L_ecture 10

Bridge Measurements-2



GUARDED WHEATSTONE BRIDGE

The measurement of extremely high resistances involves
leakage current. For example

— the insulation resistance of a cable or

— the leakage resistance of a capacitor

— often on the order of several thousands of megohms

Ordinary DC Wheatstone bridge can not be used.

Major Problem is the leakage occurring over and around the
specimen or over the binding post by which component is
attached with the instrument

These currents are undesired because
— Enter the measuring ckt & effect the accuracy of measurement
— are also dependent on certain environmental factors e.g. humidity



« Guard circuit are used to block the path of these currents.

* The principle of a simple guard circuit in the R, arm of a
Wheatstone bridge is explained with Fig. 5-7.

« Without a guard circuit, leakage current 1, along the insulated
surface of the binding post adds to current I, through the
component under measurement

— to produce a total circuit current considerably larger than the actual
device current
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Figure 5-7 Simple guard wire on the R, terminal of a guarded Wheatstone bridge
eliminates surface leakage.



Guard Circults

« Aguard wire, completely surrounding the surface of the
Insulated post,

— Intercepts this leakage current and returns it to the battery.

— The guard must be carefully placed so that the leakage current always
meets some portion of the guard wire and is prevented from entering
the bridge circuit.

* In the schematic diagram of Fig. 5-8 the guard around the R,
binding post,

— iIndicated by a small circle around the terminal,

— does not touch any part of the bridge circuitry and is connected directly
to the battery terminal.

« The principle of the guard wire on the binding post can be
applied to any internal part of the bridge circuit

— we speak of a guarded Wheatstone bridge when leakage affects the
measurement.
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Three-Terminal Resistance

To avoid the effects of leakage currents external to the bridge
circuitry,
— the junction of ratio arms R, and Rg is usually brought out as a separate
guard terminal on the front panel of the instrument.
This terminal can be used to connect a so-called three-terminal
resistance, as shown in Fig. 5-9.

The high is mounted on two insulating posts that are fastened
to a metal plate.

The two main terminals of the resistor are connected to the R,
terminals of the bridge in the usual manner.

The third terminal of the resistor is the common point of
resistances R, and R,, which represent the leakage paths from
the main terminals along the insulating posts to the metal
plate, or guard.



Three-Terminal Resistance

The guard is connected to the guard terminal on the front panel of
the bridge, as indicated in the schematic of Fig. 5-9.

This connection puts R, in parallel with ratio arm R,, but since R,
IS very much larger than R,, its shunting effect is negligible.

Similarly, leakage resistance R, is in parallel with the
galvanometer, but the resistance of R, is so much higher than that
of the galvanometer that the only effect is a slight reduction in
galvanometer sensitivity.

The effects of external leakage paths are therefore removed by
using the guard circuit on the three-terminal resistance.

If the guard circuit were not used, leakage resistance R, and R,
would be directly across R, and the measured value of R, would be
considerably in error.



Three-Terminal Resistance

Assuming, for example, that the unknown is 100 M and that
the leakage resistance from each terminal to the guard is also
100 M, resistance R, would be measured as 67 M, an error of
approximately 33 per cent.
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Figure 5-9 Three-terminal resistance, cdnnected to a guarded high-voltage
megohm bridge.



AC Bridges and
their Applications



AC Bridges

1. Conditions for Bridge Balance

— AC Bridges need a source of excitation and a null
detector.

2. Source of Excitation voltage can be
— Power line (low frequency)
— Oscillator (high frequency)

3. Null Detector

— Headphone
— Amplifier with an AC Meter
— Electron ray tube (tuning eye)



Conditions for Bridge Balance
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D Figure 5-10 General form of the ac bridge.



Conditions for Bridge Balance.....

The general form of an ac bridge in Fig. 5-10.

The four bridge arms Z,, Z,, Z,, and Z, are indicated
as unspecified impedances and the detector Is
represented by headphones.

For balance condition the voltage drop from B to A
equals the voltage drop from B to C, in both
magnitude and phase.
In complex notation we can write

Ega = Egc or 1,Z,=1,Z, (5-18)
For zero detector current (the balance condition), the
currents are



Conditions for Bridge Balance.....

W= 7.7, (5-19)
and 1,= - Ez (5-20)
Substitution of Egs. (5-19) and (5-20) into Eqg. (5-18) yields
2.2,=2,2Z, (5-21)
or when using admittances instead of impedances.
Y Y, =Y, Y, (5-22)

Equation (5-21) is the general equation for balance of the ac
bridge.



Conditions for Bridge Balance.....

