Lecture 5

Electrical Measurement and Instrumentation

Ohm Meters

- Used to measure the resistance of a resistor
- Has two types
- Series Type Ohm meter
- Shunt Type Ohm meter
- Discussed Later

Series-Type Ohmmeter

- The series-type ohmmeter essentially consists of a d’Arsonval movement connected in series with a resistance and a battery to a pair of terminals to which the unknown resistor is connected.
- The current through the movement then depends on
- the magnitude of the unknown resistor
- the indication is proportional to the value of the unknown R
- provided that calibration problems are taken into account.
- Figure 4-17 shows the elements of a simple single-range series ohmmeter. Here
- $\mathrm{R}_{1}=$ current-limiting resistor
- $\mathrm{R}_{2}=$ zero adjust resistor
- $\mathrm{E}=$ internal battery
- $\mathrm{R}_{\mathrm{m}}=$ internal resistance of the d^{\prime} Arsonval movement
- $\mathrm{R}_{\mathrm{x}}=$ unknown resistor

Series-Type Ohmmeter.......

Figure 4-17 Series-type ohmmeter.

- Terminals A and B short circuit gives full scale deflection
- Scale marked 0 ohm
- Terminals A and B open circuit gives 0 deflection
- Battery aging is a major issue, so make sure u have new batteries

Series-Type Ohmmeter.......

- Design Issue

- Find out the half scale deflection, Rh and determine its value in terms of Rm, R1 and R2 and E
- The design can be approached by recognizing that, if introducing R_{h} reduces the meter current to $1 / 2$ I_{fs}, the unknown resistance must be equal to the total internal resistance of the ohmmeter. Therefore
- $R_{h}=R_{1}+\frac{R_{2} R_{m}}{R_{2}+R_{m}}$
- The total resistance presented to the battery then equals $2 \mathrm{R}_{\mathrm{h}}$, and the battery current needed to supply the half-scale defection is

$$
\begin{equation*}
I_{h}=\frac{E}{2 R_{h}} \tag{4-9}
\end{equation*}
$$

- To produce full-scale deflection, the battery current must be doubled, and therefore
- The shunt current through R_{2} is

$$
\begin{equation*}
I_{t}=2 I_{h}=\frac{E}{R_{h}} \tag{4-10}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{I}_{2}=\mathrm{I}_{\mathrm{t}}-\mathrm{I}_{\mathrm{fsd}} \tag{4-11}
\end{equation*}
$$

- The voltage across the shunt $\left(\mathrm{E}_{\text {sh }}\right)$ is equal to the voltage across the movement and
- $\mathrm{E}_{\mathrm{sh}}=\mathrm{E}_{\mathrm{m}}$ or $\mathrm{I}_{2} \mathrm{R}_{2}=\mathrm{I}_{\mathrm{fsd}} \mathrm{R}_{\mathrm{m}}$ and

$$
\begin{equation*}
R_{2}=\frac{I_{f s d} R_{m}}{I_{2}} \tag{4-12}
\end{equation*}
$$

Series-Type Ohmmeter......

- substituting Eq. (4-11) into Eq. (4-12), we obtain

$$
\begin{equation*}
R_{2}=\frac{I_{s s d} R_{m}}{I_{t}-I_{f s d}}=\frac{I_{s s d} R_{m} R_{h}}{E-I_{f s d} R_{h}} \tag{4-13}
\end{equation*}
$$

Solving Eq. (4-8) for R_{1}

$$
\begin{equation*}
R_{1}=R_{h}-\frac{R_{2} R_{m}}{R_{2}+R_{m}} \tag{4-14}
\end{equation*}
$$

Substituting Eq. (4-13) into Eq. (4-14) and solving for R_{1} yields

$$
\begin{equation*}
R_{1}=R_{h}-\frac{I_{f s d} R_{m} R_{h}}{E} \tag{4-15}
\end{equation*}
$$

- For typical calculation see Example 4-7.

