - Endothelial damage (trauma)
- Long plane flights
 - Stasis (immobility)

Wikipedia/Public Domain

Malignancy

- Some tumors produce pro-coagulants (i.e. tissue factor)
- Adenocarcinomas: some data that mucin is thrombogenic
- Normal cells may produce pro-coagulants
 - Reaction to presence/growth of tumor
- Decreased activity, surgery, bed rest

Public Domain

Pregnancy

- Probably evolved to protect against blood loss at delivery
- Many clotting factor levels change
- Increased fibrinogen
- Decreased protein S
- Fetus also obstructs venous return \rightarrow DVTs common
- Oral contraceptive pills (OCPs)
 - Estrogen increases production coagulation factors

- Elevated homocysteine (amino acid)
- Associated with arterial and venous clots
- High levels may cause:
 - Endothelial injury
 - Activation of some clotting factors
- Elevated levels caused by:
 - Folate/B12/B6 deficiency
 - Homocystinuria (cystathionine beta synthase deficiency)
- Levels lowered by folate
 - Most clinical trials of folate did not show benefit

Nephrotic syndrome

- Multiple mechanisms
- Loss of anti-clotting factors in urine (ATIII)

Holly Fischer/Wikipedia

Smoking

- Associated with atherosclerosis and MI/Stroke
- Some data linking smoking to DVT/PE
- Evidence that smoking increases fibrinogen levels

Pixabay/Public Domain

Inherited Thrombophilia

- Inherited hypercoagulable states
- Genetic tendencies to VTE
- Most involve coagulation pathway defects
- All associated with venous clots (DVT/PE)

Hypercoagulable Condition

Factor V Leiden Mutation

Prothrombin gene mutation

Antithrombin deficiency

Protein C/S deficiency

Factor V Leiden Mutation

- Named for Leiden, Netherlands
- Abnormal factor V
- Not inactivated by activated protein C (APC)
- Factor V remains active longer \rightarrow hypercoagulability

Factor V Leiden Mutation

• Point mutation in factor V gene

- Guanine to adenine change
- Result: Single amino acid change
 - Arginine to glutamine substitution
 - Position 506 in factor V

Prothrombin Gene Mutation

- Prothrombin 20210 gene mutation
 - Guanine to adenine change in prothrombin gene
 - Occurs at nucleotide 20210
- Heterozygous carriers: 30% ↑ prothrombin levels

Antithrombin III Deficiency

- Inherited deficiencies due to gene mutations
- Acquired deficiencies:
 - Impaired production (liver disease)
 - Protein losses (nephrotic syndrome)
 - Consumption (DIC)
- Classically presents as heparin resistance
 - Escalating dose of heparin
 - No/little change in PTT

Protein C or S Deficiency

- Protein C: associated with warfarin skin necrosis
- Initial warfarin therapy $\rightarrow \downarrow$ protein C (short half life)
- If protein C deficient \rightarrow marked \downarrow protein C
- Result: thrombosis of skin tissue
- Large dark, purple skin lesions

- Caused by antiphospholipid antibodies
- Occur in association with **lupus** or as primary disease

- Three important clinical consequences of antibodies
- "Antiphospholipid syndrome"
 - #1: Increased risk of venous and arterial thrombosis
 - Most commonly DVT
 - Also CNS: stroke
 - Recurrent fetal loss
 - #2: Increased PTT
 - #3: False positive syphilis (RPR/VDRL)

Anti-cardiolipin

- False positive RPR/VDRL
- Syphilis also produces these antibodies

• "Lupus anticoagulant"

- Interferes with PTT test (silica activation of XII)
- False elevation
- Anti-β2 glycoprotein

Antibody Detection

- Anti-cardiolipin, Anti-β2 glycoprotein
 - Enzyme-linked immunosorbent assay (ELISA) testing
- "Lupus anticoagulant"
 - Detected indirectly through coagulation assays

BB Boards&Beyond.

Lupus Anticoagulant PTT Testing

• Lupus anticoagulant binds phospholipid \rightarrow \uparrow PTT

Lupus Anticoagulant Mixing Study

Can show presence of lupus anticoagulant (inhibitor)

Lupus Anticoagulant Mixing Study

- Clotting factor deficiency: PTT corrects to normal
- Clotting factors \sim 50% normal \rightarrow normal PT/PTT

Lupus Anticoagulant

Other Tests

- Only \sim 50% patients with LA have \uparrow PTT
- Other coagulation tests sometimes used
 - Dilute Russell viper venom time
 - Kaolin clotting time
- Time to clot will be prolonged if LA present
- Time to clot will not correct with mixing study

Antiphospholipid Antibodies

- Syndrome = one laboratory plus one clinical criteria
- Lab criteria (2 positive results >12 weeks apart):
 - Lupus anticoagulant
 - Anti-cardiolipin
 - Anti-β2-glycoprotein
- Clinical criteria:
 - Arterial or venous thrombosis
 - Fetal death after 10 weeks of normal fetus
 - >=3 consecutive fetal losses before 10 weeks

Hypercoagulable Workup

- Panel of tests for hypercoagulable states
- Sometimes performed in:
 - Unprovoked DVT/PE
 - Stroke/MI at an early age
- Controversial
 - Expensive
 - Rarely changes management
 - Few data on management of identified states
 - Risk of bleeding with indefinite anticoagulation
- Some tests altered by thrombus or blood thinners

Hypercoagulable Workup

- Antithrombin level
- Protein C and S levels
- Factor V Leiden gene mutation
- Prothrombin gene mutation
- Antiphospholipid antibodies
- Cancer screening

Coagulopathies

Jason Ryan, MD, MPH

Bleeding Disorders

- Abnormal coagulation cascade
 - Hemophilia, Vitamin K deficiency
- Abnormal platelets
 - Bernard-Soulier, Glanzmann's Thrombasthenia
 - ITP, TTP
 - Uremia
- Mixed Disorders
 - Von Willebrand Disease, DIC, Liver disease

Bleeding Time

- Test of platelet function
- Small cut to patient's arm
- Filter paper applied/removed until bleeding stops
- Rarely done in modern era

PTT Activated Partial Thromboplastin Time

PT Prothrombin Time

Thrombin Time

Type of Bleeding

- Abnormal platelets
 - Mucosal bleeding, skin bleeding, petechiae
- Abnormal coagulation factors
 - Joint bleeding, deep tissue bleeding

Hektor/Wikipedia

Hemophilias

- X-linked recessive diseases
- Gene mutations: Run in families; also occur de novo
- Hemophilia A: Deficiency of factor VIII
- Hemophilia B: Deficiency of factor IX
 - Also called Christmas disease

Alexei Nikolaevich

Hemophilias

- Present with spontaneous or easy bruising
- Recurrent joint bleeds is common presentation
- Screening: PTT will be prolonged
 - Factors VIII, IX both part of intrinsic pathway
- PT, bleeding time, platelet count all normal

BB Boards&Beyond.

Hemophilias

Treatment

• Replacement factor VIII and IX

Biggishben~commonswiki

Hemophilias

Treatment

- Desmopressin (dDAVP)
 - Used in mild **hemophilia A**
 - Analogue of vasopressin (ADH) with no pressor activity
 - Increases vWF and factor VIII levels
 - Releases VIII from Weibel-Palade bodies (endothelial cells)

Desmopressin

- Also has vasodilating properties
- Key side effects: flushing, headache
- Other uses:
 - von Willebrand disease
 - Central diabetes insipidus (mimics ADH)
 - Bedwetting (decreases urine volume)

Hemophilias

Treatment

Aminocaproic acid

- Antifibrinolytic drug
- Inhibits plasminogen activation \rightarrow plasmin
- Less breakdown of formed clots

Cryoprecipitate "Cryo"

- Obsolete therapy for hemophilia A
- Precipitate that forms when FFP is thawed
- Separated from plasma by centrifugation
- Contains factor VIII, fibrinogen
- Also factor XIII and von Willebrand factor (VWF)
- Often used as source of fibrinogen
 - DIC
 - Massive trauma with blood transfusions

Coagulation Factor Inhibitors

- Antibodies
- Inhibit activity or increase clearance of clotting factor
- Inhibitors of **factor VIII** most common
- Often occur in association with:
 - Malignancy
 - Post-partum
 - Autoimmune disorders
- Can be treated with **prednisone**

Martin Brändli /Wikipedia

Coagulation Factor Inhibitors

- Can present similar to hemophilia
 - Deficient activity of VIII → bleeding
 - Prolonged PTT
- Mixing study will differentiate from hemophilia A

Mixing Study

• Clotting factors ~50% normal \rightarrow normal PT/PTT

Boards&Beyond.

Mixing Study

• Clotting factors ~50% normal \rightarrow normal PT/PTT

Boards&Beyond

Vitamin K Deficiency

- Results in bleeding
- Deficiency of vitamin K-dependent factors
 - II, VII, IX, X
- Key lab findings:
 - Elevated PT/INR
 - Can see elevated PTT (less sensitive)
 - Normal bleeding time

Vitamin K Deficiency

- Dietary deficiency rare
- GI bacteria produce sufficient quantities
- Common causes:
 - Warfarin
 - Antibiotics (deplete GI bacteria)
 - Newborns (sterile GI tract)
 - Malabsorption (Vitamin K is fat soluble)

Blood Transfusion

- Large volume transfusions \rightarrow dilution clotting factors
- Packed RBCs: devoid of plasma/platelets
 - Removed after collection
- Saline or IVF: No clotting factors
- Treated with fresh frozen plasma

Liver Disease

Loss of clotting factors

- Advanced liver disease $\rightarrow \downarrow$ clotting factor synthesis
- Most clotting factors produced in liver
- Exception: Factor VIII produced in endothelial cells
- **PT more sensitive** to liver disease (vitamin K)
- Thrombocytopenia also common
 - Decreased hepatic synthesis of thrombopoietin
 - Platelet sequestration in spleen from portal hypertension

Platelet Disorders

Jason Ryan, MD, MPH

Bleeding Disorders

- Abnormal coagulation
 - Hemophilia, Vitamin K deficiency
- Abnormal platelets
 - Bernard-Soulier
 - Glanzmann's Thrombasthenia
 - ITP, TTP
 - Uremia
- Mixed Disorders
 - Von Willebrand Disease, DIC

Type of Bleeding

- Abnormal platelets
 - Mucosal bleeding, skin bleeding, petechiae
- Abnormal coagulation factors
 - Joint bleeding, deep tissue bleeding

Hektor/Wikipedia

Bleeding Time

- Test of platelet function
- Small cut to patient's arm
- Filter paper applied/removed until bleeding stops
- Rarely done in modern era

Glanzmann's Thrombasthenia

- Autosomal recessive disorder
- Functional deficiency of GPIIb/IIIa receptors
- Bleeding, often epistaxis
- Key diagnostic finding:
 - Prolonged bleeding time
 - Blood smear: Isolated platelets (no clumping)
 - Absent platelet aggregation in response to stimuli
 - Abnormal platelet aggregometry
 - Platelets mixed with ADP, arachidonic acid

Bernard-Soulier Syndrome

- Autosomal recessive disorder
- Deficiency of GPIb platelet receptors
- Platelets cannot bind vWF
- Also results in large platelets
- Bleeding, often epistaxis or menorrhagia
- Key lab findings:
 - Prolonged bleeding time
 - Thrombocytopenia
 - Large platelets on blood smear

Giant Platelets

- Can be seen in association with thrombocytopenia
- Caused by rare inherited disorders
 - Bernard-Soulier, others

Bobjgalindo/Wikipedia

Wiskott-Aldrich Syndrome

- Immunodeficiency syndrome of infants
- X linked disorder of WAS gene (WAS protein)
 - Necessary for T-cell cytoskeleton maintenance
- Triad:
 - Immune dysfunction
 - ↓ platelets
 - Eczema

ITP

Idiopathic thrombocytopenic purpura

- Disorder of decreased platelet survival
- Commonly caused by anti-GPIIB/IIIA antibodies
- Consumption splenic macrophages

ITP

Idiopathic thrombocytopenic purpura

- Diagnosis of exclusion
 - Rule out other causes of bone marrow suppression
- Treatment:
 - Steroids
 - IVIG (blocks Fc receptors in macrophages)
 - Splenectomy

TTP

Thrombotic thrombocytopenic purpura

- Disorder of small vessel thrombus formation
- Consumes platelets \rightarrow thrombocytopenia
- ↓ activity of vWF cleaving protease ADAMTS13

Von Willebrand Factor

Multimers

- vWF synthesized a protein **monomer**
 - Occurs in endothelial cells and megakaryocytes
- Monomers link in endoplasmic reticulum \rightarrow dimers
- vWF dimers move to Golgi \rightarrow multimers

Von Willebrand Factor

Multimers

- Large multimers stored:
 - Endothelial Weibel–Palade bodies
 - Platelet α-granules
- Large multimers can obstruct blood flow
- ADAMTS13 prevents obstruction
 - Enzyme (metalloprotease)
 - Breaks down multimers of vWF
 - Prevents thrombotic occlusion

TTP

Cause

- Severe ADAMTS13 deficiency
 - Usually <10% normal activity
- Usual cause: acquired autoantibody to ADAMTS13
- Result: vWF multimers in areas of high shear stress
- Obstruction small vessels

MAHA

Microangiopathic hemolytic anemia

- Hemolytic anemia (↑LDH, ↓ haptoglobin)
- Caused by shearing of RBCs as they pass through thrombi in small vessels
- Blood smear: schistocytes
- Seen in:
 - TTP
 - HUS
 - DIC

Paulo Henrique Orlandi Mourao

TTP

Thrombotic thrombocytopenic purpura

- Fever
 - Inflammation from small vessel occlusion and tissue damage

Neurological symptoms

- Headache, confusion, seizures
- Renal failure
- Petechiae and bleeding

TTP

Thrombotic thrombocytopenic purpura

- Lab tests:
 - Hemolytic anemia
 - Thrombocytopenia
 - Schistocytes on blood smear
- PT/PTT should be normal
 - Contrast with DIC
- May see elevated d-dimer

TTP Treatment

- **Plasma exchange**: removes antibodies
- Platelet counts monitored to determine efficacy

Mr Vacchi /Wikipedia

HUS HUS

- Many similarities with TTP
- Also caused by platelet-rich thrombi in small vessels
- MAHA, thrombocytopenia, acute kidney injury
 - Usually no fever or CNS symptoms
 - Renal thrombi \rightarrow kidney injury
- Commonly seen in children
- Commonly follow GI infection E. Coli 0157:H7
 - Shiga-like toxin causes microthrombi

- Widespread activation of clotting cascade
- Diffuse thrombi (platelets/fibrin) \rightarrow ischemia
- Consumption of clotting factors and platelets
- Destruction of red blood cells \rightarrow anemia

- Occurs secondary to another process
- Obstetrical emergencies
 - Amniotic fluid contains **tissue factor**
 - DIC seen in conjunction with amniotic fluid embolism
- Sepsis
 - Endotoxin -> activates coagulation cascade
 - Cytokines

- Leukemia
 - Especially acute promyelocytic leukemia (APML)
 - Cancer: well-described hypercoagulable state
 - Excess coagulation: DIC
- Rattlesnake bites
 - Thrombin-like glycoproteins within venom
 - Diffuse activation of clotting

Andy king50/Wikipedia

- Elevated PT/PTT/Thrombin time
 - Consumption of factors
- Low platelets
 - Consumption of platelets
- Low fibrinogen (consumption)
- Microangiopathic hemolytic anemia
 - Low RBC (anemia)
 - Schistocytes on blood smear
- Elevated **D-dimer**

- Treatment: underlying disorder
- Fresh frozen plasma: replace clotting factors
- RBCs, platelets
- Cryoprecipitate (for low fibrinogen)

ITP, TTP, HUS, DIC

	ITP	ТТР	HUS	DIC
↓ Platelets	+	+	+	+
Hemolytic Anemia		+	+	+
↑PT/PTT				+

Uremia

- Renal dysfunction \rightarrow bleeding
- Poor aggregation and adhesion of platelets
- Caused by uremic toxins in plasma
 - Uremic platelets work normally in normal serum
- Prolonged bleeding time
- Normal platelet count
- Normal coagulation testing

Thrombocytopenia

- Decreased production of platelets
 - Chemotherapy, leukemia
 - Sepsis (bone marrow suppression)
- Platelet sequestration
 - Splenomegaly
 - Portal hypertension
- Platelet destruction
 - ITP, TTP

Thrombocytopenia

- Normal platelet count: 150,000/ml to 400,000/ml
- Bleeding occurs when <10,000
- Treatment: Platelet transfusions

- Deficient function of von Willebrand Factor
 - Large glycoprotein
 - Synthesized by endothelial cells and megakaryocytes
 - Present in platelets
- Two key roles in hemostasis
 - **Carrier of factor VIII** (intrinsic coagulation pathway)
 - Binds platelets to endothelium and other platelets

- Most common inherited bleeding disorder
 - Affects up to 1 percent of population
- Gene mutations $\rightarrow \downarrow$ level or function of vWF
 - Most cases autosomal dominant (males=females)

- Usually mild, non-life-threatening bleeding
- Easy bruising
- Skin bleeding
- Prolonged bleeding from mucosal surfaces
 - Severe nosebleeds
 - Menorrhagia

Diagnosis

- Normal platelet count
- Normal PT
- Increased PTT (depending on severity)
 - Usually no joint/deep tissue bleeding
- Increased bleeding time

Diagnosis

- Ristocetin cofactor activity assay
- Ristocetin: antibiotic off market due to ↓platelets
- Binds vWF and platelet glycoprotein Ib
- Causes platelet aggregation if vWF present

Treatment

- vWF concentrate
- Desmopressin
 - Increases vWF and factor VIII levels
 - Releases vWF from endothelial cells
- Aminocaproic acid
 - Antifibrinolytic drug
 - Inhibits plasminogen activation \rightarrow plasmin
 - Less breakdown of formed clots

Heyde's Syndrome

- GI bleeding associated with aortic stenosis
- Angiodysplasia
 - Vascular malformations of GI tract
 - Prone to bleeding
 - Commonly occur in aortic stenosis patients
- Deficiency of von Willebrand factor
 - High shearing force caused by aortic stenosis
 - Uncoiling of vWF multimers
 - Exposes cleavage site for **ADAMTS13**
- Improves after aortic valve surgery

Antiplatelets

Jason Ryan, MD, MPH

Thrombus Formation

FIBRIN

ACTIVATED PLATELETS

THROMBUS

Thrombus Formation FIBRIN ACTIVATED PLATELETS Anticoagulants Antiplatelets Heparin Aspirin Warfarin **THROMBUS ADP Blockers Direct Thrombin IIB/IIIA** Inhibitors Inhibitors **Phosphodiesterase Inhibitors** Factor Xa inhibitors **Thrombolytics** tPA Urokinase Streptokinase

Antiplatelets

De-activated Platelet Activated Platelet

Thromboxane (from arachidonic acid) Adenosine diphosphate (ADP) ↓cAMP (via ADP)

- Inhibits COX-1 and COX-2
 - Both found in platelets
- Blunts conversion of AA to TXA2
- ↓ platelet activity
- Also inhibits production of prostaglandins

Eicosanoids

Eicosanoids

Mediator	Effects		
PGE ₂	Redness (vasodilation) Edema (permeability) Fever (hypothalamus) Pain (nerves) Renal vasodilation (afferent)		
PGE ₂ /PGI ₂	Protect GI mucosa		
TXA ₂	Plateletactivation		

Ricciotti E, FitzGerald G; **Prostaglandins and Inflammation** Arterioscler Thromb Vasc Biol. 2011 May; 31(5): 986–1000.

