
Lecture 10 

Bridge Measurements-2 



• The measurement of extremely high resistances involves 

leakage current. For example 

– the insulation resistance of a cable or  

– the leakage resistance of a capacitor  

– often on the order of several thousands of megohms 

• Ordinary DC Wheatstone bridge can not be used.  

• Major Problem is the leakage occurring over and around the 

specimen or over the binding post by which component is 

attached with the instrument 

• These currents are undesired because 

– Enter the measuring ckt & effect the accuracy of measurement 

– are also dependent on certain environmental factors e.g. humidity 

GUARDED WHEATSTONE BRIDGE 



• Guard circuit are used to block the path of these currents.  

• The principle of a simple guard circuit in the Rx arm of a 

Wheatstone bridge is explained with Fig. 5-7.  

 

• Without a guard circuit, leakage current I1 along the insulated 

surface of the binding post adds to current Ix through the 

component under measurement  

– to produce a total circuit current considerably larger than the actual 

device current 



Guard Circuits 



Guard Circuits 

• A guard wire, completely surrounding the surface of the 

insulated post,  

– intercepts this leakage current and returns it to the battery.  

– The guard must be carefully placed so that the leakage current always 

meets some portion of the guard wire and is prevented from entering 

the bridge circuit. 

• In the schematic diagram of Fig. 5-8 the guard around the Rx 

binding post,  

– indicated by a small circle around the terminal,  

– does not touch any part of the bridge circuitry and is connected directly 

to the battery terminal.  

• The principle of the guard wire on the binding post can be 

applied to any internal part of the bridge circuit  

– we speak of a guarded Wheatstone bridge when leakage affects the 

measurement. 



Three-Terminal Resistance 



Three-Terminal Resistance 

• To avoid the effects of leakage currents external to the bridge 

circuitry,  

– the junction of ratio arms RA and RB is usually brought out as a separate 

guard terminal on the front panel of the instrument.  

• This terminal can be used to connect a so-called three-terminal 

resistance, as shown in Fig. 5-9.  

• The high is mounted on two insulating posts that are fastened 

to a metal plate.  

• The two main terminals of the resistor are connected to the Rx 

terminals of the bridge in the usual manner.  

• The third terminal of the resistor is the common point of 

resistances R1 and R2, which represent the leakage paths from 

the main terminals along the insulating posts to the metal 

plate, or guard.  



Three-Terminal Resistance 

• The guard is connected to the guard terminal on the front panel of 

the bridge, as indicated in the schematic of Fig. 5-9.  

• This connection puts R1 in parallel with ratio arm RA, but since R1 

is very much larger than RA, its shunting effect is negligible.  

• Similarly, leakage resistance R2 is in parallel with the 

galvanometer, but the resistance of R2 is so much higher than that 

of the galvanometer that the only effect is a slight reduction in 

galvanometer sensitivity.  

• The effects of external leakage paths are therefore removed by 

using the guard circuit on the three-terminal resistance. 

• If the guard circuit were not used, leakage resistance R1 and R2 

would be directly across Rx and the measured value of Rx would be 

considerably in error. 



Three-Terminal Resistance 

• Assuming, for example, that the unknown is 100 M and that 

the leakage resistance from each terminal to the guard is also 

100 M, resistance Rx would be measured as 67 M, an error of 

approximately 33 per cent. 



 

AC Bridges and  

their Applications 

 



1. Conditions for Bridge Balance 

– AC Bridges need a source of excitation and a null 

detector. 

2. Source of Excitation voltage can be 

– Power line (low frequency) 

– Oscillator (high frequency) 

3. Null Detector 

– Headphone 

– Amplifier with an AC Meter 

– Electron ray tube (tuning eye) 

AC Bridges 



Conditions for Bridge Balance 



Conditions for Bridge Balance….. 

• The general form of an ac bridge in Fig. 5-10.  

• The four bridge arms Z1, Z2, Z3, and Z4 are indicated 

as unspecified impedances and the detector is 

represented by headphones.  