Example 4-7

The ohmmeter of Fig. 4-17 uses a $50-\Omega$ basic movement requiring a full-scale current of 1 mA . The internal battery voltage is 3 V . The desired scale marking for half-scale deflection is $2,000 \Omega$. Calculate (a) the values of R_{1} and R_{2}; (b) the maximum value of R_{2} to compensate for a 10% drop in battery voltage; (c) the scale error at the half-scale mark ($2,000 \Omega$) when R_{2} is set as in (b).

SOLUTION (a) The total battery current at full-scale deflection is

$$
\begin{equation*}
I_{t}=\frac{E}{R_{h}}=\frac{3 \mathrm{~V}}{2,000 \Omega}=1.5 \mathrm{~mA} \tag{4-16}
\end{equation*}
$$

The current through the zero-adjust resistor R_{2} then is

$$
\begin{equation*}
I_{2}=I_{t}-I_{\mathrm{fsd}}=1.5 \mathrm{~mA}-1 \mathrm{~mA}=0.5 \mathrm{~mA} \tag{4-17}
\end{equation*}
$$

The value of the zero-adjust resistor R_{2} is

$$
\begin{equation*}
R_{2}=\frac{I_{\mathrm{fss}} \mathbf{R}_{\mathrm{m}}}{I_{2}}=\frac{1 \mathrm{~mA} \times 50 \Omega}{0.5 \mathrm{~mA}}=100 \Omega \tag{4-18}
\end{equation*}
$$

The parallel resistance of the movement and the shunt $\left(R_{p}\right)$ is

$$
R_{p}=\frac{R_{2} R_{m}}{R_{2}+R_{m}}=\frac{50 \times 100}{150}=33.3 \Omega
$$

Example 4-7

The value of the current-limiting resistor R_{1} is

$$
R_{1}=R_{h}-R_{p}=2,000-33.3=1,966 . i^{7} \Omega
$$

(b) At a 10% drop in battery vcltage,

$$
E=3 \mathrm{~V}-0.3 \mathrm{~V}=2.7 \mathrm{~V}
$$

The total battery current I_{t} then becomes

$$
I_{t}=\frac{E}{R_{h}}=\frac{2.7}{2,000} \frac{\mathrm{~V}}{\Omega}=1.35 \mathrm{~mA}
$$

The shunt curreat I_{2} is

$$
I_{2}=I_{t}-I_{\mathrm{fsd}}=1.35 \mathrm{~mA}-1 \mathrm{~mA}=0.35 \mathrm{~mA}
$$

and the zero-adjust resistor R_{2} equals

$$
R_{2}=\frac{I_{\mathrm{fsd}} R_{m}}{I_{2}}=\frac{1 \mathrm{~mA} \times 50 \Omega}{0.35 \mathrm{~mA}}=143 \Omega
$$

(c) The parallel resistance of the meter movement and the new value of R_{2} becomes

$$
R_{p}=\frac{R_{2} R_{m}}{R_{2}+R_{m}}=\frac{50 \times 143}{193}=37 \Omega
$$

Example 4-7

Since the half-scale resistance R_{h} is equal to the total internal circuit resistance, R_{h} will increase to

$$
R_{h}=R_{1}+R_{p}=1,966.7 \Omega+37 \Omega=2,003.7 \Omega
$$

Therefore the true value of the half-scale mark on the meter is $2,003.7 \Omega$ whereas the actual scale mark is $2,000 \Omega$. The percentage error is then

$$
\% \text { error }=\frac{2,000-2,003.7}{2,003.7} \times 100 \%=-0.185 \%
$$

The negative sign indicates that the meter reading is low.

- The ohmmeter of Example 4-7 could be designed for other values of R_{h}, within limits.
- If $\mathrm{R}_{\mathrm{h}}=3,000 \Omega$, the battery current would be 1 mA , which is required for the full-scale deflection current.
- If the battery voltage would decrease owing to aging, the total battery current would fall below 1 mA and there would then be no provision for adjustment.