NSAIDs

Ibuprofen, naproxen, indomethacin, ketorolac, diclofenac

- Aspirin is technically NSAID
- NSAIDS **reversibly** inhibit COX-1 and COX-2
- Aspirin **irreversibly** inhibits COX-1 and COX-2
- Decreases activity for lifetime of platelet (7-10days)
- All NSAIDs may cause bleeding
- All NSAIDs reduce pain, inflammation via \downarrow PGs

Common antiplatelet uses

Coronary disease

- Acute myocardial infarction/unstable angina
- Secondary prevention

• Stroke

- Acute ischemic stroke
- Secondary prevention

Adverse Effects

Bleeding

- Gastritis/Ulcers
 - COX important for maintenance of GI mucosa

• Tinnitus

- Caused by salicylate (aspirin metabolite: salicylic acid)
- Alters cochlear nerve function
- Rare: Usually occurs with very high doses
- Resolves with discontinuation

Adverse Effects

- Reye's syndrome
 - Liver failure and encephalopathy
 - Associated with aspirin use in children
 - Aspirin not generally used in kids (exception: Kawasaki)

Thienopyridines

Ticlopidine, clopidogrel, prasugrel

• **Irreversible** P2Y₁₂ receptor blockers

Ticlopidine

- Block effects of ADP on platelets
- Used in aspirin allergy
- Added to aspirin for prevention of MI, Stroke
- Major adverse effect is bleeding
- Rare, dangerous adverse effect: **TTP**

TTP

Thrombotic Thrombocytopenic Purpura

- Associated with thienopyridine drugs
- Severe thrombocytopenia
- Microangiopathic hemolytic anemia
- Neurologic abnormalities
- Deficient activity of ADAMTS13
- Antibodies to ADAMTS13

Ticagrelor

- Cyclo-pentyl-triazolo-pyrimidine (CPTP)
 - NOT a thienopyridine
- **Reversible** antagonist to P2Y₁₂ receptor
- Unique side effect: Dyspnea
 - Mechanism unclear

PDE Inhibitors

- Inhibit phosphodiesterase III in platelets
- PDE breaks down cAMP
- \uparrow cAMP $\rightarrow \downarrow$ platelet activation
- Two drugs in class: **dipyridamole, cilostazol**

Dipyridamole

- PDEIII inhibitor
- Inhibits platelet activation
- Also blocks adenosine uptake by cells
 - Adenosine = vasodilator
 - Raises adenosine levels \rightarrow vasodilation
- Used with aspirin for stroke prevention (antiplatelet)
- Used in chemical cardiac stress testing (vasodilator)

Cilostazol

- PDEIII inhibitor
- Inhibits platelet activation
- Also raises cAMP in vascular smooth muscle
- Vasodilator
- Rarely used for anti-platelet effects
- Used in peripheral arterial disease

Phosphodiesterase Inhibitors

Dipyridamole, Cilostazol

- Many side effects related to vasodilation
 - Headache
 - Flushing
 - Hypotension

IIB/IIIA Receptor Blockers

- Abciximab, eptifibatide, tirofiban
- Bind and block IIB/IIIA receptors
- Abciximab: Fab fragment of antibody to IIB/IIIA
- IV drugs used in acute coronary syndromes/stenting

IIB/IIIA Receptor Blockers

- Main adverse effect is bleeding
- Can cause thrombocytopenia
 - May occur within hours of administration
 - Mechanism poorly understood
 - Must monitor platelet count after administration

Antiplatelet Drugs

Anticoagulant Drugs

Jason Ryan, MD, MPH

Thrombus Disorders

Disease

- Atrial Fibrillation
- Myocardial Infarction
- DVT/PE
- Stroke
- Critical Limb Ischemia

<u>Thrombus Location</u>

- Left atrial appendage
- Coronary artery
- Deep vein/pulm artery
- CNS circulation
- Peripheral circulation

Antithrombotic Drugs

- <u>Acute therapy</u>: Help eliminate clot already formed
- <u>Prevention</u>: Lower risk of clot in high risk patients

Thrombus Formation

Bleeding

- Thrombus formation very beneficial
- Prevents/stops bleeding
- BLEEDING: common side effect
- Can occur with all antithrombotic/antiplatelet drugs

Clotting versus Bleeding

Coagulation Cascade

PTT Activated Partial Thromboplastin Time

PT Prothrombin Time

Thrombin Time

Heparin

- Polymer (glycosaminoglycan)
- Occurs naturally (found in mast cells)
- Molecules with varying chain lengths
- Used in two forms:
 - **Unfractionated**: widely varying polymer chain lengths
 - Low molecular weight: Smaller polymers only

Unfractionated Heparin

Unfractionated Heparin (UFH)

- Given IV or SQ \rightarrow acute onset
- Increases PTT
 - Effects many components of intrinsic pathway
 - HeparIN = INtrinsic (PTT)
- Will also increase thrombin time
- Can increase PT at high dosages
- Lots of binding to plasma proteins, cells
 - Highly variable response from patient to patient
 - Dose must be adjusted to reach goal PTT

Protamine

- Reversal agent for unfractionated heparin
 - Less effective with LMWH
- Binds heparin \rightarrow neutralizes drug
- Used in heparin overdose
- Used in cardiac surgery
 - High dose heparin administered for heart-lung bypass
 - Quick reversal at completion of case

Unfractionated Heparin (UFH)

• Uses:

- Acute management: DVT/PE, MI, Stroke
- Prophylaxis for DVT in hospitalized patients (SQ)

Unfractionated Heparin (UFH)

- Side Effects
 - Mainly bleeding and thrombocytopenia
 - Osteoporosis (long term use)
 - Elevated AST/ALT (mild)

Heparin and Thrombocytopenia

- Many patients \rightarrow mild (10-20%) \downarrow platelets
 - "Non-immune" thrombocytopenia
 - Direct suppressive effect platelet production
- Heparin-induced thrombocytopenia (HIT)
 - Immune-mediated reaction
 - Immune complexes bind platelet factor 4-heparin
 - Type II hypersensitivity reaction

HIT

Heparin-induced thrombocytopenia

- 5-10 days after exposure to heparin
- Abrupt fall in platelets (>50%)
- Arterial/vein thrombosis
- Rare: 0.2 5% Heparin patients
- Patients with HIT must use alternative drugs
 - Lepirudin, Bivalirudin (direct thrombin inhibitors)

HIT

Heparin-induced thrombocytopenia

- Presumptive diagnosis:
 - Significant drop in platelet count
 - Thrombosis formation
- Definitive diagnosis: HIT antibody testing
 - Autoantibodies to platelet factor 4 complexed with heparin

Low Molecular Weight Heparin

Enoxaparin

- Dose based on weight no titrating
 - Reduced binding to plasma proteins and cells
- Given SQ
- Lower incidence of HIT (but may still cause!)

Low Molecular Weight Heparin Enoxaparin

- Will not affect thrombin time (like UF heparin)
- PTT not sensitive to LMWH-induced changes
 - Unlike UF heparin, only factor X effected

Boards&Beyond,

Low Molecular Weight Heparin

Enoxaparin

- If monitoring required, must check anti Xa levels
 - Limited/insensitive affect on PTT
 - Standard dose based on weight
 - Usually no monitoring used
 - Exceptions: Obesity and renal failure

Factor Xa Inhibitors

Indirect inhibitors (ATIII) Unfractionated Heparin LMWH

Factor Xa Inhibitors

- Rivaroxaban, Apixaban
- Used in atrial fibrillation as alternatives to warfarin
 - Do not require monitoring of PT/INR
 - Standard dosing
- Can increase PT and PTT (Xa in both pathways)
- Will not affect thrombin time

Direct Thrombin Inhibitors

Direct Thrombin Inhibitors

Uses

- Can prolong **PT, PTT, and thrombin time**
- Thrombin activity common to all tests
- Only UF heparin and DTIs prolong thrombin time
 - Requires an inhibitor of thrombin function
 - UF Heparin: ATIII
 - DTIs: Direct drug effect

Direct Thrombin Inhibitors

Uses

- Patients with HIT
 - Hirudin, lepirudin, bivalirudin, desirudin, argatroban
 - Stop heparin, start DTI
 - PTT often monitored
- Acute coronary syndromes, coronary interventions
 - Bivalirudin
- Atrial fibrillation
 - Dabigatran (oral)
 - Standard dosing: does not require PT/INR monitoring

- Vitamin K Factors: II, VII, IX, and X
- Warfarin: Antagonist to vitamin K
- \downarrow levels of all vitamin K dependent factors

Vitamin K

• Forms γ-carboxyglutamate (Gla) residues

Vitamin K

- Found in green, leafy vegetables (K1 form)
 - Cabbage, kale, spinach
 - Also egg yolk, liver
- Also synthesized by **GI bacteria** (K2 form)

Boards&Beyond

- Takes days to achieve its effects
 - Time required for clotting factor levels to fall
- Dose adjusted to reach target PT/INR
 - Drugs effect varies with diet (vitamin K)
 - Antibiotics may \downarrow GI bacteria $\rightarrow \downarrow$ vitamin K $\rightarrow \uparrow$ INR
 - Some drugs interfere with metabolism

Vitamin K Dependent Factors

Vitamin K Dependent Factors

- Factor VII has shortest half life
 - First level to fall after Warfarin administration
- Only PT captures factor VII activity
- PTT less sensitive to Warfarin
- Thrombin time normal

Protein	Half-life (hours)
Factor VII	4-6
Protein C	8-10
Factor X	24-40
Protein S	40-60
Prothrombin (II)	60 - 72

Prothrombotic Effects

- Protein C: anti-clotting factor with short half-life
- Also vitamin K dependent
- Initial warfarin $Rx \rightarrow protein C deficient$
 - This is pro-thrombotic
 - Brief...eventually other factors fall \rightarrow antithrombotic

Protein	Half-life (hours)
Factor VII	4 - 6
Protein C	8 - 10
Factor X	24 - 40
Protein S	40 - 60
Prothrombin (II)	60 - 72

Prothrombotic Effects

- Should you start another drug (heparin) anytime you start warfarin?
 - Yes, but this is usually not an issue
 - For clot disorders (DVT/PE) heparin used for acute onset
 - Heparin \rightarrow anticoagulation during initial warfarin therapy
- One exception: Atrial fibrillation
 - No active clot; just risk of clot
 - Often start warfarin without heparin
 - Brief increase in risk of clot is very low

Adverse Effects

Crosses placenta

- Avoided in pregnancy
- Fetal warfarin syndrome: abnormal fetal development
- Unfractionated heparin often used (does not cross)
- Side Effects:
 - Mainly bleeding
 - Skin necrosis

Warfarin Skin Necrosis

- Rare complication of therapy
- Occurs in patients with protein C deficiency
- Can also occur with very high dosages
- Initial exposure to warfarin $\rightarrow \downarrow$ protein C
- Result: thrombosis of skin tissue
- Large dark, purple skin lesions

Uses

- Stroke prevention atrial fibrillation
- Mechanical heart valves
- DVT/PE

Chronic Oral Anticoagulation

Several Indications

- Atrial Fibrillation
- Mechanical heart valve
- Prior DVT or PE
- Prior Standard: Warfarin
 - Oral drug, Low Cost
 - Downside: Requires INR checks (monthly blood draw)

Novel Oral Anticoagulants (NOACs) Alternatives to Warfarin

- Factor Xa inhibitors
 - #1: Rivaroxaban
 - #2: Apixaban
- Direct Thrombin inhibitors
 - #3: Dabigatran
- Upside: No INR checks...consistent dose
- Downsides
 - Cost \$\$
 - Reversal agents Idarucizumab

Powerful, "clot busters" Used in acute MI, stroke MAJOR bleeding risk

Reversal of drugs

• Fresh Frozen Plasma (FFP)

- Plasma after removal of RBC, WBC, and Plt
- Frozen for storage
- Once thawed, must be used within 24hrs
- Clotting factors degrade
- Corrects deficiencies of any clotting factor
- PT/PTT will normalize after infusion

Reversal of drugs

- Vitamin K
 - Reverses warfarin
 - Used with 1 INR in absence of serious bleeding
 - Given PO or IV
 - IV can cause anaphylaxis
- INR 3-5: Hold warfarin
- INR 5-9: Hold warfarin, Oral vitamin K
- INR >9: Consider IV vitamin K, FFP

Severe bleeding + **^INR** = administer FFP

Hemolysis Basics

Jason Ryan, MD, MPH

Hemolysis

- Destruction of red blood cells
- Causes a normocytic anemia

Boards&Beyond

Hemolysis

Extrinsic versus Intrinsic

- Extrinsic cause
 - Cause is extrinsic to the red cell
 - Antibodies
 - Mechanical trauma (narrow vessels)
 - RBC infection
- Intrinsic cause
 - Cause is intrinsic to red blood cells
 - Failure of membrane, hemoglobin, or enzymes
 - Membrane: Hereditary spherocytosis
 - Enzyme: G6PD deficiency
 - Hemoglobin: Sickle cell anemia (Abnormal Hgb)

Boards&Beyond.

Hemolysis

Consequences

- Normocytic anemia
- Elevated plasma LDH
 - Lactate dehydrogenase
 - Glycolysis enzyme
 - Converts pyruvate \rightarrow lactate
 - Spills out of RBCs

Reticulocytes

- Immature red blood cells
- Usually about 1-2% of RBCs in peripheral blood
- Increased reticulocyte count: Hallmark of hemolysis

Reticulocyte Count

- ↑ reticulocytes: normal marrow response to anemia
- Key blood test in normocytic anemias
- Normocytic anemia: ↓ production or ↑ destruction
- Reticulocyte count differentiates between causes
 - Low retic count: Underproduction
 - High retic count: Increased destruction (hemolysis)

Reticulocyte Count

- Normal: 1 to 2 %
- Anemia: 4-5%
- Must be **corrected** for degree of anemia
- If <2% → inadequate bone marrow response

Corrected RC = 8% * (11/45) = 2%

Reticulocyte Production Index

- Normal reticulocytes circulate ~1day
- In anemia \rightarrow premature release of reticulocytes
- Can live longer → circulate longer
- RPI corrects for longer life of reticulocytes in anemia
- RPI < 2% seen with bone marrow failure

Hemolysis

Consequences

• Elevated unconjugated (indirect) bilirubin

- Not water soluble
- Bound to albumin in plasma

Jaundice

James Heilman, MD

Gallstones

- ↑ risk in hemolysis
- Pigment stones
 - Contain bilirubin
 - Less common type of gallstone (more common: cholesterol)

Emmanuelm/Wikipedia

Hemolysis

Intravascular versus Extravascular

- Intravascular hemolysis
 - Occurs inside blood vessels
- Extravascular hemolysis
 - Occurs in liver and spleen
- Both cause normocytic anemia and ↑ retic count

Extravascular Hemolysis

• Liver

- Receives large portion cardiac output
- Can remove severely damaged RBCs

• Spleen

- Destroys poorly deformable RBCs
- Cords of Billroth: Vascular channels that end blindly
- Found in red pulp of spleen
- RBCs must deform to pass through slits in walls of cords
- Old ("senescent") or damaged RBCs remain in the cords
- Phagocytosed by the macrophages
- Hemolysis disorders \rightarrow \uparrow splenic removal of RBCs

Intravascular Hemolysis

- Destruction of RBCs inside blood vessels
 - Outside of spleen
- Mechanical trauma
 - Narrowed vessels
 - Small vessels: thrombus ("microangiopathic")
 - Large vessels: mechanical heart valves

Haptoglobin

- Plasma protein
- Binds free hemoglobin
- Haptoglobin-hemoglobin complex removed by liver
- ↓ serum haptoglobin with hemolyisis

Haptoglobin

- Intravascular: Hgb released directly into plasma
 - Haptoglobin very low or undetectable
- Extravascular: Some Hgb released from spleen
 - Haptoglobin can be low or normal
- Classically taught as low in intravascular only
- Studies show can be low in both types

Kormoczi G. **Influence of clinical factors on the haemolysis marker haptoglobin**. Eur J Clin Invest 2006 Mar;36(3)

Haptoglobin

- Produced by the liver
- Acute phase reactant
- Increased levels with inflammation
- Decreased levels in cirrhosis

Hemolyisis

Urine findings

- No bilirubin
 - Unconjugated bilirubin not water soluble
 - Cannot pass into urine

Hemolyisis

Urine findings

- Intravascular hemolyisis
 - Haptoglobin saturation → free excess hemoglobin
 - "Hemoglobinemia"
 - Filtered in kidneys → hemoglobinuria
 - Some reabsorbed in proximal tubules
 - Iron converted into ferritin \rightarrow hemosiderin in tubular cells
 - Tubular cells slough into urine
 - Prussian blue stain on sediment shows hemosiderinuria

Hemolyisis

Urine findings

- Hemoglobin part of urine dipstick
- Hgb may turn urine red/brown
 - Also occurs in rhabdomyolysis
 - Myoglobin from muscle damage
- No red cells plus + Hgb

James Heilman, MD -

Hemolysis

Classic Findings

- Normocytic anemia
- 1 LDH
- 1 Indirect bilirubin
- ↑ Reticulocyte count
- ↓ Haptoglobin (lower in intravascular)
- Urine Hgb and hemosiderin (intravascular)

Parvovirus B19

- DNA virus
- Replicates in **RBC progenitor cells**
- ↓erythropoiesis

Parvovirus B19

- Healthy patients:
 - RBC production returns 10 to 14 days; mild/no anemia
- Hemolysis patients
 - Increased RBC turnover
 - Lack of erythropoiesis leads to severe anemia
 - Pallor, weakness, and lethargy

Parvovirus B19

- "Aplastic Crisis" in patients with chronic hemolysis
 - Sickle cell anemia
 - Hereditary spherocytosis
 - Beta thalassemia major
- Classic scenario:
 - Worsening anemia with LOW reticulocyte count

Back and Abdominal Pain

- Seen in some hemolytic syndromes
- Abdominal pain can be caused by splenomegaly
- May be due to smooth muscle spasm
- Nitric oxide: scavenged by free hemoglobin
- Common in some hemolytic disorders
 - Paroxysmal nocturnal hemoglobinuria
 - G6PD deficiency

Extrinsic Hemolysis

Jason Ryan, MD, MPH

Boards&Beyond.