• For balance condition the voltage drop from B to A 

equals the voltage drop from B to C, in both 

magnitude and phase.  

• In complex notation we can write 

  EBA = EBC     or I1Z1  = I2 Z2                         (5-18) 

• For zero detector current (the balance condition), the 

currents are 



Conditions for Bridge Balance….. 

• I1 =                 (5-19) 

 

• and  I2 =                         (5-20) 

• Substitution of Eqs. (5-19) and (5-20) into Eq. (5-18) yields 

Z1Z4 = Z2 Z3     (5-21)  

• or when using admittances instead of impedances. 

Y1 Y4 = Y2 Y3     (5-22) 

• Equation (5-21) is the general equation for balance of the ac 

bridge.  
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Conditions for Bridge Balance….. 

• Equation (5-22) can be used to advantage when dealing with 

parallel components in bridge arms.  

• Equation (5-21) states 

– the product of impedances of one pair of opposite arms must equal the 

product of impedances of the other pair of opposite arms,  

– with the impedances expressed in complex notation.  

• If the impedance is written in the form Z = Z /,   

– where Z represents the magnitude and  the phase angle of 

the complex impedance, Eq. (5-21) can be written in the 

form 

• (Z1 /_1)(aZ4 /_ 4) =  (Z2  /_2 )(Z3 /_ 3)        (5-23) 



Conditions for Bridge Balance…. 

• Eq. (5-23) can also be written as 

• Z1Z4 /         = Z2 Z3 /                                   (5-24)  

• Equation (5-24) shows that two conditions must be met 

simultaneously when balancing an ac bridge.  

Z1Z4 = Z2 Z3                 (5-25) 

– The products of the magnitudes of the opposite arms must be equal. 

– Phase angles of the impedances satisfy the relationship 

• / 1 + / 4 = / 2 + / 3    (5-26) 

– The sum of the phase angles of the opposite arms must be equal. 
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Application of the Balance Equations 

• The two balance conditions expressed in Eqs. (5-25) and  

    (5-26) can be applied when the impedances of the bridge arms 

are given in polar form, with both magnitude and phase angle.  

• In the usual case, however, the component values of the bridge 

arms are given, and the problem is solved by writing the 

balance equation in complex notation.  

 



Example 5-3 



Application of the Balance Equations.. 

• The problem becomes slightly more complex when 

the component values of the bridge arms arc specified 

and the impedances are to be expressed in complex 

notation. 

•  In this case, the inductive or capacitive reactance can 

only be calculated when the frequency of the 

excitation voltage is known,  

• See Example 5-4  



EXAMPLE 5-4 

 



MAXWELL BRIDGE 



MAXWELL BRIDGE….. 

• In Maxell bridge: 

– One of the ratio arms has a resistance and a capacitance in parallel  

• Easier to write the balance equations using Y1, the  admittance 

of arm 1 instead of its impedance. 

• Rearranging the general equation for bridge balance, as 

expressed in Eq. (5-21), we obtain  

• where Y1 is the admittance of arm 1. Reference to Fig. 5-11 

shows that 

• Z2 = R2; Z3 = R3; and Y1 =     +j 
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MAXWELL BRIDGE….. 

• Substitution of these values in Eq. (5-27) gives 

•                      = R2R3                     (5-28) 

• Separation of the real and imaginary terms yields 

 

   Rx =                                                             (5-29)    

       

• and  

•         Lx = R2R3C1                               (5-30)   

• where the resistances are expressed in ohms, inductance in 

henrys, and capacitance in farads. 
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MAXWELL BRIDGE….. 

• The Maxwell bridge is limited to the measurement of medium-

Q coils (1 < Q < 10 ).  

• the second balance condition states that the sum of the phase 

angles of one pair of opposite arms must be equal to the sum 

of the phase angles of the other pair.  

– Since the phase angles of the resistive elements in arm 2 and arm 3 add 

up to 0o, the sum of the angles of arm 1 and arm 4 must also add up to 

0o.  