Shunt-Type Ohmmeter

- The circuit diagram of a shunt-type ohmmeter is shown in Fig. 4-18.
- It consists of a battery in series with an adjustable resistor R_{1} and a d'Arsonval movement.
- The unknown resistance is connected across terminals A and B , in parallel with the meter.
- In this circuit it is necessary to have an off-on switch to disconnect the battery from the circuit when the instrument is not used.
- When the unknown resistor $\mathrm{R}_{\mathrm{x}}=0 \Omega$ (A and B shorted), the meter current is zero.

Shunt-Type Ohmmeter......

- If the unknown resistor $\mathrm{R}_{\mathrm{x}}=0$ (A and B open), the current finds a path only through the meter, and by appropriate selection of the value of R1, the pointer can be made to read full scale.
- The ohmmeter therefore has the "zero" mark at the left-hand side of the scale (no current) and the "infinite" mark at the right-hand side of the scale (full-scale deflection current).

Figure 4-18 Shunt-type ohmmeter.

Shunt-Type Ohmmeter......

- The analysis of the shunt-type ohmmeter is similar to that of the series type ohmmeter.
- In Fig. 4-18, when $\mathrm{R}_{\mathrm{x}}=\infty$, the full-scale meter current will be

$$
\begin{equation*}
I_{f s d}=\frac{E}{R_{1}+R_{m}} \tag{4-19}
\end{equation*}
$$

- Where $\mathrm{E}=$ internal battery voltage
- $\mathrm{R}_{1}=$ current-limiting resistor
- $\mathrm{R}_{\mathrm{m}}=$ internal resistance of the movement
- Solving for R_{1}, we find

$$
\begin{equation*}
R_{R_{1}}=\frac{E}{I_{f s d}}-R_{m} \tag{4-20}
\end{equation*}
$$

- For any value of R_{x} connected across the meter terminals, the meter current decreases and is given by
-

$$
\begin{equation*}
I_{m}=\frac{E}{R_{1}+\left[R_{m} R_{x} /\left(R_{m}+R_{x}\right)\right]} \times \frac{R_{x}}{R_{m}+R_{x}} \tag{4-21}
\end{equation*}
$$

- Or

$$
I_{m}=\frac{E R_{x}}{R_{1} R_{m}+R_{x}\left(R_{1}+R_{m}\right)}
$$

Shunt-Type Ohmmeter......

The meter current for any value of R1, expressed as a fraction of the full-scale current, is

- Or

$$
s=\frac{I_{m}}{I_{f s d}}=\frac{R_{x}\left(R_{1}+R_{m}\right)}{R_{1}\left(R_{m}+R_{x}\right)+R_{m} R_{x}}
$$

$$
\begin{equation*}
s=\frac{R_{x}\left(R_{1}+R_{m}\right)}{R_{x}\left(R_{1}+R_{m}\right)+R_{1} R_{m}} \tag{4-22}
\end{equation*}
$$

- Defining

$$
\begin{equation*}
\frac{R_{1} R_{m}}{R_{1}+R_{m}}=R_{p} \tag{4-23}
\end{equation*}
$$

- If Eq. (4-24) is used, the meter can be calibrated by calculating s in terms of R_{x} and R_{p}
- At half-scale reading of the meter $\left(\mathrm{I}_{\mathrm{m}}=0.5 \mathrm{I}_{\mathrm{fsd}}\right)$, Eq. (4-21) reduces to

Shunt-Type Ohmmeter......