Extrinsic Hemolysis

- Antibodies
- Trauma/shearing
- Red cell infections

AIHA

Autoimmune Hemolytic Anemia

- Red cell destruction from autoantibodies
- Results in extravascular hemolysis
- Red cell membrane removed in pieces by spleen
- Can be "warm" or "cold"

- Most common type of AIHA
- Antibodies bind at body temp 37°C ("warm")
- IgG antibodies against RBC surface antigens

Signs and symptoms

• Anemia

- Fatigue
- Pallor (pale skin)
- Dyspnea
- Tachycardia

• Extravascular hemolysis

- Jaundice
- Splenomegaly

Diagnostic Findings

Spherocytes

- Smaller than normal RBCs
- Spherical

Ed Uthman

Direct Antiglobulin Test

DAT or Coombs Test

- Test for red blood cell antibodies
- Patient RBCs plus anti IgG antiserum
- Positive if agglutination occurs
- Indicates patient's RBCs covered with IgG

Direct Antiglobulin Test

DAT or Coombs Test

Indirect Antiglobulin Test

Indirect Coombs

- Also a test for red blood cell antibodies
- Not generally used in warm/cold AIHA
- Tests for antibodies in the serum
- Patient's serum (not RBCs) tested
- Added to RBCs
- Indicates antibodies to RBC components

Indirect Antiglobulin Test

Indirect Coombs

Antiglobulin Tests

- Direct antiglobulin test
 - Test for antibodies bound to RBCs
 - Commonly used in hemolytic anemias
- Indirect antiglobulin test
 - Test for antibodies in serum
 - Will serum react with RBCs?

Associated Conditions

- Most cases idiopathic
- Associated with:
 - Lupus
 - Non-Hodgkin lymphoma
 - Chronic lymphocytic leukemia (CLL)

Methyldopa

 α methyldopa

Antihypertensive drug of choice in pregnancy

- Agonists to CNS α2 receptors
- Synapses believe too much sympathetic outflow
- Decrease sympathetic tone in body
- Associated with warm AIHA

Øyvind Holmstad/Wikipedia

Methyldopa

α methyldopa

- Triggers production of RBC antibodies
 - Unclear mechanism
 - Drug may alter Rh antigens on red cells
 - Red cells bind antibody in absence of drug
- Direct Coombs test: positive

Penicillin

- High doses can lead to hemolytic anemia
- PCN binds to surface RBCs ("hapten")
 - Elicits immune response *only when bound*
- Antibodies against PCN bound to RBCs
- Direct Coombs test: positive

Treatment

- Glucocorticoids
- Immunosuppressants
- Splenectomy

- Less common type of AIHA
- Antibodies bind at <30°C ("cold")
 - Occurs in **limbs**
 - Also fingertips, toes, nose, ears
- May present with painful fingers/toes
 - Purple discoloration
- Symptoms associated with cold exposure

Cold Agglutinin Disease

- Caused by IgM antibodies that agglutinate RBCs
- RBCs warmed in central organs \rightarrow IgM lost
- Leaves bound C3 on RBCs
- DAT positive only for C3

Martin Brändli /Wikipedia

Direct Antiglobulin Test

DAT or Coombs Test

Cold Agglutinin Disease

- Usually causes extravascular hemolyisis
 - C3 coated RBCs removed by spleen
 - Often engulfed whole
 - Spherocytosis less common than in warm AIHA
- Intravascular hemolysis rarely occurs
 - Complement usually does not activate
 - RBCs: complement inhibitory molecules (CD55/CD59)
 - Complement must be significantly activated to lyse cells

Associated conditions

- Can be seen in chronic lymphocytic leukemia (CLL)
- Often occurs secondary to infection
 - Mycoplasma pneumonia
 - Epstein–Barr virus (Infectious mononucleosis)

Treatment

- Avoid cold (stay warm!)
- Immunosuppressants

Public Domain/Wikipedia

MAHA

Microangiopathic hemolytic anemia

- Shearing of RBCs in small blood vessels
- Thrombi in microvasculature \rightarrow narrowing
- Blood smear: schistocytes
- Seen in:
 - TTP
 - HUS
 - DIC

Paulo Henrique Orlandi Mourao

Malignant Hypertension

- Associated with MAHA
- Endothelial injury \rightarrow thrombus formation
- Improved with BP control

Public Domain

Mechanical Hemolysis

- Shear forces destroy RBCs in large blood vessels
- Seen in:
 - Aortic stenosis
 - Mechanical heart valves
 - Left ventricular assist devices
- Hemolytic anemia may occur
- Schistocytes can be seen on blood smear

Red Blood Cell Infections

- May cause hemolytic anemia
- Classic infectious agents: Malaria, Babesia

Babesia Ring Forms

Malaria Trophozoite Ring

BB Boards & Beyond.

CDC/Public Domain

Intrinsic Hemolysis

Jason Ryan, MD, MPH

Boards&Beyond.

- RBC destruction via complement system
- Loss of protective proteins in RBC membrane
 - Decay Accelerating Factor (DAF/CD55)
 - MAC inhibitory protein (CD59)
- Predominantly intravascular hemolysis
- Some extravascular hemolysis
 - Macrophage destruction of RBCs opsonized with C3 fragments

- Acquired genetic mutation in stem cell
 - Loss of glycosylphosphatidylinositol (GPI) anchor
 - Attaches proteins to cell surface
 - Lead to loss of DAF/CD59 on RBC cell membranes
- Platelets/WBCs may also have lysis

- Classically causes sudden hemolysis at night
 - Slowing of respiratory rate with sleep
 - Also shallow breathing
 - Mild \uparrow CO2 \rightarrow mild resp. acidosis \rightarrow \uparrow complement activity
- Fatigue, dyspnea
 - Anemia from hemolysis
 - May also lose iron in urine
 - Iron-deficiency is common

- Abdominal pain (smooth muscle tension)
- Thrombosis
 - Leading cause of death
 - Usually venous clots
 - Unusual locations: portal, mesenteric, cerebral veins
- Some patients develop acute myeloid leukemia (AML)
 - Stem cell mutation progresses to acute leukemia
 - Lifetime risk: 5 percent or less

Diagnosis

- Suspected with hemolysis, unexplained thrombosis
- Labs may show evidence of hemolysis
 - LDH, Low haptoglobin
 - Urine hemoglobin or hemosiderin
- Direct antibody testing (Coombs) will be negative
- Flow cytometry confirms diagnosis
 - Monoclonal antibodies to GPI-anchored proteins
 - Cells will be deficient in GPI-anchored proteins

Eculizumab

- Anti-complement therapy
- Antibody that binds to complement component C5
 - Prevents cleavage to C5a and C5b
- Blocks formation of membrane attack complex (MAC)
- Protects against intravascular hemolysis
- Does not protect against extravascular hemolysis
 - C3 fragments still bind RBCs \rightarrow spleen
 - Treated patients may still have mild anemia
- Results in stable Hgb levels, fewer transfusions

Pyruvate Kinase Deficiency

- Deficiency of pyruvate kinase
- Key enzyme in glycolysis
- RBCs most effected
 - No mitochondria
 - Require PK for anaerobic metabolism
- Membrane failure → phagocytosis in spleen

Pyruvate Kinase Deficiency

- Autosomal recessive disorder
- Usually presents as newborn
- Extravascular hemolysis
- Splenomegaly
- Disease severity ranges based on enzyme activity

- Key enzyme in **HMP shunt**
- HMP shunt necessary for generation of NADPH
- NADPH protects RBCs from oxidative damage

- H₂O₂ toxic to RBCs
- H₂O₂ generation triggered by:
 - Infections
 - Drugs
 - Fava beans
- Need NADPH to degrade H₂O₂
- Absence of required NADPH → hemolysis

- X-linked recessive disorder (males)
- Most common human enzyme disorder
- Recurrent hemolysis after exposure to trigger
 - Red cells become rigid
 - Consumed by splenic macrophages (extravascular)
 - Some lysis in blood vessels (intravascular)

Triggers

- Infection: Macrophages generate free radicals
- Fava beans: Contain oxidants
- Drugs:
 - Antibiotics (sulfa drugs, dapsone, nitrofurantoin, INH)
 - Anti-malarials (primaquine, quinidine)
 - Aspirin, acetaminophen (rare)

Glucose-6-Phosphate Dehydrogenase

- High prevalence in **Africa**, Asia, the Mediterranean
 - May protect against malaria

Boards&Beyond

Cappelllini, Fiorelli, Lancet 2008; 371: 64-74

Classic presentation

- Patient from Africa
- Jaundice, dark urine, anemia
- May have back pain (free Hgb)
- Onset after exposure to trigger

- Classic findings: Heinz bodies and bite cells
- Heinz bodies: oxidized Hgb precipitated in RBCs
 - Seen with Heinz body stain ("Heinz body preparation")
- Bite cells: phagocytic removal by splenic macrophages

Diagnosis and Treatment

- Diagnosis:
 - Fluorescent spot test
 - Detects generation of NADPH from NADP
 - Add glucose-6-phosphate and NADP to red cells
 - Positive test if blood spot fails to fluoresce under UV light
- Must test outside of acute attack
 - Triggers \rightarrow destruction of enzyme-poor cells
 - Remaining cells may have normal enzyme levels
- Treatment:
 - Avoidance of triggers

- Hereditary disorder
 - Can be autosomal dominant or recessive
- Results in spherocytes
 - Slightly smaller than normal RBCs
 - Spherical shape
 - Lacks central pallor

Ed Uthman

- Cytoskeleton abnormality
 - Abnormal proteins that tie cytoskeleton to RBC membrane
 - Common involves spectrin
 - Other proteins: ankyrin, band 3, band 4.2

- O2 carrying function of spherocytes normal
- Disease from chronic destruction in spleen
 - Splenomegaly (growth of splenic macrophages)
 - Increased bilirubin
 - Jaundice
 - Bilirubin gallstones

- Progressive loss of cell membrane
- Over time, more and more membrane lost
- Results in a high RDW

- Volume does not change over time
- Results in a **high MCHC**
- MCV usually normal or low
 - Spherocytes: low MCV
 - Reticulocytes: high MCV

Spherocyte

- Loss of membrane flexibility \rightarrow more rigid cells
- High **resistance to blood flow** in small vessels

$$R = \frac{\Delta P}{Q} = \frac{8 \eta \text{ (viscosity) L (length)}}{\Pi r \text{ (radius)}^4}$$

- Risk of aplastic crisis with **parvovirus B19 infection**
 - Patients dependent on marrow to replace hemolyzed cells
- Initial presentation may be a child with infection
 - Hemolysis compensated until B19 exposure
 - Spherocytosis seen on blood smear
 - Don't confuse with G6PD

Diagnosis

Osmotic fragility test

- Spherocytes: susceptible to osmotic lysis
 - Poor ability to swell like normal RBCs
 - Will lyse in hypotonic solution
- Measure Hgb release in hypotonic solution
- Osmotic fragility will be ↑ if spherocytosis present

- Treatment: Splenectomy
- Spherocytes will persist but hemolysis resolves
- Howell–Jolly bodies appear
 - Some RBCs leave marrow with nuclear remnants
 - Normally cleared by spleen
 - Presence in peripheral blood indicates splenic dysfunction
- Classic finding: spherocytes and Howell-Jolly bodies
 - Indicates patient post-splenectomy for spherocytosis

Howell-Jolly Bodies

Paulo Henrique Orlandi Mourao /Mikael Häggström

Microcytic Anemias

Jason Ryan, MD, MPH

Red Blood Cell Measurements

- RBC count
 - Part of CBC with white cell count and platelets
- Hemoglobin
 - Concentration in g/dl
- Hematocrit
 - Volume % of red cells

MesserWoland/Wikipedia

Rule of 3

- Hgb = 3 x Red Blood Cell Count
- Hct = $3 \times Hgb$

<u>Normal Values</u>

RBC = 5 million cells/ul Hgb = 15g/dl Hct = 45%

RBC Indices

- Measured by automated blood counters
- Measures of mean characteristics of RBCs
- Used in evaluation of anemias

RBC Indices

- Mean corpuscular volume (MCV)
 - Normal range: 80 to 100 femtoliters
- Mean corpuscular hemoglobin (MCH)
 - Amount (mass) of hemoglobin per red cell
 - Usually reported in picograms (per cell)
- Mean corpuscular Hgb concentration (MCHC)
 - Concentration of Hgb in red cells
 - Usually reported g/dL

Anemia Classification

• MCV commonly used to classify anemias

Microcytic MCV<80	Normocytic MCV 80-100	Macrocytic MCV>100
Iron deficiency Anemia Chronic Disease	Iron deficiency Anemia Chronic Disease	Folate/B12 deficiency Orotic Aciduria
Thalassemia	Hemolysis	Liver disease
Lead poisoning	Aplastic anemia	Alcoholism
Sideroblastic Anemia	Kidney disease	Reticulocytosis

Microcytic Anemias

- Usually due to ↓ hemoglobin in red cells
- Usually associated with \downarrow MCH and MCHC
- Low hemoglobin \rightarrow hypochromic RBCs on smear

Roberto J. Galindo

Hemoglobin

Globin chains

- Proteins
- 4 chains in 2 pairs
- Protoporphyrin
- Iron
- Microcytic anemia
 - Loss of iron
 - Loss of globins (thalassemia)
 - Loss of heme (lead, sideroblastic)

Richard Wheeler and Zephyris

Iron Absorption

- Heme iron
 - Found in meats
 - Easily absorbed
- Non-heme iron
 - Absorbed in Fe²⁺ state
 - Aided by vitamin C

Iron Metabolism

- Iron consumed in diet
- Uptake to plasma regulated by enterocytes
 - Iron transporter: ferroportin
 - Transports iron out of enterocytes and other cells
- Few mechanisms to excrete excess iron
 - Small amount in sweat, sloughing of skin/GI cells
 - Women lose iron from menstruation

Iron Metabolism

- Iron always bound to a protein
- Transport protein: transferrin
 - Transported in blood via transferrin
 - 1 transferrin when iron stores are low
- Storage protein: ferritin
 - Stored intracellularly as ferritin
 - Stored in **macrophages** of **liver and bone**

Clinical Iron Measurements

Test	Interpretation		
Serum iron	Iron level		
Total Iron Binding Capacity	Amount of transferrin in serum		
Serum ferritin	Amount of storage iron		
% saturation	Amount of transferrin bound to Fe		

- Lack of iron from gut
- Loss of iron (usually as blood)

Inadequate GI uptake

Babies

- Iron stores depleted ~ 6months
- Recommendation: add iron-containing foods
- Exclusive breast feeding \rightarrow iron deficiency

Achoubey/Wikipedia

Inadequate GI uptake

Malabsorption

- Any disease affecting duodenum or acid production
- Loss of acid → more Fe3+
- Status post gastrectomy
- Proton pump inhibitors
- Rarely malnutrition

Loss of iron

Bleeding

- Menorrhagia
- Peptic ulcers
- Colon cancer
- Adult or post-menopausal female with iron deficiency must have work-up for colon cancer

Other causes

Pregnancy

- "Negative iron balance" in pregnancy
- Expansion in mothers Hgb mass
- 1 demand of fetal growth
- Prenatal vitamins often contain **iron and folate**

Øyvind Holmstad/Wikipedia

Pregnancy/OCPs

% Sat = $\frac{\text{Iron}}{\text{TIBC}}$

• Increase plasma transferrin

- Percent saturation may be low
- Low ferritin often used to diagnose iron deficiency

Ceridwen/Wikipedia

Rare causes

Hookworms

- Consume blood in intestines
- Ancylostoma duodenale
- Necator americanus

Plummer–Vinson syndrome

- Rare condition; poorly understood cause
- Iron deficiency anemia, beefy red tongue, esophageal webs

Pixabay/Public Domain

Iron Deficiency Anemia

• Microcytic, hypochromic anemia

- ↓ RBCs (anemia)
- Small cells
- Hypochromic (low hemoglobin)
- ↓ MCV, MCH, MCHC

• Initially may be normocytic

• Marrow makes fewer RBCs; maintains Hgb

Red Cell Distribution Width

- Spectrum of RBC size
- Often wider in iron, B12/Folate deficiency
 - Normal RDW makes iron deficiency unlikely
- Can be normal in mild thalassemia

Protoporphyrin

- Heme = Iron + protoporphyrin
- Erythrocyte protoporphyrin level
 - Rarely used blood test
 - Will be elevated in iron deficiency
 - No Fe for protoporphyrin to bind with
- Also elevated in lead poisoning
 - Inhibits addition of iron to protoporphyrin
- Major uses: screening
 - Iron deficiency or lead poisoning

Iron Deficiency Anemia

Treatment

- Iron supplementation
- Usually oral therapy
- Rarely IV iron can be used

Anemia of Chronic Disease

- Anemia in association with inflammation
 - Common in rheumatoid arthritis, lymphoma
 - Many other chronic conditions
- Usually a mild anemia (Hgb > 10g/dL)
- Symptoms from anemia are rare

Anemia of Chronic Disease

Mechanisms

- Triggered by cytokines
- Mild decrease in RBC survival
- Inadequate EPO level/response
 - Lower EPO than expected for degree of anemia
 - Less increase in RBC production by EPO
- Lack of availability of iron
 - Trapped in storage form
 - Key mediator: hepcidin

Hepcidin

- Acute phase protein
 - Produced in liver
 - Has anti-bacterial properties
- Affects iron metabolism
 - Inhibits iron transport
 - Binds to **ferroportin** in enterocytes, macrophages
- Iron trapped in cells as ferritin
- Contributes to anemia of chronic disease
- Key finding ACD: 1 ferritin

Anemia of Chronic Disease

- Usually normocytic/normochromic
- Microcytic/hypochromic in about 25% cases
 - Low iron availability may lead to small red cells
 - MCV usually mildly decreased (70-80)
- Important to distinguish from iron deficiency
 - Does not respond to iron
- First line therapy: **treat underlying disease**

Anemia of Chronic Disease

Diagnosis

Serum iron is low

- Thought to be protective
- Bacteria may use iron for growth/metabolism

Ferritin is usually increased

- Iron trapped in storage form
- Ferritin is acute phase reactant
- Increase may not represent increased storage iron
- Transferrin (TIBC) is usually decreased
 - Transferrin rises when total body iron low
- % saturation usually normal

Iron Studies

	Iron	Ferritin	TIBC	% Sat
Iron Deficiency	↓	\downarrow	1	$\downarrow\downarrow$
Anemia Chronic Disease	\downarrow	ſ	\downarrow	
Hemochromatosis	1	1	\downarrow	$\uparrow \uparrow$

Elevated when body storage iron is low

- Exposure to lead:
 - Adults: Inhalation from industrial work (battery factory)
 - Children: Eating lead paint (old house)
- Inhibits heme synthesis via two enzymes in RBCs
 - Delta-aminolevulinic acid (δ-ALA) dehydratase
 - Ferrochelatase
- \downarrow heme synthesis \rightarrow microcytic, hypochromic anemia
- Iron studies: normal or low

Boards&Beyond

Diagnosis

- Plasma lead level
- \uparrow delta-aminolevulinic acid (δ -ALA)
- ↑ erythrocyte protoporphyrin