Equation (5-22) can be used to advantage when dealing with
parallel components in bridge arms.

Equation (5-21) states

— the product of impedances of one pair of opposite arms must equal the
product of impedances of the other pair of opposite arms,

— with the impedances expressed in complex notation.
If the impedance is written inthe foormZ=2/,6

— where Z represents the magnitude and the phase angle of
the complex impedance, Eg. (5-21) can be written in the
form

* (Z,1 01)(az,/_6,)= (Z, 1 0,)(Z5/_0,) (5-23)



Conditions for Bridge Balance....

Eq. (5-23) can also be written as
2, Z,k6,+0,) = Z, Z5 k0, +6,) (5-24)
Equation (5-24) shows that two conditions must be met
simultaneously when balancing an ac bridge.
Z,2,=2,7Z, (5-25)
— The products of the magnitudes of the opposite arms must be equal.
— Phase angles of the impedances satisfy the relationship

10,+16,=16,+16; (5-26)

— The sum of the phase angles of the opposite arms must be equal.



Application of the Balance Equations

« The two balance conditions expressed in Egs. (5-25) and

(5-26) can be applied when the impedances of the bridge arms
are given in polar form, with both magnitude and phase angle.

 In the usual case, however, the component values of the bridge
arms are given, and the problem is solved by writing the
balance equation in complex notation.



. Example 5-3

The impedances of the baéic ac bridge of Fig. 5-10 are given as follows:
Z, = 1009 /80° (inductive impedance) o
2y = 250 ‘Q (pure resistance)
Z, = 400 ZE (inductive impedance)
Z, = unknown )
Determine the constants of the unknown arm.

SOLUTION The first condition for bridge balance requires that

Z|Z4 - Z:Z;, (5-25)
Substituting the magnitudes of the known components and solving for Z,, we
obtain
o Ll | 250 X 400
Zy = e 700 = 1,000 2

The second condition for bridge balance requires that the sums of the phase
angles of opposite arms be equal, or

0 + 04 = 6; + 6 (5-26).
Subsﬁtuting the kriown phasé angles .ar':d solving for 8,, we obtain
0 =6+ 6 — 0, =0+ 30 — 80 = —5Q°
Hence the unknown impedance Z, can be written in polar form as

Zs = 1,000 Q (=307

indicating that we are dealing with a capacitive element, possibly consisting of
a series combination of a resistor and a capacitor.



Application of the Balance Equations..

* The problem becomes slightly more complex when
the component values of the bridge arms arc specified
and the impedances are to be expressed in complex
notation.

 In this case, the inductive or capacitive reactance can
only be calculated when the frequency of the
excitation voltage is known,

« See Example 5-4



EXAMPLE 5-4

The ac bridge of Fig. 5-10 is in balance with the following constants: arm AB,
R =450 €); arm BC, R = 300 ¥ in series with C = 0.265 uF; arm CD, unknown;
arm DA, R = 200 Q in series with L = 15.9 mH. The oscillator frequency is 1
kHz. Find the constants of arm CD.

SOLUTION The general equation for bridge balance states that )
2.2, = Z,Z, - BAfC
Z; =R =450 Q |
Z, = R — jloC = (300 — j600) 2 (521

Z; = R + joL = (200 + j100) Q
Z4 = unknown

Substituting the known values in Eq.(5-21)a and solving for the unknown yields

450 x (200 +1100) 7
Zy= 300 — 600 +/150 (2 .

This result indicates that Z, is a pure inductance with an inductive reactance of
' 150 Q at a frequency of 1 kHz. Since the inductive reactance X; = 2w fL, we
solve for L and obtain L = 23.9 mH.




MAXWELL BRIDGE

Figure 5-11 Maxwell bridge for
inductance measurements.




MAXWELL BRIDGE.....

In Maxell bridge:
— One of the ratio arms has a resistance and a capacitance in parallel

Easier to write the balance equations using Y, the admittance
of arm 1 instead of its impedance.

Rearranging the general equation for bridge balance, as
expressed in Eq. (5-21), we obtain

where Y, iIs the admittance of arm 1. Reference to Fig. 5-11
shows that

Z,=R,; Z=Rj and Y, = ¢~ +j o<,



MAXWELL BRIDGE.....

Substitution of these values in Eq. (5-27) gives
Zx =R+ jolx = R,R;(+jC) (5-28)
Separation of the real and imaginary terms yields

R.R
R, = 2_3 5-29
X R (5-29)
and
L, = R,R;C, (5-30)

where the resistances are expressed in ohms, inductance in
henrys, and capacitance in farads.



MAXWELL BRIDGE.....