- If eq. (4-24) is used, the meter can be calibrated by calculating \boldsymbol{S} in terms of R_{x} and R_{p}
- At half-scale reading of the meter $\left(\mathrm{i}_{\mathrm{m}}=0.5 \mathrm{i}_{\mathrm{fsd}}\right)$, eq. (4-21) reduces to
- $0.51_{\text {fsd }}=\frac{E R_{h}}{R_{1} R_{m}+R_{h}\left(R_{1}+R_{m}\right)}$
- Where R_{h} = external resistance causing half-scale deflection.
- To determine the relative scale values for a given value of R1, the half-scale reading may be found by dividing eq. (4-19) by eq. (4-25) and solving for R_{h} :

$$
\begin{align*}
& R_{h}=\frac{R_{1} R_{m}}{R_{1}} \frac{R_{1}+R^{\prime}+R_{n}^{\prime}}{\text { half-scaleresist'nt }} \tag{4-26}
\end{align*}
$$

- The analysis shows that the half-scale resistance is determined by limiting resistor R_{1} and the internal resistance of the movement, R_{m}.
- The limiting resistance, R_{1}, is in turn determined by the meter resistance R_{m}, and the full-scale deflection current, $\mathrm{I}_{\text {fsd }}$.

EXAMPLE 4-8

The circuit of Fig. 4-18 uses a $10-\mathrm{mA}$ basic d'Arsonval movement with an internal resistance of 5Ω. The battery voltage $E=3 \mathrm{~V}$. It is desired to modify the circuit by adding an appropriate resistor $\boldsymbol{R}_{\text {sh }}$ across the movement, so that the instrument will indicate 0.5Ω at the midpoint on its scale. Calculate (a) the value of the shunt resistor, $R_{\text {sh }}$; (b) the value of the current-limiting resistor, R_{1}.

SOLUTION (a) For half-scale deflection of the movement,

$$
I_{m}=0.5 I_{\mathrm{fsd}}=5 \mathrm{~mA}
$$

The voltage across the movement is

$$
E_{m}=5 \mathrm{~mA} \times 5 \Omega=25 \mathrm{~mA}
$$

Since this voltage also appears across the unknown resistor, \boldsymbol{R}_{x}, the current through R_{x} is

$$
I_{x}=\frac{25 \mathrm{mV}}{0.5 \Omega}=50 \mathrm{~mA}
$$

The current through the movement (I_{m}) plus the current through the shunt ($I_{\text {sh }}$) must be equal to the current through the unknown (I_{x}). Therefore

$$
I_{\mathrm{sh}}=I_{x}-I_{m}=50 \mathrm{~mA}-5 \mathrm{~mA}=45 \mathrm{~mA}
$$

The shunt resistance then is

$$
R_{\mathrm{sh}}=\frac{E_{m}}{I_{\mathrm{sh}}}=\frac{25 \mathrm{mV}}{45 \mathrm{~mA}}=\frac{5}{9} \Omega
$$

(b) The total battery current is

$$
I_{t}=I_{m}+I_{\mathrm{sh}}+I_{x}=5 \mathrm{~mA}+45 \mathrm{~mA}+50 \mathrm{~mA}=100 \mathrm{~mA}
$$

The voltage drop across limiting resistor R_{1} equals $3 \mathrm{~V}-25 \mathrm{mV}=2.975 \mathrm{~V}$. Therefore

$$
R_{1}=\frac{2.975 \mathrm{~V}}{100 \mathrm{~mA}}=29.75 \Omega
$$

Multimeter Or VOM

- The ammeter, the voltmeter, and the ohmmeter all use the d'Arsonval movement.
- The difference between these instruments is the circuit in which the basic movement is used.
- It is therefore obvious that a single instrument can be designed to perform the three measurement functions.
- This instrument, which contains a function switch to connect the appropriate circuits to the d'Arsonval movement, is often called a multimeter or Volt-Ohm-Milliammeter (VOM).

Multimeter Or VOM.........

- A representative example of a commercial multirneter is shown in Fig. 419. See fig 4-20 for ckt diagram
- The meter is a combination of a dc milliammeter, a dc voltmeter, an ac voltmeter, a multirange ohmmeter, and an output meter.
- Figure 4-21 shows the circuit for the dc voltmeter section, where the common input terminals are used for voltage ranges of $0-1.5$ to $0-1,000 \mathrm{~V}$.
- An external voltage jack, marked "DC 5,000 V," is used for dc voltage measurements to $5,000 \mathrm{~V}$.
- The operation of this circuit is similar to the circuit of Fig. 4-12, which was discussed earlier

Multimeter Or VOM.......