Diagnosis

- Blood smear: basophilic stippling
 - Blue granules in cytoplasm of red cells
 - Lead inhibits pyrimidine 5' nucleotidase
 - Normally digests pyrimidines in ribosomes/RNA
 - Leads to accumulation of pyrimidines/RNA in RBCs
- Also seen in thalassemia, other anemias

isis325/Flikr

Symptoms

- Abdominal pain ("lead colic")
- Constipation
- Headache
- "Lead lines"
 - Blue pigment at gum-tooth line
 - Caused by reaction of lead with dental plaque
- Nephropathy
 - Injury to proximal tubules (Fanconi-type syndrome)
 - Glucose, amino acids, and phosphate wasting
- Neuropathy
 - Common symptom: Drop wrist and foot

Boards&Beyond

Symptoms

- Children may have prominent neurologic effects
 - Behavioral issues
 - Developmental delay
 - Failure to reach milestones (i.e. language)
- Many states screen children with lead level testing
 - Usually at 1-2 years of age

Treatment

- Removal of exposure to lead
- Chelation therapy
 - **Dimercaprol** (2,3-dimercapto-1-propanol)
 - Calcium disodium EDTA (ethylenediaminetetraacetate)
 - **DMSA** (2,3-dimercaptosuccinic acid; succimer)

- Ring Sideroblasts:
 - Nucleated red cell precursors
 - Iron-loaded mitochondria seen with Prussian blue stain
 - Perinuclear ring of blue granules
- Sideroblastic anemia
 - Usually microcytic anemia
 - Ring sideroblasts in marrow

Paulo Henrique Orlandi Mourao

- Failure to make protoporphyrin
- Iron cannot bind \rightarrow heme
- Iron accumulation in mitochondria

- Usually secondary to a toxin
 - Alcohol (mitochondrial poison)
 - Vitamin B6 deficiency (Isoniazid)
 - Lead poisoning (controversial)

• X-linked sideroblastic anemia

- Rare, inherited deficiency of ALA synthase
- Most common hereditary sideroblastic anemia
- Often responds to treatment with vitamin B6

Lab Findings

- Microcytic, hypochromic anemia
- Iron studies show iron overload
 - 1 serum iron
 - ↑ ferritin
 - ↓ TIBC (transferrin)

• Low erythrocyte protoporphyrin levels

Microcytic Anemias

 α thalassemia β thalassemia

Thalassemias

Jason Ryan, MD, MPH

Anemia Classification

• MCV commonly used to classify anemias

Microcytic MCV<80	Normocytic MCV 80-100	Macrocytic MCV>100
Iron deficiency Anemia Chronic Disease Thalassemia	Iron deficiency Anemia Chronic Disease Hemolysis Aplastic apemia	Folate/B12 deficiency Orotic Aciduria Liver disease Alcoholism
Sideroblastic Anemia	Kidney disease	Reticulocytosis

Microcytic Anemias

- Usually due to ↓ hemoglobin in red cells
- Usually associated with \downarrow MCH and MCHC
- Low hemoglobin \rightarrow hypochromic RBCs on smear

Roberto J. Galindo

Thalassemia

- Decreased or absent production of globin chains
 - Alpha thalassemia: alpha globin
 - Beta thalassemia: beta globin

Globins and Hemoglobin

Boards&Beyond

Globins and Hemoglobin

 $\alpha 2 \gamma 2$

All Hgb has two alpha globins Other pair determines type

Boards&Beyond

Globins and Hemoglobin

Hgb Electrophoresis

- Electrical charge applied to sample on gel
- Different hemoglobin \rightarrow different distances moved
- Determines HgbA, HgbA2, HgbF, HgbS
- Used to diagnose hemoglobinopathies
 - Thalassemia
 - Sickle cell disease

Mnolf/Wikipedia

Thalassemia

- Spectrum of severity
- Thalassemia minor
 - Often asymptomatic
 - Identified on routine blood testing or blood smear
- Thalassemia major
 - Severe loss of globin production
 - Lifelong transfusions or death

Alpha Thalassemia

- Four genes code for alpha chains
 - Two on each copy of chromosome 16
- **Gene deletions** $\rightarrow \downarrow \alpha$ chains \rightarrow alpha thalassemia

α

α

α

α

α

α

α

α

αα/αα

Alpha Thalassemia Minima

- Normal red cells
- No symptoms
- Carrier state

Alpha Thalassemia Minor

Alpha Thalassemia Trait

- No symptoms
- Can have normal red cells
- Sometimes mild anemia
 - ↓ MCV/MCH/MCHC

Alpha Thalassemia Minor

Alpha Thalassemia Trait

- Common among Asians and Africans
- Alpha minor can be cis ($\alpha\alpha/--$) or trans ($\alpha-/\alpha-$)
- Asians more commonly have cis type
- Africans: trans

Boards&Beyond

- Very little alpha globin production
- Excess beta globin
- HbH forms: 4 beta chains
 - Easily damaged
 - Affinity for oxygen 10x HbA
 - Useless for oxygen delivery
- HbH forms after birth
 - No β chains in HbF

Boards&Beyond

• More β produced \rightarrow HbH

- Hypochromic, microcytic anemia
- Low MCV, MCH, MCHC

- Abnormal RBC deformability
- Extravascular hemolysis
 - Splenomegaly
 - Indirect hyperbilirubinemia
 - Elevated LDH
- HBH easily oxidized
 - Risk for intravascular hemolysis
 - Occurs with oxidant stressors (infection, drugs)
 - Similar glucose-6-phosphate dehydrogenase deficiency

- Diagnosis: DNA testing
- Electrophoresis insensitive
 - Some production A and A2
 - May see HbH depending on amount

- Treatment:
 - Splenectomy
 - Transfusions
- Long term risk: iron overload

--/-α

Public Domain

Hgb Barts

- No α globin
- Cannot form HbF
- Hgb Barts forms in utero
 - Four gamma globin chains
- Cannot release oxygen to tissues
 - Affinity for oxygen 10x HbA
- Hydrops fetalis
 - Massive total body edema
 - High output heart failure
- Fetal death usually occurs or death hours after birth

Beta Thalassemia

- $\downarrow \beta$ globin chain synthesis
- Two genes code for beta chains
- One on each copy of chromosome 11

Beta Thalassemia

- ____β____
- Often caused by mutations (NOT deletions)
- Wide spectrum of disease depending on mutation
 - β^{o} = no function; β^{1} = some function

Beta Thalassemia

Beta Thalassemia Minor

- Also called beta thalassemia trait
- Heterozygotes: single abnormal gene
- Reduced β globin production
- Asymptomatic
- May see mild anemia on routine blood work
- Diagnosis by electrophoresis
 - \uparrow HgbA2 ($\alpha 2\delta 2$ no beta chains)
 - Normal <5%

Beta Thalassemia Major

Cooley's Anemia

- No or severely limited β globin production
- Anemia beginning 1st year of life
 - HgbF ($\alpha 2\gamma 2$) production wanes
- Ineffective erythropoiesis
 - Alpha chains form tetramers
 - Precipitate \rightarrow RBC damage
 - Failure to produce RBCs
- Splenomegaly
 - Spleen clears any abnormal RBCs in plasma

Beta Thalassemia Major

Cooley's Anemia

- Hypochromic, microcytic anemia
- Abnormal red blood cells shapes
- Erythroid hyperplasia
- Extramedullary hematopoiesis

RBC Abnormalities

- Microcytosis (small RBCs)
- Hypochromia (loss of Hgb)
- Anisocytosis
 - Wide variation in sizes of RBCs
 - Increased red cell distribution width (RDW)
- Poikilocytosis (abnormal shapes)
- Basophilic stippling
- Nucleated RBCs
- Target cells

Basophilic Stippling

- Residual RNA in red cells
- Often seen with nucleated RBC
- Seen in thalassemia
- Also lead poisoning

Boards&Beyond

Target Cells

- Target formed in center of RBC
 - Small dark area in center of cell
- Due to ↑ surface area-to-volume ratio
- Extra cell membrane \rightarrow target appearance

Dr Graham Beards

Target Cells

- Decreased cell volume
 - Thalassemia
 - Can be seen in iron deficiency
- Increased cell membrane
 - Liver disease (1 cholesterol in membrane)
 - Splenic dysfunction (↓ removal excess membranes)

Erythroid Hyperplasia

- Massive expansion of bone marrow
- 11 EPO without normal response
- Consequence of severe anemia in beta major disease
- Abnormalities of skull and facial bones
 - "Chipmunk facies"
 - **Crew cut appearance** of skull on x-ray
- Delayed skeletal maturation
- Widening of marrow spaces \rightarrow osteoporosis

Extramedullary hematopoiesis

- Hematopoiesis outside of bone marrow
- Consequence of severe anemia in beta major disease
- Liver and spleen produce RBCs
- Hepatosplenomegaly
- Often produces nucleated RBCs

Parvovirus B19

- Infection may cause aplastic crisis
- Beta major patients highly dependent bone marrow

Beta Thalassemia Major

Cooley's Anemia

- Diagnosis: Electrophoresis
- Increased Hgb forms that do not require beta chains
- \downarrow or absent HbA ($\alpha 2\beta 2$)
- ↑ HbA2 (α2δ2)
- ↑ HbF (α2γ2)

Beta Thalassemia Major

Cooley's Anemia

- Treatment: Blood transfusions
- Long term risk: iron overload

Public Domain

Beta Thalassemia Intermedia

- **Symptomatic** beta thalassemia
- Does not require transfusions
- Chronic hemolytic anemia
- Bone marrow expansion
- Hepatosplenomegaly

Malaria

- Alpha and beta thalassemia protective vs. malaria
- ↓ growth in RBCs of **plasmodium falciparum**

Trophozoite Ring

CDC/Public Domain

Red Cell Distribution Width

RDW

- Spectrum of RBC size
- Wider in iron deficiency
- Can be normal in mild thalassemia
- Normal RDW makes iron deficiency unlikely

Jason Ryan, MD, MPH

Boards&Beyond.

- Autosomal recessive disorder
- Abnormal β hemoglobin chains
 - Beta chains found in hemoglobin A ($\alpha 2 \beta 2$)
 - Makes up 95% of Hgb

- Root cause is abnormal beta globin gene
- Single base substitution 6^{th} codon of β gene
- Adenine changed to thymine
- Abnormal genes produce HbS

• Substitution of **valine** for **glutamate** in beta chains

- Glutamate: polar (hydrophilic)
- Valine: non-polar (hydrophobic)
- Alters shape of beta chains

Globins and Hemoglobin

In utero and at birth: \uparrow HbF \downarrow HbA

- Deoxygenated HbS is poorly soluble
- Polymerization when O2 low
 - Also in dehydration, acidosis
- Red blood cells form crescents
- Appearance of a sickle
- Causes a ↓ ESR

Madboy74

- Two major problems result from sickle cells
- #1: Hemolytic anemia
- #2: Vaso-occlusion of small blood vessels

Hemolysis

- Sickling is reversible
- Cells continuously sickle/de-sickle in circulation
- Over time this leads to RBC membrane damage
- Results in **extravascular hemolysis**
 - Anemia
 - Jaundice
 - Elevated unconjugated bilirubin
 - Pigment gallstones
- Some intravascular hemolysis may also occur

Erythroid Hyperplasia

- **11** EPO
- Massive expansion of bone marrow
- Consequence of severe anemia:
 - Also seen in beta thalassemia major
- Abnormalities of skull and facial bones
 - "Chipmunk facies"
 - **Crew cut appearance** of skull on x-ray
- Delayed skeletal maturation
- Widening of marrow spaces \rightarrow osteoporosis

Parvovirus B19

- Infection may cause aplastic crisis
- Crisis also seen in spherocytosis, thalassemia

Vaso-occlusion

- Sickle cells may **occlude microvasculature**
- May affect any organ
- Classic clinical manifestation:
 - Swollen hands ("dactylitis")
 - Acute pain crises
 - Spleen failure \rightarrow infections
 - Acute chest syndrome
 - Renal dysfunction

Dactylitis

- Pain/swelling in hands or feet
- Fingers may look like "sausage" digits
- Common initial symptom among children

Avascular Necrosis

- Bone collapse
- Most commonly femoral head
- Also associated with long term steroid use

Jmarchn/Wikipedia

Pain Crises

- Episodes of acute pain ("sickle cell crisis")
 - Sudden onset of pain
- Most common type of vaso-occlusive event
- May affect any part of body
 - Abdomen, bones, joints, soft tissue, fingers, toes
 - Swollen hands and/or feet especially in children
- Treatment: Hydration and pain medications

Splenic Failure

- Repeated splenic infarctions \rightarrow functional asplenia
 - Early in disease: splenomegaly (macrophage hyperplasia)
 - Late in disease: Fibrosis and atrophy
- Howell-Jolly bodies will appear in peripheral blood

Paulo Henrique Orlandi Mourao /Mikael Häggström

Splenic Failure

- Increased risk of infections by encapsulated bacteria
- Strep pneumoniae and H influenza
 - Bacteremia/sepsis from S. Pneumoniae
 - Patients must be vaccinated
- Osteomyelitis from Salmonella species
 - Infection of infarcted bones
 - Most common cause SCA is Salmonella (usually S. Aureus)

Splenic Sequestration Crisis

- Vaso-occlusion in spleen → pooling of red cells
- Marked fall in hemoglobin level
- Rapidly enlarging spleen
- Risk of hypovolemic shock especially in children
 - Occurs in spleens yet to develop fibrosis
 - May occur before sickle cell disease is diagnosed

Chest Syndrome

- Leading cause of death in adults with SCD
- Vaso-occlusion of pulmonary microvasculature
- Often triggered by infection (pneumonia)
 - Increased sickling in lungs
 - Once begun \rightarrow inflammation/acidosis \rightarrow more sickling

Chest Syndrome

- Chest pain and shortness of breath
- Infiltrate on chest x-ray
- Looks like pneumonia
- Treatment:
 - Fluids and pain medication (similar to pain crisis)
 - Antibiotics, oxygen, bronchodilators
 - Transfusions as needed

Renal Dysfunction

- Occlusion of vasa recta in renal medulla
 - Medulla has low oxygen and high osmolality
 - Promotes sickling
- May impair concentrating ability
 - Cannot raise urine osmolality even with H₂0 deprivation
 - Causes nocturia and polyuria

Renal Dysfunction

- Papillary necrosis
 - Sloughing of renal papilla due to renal vaso-occlusion
 - Usually painless
 - Gross hematuria and proteinuria

Image courtesy of Piotr Michał Jaworski

Treatment

- Immunizations
- Hydroxyurea
 - Raises amount of HbF
 - Mechanism unclear
- Transfusions
 - Iron overload may develop
- Bone marrow transplant is curative
- Median survival 42-48 years

Sickle Cell Trait

- One mutated beta globin gene
- Usually no sickling
 - Normal beta gene more effective \rightarrow >50% beta globins
 - Need >50% HbS for sickling
- One exception: Renal medulla
 - May see loss of concentrating ability
 - ↑ risk of renal medullary carcinoma (> than sickle disease)

Sickle Cell Diagnosis

Disease or Trait

- Electrophoresis
 - Will show presence of HbS
 - Different amounts disease versus trait
- Sickling Test
 - Sodium metabisulphite reduces the oxygen tension
 - HbS becomes insoluble
 - Forms a turbid suspension \rightarrow easily visualized
 - Other hemoglobin types remain in solution
 - Positive if any amount HbS present (disease or trait)

Electrophoresis

	Normal	Sickle Cell Disease	Sickle Cell Trait
HbA	97%		55%
HbA2	2%	2%	2%
HbF	1%	2-15%	1%
HbS		~90%	40%

Malaria

- Sickle trait protective against p. falciparum
 - Cells sickle when infected \rightarrow \uparrow clearance
 - Does not protect against infection
 - When infection does occur it is milder
 - Patients still need malaria prophylaxis
- African Americans: 8 to 10% have sickle cell trait
- Sub-Saharan Africa: ~30%

Sickle Cell/Beta Thalassemia

- One beta gene: sickle cell
- One beta gene: beta thalassemia
- Clinical manifestations similar to sickle cell
 - Vary depending on beta thalassemia gene function
 - β°: Similar to sickle cell disease
 - β¹: Less severe

Hemoglobin C

- Rare mutation of beta gene (different from SCA)
- Glutamic acid replaced by lysine (not valine)
- Heterozygotes: Mild anemia (extravascular hemolysis)

Hemoglobin C

- Presence of HbC crystals on smear
- Induces red cell dehydration:
 MCHC

Isis325/Flikr

Hemoglobin SC

- One HbS gene plus one HbC gene
- More common than homozygous HbC disease
- At risk for same complications as sickle cell disease
- Lower frequency of complications

Other Anemias

Jason Ryan, MD, MPH

Anemias

- Microcytic
- Normocytic, hemolytic
- Normocytic, non-hemolytic
- Macrocytic

Boards&Beyond.