« The Maxwell bridge is limited to the measurement of medium-
Qcoils (1<Q<10).

« the second balance condition states that the sum of the phase
angles of one pair of opposite arms must be equal to the sum
of the phase angles of the other pair.

— Since the phase angles of the resistive elements in arm 2 and arm 3 add
up to 0°, the sum of the angles of arm 1 and arm 4 must also add up to
0e.

— The phase angle of a high-Q coil will be very nearly 90° (positive),

— which requires that the phase angle of the capacitive arm must also be
very nearly 90° (negative).

 This in turn means that the resistance of R, must be very large
Indeed, which can be very impractical.

* High-Q coils are therefore measured on the Hay bridge.



MAXWELL BRIDGE.......

The Maxwell bridge is also unsuited for the measurement of
coils with a very low Q-value (Q < 1) because of balance
convergence problems.

As can be seen from the equations for R, and L, adjustment
for inductive balance by R; upsets the resistive balance by R,
and gives the effect known as sliding balance.

Sliding balance describes the interaction between controls, so
that when we balance with R, and then with R,, then go back
to R,, we find a new balance point.

The balance point appears to move or slide toward its final

point after many adjustments.

— Interaction does not occur when R, and C, are used for the balance
adjustments, but a variable capacitor is not always suitable.



MAXWELL BRIDGE.....

« The usual procedure for balancing the Maxwell bridge is by
— first adjusting R, for inductive balance and
— then adjusting R, for resistive balance.
— Returning to the R, adjustment,
— we find that the resistive balance is being disturbed and moves to a new
value.
 This process Is repeated and gives slow convergence to final
balance.

« For medium-Q colls, the resistance effect is not pronounced,
and balance is reached after a few adjustments.



HAY BRIDGE
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HAY BRIDGE......

The Hay bridge of Fig. 5-12 differs from the Maxwell bridge
by having resistor R, in series with standard capacitor
C,instead of in parallel.

for large phase angles, R, should have a very low value.
The Hay circuit is therefore more convenient for measuring
high-Q coills.

The balance equations are again derived by substituting the

values of the impedances of the bridge arms into the general
equation for bridge balance.



HAY BRIDGE.....

* For the circuit of Fig. 5-12, we find that

¢ Z,=R,- wé . Z,=R,, Z;=R; Z =R, +jel,
 Substituting these values in Eq. (5-21), we get
(Rl—wé j(RX+ja)LX) =R, R, (5-31)

Which expands to l

R RX+(L:——QJ)F\():X1+ja)LR=R R,
. Separatlng the real and imaginary terms, we obtain

~ RR + = Re_pp (5-32)

Cl C()Cl



HAY BRIDGE.....

And
RX

=wlL, R, (5-33)

Both Eqg. (5-32) and Eqg. (5.33) contain L, and R,, and we must

solve these equations simultaneously.
.. _ 0°C/RR,R,
Thisyields R, = " ez (5-34)

R,R,C,

Ly = 1 wicr? (5-35)

These expressions for the unknown inductance and resistance
both contain the angular velocity

It therefore appears that the frequency of the voltage source
must be known accurately.



HAY BRIDGE.....

That this is not true when a high-Q coll is being measured
follows from the following considerations:
— the sum of the opposite sets of phase angles must be equal,

— the inductive phase angle must be equal to the capacitive phase angle,
since the resistive angles are zero.

— Figure 5-13 shows that the tangent of the inductive phase angle equals
X, oL
t e ju— L = X ju— -
an 6, =—==—==Q (5-36)

and that of the c?apacitive phase angle is

tang, =tan6.or Q :ﬁ (5-37)
When the two phase angles are equal, their tangents are also
equal and we can write

tang, =tand.orQ= (5-38)

1'1



HAY BRIDGE....

« Returning now to the term (1 £ w2CIR1) which appears in
Egs. (5-34) and (5-35),we find that, after submitting Eg. (5-38)
In the expression for 4, Eq. (5-35) reduces to

. Ly — R,R:C, (5-39)
1+(1/Q)°

 For a value of Q greater than ten, the term (1/Q)? will be
smaller than 1/100 and can be neglected. Equation (5-35)
therefore reduces to the expression derived for the Maxwell

bridge,
* Li=RRC



HAY BRIDGE....

The Hay bridge is used in Inductors, a Q greater than 10.

For Q- values smaller than 100, the term (1/Q)? becomes
Important and cannot be neglected.

In this case, the Max-well bridge is more suitable.
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Figure 5-13 Impedance triangles illustrate
inductive and capacitive phase angles,



Thank you