- The circuit for measuring dc milliamperes and amperes is given in Fig. 422 and again the circuit is self-explanatory.
- The positive (+) and "negative" (-) terminals are used for current measurements up to 500 mA and the jacks marked "+10 A" and "-10 A" are used for the $0-10$-A range.
- Details of the ohmmeter section of the VOM are shown in Fig. 4-23.
- Before any measurement is made, the instrument is short-circuited and the "zero- adjust" control is varied until the meter reads zero resistance (fullscale current).
- Notice that the circuit takes the form of a variation of the shunt-type ohmmeter.
- Scale multiplications of 100 and 10,000 are shown in Fig. 4-23(b) and (c).
- The ac voltmeter section of the meter is selected by setting the "ac-dc" switch to the "ac" position.

Multimeter Or VOM........

Figure 4-19 General-purpose multimeter. This instrument has been a familiar sight in electronics laboratories for many years. (Courtesy of Simpson Electric Company.)

Multimeter Or VOM.......

Figure 4-21 Dc voitmeter section of the Simpson Model 260 multimeter. (Courtesy of Simpson Electric Company.)

Figure 4-22 Dc ammeter section of the Simpson Model 260 multimeter. (Courtesy of Simpson Electric Company.)

Calibration Of DC Instruments, Ammeter

- Calibration of a dc ammeter can most easily be carried out by the arrangement of Fig. 4-24.
- The value of the current through the ammeter to be calibrated is determined by measuring the potential difference across a standard resistor by the voltmeter method and then calculating the current by Ohm's law.
- The result of this calculation is compared to the actual reading of the ammeter under calibration and inserted in the circuit.
- A good source of constant current is required and is usually provided by storage cells or a precision power supply.
- A rheostat is placed in the circuit to control the current to any desired value, so that different points on the meter scale can be calibrated.

Calibration Of DC Instruments

Figure 4-24 Potentiomete: method of calibrating a dc ammeter.

Figure 4-25 Potentiometer method of calibrating a dc voltmeter.

Calibration Of Dc Instruments, Voltmeter

- A simple method of calibrating a dc voltmeter is shown in Fig. 4-25, where the voltage across dropping resistor R is accurately measured with a potentiometer.
- The meter to be calibrated is connected across the same two points as the potentiometer and should therefore indicate the same voltage.
- A rheostat is placed in the circuit to control the amount of current and therefore the drop across the resistor, R , so that several points on the voltmeter scale can be calibrated.
- Voltmeters tested with the method of Fig. 4-25 can be calibrated with an accuracy of ± 0.01 percent, which is well beyond the usual accuracy of a d'Arsonval movement.
- The ohmmeter is generally considered to be an instrument of moderate accuracy and low precision.
- A rough calibration may be done by measuring a standard resistance and noting the reading of the ohmmeter.
- Doing this for several points on the ohmmeter scale and on several ranges allows one to obtain an indication of the correct operation of the instrument.

Alternating-Current Indicating Instruments

- The d'Arsonval movement responds to the average or DC value of the current through the moving coil.
- If the movement carries an alternating current with positive and negative half-cycles, the driving torque would be in one direction for the positive alternation and in the other direction for the negative alternation.
- If the frequency of the AC is very low, the pointer would swing back and forth around the zero point on the meter scale.
- At higher frequencies, the inertia of the coil is so great that the pointer cannot follow the rapid reversals of the driving torque and hovers around the zero mark, vibrating slightly.
- To measure AC on a d'Arsonval movement, some means must be devised to obtain a unidirectional torque that does not reverse each half-cycle.
- One method involves rectification of the AC.
- The rectified current deflects the coil.
- Other methods use the heating effect of the alternating current to produce an indication of its magnitude.