EPO

Erythropoietin

- Synthesized in the kidney
 - Interstitial cells peritubular capillary
 - Found in cortex of the kidney
- Released in response to hypoxia
- Decreased production in renal failure
- Results in a normocytic anemia

Kidney Anatomy

Kidney Anatomy

Image courtesy of BruceBlaus

EPO Injections

- Darbepoetin alfa (Aranesp)
- Epoetin alfa (Epogen)
- Used to treat anemia of chronic kidney disease
- FDA Black Box warning
- Generally reserved for patients with severe anemia

- Loss of hematopoietic precursors in bone marrow
- Results in pancytopenia
 - \downarrow WBC, \downarrow Platelets, \downarrow RBC

Vocabulary

- "Aplasia": Defective or absent development
- Bone marrow failure
 - Bone marrow cannot produce cells
 - Results in pancytopenia
 - Many causes: fibrosis, tumors
 - "Myelophthisis:" displacement of bone-marrow tissue
- Aplastic anemia:
 - Specific type of bone marrow failure
 - Defective stem cells \rightarrow acellular/hypocellular bone marrow

Hallmarks

- Pancytopenia
- Acellular or hypocellular bone marrow
 - Bone marrow biopsy for diagnosis
 - Absence of cells/replacement with fat

Chalin Drosera

Symptoms

- Pancytopenia (normal cells but not enough)
- Anemia
 - Fatigue, pallor
- Thrombocytopenia
 - Bleeding
- Leukopenia
 - Infections

Causes

- Most commonly idiopathic
- Radiation
- Drugs
- Viruses
- Inherited (Fanconi anemia)

Idiopathic

- Unknown trigger
- Strong evidence for immune mediated mechanism
- **T-cell mediated** destruction of stem cells

Idiopathic

- Can be treated with immunosuppression
- Antithymocyte globulin
 - Animal-derived antibodies against human T cells
 - Usually from rabbits or horses
 - Also can be used in kidney transplant patients
- Cyclosporine

Aplastic Anemia Radiation

- Well-described cause of aplastic anemia
- Radiation \rightarrow damage to stem cells \rightarrow aplastic anemia

Chemicals

- **Benzene**: well-described cause of aplastic anemia
- Rubber factories, shoe repair shops
- Often with poor ventilation

Drugs

- Most cancer therapies
 - Anticipated effect
- Chloramphenicol
 - Rarely used antibiotic (bacterial protein synthesis inhibitor)
- Phenylbutazone
 - Old NSAID
 - Pulled from market due to cases of aplastic anemia
- Methimazole, Propylthiouracil (PTU)
 - Aplastic anemia cases reported (monitor WBCs)

Viruses

Parvovirus B19

- Infects proerythroblasts
- Usually causes ↓ RBCs ("red cell aplasia")
- Pancytopenia can occur
- ↑ risk: immunocompromised

Viruses

Acute Viral Hepatitis

- Can cause aplastic anemia
- Reported after infection with HAV, HBV, HCV, HDV, and HEV
- Often affects boys and young adult males
- Aplasia develops weeks to months after acute hepatitis
- Others: HIV, EBV, CMV
- All probably NOT caused directly by virus
- Evidence suggests T-cell activation

Fanconi Anemia

- Inherited aplastic anemia
- Autosomal recessive or X-linked
- Usually presents in children <16 years old
- More than half of patients have physical deformities
 - Short stature
 - Cafe-au-lait spots
 - Malformed thumbs
 - Heart, renal, eye abnormalities described

Fanconi Anemia

- More than 13 genetic abnormalities identified
- Many involve DNA repair enzymes
 - Hypersensitivity to DNA damage
 - Especially vulnerable to abnormal DNA strand cross-links
- Increased risk of malignancies
 - Myelodysplastic syndrome (MDS)
 - Acute myeloid leukemia (AML)
 - Squamous cell carcinoma of head, neck or vulva

Treatment

- Stop offending agent
- Transfusions (red cells, platelets)
- Bone marrow stimulation
 - EPO, GM-CSF, G-CSF
- Immunosuppression
 - Antithymocyte globulin
 - Cyclosporine
- Bone marrow transplant

Pure Red Cell Aplasia

- Absence of erythroid precursors in bone marrow
- Marked reduction in reticulocytes
- Normal granulocytes, platelets
- Usually idiopathic
- Associated with some drugs, viral infections
- Key association: Thymoma
 - Present in 5 percent of PRCA cases

Macrocytic Anemias

- MCV > 100
- Abnormal DNA synthesis
 - "Megaloblastic anemias"
- Other
 - Liver disease, alcohol, reticulocytosis

Megaloblastic anemias

- Red blood cell precursors grow but cannot divide
 - Contrast with microcytic anemias: divide too much
- Results from **abnormal DNA synthesis**
 - Cells cannot efficiently make DNA for cellular division

Megaloblastic Anemias

- Anemia (↓Hct)
- Large RBCs (↑MCV)
- Hypersegmented neutrophils
 - WBCs also cannot divide effectively due to \downarrow DNA synthesis
 - Result: hypersegmentation of nucleus (>5 lobes)

Wikipedia/Public Domain

Megaloblastic Anemias

- Causes of defective DNA production
 - Folate deficiency
 - **B12**
 - Orotic aciduria
 - Drugs (MTX, 5-FU, hydroxyurea)
 - Zidovudine (HIV NRTIs)

Wikipedia/Public Domain

Macrocytic Anemias

Non-megaloblastic

- Macrocytosis without impaired DNA synthesis
- Liver disease
 - Exact mechanism not known
 - Increased lipids seen in red cell membranes

Alcoholism

- Common cause of macrocytosis
- Acetaldehyde may induce membrane changes in RBCs

Reticulocytosis

- Reticulocytes have MCV of 103 to 126fl
- Normal RBCs: 80 to 96 fL
- In theory may cause macrocytosis
 - But only about 20% bigger than normal cells
 - Need LOTS of reticulocytes to raise average MCV >100
 - Usually raise average MCV but should not reach >100

Blood Groups

Jason Ryan, MD, MPH

Blood Groups

- Antibodies form to RBC antigens
- "Blood group" defined by RBC antigens
- Important for safely administering blood transfusions
- Must match transfusion to "blood type"
- Two major blood groupings:
 - ABO system
 - Rh system

ABO System

- A and B antigens can be found on RBCs
- Patients who lack A or B generate antibodies
 - Appear in blood by 4-6 months
 - Exposure to **bacterial antigens** with similar structure
 - Occurs as the gut becomes colonized
- Antibodies: IgM
- Do not cross placenta
- Key point: A and B antibodies are naturally occurring

ABO System

Boards&Beyond

34

	Group A	Group B	Group AB	Group O
Red blood cell type	A	B	AB	
Antibodies in Plasma	Anti-B	Anti-A	None	入 「 人 、 人 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、
Antigens in Red Blood Cell	P A antigen	↑ B antigen	P A and B antigens	None

InvictaHOG/Wikipedia/Public Domain

ABO System

Rh System

- Most important blood group system after ABO
- More than 50 antigens are part of Rh system
 - Names for letters following AB: C, D, E
- All are transmembrane proteins

Rh System

Presence/absence of D antigen is critical

- D antigen highly immunogenic
- "Rh positive:" has the D antigen (of the Rh system)
- "Rh negative:" lacks the D antigen (of the Rh system)
- Other Rh antigens not routinely tested: C, c, E, e

Rh System

Rh positivity is common

- Caucasians: 83%
- Some Asian populations: 98%
- Rh negative may develop anti-D antibodies
- Only happens if exposed to D⁺ RBC
 - Transfusion
 - Pregnancy (Mom D⁻ with baby D⁺)
- Anti-D antibodies: IgG
- May cross placenta

Newborn Hemolytic Disease

- Classically caused by anti-D (anti-Rh) antibodies
- Can only occur in D⁻ mother with D⁺ baby
- D⁻ mother capable of developing anti-D antibodies
- If father is D⁺: baby may also be D⁺

Newborn Hemolytic Disease

- First pregnancy: Mother exposed D⁺ RBCs at delivery
- 2^{nd} pregnancy: Anti-D IgG in mother \rightarrow fetus
- If 2nd baby also D⁺ hemolysis will occur in utero

Newborn Hemolytic Disease

- Mild cases present as hemolytic anemia
- Severe cases: Hydrops fetalis
- Massive **edema**: Pleural/pericardial effusion, ascites
- Mechanisms:
 - High-output congestive heart failure
 - \uparrow RBC production by spleen/liver \rightarrow obstruction
 - Results in portal hypertension
- Seen in other severe anemias of newborns
 - Hgb Barts (lack of alpha globins)

Maternal Antibody Screening

Indirect Coombs Test

Newborn Hemolytic Disease

Prevention

- Anti-D immune globulin ("RhoGAM")
- IgG antibodies to D antigen
- Rapid macrophage clearance of D⁺ RBCs
- Given in 3rd trimester to D⁻ women
- Blocks/prevents isoimmunization

Other Antigens

- Only ABO and Rh routinely tested
- Many other antigens on RBCs
- Only tested when patient has abnormal screening test
- Antibodies from pregnancy or transfusion

Transfusion Medicine

Common Tests

- Blood type (usually done with another test)
- Type and screen
 - Antibody screening test
 - Further testing if positive
- Type and crossmatch ("type and cross")
 - Matching of donor blood to patient

Blood Type Testing

- Patient RBCs plus antibodies
 - Anti-A; Anti-B; Anti-D
- Agglutination indicates presence of antigen

Blood Type Testing

Type and Screen

- Recipient serum plus standard RBCs
- Screen for patient antibodies to rare antigens
- Will only have antibodies if prior exposure
- **Reagent RBCs** contain many RBC antigens
 - No agglutination: Patient lacks antibodies
 - Agglutination: Antibodies to less common antigens present

Abnormal Screen

- Determine which antibody is present
- Test patient's serum against large panel of antigens
- Subsequent transfusions: Test donor blood for antigen
- Challenging in patients with long transfusion history
 - Sickle cell anemia
 - Beta thalassemia major
- Key point: Don't transfuse unless necessary

Type and Cross

- Patient serum with potential donor RBCs
- Final test of product to be transfused

Blood Products

Packed RBCs

- RBCs with plasma removed
- Usually administered instead of "whole blood"
- Minimizes volume given to patient

• Platelets

- Express ABO and HLA class I antigens
- Do not express Rh or HLA class II
- Reactions from mismatch less common that with RBCs

Blood Products

Fresh Frozen Plasma (FFP)

- Plasma after removal of RBC, WBC, and platelets
- Frozen for storage
- Once thawed, must be used within 24hrs
- Clotting factors degrade
- Corrects deficiencies of any clotting factor
- PT/PTT will normalize after infusion

Cryoprecipitate

- Precipitate that forms when FFP is thawed
- Contains lots of fibrinogen
- Massive bleeding or rare \downarrow fibrinogen disorders

Transfusion Reactions

- Acute hemolytic reaction
- Anaphylaxis
- Febrile reaction
- TRALI
- Many, many other potential reactions
 - Heart failure
 - Sepsis

AHTR

Acute hemolytic transfusion reaction

- Feared complication of blood transfusion
- Pre-formed antibodies \rightarrow donor RBCs
 - Type II hypersensitivity reaction
 - Usually from transfusion of **incorrect blood product**

AHTR

Acute hemolytic transfusion reaction

- Life-threatening reaction
- Acute hemolysis of transfused RBCs
 - Intravascular (complement; anti-AB are IgM)
 - Extravascular (spleen)
- Can lead to DIC
- Fever, chills, flank pain, oozing from intravenous sites
- Jaundice, elevated bilirubin \rightarrow dark urine
- Direct antiglobulin test (Coombs) will be positive

AHTR

Acute hemolytic transfusion reaction

- Usual cause: **system or clerical error**
- Transfusion of wrong blood product
- Numerous safety measures used to prevent:
 - Blood type, antibody screen, cross match
 - Careful patient identification

Anaphylaxis

- Allergic reaction (type I hypersensitivity)
- Hives, angioedema, wheezing, hypotension
- May occur in IgA-deficient individuals
 - Produce anti-IgA antibodies
 - React with IgA in transfused product
- Also occurs to plasma proteins in transfused product
- Treatment:
 - Stop transfusion
 - Epinephrine, anti-histamines

FNHTR

Febrile non-hemolytic transfusion reaction

- Fever, chills
- No other systemic symptoms
- Caused by cytokines in blood products
 - Especially IL-1
 - Generated by WBCs during storage
 - Accumulate in stored blood components
- Some blood products undergo "leukoreduction"

TRALI

Transfusion-related acute lung injury

- Sudden onset hypoxemia during transfusion
- Inflammatory reaction: Fever, chills are common
- Infiltrates on chest x-ray
- Results from **neutrophil activation** by blood products
 - Some patients predisposed with PMNs in lungs
 - PMNs release cytokines, reactive oxygen species, enzymes
 - Damage the pulmonary capillary endothelium
 - Exudative fluid loss \rightarrow pulmonary edema

Transfusion Reaction

• Any suspected reaction: **STOP TRANSFUSION**

Acute Leukemias

Jason Ryan, MD, MPH

Leukemia

- Malignant proliferation of white blood cells
- Cells appear in blood (contrast with lymphoma)
- Increased WBC

Leukemias

Classification

- Myeloid versus lymphoid
- Acute versus chronic
- Acute
 - Rapid onset of symptoms
 - Involves blasts in bone marrow
- Chronic
 - Slower onset of symptoms (or no symptoms)
 - Malignant cells are not blasts (more mature)

Hematopoiesis

Boards&Beyond.

Mikael Häggström /Wikipedia

- Disease of children
 - Peak incidence ~ 4 years old
- Fever
- Bone pain (marrow expansion)
- Lymphadenopathy, splenomegaly, hepatomegaly
 - Infiltration by malignant cells
- Headache, vomiting
 - Meningeal spread
- May cause bone marrow depression
 - Anemia, thrombocytopenia, neutropenia

Acute Lymphoblastic Leukemia

- Peripheral blood: lymphoblasts
 - Can appear similar to myeloblasts
 - Special testing distinguish from myeloblasts

VashiDonsk /Wikipedia

Lymphocyte Development

Lymphocyte Antigens

Primarily	Primarily
T-Cell Associated	B-cell Associated
CD1 CD2 CD3 CD4 CD5 CD7 CD8	CD10 CD19 CD20 CD21 CD22 CD23

- Usually pre-B cell malignancy (~70 to 80% cases)
 - CD10+
 - "Common acute lymphoblastic leukemia antigen" or "CALLA"
 - Also CD19+, sometimes CD20+
- Terminal dexoytransferase (TdT)
 - DNA polymerase (found in nucleus)
 - Found only in pre-B and pre-T blasts
 - NOT seen in myeloblasts

- Treated with chemotherapy
 - Cure rates >80% in many studies
- "Sanctuary sites"
 - Poor penetration by chemotherapy drugs
 - Relapse may occur in these locations
- Testes
- Central nervous system
- Special treatments (radiation/chemo) used
- Sterility may occur in boys

- Many different translocations reported in B-ALL
- Philadelphia chromosome t(9;22)
 - 20 to 30% ALL in adults
 - 2 to 3 % ALL in children
 - Associated with a poor prognosis
- t(12;21)
 - Fusion product of two genes: TEL-AML1
 - TEL-AML1 impairs differentiation of blasts
 - Good prognosis
 - Most common rearrangement in children

Acute Lymphoblastic Leukemia

Down Syndrome

- Risk of ALL $\uparrow\uparrow$ 10-20x
- 1-3% ALL cases have Down

Vanellus Foto/Wikipedia

T-Cell ALL

T-cell acute Lymphoblastic Leukemia

- Less common form of ALL
- Common in adolescent males (teens to 20s)
- Presents as a mass
 - Lymphadenopathy
 - Mediastinal mass
 - Anterior with pleural effusions
- Tumor compression may occur
 - Superior vena cava syndrome
 - Tracheal obstruction

G. Ferretti

T-Cell ALL

T-cell acute Lymphoblastic Leukemia

- Pathology: Blasts
- Different markers from B-cell ALL
 - Usually CD7+
 - Can see CD2, CD3, CD5, CD4, CD8
 - Not CD10+

AML

Acute Myelogenous Leukemia

- Malignancy of myeloblasts
- Common in adult males
 - Median age at diagnosis: 65
 - Male:female ratio: 5:3
- Symptoms from bone marrow suppression
 - Myeloblasts accumulate in marrow, suppress cell growth
 - Anemia: Fatigue, weakness, pallor
 - Thrombocytopenia: Bleeding (especially gums)
 - Neutropenia: Infections
- Enlarged nodes, spleen, liver less common than ALL

AML

Acute Myelogenous Leukemia

- Peripheral blood smear
 - Anemia, thrombocytopenia, blasts
- Myeloblasts
 - Myeloperoxidase (MPO) positive
 - Auer rods

Paulo Henrique Orlandi Mourao/Wikipedia

Auer Rods

- Pathognomonic AML
- Accumulation of MPO
- Can cause DIC

Paulo Henrique Orlandi Mourao/Wikipedia

AML

Acute Myelogenous Leukemia

- Classified into numerous subtypes (WHO system)
- Classified by morphology, surface markers, genetics
- Key subtype: **APML**

APML

Acute Promyelocytic Leukemia

- Defined by translocation t(15;17)
 - Creates a fusion gene: PML-RARA
 - Promyelocytic leukemia gene (chromosome 15)
 - Retinoic acid receptor alpha (chromosome 17)

APML

Acute Promyelocytic Leukemia

• #1: Abnormal retinoic acid receptor (RAR)

- Prevents normal maturation of promyelocytes
- Treatment: all trans retinoic acid (form of vitamin A)
- Abnormal cells will mature

APML

Acute Promyelocytic Leukemia

• #2: Disseminated intravascular coagulation

- Promyelocytes contains lots of MPO (Auer rods common)
- Release \rightarrow DIC (common initial presentation)

Myelodysplasia

Myelodysplastic Syndromes (MDS)

- Abnormal myeloid progenitor cells
- Leads to ineffective hematopoiesis
 - Anemia, thrombocytopenia, neutropenia
- Diagnosis: Bone marrow biopsy
 - Dysplasia (abnormal) cells
 - Blasts <20% cells
- Can progress to AML (>20% blasts)

VashiDonsk /Wikipedia

Myelodysplasia

Myelodysplastic Syndrome (MDS)

Associated with environmental factors

- Prior radiation
- Chemotherapy
- Usually years after exposure

Dina Wakulchik/Wikipedia

Jenny Mealing/Wikipedia

Chronic Leukemias

Jason Ryan, MD, MPH

Leukemia

- Malignant proliferation of white blood cells
- Cells appear in blood (contrast with lymphoma)
- Increased WBC

Leukemias

Classification

- Myeloid versus lymphoid
- Acute versus chronic
- Acute
 - Rapid onset of symptoms
 - Involves blasts in bone marrow
- Chronic
 - Slower onset of symptoms (or no symptoms)
 - Malignant cells are not blasts (more mature)

Myeloid Disorders

CML

Chronic Myelogenous Leukemia

- Malignant disorder of myeloid progenitor cells
- Dysregulated production of granulocytes
 - Neutrophils, basophils, eosinophils
- Classified as a myeloproliferative disorder

CML

Chronic Myelogenous Leukemia

- Peripheral blood (chronic phase):
 - Leukocytosis (median WBC 100,000/microL)
 - ↑ neutrophils
 - ↑ myeloblasts, promyelocytes, myeolcytes, bands
 - ↑ basophils (rare finding!)
 - ↑ eosinophils
- Mild anemia; normal or increased platelets

Paulo Henrique Orlandi Mourao/Wikipedia

CML

Chronic Myelogenous Leukemia

- Chronic phase (usually years)
 - Can be asymptomatic (↑WBC on blood testing)
 - Fatigue, malaise, weight loss, splenomegaly
 - Few blasts (usually <2%)
- Accelerated phase (usually months)
 - Treatment failure (rising WBC)
- Blast crisis
 - Acute leukemia (>20% blasts in periphery or marrow)
 - Usually myeloblasts (AML)
 - Less commonly lymphoblasts (ALL)

Left Shift

Leukemoid Reaction

- Normal response to infection
- More bands and neutrophils
- Must be distinguished from CML

	Normal	Infection
WBC	10,000/µL	17,000 /µL
Neutrophils	55%	80%
Bands	5%	12%

LAP

Leukocyte Alkaline Phosphatase

- Enzyme found in normal neutrophils
- Absent in neutrophils of CML
- Enzyme level assessed with LAP score
 - Low = CML
 - High = Leukemoid reaction
- Largely replaced by testing for Ph chromosome

Philadelphia Chromosome

- Genetic hallmark of CML
- 9;22 translocation
- BCR-ABL fusion gene
- Synthesis tyrosine kinase protein
- Long cell life \rightarrow accumulation

Aryn89/Wikipedia

Tyrosine Kinase Inhibitors

Imatinib, Dasatinib, Nilotinib

- Used for treatment in CML (chronic phase)
- Long term control of disease (not curative)
- Bone marrow transplant often used after failure

ProjectManhattan/Wikipedia

Chronic Lymphocytic Leukemia

- Disorder of naïve lymphocytes
 - Not blasts
 - Newly produced by bone marrow
- Characteristic immunophenotype
 - CD5+ B cells
 - "Co-express CD20 and CD5"