– The phase angle of a high-Q coil will be very nearly 90° (positive),  

– which requires that the phase angle of the capacitive arm must also be 

very nearly 90° (negative).  

• This in turn means that the resistance of R1 must be very large 

indeed, which can be very impractical.  

• High-Q coils are therefore measured on the Hay bridge. 



MAXWELL BRIDGE……. 

• The Maxwell bridge is also unsuited for the measurement of 

coils with a very low Q-value (Q < 1) because of balance 

convergence problems.  

• As can be seen from the equations for Rx and Lx, adjustment 

for inductive balance by R3 upsets the resistive balance by R1 

and gives the effect known as sliding balance.  

• Sliding balance describes the interaction between controls, so 

that when we balance with R1 and then with R3, then go back 

to R1, we find a new balance point.  

• The balance point appears to move or slide toward its final 

point after many adjustments.  

– Interaction does not occur when R1 and C1 are used for the balance 

adjustments, but a variable capacitor is not always suitable. 



MAXWELL BRIDGE….. 

• The usual procedure for balancing the Maxwell bridge is by 

– first adjusting R3 for inductive balance and  

– then adjusting R1 for resistive balance.  

– Returning to the R3 adjustment,  

– we find that the resistive balance is being disturbed and moves to a new 

value.  

• This process is repeated and gives slow convergence to final 

balance. 

•  For medium-Q coils, the resistance effect is not pronounced, 

and balance is reached after a few adjustments. 



HAY BRIDGE 



HAY BRIDGE…… 

• The Hay bridge of Fig. 5-12 differs from the Maxwell bridge 

by having resistor R1 in series with standard capacitor 

C1instead of in parallel.  

• for large phase angles, R1 should have a very low value.  

• The Hay circuit is therefore more convenient for measuring 

high-Q coils. 

• The balance equations are again derived by substituting the 

values of the impedances of the bridge arms into the general 

equation for bridge balance. 



HAY BRIDGE….. 

• For the circuit of Fig. 5-12, we find that 

• Z1 = R1 -        ; Z2 = R2;     Z3 = R3; Zx = Rx + j 

• Substituting these values in Eq. (5-21), we get 

  = R2 R3  (5-31) 

Which expands to  

• R1Rx +  

• Separating the real and imaginary terms, we obtain 

– R1Rx +                             (5-32) 
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HAY BRIDGE….. 

• And 

•                                                                   (5-33) 

• Both Eq. (5-32) and Eq. (5.33) contain Lx and Rx, and we must 

solve these equations simultaneously.  

• This yields    Rx =                 (5-34) 

•           Lx =             (5-35) 

 

• These expressions for the unknown inductance and resistance 

both contain the angular velocity  

• it therefore appears that the frequency of the voltage source 

must be known accurately.  
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HAY BRIDGE….. 

• That this is not true when a high-Q coil is being measured 

follows from the following considerations:  

– the sum of the opposite sets of phase angles must be equal,  

– the inductive phase angle must be equal to the capacitive phase angle, 

since the resistive angles are zero.  

– Figure 5-13 shows that the tangent of the inductive phase angle equals 

•                                  (5-36) 

• and that of the capacitive phase angle is 

•                                      (5-37) 

• When the two phase angles are equal, their tangents are also 

equal and we can write 

•                                (5-38) 
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HAY BRIDGE…. 

• Returning now to the term (1 ± w2ClR1) which appears in 

Eqs. (5-34) and (5-35),we find that, after submitting Eq. (5-38) 

in the expression for 4, Eq. (5-35) reduces to 

•                         (5-39) 

 

• For a value of Q greater than ten, the term (1/Q)2 will be 

smaller than 1/100 and can be neglected. Equation (5-35) 

therefore reduces to the expression derived for the Maxwell 

bridge, 

• Lx = R2R3C1 
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HAY BRIDGE…. 

• The Hay bridge is used in Inductors, a Q greater than 10.  

• For Q- values smaller than 100, the term (1/Q)2 becomes 

important and cannot be neglected.  

• In this case, the Max-well bridge is more suitable. 



Thank you 