SLL

Small lymphocytic lymphoma

- Same malignant cells as CLL
- Differentiated by degree of lymphocytosis (¹WBC)
- CLL: Increased WBC
- SLL: normal or mild lymphocytosis
- SLL definition: lymphocyte count of <5000
- CLL definition: lymphocyte count of >5000

Chronic Lymphocytic Leukemia

- Median age 60
- Patients often asymptomatic
 - Routine CBC: Increased lymphocytes
 - 5-10% of patients have B symptoms (fevers, sweats)
- Signs
 - Lymphadenopathy, splenomegaly, hepatomegaly
- Many patients observed without treatment

Chronic Lymphocytic Leukemia

- Smudge cells
 - Peripheral lymphocytes are fragile
 - Disrupted during preparation of blood smear

Paulo Henrique Orlandi Mourao/Wikipedia

Chronic Lymphocytic Leukemia

- B-cell disruption
- Hypogammaglobulinemia
 - Usually↓IgG, IgA, IgM
 - Increased susceptibility to bacterial infections
- Autoantibodies
 - Not produced by malignant cells
 - Produced by non-neoplastic cells (self-reactive)
 - Autoimmune hemolytic anemia

Chronic Lymphocytic Leukemia

- May transform into **diffuse large B cell lymphoma**
- Classic presentation
 - Patient with known CLL
 - Rapid growth of single lymph node
 - Biopsy: diffuse large B cell lymphoma

Hairy Cell Leukemia

- Rare chronic B-cell malignancy
 - Express CD19, CD20, CD22
 - CD103: sensitive marker
- Peripheral smear: hairy cells
 - Lymphocytes
 - Hair-like cytoplasm projections

Paulo Henrique Orlandi Mourao/Wikipedia

Hairy Cell Leukemia

Unique Features

- Massive splenomegaly
 - Red pulp engorged
 - Atrophy or obliteration of white pulp
- "Dry tap" on bone marrow biopsy
 - Hairy cells induce marrow fibrosis
- Tartrate-resistant acid phosphatase (TRAP)
 - Cellular enzyme
 - Hairy cells: strong positivity for TRAP staining

Hairy Cell Leukemia

Clinical features

- Median age: 52
- Presenting feature often abdominal pain
- Fatigue, weakness
- Splenomegaly
- Bone marrow suppression (anemia, ↓platelets)

Cladribine

2-chlorodeoxyadenosine (2-CdA)

- Preferred initial therapy for HCL
- Excellent clinical response
- Similar to adenosine ("purine analog")
- Highly toxic to leukemic cells in HCL

Boards&Beyond

Hodgkin Lymphoma

Jason Ryan, MD, MPH

Lymphomas

- Malignancies of lymphocytes (B cells, T cells)
- Often involve lymph nodes
- Also "extranodal" (skin, GI tract)

Lymphomas

Signs and Symptoms

- Enlarged, painless lymph nodes
- "B symptoms"
 - Systemic symptoms
 - Fever, chills, night sweats

Reed-Sternberg Cells

- Large cell
- Multi-lobed nucleus
 - Two halves; often mirror images ("owl-eyed")
- Usually derive from B cells (rarely from T cells)
- Usually CD15+ and CD30+
- Usually NOT positive for B cell markers
 - CD19, CD20, CD21, CD22
- Sometimes seen in other disorders

Reed-Sternberg Cells

Nva1991/Wikipedia

- Malignant cell: Reed-Sternberg cell
 - A *minority* of cells in enlarged nodes (~1 to 5%)
- Release cytokines \rightarrow generate reactive cells
 - Majority of cells in node are reactive
 - B symptoms common (more than non-Hodgkin lymphoma)

 1α - hydroxylase 1,25-OH₂ Vitamin D

• Macrophages may activate \rightarrow hypercalcemia

25-OH Vitamin D

Boards&Beyond

- Commonly presents with cervical lymphadenopathy
 - Often with B symptoms
- Spreads in a very predictable manner
- Limited disease highly curable
- **Stage** is strongest predictor of prognosis

- Bimodal age distribution
 - Peaks at age 20 and 65
- Risk factors
 - Prior EBV infection (virus infects B cells)
 - Immunosuppression (HIV, transplant)
 - Autoimmune disease: Rheumatoid arthritis and lupus
- Treatment: chemotherapy and radiation

Lymphocyte Predominant

Nodular Lymphocyte Predominant

- Rare variant of Hodgkin lymphoma
- Malignant cell: LP cells
 - Lymphocyte predominant
 - Sometimes called "popcorn cells"
- Unusual surface marker expression
 - Usually lack CD15 and CD30
 - Express CD20

Popcorn Cells

Nephron/Wikipedia

Classical Hodgkin Lymphoma

Nodular sclerosing

- Most common type HL: 60% to 80% of all cases
- More common in women (most HL more common men)
- Often presents with a **mediastinal mass on CXR**
- Reed-Sternberg cells seen in clear space ("lacunar variant")
- Slow growing ("indolent")
- Good long-term survival

Classical Hodgkin Lymphoma

- Mixed cellularity
 - Eosinophils, neutrophils, macrophages, plasma cells
- Lymphocyte rich
 - Excellent prognosis
- Lymphocyte depleted
 - Poor prognosis

Hodgkin versus. Non-Hodgkin Clinical Features

Hodgkin

- Often localized
- Orderly spread from node to node
- Extranodal involvement rare

Non-Hodgkin

- Often multiple peripheral sites
- Noncontiguous spread
- Extranodal involvement common
 - GI (thickened bowel wall)
 - Skin

Treatment

- Many different regimens
- ABVD
 - Adriamycin (doxorubicin) cytotoxic antibiotics
 - Bleomycin cytotoxic antibiotics
 - Vinblastine microtubule inhibitor
 - Dacarbazine alkylating agent

Non-Hodgkin Lymphoma

Jason Ryan, MD, MPH

Lymphomas

- Malignancies of lymphocytes (B cells, T cells)
- Often involve lymph nodes
- Also "extranodal" (skin, GI tract)

Hodgkin versus. Non-Hodgkin Clinical Features

Hodgkin

- Often localized
- Orderly spread from node to node
- Extranodal involvement rare

Non-Hodgkin

- Often multiple peripheral sites
- Noncontiguous spread
- Extranodal involvement common
 - GI (thickened bowel wall)
 - Skin

Waldeyer's Ring

- Lymphoid tissue in the pharynx
- Often involved in non-Hodgkin lymphoma
 - Rare in Hodgkin lymphoma

Wikipiedia/Public Domain

Lymphocyte Antigens

Primarily	Primarily
T-Cell Associated	B-cell Associated
CD1 CD2 CD3 CD4 CD5 CD7 CD8	CD10 CD19 CD20 CD21 CD22 CD23

Non-Hodgkin Lymphoma

- B and T cell malignancies
 - Most are B cell disorders
 - Malignant cells obliterate lymph node architecture
- More than two dozen subtypes per WHO
- Classified by:
 - B versus T cell
 - Cell size (small versus large)
 - Histologic appearance
 - Expression of markers ("immunophenotype")
 - Genetics

Non-Hodgkin Lymphoma

- Follicular
- Marginal cell
- Mantle zone
- Diffuse Large B Cell
- Small lymphocytic lymphoma
- Burkitt's
- Adult T-cell Leukemia/Lymphoma
- Cutaneous T-cell Lymphomas

Lymphoid Follicles

Gleiberg/Wikipedia

- Most common NH lymphoma
- B cell malignancy
 - Express CD19, CD20
 - Most cells express surface immunoglobulin

Boards&Beyond.

KGH/Wikipedia

- Median age at presentation is 64 years
- Occurs in HIV
 - AIDS defining malignancy

Prognosis

- Variable prognosis
- International Prognostic Index (IPI) score
 - Age >60 years
 - Increased LDH
 - Patient functional status
 - Clinical stage
 - Number of extranodal sites

Rituximab

- Monoclonal CD20 antibody
- Used in CD20+ B cell lymphomas
 - Diffuse large B cell
 - Follicular

Boards&Beyond.

Patho/Wikipedia

- B cell malignancy
 - Usually express CD19, CD20
 - Most cells express surface immunoglobulin

- Genetic hallmark: 14;18 translocation
- Overexpression of BCL2

Boards&Beyond

- Blocks apoptosis ("antagonist" of apoptosis)
- Germinal center B cells usually lack BCL2
- Undergo apoptosis unless selected by somatic hypermutation

- Median age at diagnosis: 65 years
- Indolent course: waxes/wanes for years
 - Not all patients require treatment
 - Difficult to cure
- Diffuse large B cell lymphoma (DLBCL)
 - Histologic transformation: 10 to 70% cases over time
 - Poor prognosis

Lymphoma vs. Reactive

- Follicular lymphoma vs. reactive lymphadenopathy
 - Both have ↑ follicle growth
 - Must distinguish in diagnosis of lymphoma
- Reactive lymphadenopathy (LAD)
 - Somatic hypermutation of B cells
 - Apoptosis of many B cells
 - B cell death \rightarrow debris \rightarrow macrophages

Lymphoma vs. Reactive

Lymphoma	Reactive LAD
Similar size/shape follicles	Varying size/shape follicles
Relative absence of macrophages	Tingible body (debris-laden) macrophages
++ BCL2 Staining	BCL2 Staining

Mantle Cell Lymphoma

- B cell malignancy
 - Follicle mantle or germinal center
 - Usually express CD19,CD20
 - Most cells express surface immunoglobulin
 - Express CD5 ("Co-express CD20 and CD5")
- Median age at diagnosis: 68 years
- Median overall survival: 3 to 4 years (poor prognosis)

Mantle Cell Lymphoma

- 50 to 65%: **11;14 translocation**
- Overexpression of cyclin D1
 - Promotes cell cycle transition from G1 to S phase

Marginal Zone Lymphoma

- B cell malignancies
- Marginal zone forms from inflammation
- Often extranodal
- Lymphoma in chronic inflammatory disorders
 - Salivary glands in Sjogren's
 - Thyroid gland in Hashimoto's thyroiditis
 - Stomach in chronic H. Pylori infection (MALToma)

Small Lymphocytic Lymphoma

- CD5+ B cells
 - "Co-express CD20 and CD5"
 - Similar markers to mantle cell lymphoma
 - Typically negative for cyclin D1
- Same malignant cells as CLL
 - Only difference is degree of lymphocytosis (1WBC)
 - Peripheral blood: normal or mild lymphocytosis
- SLL definition: lymphocyte count of <5000
 - If >5000 \rightarrow CLL

- B cell malignancy
 - Usually express CD19, CD20
 - Most cells express surface immunoglobulin
- Very aggressive rapid proliferation
- Key distinctions:
 - "Starry sky" morphology
 - Epstein-Barr virus (EBV)
 - C-myc translocation

Wikipedia/Public Domain

Endemic form

- Found in Africa and New Guinea
- 30 to 50% of childhood cancer in some regions
- Children four to seven years old
- Male to female ratio ~ 2:1
- Commonly presents as mass in the **mandible**
- Sporadic form
 - Also occurs in children
 - Abdominal mass: ileocecum or peritoneum

Mike Blyth/Wikipedia

Associations

- Epstein Barr virus (EBV) infection
 - Nearly all endemic tumors associated with latent infection
 - Express CD21 (EBV receptor)

Associations

Boards&Beyond.

- C-myc translocation
 - Growth promoter
 - Activates transcription

T-Cell Leukemia/Lymphoma

- CD4+ T cell malignancy
- Occurs with HTLV-1 infection
 - RNA Virus
 - Infects CD4+ T cells
- Key diagnostic test: anti-HTLV1 antibodies

T-Cell Leukemia/Lymphoma

- Clinical scenario
 - Patient from Japan, Caribbean, West Africa (endemic regions)
 - Lymphocytosis
 - Lymphadenopathy
 - Skin lesions (ulcers, nodules, papular rash)
 - Rapidly progressive symptoms \rightarrow usually fatal in months
- Lytic bone lesions with 1 calcium
 - Don't confuse with multiple myeloma

Cutaneous T-cell Lymphoma

- Skin disorder of malignant T-cells
 - Variable expression of CD markers
- Presents with skin lesions
 - Localized disease: Mycosis Fungoides
 - Diffuse systemic disease: Sezary syndrome

Cutaneous T-cell Lymphoma

- Mycosis Fungoides
 - Patches, plaques, tumors
 - Varying size/shape
 - Lesions progress slowly changing size/shape/appearance
 - "Indolent": Slowly developing
 - Classically in a "bathing trunk" distribution
- Diagnosis: Skin biopsy shows lymphoid cells
 - Upper dermis
 - Epidermal aggregates (Pautrier microabscesses)

Cutaneous T-cell Lymphoma

- Sezary syndrome
 - T-cell lymphoma affecting skin of entire body
 - Widespread erythema (skin bright red)
 - Lymphadenopathy
 - Malignant cells in blood (Sezary cells)

El*Falaf

Multi-lobed nucleus "Cerebriform"

Plasma Cell Disorders

Jason Ryan, MD, MPH

Hematopoiesis

Boards&Beyond.

Mikael Häggström /Wikipedia

- Malignancy of plasma cells
 - Dependent on IL-6
 - Required for myeloma cell proliferation
- Excess production of immunoglobulin
- Disorder of older patients (median age: 66)

IL-6

- IgG (~50%)
- IgA (~20%)
- Light chains only (~15%)

IgA

• "Paraproteins"

Fvasconcellos /Wikipedia

IgG

Light Chains

- Two types: Kappa (κ) or lambda (λ)
 - Each antibody: two identical light chains
 - Heavy chain type determines antibody type: G, A, E, etc.
- Slight excess of light chains produced normally
- Filtered by glomerulus \rightarrow reabsorbed proximal tubule

Light Chains

- Excess light chains can occur in multiple myeloma
- Excess light chains leads to pathology:
 - Renal damage
 - AL amyloidosis

Yohan/Wikipedia

SPEP

Serum protein electrophoresis

- Electrical current separates serum proteins
 - Based on size and charge
- Gamma fraction contains immunoglobulin
- Multiple myeloma: "M spike"

Clinical Features

- Bone pain/fractures
- Hypercalcemia
- Renal failure
- Anemia
- Infections

Bone/hypercalcemia

- Osteoclast-mediated bone resorption
- Caused by **cytokines** from myeloma cells
- "Lytic lesions" on x-ray ("punched out")
- Pathologic fractures, especially vertebral column
- Elevated serum calcium

Utsav Agrawal

Renal Failure

- Caused by light chains and hypercalcemia
- Light chains ("myeloma kidney")
 - Small amount of light chains normally filtered/reabsorbed
 - MM: proximal tubular capacity exceeded
 - Light chains reach distal tubule
 - Combine with Tamm–Horsfall mucoprotein (THP)
 - Form obstructing casts
 - Light chains in urine = "Bence Jones" proteins

Renal Failure

• Hypercalcemia

- Impairs renal ability to concentrate urine
- Polyuria \rightarrow volume contraction
- Decreased GFR

Renal Failure

Boards&Beyond

- Urine dipstick negative for protein
 - Mostly detects albumin
 - Poor detection of light chains
- Urine protein electrophoresis (UPEP)
 - Similar to SPEP ("SPEP/UPEP")
 - Detects light chains ("Bence Jones proteins")

Renal Failure

- Serum free light chain
 - Antibody-based system
 - Sensitive test for *serum* kappa/lambda light chains
 - Alternative to UPEP

Anemia

- Normocytic, normochromic
- Multifactorial
 - Bone marrow replacement by plasma cells
 - Renal failure (low EPO)
- Weakness, pallor often present at diagnosis

Infections

- Infection is leading cause of death
- Decreased production of normal immunoglobulins
 - Depressed humoral immunity
- Recurrent bacterial infections
 - Strep Pneumoniae
 - Staph Aureus
 - E. Coli

Rouleaux

- RBCs form a stack of coins
- Caused by elevated protein levels in plasma

Gabriel Caponetti /Wikipedia

Diagnosis

- SPEP: Monoclonal protein
- Diagnostic criteria
 - Bone marrow biopsy: clonal bone marrow plasma cells
 - End-organ damage

MGUS

Monoclonal gammopathy of undetermined significance

- Asymptomatic plasma cell disorder
- Abnormal SPEP (presence of M protein)
- No end-organ damage
- Can progress to multiple myeloma
- Often detected in workup of another problem
 - Anemia
 - Hypercalcemia
 - Bone pain

Waldenstrom Macroglobulinemia

- Also called lymphoplasmacytic lymphoma
- B-cell lymphoma
- Tumor cells differentiate into plasma cells
- Produce IgM antibodies
- Leads to hyperviscosity symptoms

Martin Brändli /Wikipedia

Waldenstrom Macroglobulinemia

- Weakness, fatigue, weight loss
- Lymphadenopathy (25% of patients)
 - Sometimes splenomegaly, hepatomegaly
- No osteolytic bone lesions
- SPEP: M spike from IgM

Steven Fruitsmaak

Hyperviscosity Syndrome

- IgM increases viscosity of blood
- Sluggish blood flow and sludging
- CNS: Headache, dizziness, coma
- Visual impairment
- Medical emergency: emergent plasmapheresis

Amyloidosis

Jason Ryan, MD, MPH

Amyloid

- Amyloid: Pathologic aggregate of amyloid proteins
- "Pathologic:" Damages tissues
- Accumulates in **extracellular** space of tissues
- Amyloid proteins:
 - More than 20 proteins form amyloid
 - Different proteins = different diseases

Amyloid

- Localized amyloid deposition
 - Alzheimer's: Beta Amyloid
 - Cerebral amyloid angiopathy: Beta Amyloid
 - Type II diabetes: Amylin deposits in pancreas
- Diffuse amyloid deposition = amyloidosis

Systemic Amyloidosis

- Primary (AL) amyloidosis: Light chains
- Secondary (AA) amyloidosis: Serum amyloid A
- Dialysis-related amyloidosis: Beta-2 microglobulin
- Age-related systemic amyloidosis: : Transthyretin
- Familial
 - Many types
 - Most common: Abnormal transthyretin gene

Transthyretin

- Formerly called prealbumin
- Transports thyroid hormone and retinol (vitamin A)
- Amyloidosis: Amyloid transthyretin (ATTR)
- Mutant form seen in hereditary amyloidosis
- Normal transthyretin seen in **age-related** amyloidosis

Amyloid

- Pink on standard biopsy
 - Similar to collagen, fibrin, other proteins
- Specialized stain for detection
 - Congo red
 - Pink under ordinary light
 - Shows apple-green birefringence under polarized light

Amyloid

Forms beta-pleated sheets

- Secondary protein structure
- Detected by crystallography and spectroscopy
- Responsible for Congo Red staining

AL Amyloidosis

Primary Amyloidosis

- Plasma cell malignancy ("dyscrasia")
 - Amyloid formed from **light chains**
 - Can occur alone
 - Also in association with MM, Waldenstrom's, lymphoma
- Bone marrow biopsy: monoclonal plasma cells
- Can be treated with stem cell transplantation

AA Amyloidosis

Secondary Amyloidosis

- Occurs in chronic inflammatory conditions
- Rheumatoid arthritis, ankylosing spondylitis, IBD
- Amyloid: serum amyloid A (SAA) proteins
 - SAA proteins: acute phase reactants
 - Apolipoproteins
 - Many roles in inflammatory response

Familial Mediterranean Fever

- Rare hereditary disorder
- Inflammatory disease
- Involves neutrophils

- Recurrent episodes of fever and inflammatory pain
- "Serosal" inflammation
 - Abdominal pain; pericarditis
- Secondary (AA) amyloidosis: major cause of death
- Treatment: **Colchicine** (inhibits neutrohpils)

Dialysis-related Amyloidosis

β2 microglobulin

- Complication of renal failure
- Dialysis does not effectively remove β2 microglobulin
- Bones, joints, tendons
- Shoulder pain
- Carpal tunnel syndrome

Age-related Amyloidosis

Senile Amyloidosis

• Wild-type (normal) transthyretin

- Usually develops >70 years old
- Predominantly occurs in the heart
- Rarely other significant organ involvement

Familial Amyloidosis

Mutant transthyretin

- Produced by liver
- Can be treated with liver transplant
- Symptoms in adulthood

Wikipedia/Public Domain

Amyloidosis Clinical Features

- May involve almost any tissue/organ
- Skin: Periorbital purpura (raccoon eyes)
- Muscles: Enlarged tongue
- Nerves: Peripheral neuropathy
- Liver: Hepatomegaly
- Bowel: Malabsorption
- Blood vessels: Bleeding

Professor P N Hawkins

Amyloidosis Clinical Features

- Kidneys
 - Most commonly involved organ
 - Leads to proteinuria and the **nephrotic syndrome**

Image courtesy of BruceBlaus

Amyloidosis Clinical Features

- Heart
 - Can cause a **restrictive** cardiomyopathy
 - Common with light chains and transthyretin amyloidosis
 - Increased wall thickness, diastolic heart failure
 - Arrhythmias, sudden death

Boards&Beyond

Amyloidosis Diagnosis

- Biopsy: tissue infiltration of amyloid
- Abdominal fat pad preferred
 - Easy to access (low risk procedure)
 - Good sensitivity

Wikipedia/Public Domain

Myeloproliferative Disorders

Jason Ryan, MD, MPH

Myeloproliferative Disorders

- Disorders of myeloid proliferation
 - Granulocytes, red cells, platelets
- Often leads to increased peripheral cell counts
 - Chronic myeloid leukemia: granulocytes
 - Essential thrombocytosis: platelets
 - Polycythemia vera: red blood cells

Major Types

- Chronic myeloid leukemia (granulocytes)
- Essential thrombocytosis (platelets)
- Polycythemia vera (red blood cells)
- Myelofibrosis

Major Types

- Chronic myeloid leukemia (granulocytes)
- Essential thrombocytosis (platelets)
- Polycythemia vera (red blood cells)
- Myelofibrosis

Myeloproliferative Disorders Major Types

Disorder	Genetics	
Chronic Myelogenous Leukemia	Philadelphia Chromosome t 9;22; BCR-ABL	
Polycythemia Vera	JAK2 (~100%)	
Essential Thrombocytosis	JAK2 (~60%)	
Myelofibrosis	JAK2 (~60%)	

JAK2 Mutation

- Gene for cytoplasmic tyrosine kinase
 - Chromosome 9
- Mutation \rightarrow \uparrow tyrosine phosphorylation
- Progenitor cells: Hypersensitivity to cytokines
- More growth; longer survival

Elevated red blood cell mass

Measurement	Normal	P. Vera
Hgb (g/dL)	15	20
Hct (%)	45	60

- Must exclude other causes
 - Hypoxia (lung disease)
 - EPO secreting tumor (renal cell carcinoma)

Measurement	Hypoxia	RCC	P. Vera
PaO ₂	\downarrow	Normal	Normal
EPO	↑	↑	\downarrow

Symptom Mechanisms

Increased RBC mass

- Leads to increase in blood volume
- Causes hypertension, flushing
- Thrombosis
 - Increased viscosity of blood
 - Also increased platelets

Symptoms

- Many patients asymptomatic (routine CBC)
- Red, puffy skin ("facial plethora")
- Aquagenic pruritus
 - "Unbearable" pruritus after warm bath or shower
- Deep vein thrombosis
 - Classically Budd Chiari syndrome (hepatic vein)

Treatment

- Phlebotomy
- Hydroxyurea
 - Inhibits ribonucleotide reductase
 - Blocks formation of deoxynucleotides for DNA

Public Domain

Polycythemia Vera Complications

- Spent phase (~15% of patients)
 - Progression to myelofibrosis

• Leukemia

- Usually acute myeloid leukemia (AML)
- Rarely chronic myeloid leukemia (CML)
- Gout
 - Excess DNA turnover from 1 RBC production
 - Increased **purine** metabolism \rightarrow \uparrow uric acid
 - Also seen in CML

Essential thrombocythemia

- Malignant proliferation of myeloid cells
- Predominantly affects megakaryocytes/platelets

Essential thrombocythemia

- "Diagnosis of exclusion"
- Must exclude a reactive thrombocytosis
 - Iron deficiency anemia
 - Acute bleeding or hemolysis
 - Infections/inflammation
 - Metastatic cancer
- Key blood test: acute phase reactants
 - C-reactive protein, fibrinogen, ESR, ferritin
 - Increased levels suggest occult inflammatory process

Symptoms

- Abnormal platelet function
- Bleeding
- Thrombosis

Prognosis and Treatment

- Most patients have no disease-related complications
- Polycythemia vera complications unusual
 - AML, myelofibrosis, hyperuricemia
- High risk patients treated with:
 - Hydroxyurea
 - Aspirin

Myelofibrosis

- Primary myelofibrosis
 - Myeloproliferative disorder
- Secondary myelofibrosis
 - Polycythemia vera, chronic leukemia, other causes

Primary Myelofibrosis

- Excess collagen from fibroblasts \rightarrow marrow fibrosis
- Stimulation by growth factors of megakaryocytes
 - Platelet-derived growth factor (PDGF)
 - Transforming growth factor beta (TGF-B)

Primary Myelofibrosis

Pathophysiology

- Marrow failure → extramedullary hematopoiesis
- Spleen, liver, lymph nodes
- Can be seen in CNS, lungs, bladder, even in skin!

Primary Myelofibrosis

Clinical Features

- Occurs in older patients (median age 67)
- Fatigue, weight loss, night sweats
 - Increased metabolism

Primary Myelofibrosis

Clinical Features

- Massive splenomegaly
 - Spleen: principle site of **extramedullary hematopoiesis**
 - Left upper abdominal pain
 - Early satiety (compression of stomach)
- May also see enlarged liver, lymph nodes
- Leukoerythroblastosis
 - Inappropriate release of cells from marrow
 - Immature erythroid and granulocyte precursors in blood

Primary Myelofibrosis

Clinical Features

- Normocytic, normochromic anemia
 - Severe
 - Hemoglobin often less than 10g/dL
- WBC and platelets variable
 - Elevated, normal, or reduced
 - Immature neutrophils seen
 - Myeloblasts
- Hyperuricemia (gout)
 - High cell turnover \rightarrow increased metabolism
- Treatment: Stem cell transplant

Tear Drop Cells

Dacrocytes

- Classic finding of myelofibrosis
- Red blood cells deformed leaving fibrotic marrow

Paulo Henrique Orlandi Mourao/Wikipedia

Langerhans Cell Histiocytosis

- Histiocyte = connective tissue macrophage
- Histiocytosis = proliferation of histiocytes
- Langerhans Cell = dendritic cells
 - Common in skin, connective tissue
 - Consume antigens
 - Migrate to lymph nodes
 - Present antigens \rightarrow activate T-cells

Langerhans Cell Histiocytosis

- Clonal proliferation of dendritic cells
- Cells of myeloid origin
- Express CD1a, S100, CD207
 - Same as Langerhans cells

Birbeck Granules

- Found in cytoplasm of Langerhans cells
- Seen on electron microscopy

Yale Rose/Wikipedia

Langerhans Cell Histiocytosis Clinical Features

- Most common in children
- Can involve any organ system
- Often involves **bone** and **skin**

Langerhans Cell Histiocytosis Clinical Features

Letterer-Siwe Disease Occurs in child (~2 years old) Diffuse skin rash Cystic bone lesions Multi-system failure Rapidly fatal

Eosinophilic Granuloma Adolescents No skin involvement Pathologic bone fracture NOT osteosarcoma Langerhans cells/eosinophils

<u>Hand-Schuller-Christian Disease</u> Triad: skull, diabetes insipidus, exophthalmos Scalp lesion Posterior pituitary (DI) Protrusion of eye

Langerhans Cell Histiocytosis Clinical Features

Madhero88/Wikipedia

Countincr/Wikipedia

Antimetabolites

Jason Ryan, MD, MPH

Antimetabolites

- Chemotherapy drugs used to treat malignancy
- Block formation of components of DNA
- Cell cycle specific
- Toxic effects in **S phase** of cell cycle

Antimetabolites

- Cytarabine
- Cladribine
- Methotrexate
- 5-fluorouracil
- Azathioprine
- 6-mercaptopurine
- 6-thioguanine
- Hydroxyurea

Nitrogenous Bases

Pyrimidines

Cytosine

Thymine

Purines

Adenine

Guanine

Boards&Beyond.

Nucleotides

Deoxyribonucleotides

Common Side Effects

- Drugs target rapidly dividing cells (DNA synthesis)
- Bone marrow precursors cells: rapidly dividing
- Myelosuppression
 - Megaloblastic anemia
 - Thrombocytopenia
 - Leukopenia
- Absolute neutrophil count (ANC)
 - Less than 500 cells/µL = neutropenia
 - High risk of infections

Megaloblastic Anemia

- Anemia (↓Hct)
- Large RBCs (↑MCV)
- Hypersegmented neutrophils
- Commonly caused by defective DNA production
 - B12/Folate deficiency
 - Chemotherapy drugs (MTX, 5-FU, hydroxyurea)

Wikipedia/Public Domain

Cytarabine

Ara-C or cytosine arabinoside

- **Pyrimidine** analog
- Mimics cytidine
- Inhibits DNA polymerase

Cytarabine

Ara-C or cytosine arabinoside

- Only effective in leukemia and lymphomas
- Adverse effects
 - Myelosuppression
 - Nausea/vomiting
 - High doses: Neurotoxicity
 - Peripheral neuropathy, confusion, cerebellar ataxia

Cladribine

- Purine analog
- Mimics adenosine
- Highly toxic to lymphocytes
- Drug of choice in hairy cell leukemia
- Main adverse effect is myelosuppression

- Mimics of folate
- Inhibits dihydrofolate reductase
- Blocks synthesis if tetrahydrofolate
- Required for DNA, RNA, some proteins
- Blocks synthesis thymidine (dTMP)

Clinical Uses

- Oral or intravenous
- Many malignancies
 - Solid tumors
 - Leukemia/Lymphomas
- Immunosuppression
 - Autoimmune diseases
 - "Steroid sparing" agents
 - Used to wean/eliminate need for long-term steroid use
- Pregnancy abortion
 - Ectopic/tubal pregnancies

Side Effects

- Myelosuppression
 - More common with high doses
 - Reversible with leucovorin (folinic acid)
 - Converted to THF
 - Does not require dihydrofolate reductase
 - "Leucovorin rescue"

Side Effects

- Mucositis (mouth soreness)
 - Occurs with many chemo agents
 - Common with methotrexate
 - GI epithelial cell damage
 - Loss of mucosal integrity \rightarrow pain, bacterial growth
- Abnormal LFTs, GI upset

Side Effects

- Rarely causes methotrexate-induced lung injury
 - Often after week/months of low-dose therapy
 - Usually a hypersensitivity reaction
 - Lymphocytes, eosinophils
 - Can progress to pulmonary fibrosis
 - Usually resolves on discontinuation of drug

5-Fluorouracil **5-FU**

Uracil

- Mimics uracil (pyrimidine)
- Converted to 5-FdUMP (abnormal dUMP)
- Inhibition thymidylate synthase
- Blocks dTMP synthesis ("thymineless death")
- Effects *enhanced* by leucovorin

5-FU

- Commonly used in colorectal cancer
- Other solid tumors: breast, pancreas
- Topical therapy for basal cell skin cancer
- Adverse effects
 - Myelosuppression
 - Nausea/vomiting/diarrhea
 - Mucositis
 - Cerebellar ataxia and encephalopathy (rare)
 - Coronary vasospasm

6-Mercaptopurine

- Mimics hypoxanthine/guanine (purines)
- Added to PRPP by HGPRT \rightarrow Thioinosinic acid
- Inhibits multiple steps in purine salvage
- ↓IMP/AMP/GMP

Purine Salvage Pathway

Azathioprine

- Pro-drug
- Converted by the body to 6-MP

Azathioprine

6-MP

Azathioprine/6-MP

Clinical Uses

- Immunosuppression
 - Steroid sparing agents
 - Inflammatory bowel disease
 - Solid organ transplant
 - Autoimmune diseases

Azathioprine/6-MP

Adverse Effects

- Myelosuppression
- Abnormal LFTs
- Anorexia/nausea/vomiting

Xanthine Oxidase

- Purine metabolism enzyme
- Converts xanthine into uric acid
- Inhibited by allopurinol and febuxostat (gout)

Azathioprine/6-MP

- Also metabolized by xanthine oxidase
- Converts 6-MP to inactive metabolite
- Caution with allopurinol/febuxostat

6-Thioguanine

- Also mimics hypoxanthine/guanine (purines)
- Similar mechanism to 6-MP
- ↓IMP/AMP/GMP

Guanine

6-TG

Hydroxyurea

- Inhibits **ribonucleotide reductase**
- Blocks formation of deoxynucleotides
- Good oral bioavailability can be used PO
- Main adverse effect is myelosuppression

Hydroxyurea

- Rarely used for malignancy
- Used for polycythemia vera, essential thrombocytosis
- Used in sickle cell anemia
 - Increases fetal hemoglobin levels (mechanism unclear)

Antimetabolites

Folate	Purines	Pyrimidines	Other
Methotrexate	Cladribine 6-MP Azathioprine 6-TG	Cytarabine 5-FU	Hydroxyurea

Jason Ryan, MD, MPH

Alkyl Groups

- Molecular groups with formula: C_nH_{2n+1}
- Methyl group: -CH₃
- Ethyl group: -CH₂CH₃
- Propyl group: -CH₂CH₂CH₃

- Add alkyl groups to nucleotide bases
- Most commonly N7 nitrogen of guanine
- DNA strands cross link
- Inhibit DNA replication and cause DNA damage
- Cell cycle non-specific

N7 interstrand crosslinked DNA

- Nitrogen mustards
- Nitrosoureas
- Busulfan
- Dacarbazine

Nitrogen Mustards Alkylating Agents

- Alkylating agents similar to mustard gas
- Contain nitrogen and two chlorine atoms

Nitrogen Mustards Alkylating Agents

- Intravenous or oral forms
 - Good bioavailability when given orally
- Powerful immunosuppressant
 - Used in vasculitis, glomerulonephritis (oral)
- Solid tumors, lymphomas, leukemia

Cyclophosphamide

- Prodrug: Requires bioactivation by **liver**
 - Converted to phosphoramide mustard
 - Metabolized by liver P450 system

Wikipedia/Public Domain

Side Effects

- Myelosuppression
 - ↓WBC, ↓Hct, ↓Plt
- Hemorrhagic cystitis
 - Acrolein metabolite toxic to bladder
 - Hematuria +/- dysuria
 - Lower risk with hydration and mesna
 - Mesna: sodium 2-mercaptoethane sulfonate
 - Mesna binds and inactivates acrolein in the urine

Side Effects

- SIADH
 - Drug has antidiuretic affects
 - Usually occurs with IV dosing for chemotherapy
 - Hyponatremia; possible seizures
 - Compounded by IVF
 - Complex mechanism: More ADH release, less renal response

Holly Fischer/Wikipedia

Ifosfamide

- Isomer of cyclophosphamide
- Used in germ cell cancer and sarcomas
- May also cause hemorrhagic cystitis

Ifosfamide

- Special side effect: nephrotoxicity
- Ifosfamide

• May cause **Fanconi syndrome**

Toxic to proximal tubular cells

• Polyuria

- Electrolyte losses: Hypokalemia, hypophosphatemia
- Metabolic acidosis (loss of bicarb in urine)
- Special side effect: encephalopathy
 - 10-30% of patients

Nitrosoureas

Lomustine chloroethylnitrosourea CCNU

Semustine

Nitrosoureas

- Bioactivated in liver
- Highly lipid soluble \rightarrow cross blood-brain barrier
- Used for brain tumors (glioblastoma multiforme)

Wikipedia/Public Domain

Nitrosoureas

Toxicity

- Myelosuppression
- Rarely leads to pulmonary fibrosis
- Rarely chronic interstitial nephritis (renal failure)
- Encephalopathy and seizures
 - Very high dosages (BCNU for bone marrow transplant)

Busulfan

Myeloablation

- Single, high-dose of Busulfan
- Results in severe pancytopenia (bone marrow ablation)
- Preparation for stem cell transplant
- Chronic myeloid leukemia (CML)

Busulfan

Toxicity

- Myelosuppression
- Skin hyperpigmentation
 - Also occurs with other chemotherapy (Bleomycin)
- Seizures (high dosages)

Busulfan

Toxicity

• Pulmonary toxicity

- Cough, dyspnea
- Can progress to pulmonary fibrosis
- Ground glass opacities
- Restrictive PFTs
- Reduced DLCO

Dacarbazine

- Part of ABVD protocol for Hodgkin lymphoma
 - Adriamycin (doxorubicin) cytotoxic antibiotics
 - Bleomycin cytotoxic antibiotics
 - Vinblastine microtubule inhibitor
 - Dacarbazine alkylating agent

Procarbazine

- Part of MOPP protocol for Hodgkin lymphoma
 - Mechlorethamine Mustard agent
 - Oncovin (Vincristine) Microtubule drug
 - Procarbazine
 - Prednisone

Antitumor Antibiotics

Jason Ryan, MD, MPH

Antitumor Antibiotics

- Drugs derived from *Streptomyces* bacterial strains
- Anthracyclines
- Dactinomycin
- Bleomycin

- Key drugs: daunorubicin and doxorubicin
- Others: idarubicin, epirubicin, mitoxantrone

Daunorubicin

Boards&Beyond

- Multiple toxic mechanisms
 - Inhibition of topoisomerase II \rightarrow DNA breaks
 - Intercalation of DNA \rightarrow blocks synthesis of DNA/RNA
 - Generation of free radicals
- Cell cycle non-specific

Topoisomerase II

- Cuts both strands of DNA helix then reseals
- Relieves tangles and supercoils
- Anthracycline inhibition \rightarrow breaks with no resealing
- Result: DNA damage

DNA Intercalation

- Binds to DNA
- Inserts between base pairs
- Inhibits replication/transcription

Wikipedia/Public Domain

Free Radicals

Clinical Uses

• Doxorubicin (Adriamycin)

- Widely used anticancer drug
- Breast cancer
- Many solid tumors
- Childhood cancers: neuroblastoma, Ewing's, osteosarcoma
- Leukemia/lymphoma

Cardiotoxicity

- Systolic heart failure (↓LVEF)
- Free radical damage to myocytes → necrosis
- Can present with dyspnea, fatigue, edema
- Screening: echocardiogram after infusions

Cardiotoxicity

• Rarely seen with lower total dosages

Dexrazoxane

- Iron chelating agent
- Limits anthracycline-induced cardiotoxicity

Dactinomycin

Actinomycin D

- Several mechanisms
 - Intercalates in DNA
 - Inhibits RNA synthesis (transcription)
 - Double strand breaks

Childhood cancers

- Neuroblastoma, Ewing's sarcoma, osteosarcoma
- Major adverse effect: myelosuppression

- Binds to DNA
- Free radical formation (oxygen, iron)
- Single and double strand breaks
- Cell cycle-specific drug: accumulates in G2 phase

Clinical Uses

- Lymphomas
- Germ cell tumors
- Head and neck cancer
- Squamous cell cancer of skin
- Cancers of cervix and vulva

Toxicity

- Inactivated by enzyme bleomycin hydrolase
- Lower enzyme activity in skin and lungs
- Skin toxicity
 - Many skin changes described
 - Also seen with other chemotherapy drugs (Busulfan)
 - "Flagellate erythema": Red/dark streaks on skin

Pulmonary Toxicity

- Dose-limiting adverse effect
- Usually presents as pneumonitis
 - Cough, dyspnea, crackles
 - Infiltrates on chest X-ray
- Risk factors
 - Older patients (>70)
 - Prior pulmonary disease

Microtubule Inhibitors

Jason Ryan, MD, MPH

Microtubules

- Polymers of α and β tubulin
- Can grow/collapse
- Flagella, cilia, cellular transport (axons)

Mitosis

- Part of cell cycle
- Separation of chromosomes for cell division
- Depends heavily on microtubules (mitotic spindle)
- Followed by cytokinesis: cell divides

Lordjuppiter /Wikipedia

Mitosis

Metaphase

 Chromosomes line up on metaphase plate

Ali Zifan/Wikipedia

Mitosis

Anaphase

• Chromosomes separate

Ali Zifan/Wikipedia

Cell Cycle

Microtubule Inhibitors

- Taxols
- Vinca alkaloids

Vocabulary

- Alkaloids
 - Naturally occurring substances
 - Nitrogen-containing bases
 - Usually derived from plants or trees

Nicotine (Tobacco)

Boards&Beyond

Paclitaxel, Docetaxel

- Alkaloids from yew trees
- Mitotic spindle poisons
- Bind microtubules
- Enhance tubulin polymerization
- Microtubules cannot break down
- Blocks cell cycle at metaphase/anaphase transition
- Anaphase cannot occur

Clinical Use

- Solid tumors
 - Ovarian and breast cancer
 - Non-small cell and small cell lung cancer
 - Head and neck cancers
 - Prostate and bladder cancer

Toxicity

- Hypersensitivity reactions (up to 30% patients)
 - Dyspnea/wheezing
 - Urticaria
 - Hypotension
- Premedication often used for prevention
 - Glucocorticoids and antihistamines
- Nabpaclitaxel (Abraxane)
 - Albumin-bound paclitaxel
 - Lower risk hypersensitivity reactions
 - Premedication not required

James Heilman, MD

Toxicity

- Myelosuppression
- Neuropathy
 - Sensory nerves
 - Usually burning paresthesias of hands/feet

Vinca Alkaloids

Vincristine, vinblastine

- Derived from periwinkle plant (Vinca rosea)
- Bind β-tubulin
- Inhibit polymerization
- Prevent spindle formation
- Mitotic arrest in metaphase

Vinca Alkaloids

Clinical Uses

- Breast cancer
- Germ cell cancer
- Lymphomas
- ABVD Protocol (Hodgkin lymphoma)
 - Adriamycin (doxorubicin) cytotoxic antibiotics
 - Bleomycin cytotoxic antibiotics
 - Vinblastine
 - Dacarbazine alkylating agent

Vinca Alkaloids

Toxicity

- Myelosuppression
- SIADH (rare)
- Vincristine: Neurotoxicity
 - Dose-limiting toxicity
 - Loss of axonal transport
 - Sensory and motor
 - Paresthesias/pain in fingers and feet
 - Distal weakness

DNA Drugs

Jason Ryan, MD, MPH

DNA Drugs

- Antitumor Antibiotics
- Alkylating agents
- Platinum agents
- Topoisomerase I and II inhibitors

Cisplatin, carboplatin, oxaliplatin

- Cross link DNA similar to alkylating agents
 - Most commonly at N7 nitrogen of guanine
 - "Alkylating like" drugs
 - Cell cycle nonspecific (like alkylating agents)

Cisplatin

Clinical Uses

- Solid tumors
 - Non-small cell and small cell lung cancer
 - Esophageal and gastric cancer
 - Head and neck cancers
 - Testicular cancer
 - Ovarian cancer

Toxicity

- All can cause **neuropathy**
 - Usually a peripheral sensory neuropathy
 - Pain, burning, tingling
 - Often in feet or hands
- May also cause ototoxicity (hearing loss)
- GI distress (nausea/vomiting) up to 90% patients

Pixabay/Public Domain

Nephrotoxicity

- Main, dose-limiting side effect of cisplatin
 - Often presents as acute kidney injury (↑BUN/Cr)
 - Prevented with IV fluids (normal saline)
 - Increase urine output (cause diuresis)
 - Amifostine: Free radical scavenger
 - Used in ovarian cancer with repeated cisplatin doses
- Carboplatin: less renal toxicity

Amifostine

Topoisomerases

- Relieve tangles and supercoils in DNA
- Cuts strands of DNA helix then reseal
- Chemotherapy inhibition \rightarrow breaks with no resealing
- Result: DNA damage
- Affect S/G2 phase (during/after DNA synthesis)

Topoisomerases

- Topoisomerase I
 - Breaks single strands of DNA then reseals
- Topoisomerase II
 - Breaks double strands of DNA then reseals

Topoisomerase I Inhibitors

Irinotecan, topotecan

- "Camptothecins"
- From Camptotheca ("happy tree") tree in China

Geographer/Wikipedia

Topoisomerase I Inhibitors Clinical Uses

- Irinotecan
 - Colon Cancer
- Topotecan
 - Ovarian cancer
 - Small cell lung cancer

Topoisomerase I Inhibitors Toxicity

- Myelosuppression
- Severe diarrhea
 - Risk of volume depletion

Elya/Wikipedia

Topoisomerase II Inhibitors Etoposide, teniposide

- Synthesized from Podophyllotoxins
- Derived from May apple plant (*Podophyllum*)

Wikipedia/Public Domain

Topoisomerase II Inhibitors Clinical Use

- Intravenous and oral
- Germ cell cancers
- Small cell and non-small cell lung cancer
- Lymphomas
- Main toxicity: Myelosuppression, nausea/vomiting

Other Cancer Drugs

Jason Ryan, MD, MPH

Monoclonal Antibodies

- Laboratory-produced antibody
- Derived from cloned cells in culture
- Designed to bind a specific antigen
- Administered by intravenous infusion

Martin Brändli /Wikipedia

Infusion Reactions

- Usually occur after 1st or 2nd infusion
- Antibody-antigen binding \rightarrow cytokine release
- Most are mild to moderate
- Fever/chills
- Flushing and itching
- Skin rashes
- Nausea, vomiting, and/or diarrhea
- Treatment/prevention: antihistamines, steroids

Bevacizumab

Avastin

- Monoclonal antibody to VEGF-A
- Prevents VEGF-A from binding VEGF receptors
- Used in many solid tumors
 - Colorectal cancer
 - Breast
 - Renal cell carcinoma

VEGF

Vascular endothelial growth factor

- Family of signal proteins
- Several forms (VEGF-A/B/C/D)
- VEGF-A: Stimulates angiogenesis
- Secreted by tumors \rightarrow vascular growth
- VEGF Inhibitors
 - Bevacizumab (cancer)
 - Ranibizumab (retinopathy)

Bevacizumab

Toxicity

- VEGF mediates vasodilation via nitric oxide
- Inhibition \rightarrow vasoconstriction
- Cardiovascular adverse effects
 - Hypertension
 - Increased risk of arterial thromboembolism
 - Myocardial infarction/stroke/TIA
- Other effects
 - Delayed wound healing
 - Bleeding

EGF

Epidermal growth factor

- Stimulates cell growth and differentiation
- Binds to EGFR
 - Tyrosine kinase receptor
 - EGF-EGFR binding \rightarrow phosphorylation of tyrosine residues
 - Phosphorylated EGFR \rightarrow downstream effects
- EGFR overexpressed in many tumors

EGFR

Wikipedia/Public Domain

Cetuximab

- Monoclonal antibody
- Binds extracellular domain of EGFR
- Blocks binding of EGF-EGFR
- Solid tumors
 - Non-small cell lung cancer
 - Colon cancer
 - Head and neck cancer
- Side effects in clinical trial:
 - Rash (acne)
 - Diarrhea

KRAS Mutation

Colorectal Cancer

- K-ras
 - G-protein
 - Downstream of EGFR
 - Can acquire activating mutations in colon cancer
 - Mutations isolate tumor cells from effect of EGFR
- Mutated K-ras: No benefit from cetuximab
- Wild-type K-ras: Cetuximab beneficial

K-ras mutations and benefit from cetuximab in advanced colorectal cancer. <u>N Engl J Med.</u> 2008 Oct 23;359(17):1757-65.

Erlotinib

Tarceva

- EGFR tyrosine kinase inhibitor (oral)
- Major use: non-small cell lung cancer

Erlotinib

Tarceva

- Main adverse effect: Skin rash
 - Acne-like eruption
 - Upper torso, face, neck
 - May be an indicator of drug effect
 - Seen with all EGFR-blocking drugs (Cetuximab)

Imatinib

Tyrosine Kinase Inhibitor

• Chronic myeloid leukemia

- Philadelphia chromosome/BCR-ABL fusion gene
- Tyrosine kinase protein
- Treatment: Imatinib
- Also other TKIs: dasatinib, nilotinib, bosutinib

Imatinib

Tyrosine Kinase Inhibitor

Gastrointestinal stromal tumors (GIST)

- Rare stomach and small intestine tumors
- Associated with c-KIT mutations
- Treatment: surgery +/- Imatinib

KIT Mutations

- KIT (c-KIT) protein
 - Found on cell surface (CD117)
 - Tyrosine kinase receptor
 - Binds KIT ligand (stem cell factor)
 - Stimulates growth
- KIT mutations → cancer (proto-oncogene)
- KIT gain-of-function mutations in 95% GIST
 - CD117 positive cells

Imatinib

Adverse Effects

Fluid retention

- Usually peripheral or periobital edema
- Sometimes pulmonary edema
- Rash

Klaus D.Peter,

James Heilman, MD/Wikipedia

Rituximab

- Monoclonal CD20 antibody
- Leads to depletion of B cells
- Used in B-cell malignancy and autoimmune diseases

Rituximab

B-cell malignancies

- Non-Hodgkin lymphoma
- Chronic lymphocytic leukemia
- Rheumatoid arthritis
- Immune thrombocytopenia (ITP)
 - First line therapy: IVIG and steroids
 - 2nd line therapy: splenectomy
 - Alternative: Rituximab

Rituximab

Toxicity

- Rare cases of opportunistic infections
 - Pneumocystis jirovecii pneumonia
 - Cryptococcal meningitis
 - Cytomegalovirus colitis
 - Progressive multifocal leukoencephalopathy (JC virus)
- Hepatitis B reactivation

- Selective estrogen receptor modulator (SERM)
- Oral drug
- Competitive antagonist of breast estrogen receptor
 - Used in ER positive (ER+) breast cancer
 - Used as part of primary therapy
 - Also used for prevention

- Estrogen agonist in other tissues (bone/uterus)
- Bone: Estrogen increases bone density
- Uterus: Estrogen promotes endothelial growth

Toxicity

- Hot flashes (estrogen blockade)
- Increased risk of DVT/PE
 - Estrogen effects \rightarrow increased clotting factors

DVT/PE

Toxicity

- Partial agonist to endometrium
 - Endometrial proliferation
 - Hyperplasia
 - Polyp formation

May cause endometrial cancer

- Associated with invasive carcinoma and uterine sarcoma
- Major risk in postmenopausal women

Raloxifene

Evista

- Also a SERM
- Estrogen actions on bone
- Anti-estrogen in breast/uterus
- Osteoporosis (postmenopausal women)
- Also used for prevention of breast cancer
- May cause hot flashes
- Associated with DVT/PE

Aromatase Inhibitors

Anastrozole, Letrozole, Exemestane

- ER+ breast cancer postmenopausal women
- Block estrogen production
 - Peripheral tissues
 - Also occurs in breast cancer cells
- Inhibit aromatase enzyme
 - Androstenedione \rightarrow estrone
 - Testosterone \rightarrow estradiol

Anastrozole

oards&Beyond

Letrozole

Exemestane (steroid)

Aromatase Inhibitors

Adverse Effects

- Osteoporosis (loss of estrogen)
- Increased risk of fracture

Open Stax College

Trastuzumab

Herceptin

- Monoclonal antibody to HER-2
 - Surface receptor
 - Activation \rightarrow cell growth and proliferation
 - Overexpressed by cancer cells
 - Expressed in 25 to 30% of **breast cancers**
- Many names for HER2
 - HER2/neu
 - ERB2
 - CD340

Martin Brändli /Wikipedia

HER Family

- Human epithelial receptors
- All have inner tyrosine kinase domain
- Activation \rightarrow signaling cascade \rightarrow growth

Trastuzumab

Herceptin

- Improves survival in breast cancer
 - Inhibits proliferation of tumor cells
 - Antibody-dependent cell-mediated cytotoxicity

Satchmo2000/Wikipedia

Trastuzumab

Toxicity

Cardiomyopathy

- Usually asymptomatic ↓ LVEF
- May lead to heart failure (dyspnea, fatigue, edema)
- Most likely due to blockade of HER2 in myocytes
 - May lead to stunning of myocardium
- Different from anthracycline cardiotoxicity
 - Not dose dependent
 - Often reversible when drug discontinued
 - Re-challenge often tolerated after LVEF recovery
 - Biopsy: No necrosis

Porphyrias

Jason Ryan, MD, MPH

Porphyrins

- Large nitrogen-containing molecules
- Porphrias = disorders of porphyrin synthesis
- All from **deficient enzymes** in heme synthesis
- Rarely cause anemia
- Symptoms from accumulation of porphyrins

Heme

- Component of hemoglobin
- Mostly produced in bone marrow and liver
- Bone marrow: 80% of heme production
 - Used in red blood cells as hemoglobin
- Liver: 20% heme production
 - Used in cytochrome P450 enzymes

Heme

Heme Synthesis

• Begins in **mitochondria**

- Initial ingredients: Succinyl CoA and glycine
- Combined to form δ-ALA (delta-aminolevulinic acid)
- Enzyme: δ-ALA synthase
- Rate limiting step (inhibited by heme)
- Middle pathway in cytosol
- Final steps in mitochondria

Boards&Beyond

Porphyrias

- More than eight different types described
- Two most common (all rare):
 - Porphyria cutanea tarda
 - Acute intermittent porphyria
- Both do not cause anemia (no ↓ hemoglobin)
- Symptoms from accumulation of intermediates

Porphyria Cutanea Tarda

- Most common porphyria
- Deficient activity of UROD
 - Uroporphyrinogen decarboxylase
 - 5th enzyme in heme synthesis pathway

Boards&Beyond.
Vocabulary

- Uroporphyrinogens:
 - Four propionic acid groups (3 carbons)
 - Four acetic acid groups (2 carbons)
- Different arrangements in I versus III
- Uroporphyrinogen III more common form
- Forms II, IV do not occur naturally

Uroporphyrinogen III

Vocabulary

Uroporphyrinogen III

Vocabulary

- "Porphyrinogen" = non-oxidized molecule
- "Porphyrin" = oxidized molecule (loss of hydrogen)

Uroporphyrinogen III

Boards&Beyond

- Accumulation of uroporphyrinogen
- Uroporphyrinogen oxidized → uroporphyrin
- Appears in plasma, excreted in urine
- Transported to skin
- Causes skin damage on exposure to light

Symptoms

- Chronic blistering skin lesions
- Often accompanied by ↑ AST/ALT
- Urine appears "tea colored"

- Decreased UROD activity is usually acquired
 - "Type 1" PCT has normal gene function
 - Unknown environmental trigger $\rightarrow \downarrow$ UROD activity
- Excess iron plays central role
 - ↑ hepatic iron found on liver biopsy
 - Phlebotomy used for treatment (reduces iron stores)
 - PCT is an "iron overload syndrome"

- Susceptibility factors (worsen disease):
 - Alcohol
 - Hepatitis C virus
 - HIV

Diagnosis

- Measurement of plasma or urine porphyrins
 - Done for screening
 - Will be elevated
- Fractionation of porphyrins: 1 uroporphyrin

Treatment

- Phlebotomy
- Hydroxychloroquine
 - Malaria drug
 - Mechanism unclear

Nosfposter2/Flikr

- Deficiency of enzyme PBGD
 - Porphobilinogen deaminase
- 3rd enzyme in heme synthesis pathway
- Autosomal dominant disorder
 - Low penetrance
 - Symptoms variable

Boards&Beyond

- Symptoms occur as acute, intermittent attacks
- Occur when porphobilinogen levels rise
- δ-ALA synthase: Rate limiting enzyme
 - Feedback inhibition by heme
- Activation δ -ALA synthase \rightarrow acute attack

Triggers

Medications

- Long list of meds can induce P450 system
- Leads to ↑ heme synthesis in liver
- Griseofulvin (antifungal)
- Phenobarbital (seizures)
- Alcohol and smoking
- Starvation and/or reduced intake of calories
 - Low glucose activates ALA synthase

Mechanisms of Symptoms

- δ-ALA and Porphobilinogen: Neurotoxins
- Cerebral dysfunction
- Neuropathy
- Abdominal pain

Symptoms

- Five P's:
 - Abdominal pain
 - Port-wine colored urine
 - Polyneuropathy
 - Psychological disturbances
 - Precipitated by drugs

Symptoms

- Classic case:
 - Adult (30s-40s)
 - Recurrent unexplained abdominal pain attacks
 - Abnormal color of urine
 - Confusion and/or neuropathy

King George III

Wikipedia/Public Domain

Diagnosis

- Best to test during an attack
- ↑ Porphobilinogen (PBG)
- ↑ δ-ALA

Treatment

- Inhibition of heme production
 - Hemin (synthetic heme)
 - Glucose
- Inhibit hepatic **\delta-ALA synthase** activity

