
Lecture 11 

Bridge Measurements-3 



SCHERING BRIDGE 

• The Schering bridge, one of the most important ac bridges, 

used for the measurement of  

– Capacitors 

– Insulating properties, i.e., for phase angles very nearly 90°. 

– Dissipation Factor 

• The dissipation factor of a capacitor is the  ratio of its  resistance (equivalent 

series resistance ) to its capacitive  reactance 

– Measurement of relative permittivity 

• The basic circuit arrangement is shown in Fig. 5-14 

. 

 

  is the dielectric's bulk conductivity, 

   is the angular frequency of the AC current i, 

   is the lossless permittivity of the dielectric, and 

   is the lossless capacitance 



SCHERING BRIDGE 

• Arm 1 now contains a parallel combination of a resistor and a 

capacitor, and the standard arm contains only a capacitor.  

• The standard capacitor is usually high-quality mica capacitor 

for general measurement work or an air capacitor for 

insulation measurements.  

• A good-quality mica capacitor has very low losses (no 

resistance)  

– therefore has a phase angle of approximately 90º. 

• The balance conditions require that the sum of the phase 

angles of arms 1 and 4 equals the sum of the phase angles of 

arms 2 and 3.  



SCHERING BRIDGE 

• The standard- capacitor is in arm 3, the sum of the phase 

angles of arm 2 and arm 3 will be 0o + 90° = 90°.  

• In order to obtain the 90°phase angle needed for balance, the 

sum of the angles of arm 1 and arm 4 must equal 90°.  

• It is necessary to give arm 1 a small capacitive angle by 

connecting small capacitor C1 in parallel with resistor R1.  

• The balance equations are derived in the usual manner, and by 

substituting the corresponding impedance and admittance 

values in the general equation, we obtain. 

 

Zx =Z2Z3Y1 



SCHERING BRIDGE 

• Rx – 

 

and expanding 

 

• Rx -        (5-40) 

 

• Equating the real terms and the imaginary terms, we find that 

 

• Rx = R2       (5-41) 

 

• Cx = C3       (5-42) 
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SCHERING BRIDGE 

• Variables chosen for the balance adjustment are capacitor C1 

and resistor R2.  

• Question arises how the quality of a capacitor is defined??? 

 

• The power factor (PF) of a series RC combination is defined as 

the cosine of the phase angle of the circuit.  

• Therefore the PF of the unknown arm equals PF = Rx/Zx.  

• For phase angles very close to 90o, the reactance is almost 

equal to the impedance and we can approximate the power 

factor to 

•                            PF =     (5-43) xx
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SCHERING BRIDGE 

• The dissipation factor of a series RC circuit is defined as the 

cotangent of the phase angle and therefore, by definition, the 

dissipation factor 

•               D =      (5-44) 

 

• Incidentally, the quality of a coil is defined by Q = XL/RL,  

• the dissipation factor, D, is the reciprocal of the quality factor, 

Q, and therefore D = 1/Q.  

• The dissipation factor tells us something about the quality of a 

capacitor; i.e.,  

– how close the phase angle of the capacitor is to the ideal value of 90°.  

• By substituting the value of Cx in Eq. (5-42) and of Rx in Eq. 

(5-41) into the expression for the dissipation factor, we obtain 
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SCHERING BRIDGE 

                        D =      (5-45) 

• If resistor R1 in the Schering bridge of Fig. 5-14 has a fixed 

value, the dial of capacitor C1 may be calibrated directly in 

dissipation factor D.  

• This is the usual practice in a Schering bridge.  

– Notice that the term      appears in the expression for the dissipation 

factor [Eq. (5-45)].  

– This means that the calibration of the C1 dial holds for only one 

particular frequency at which the dial is calibrated.  

• A different frequency can be used, provided that a correction is 

made by multiplying the C1 dial reading by the ratio of the two 

frequencies.  
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UNBALANCE CONDITIONS 

• It sometimes happens that an ac bridge cannot be balanced at 

all simply because one of the stated balance conditions cannot 

be met (Sec. 5-5.)  

• Consider for example, the circuit of Fig. 5-16,  



UNBALANCE CONDITIONS 

• Z1 and Z4 are inductive elements (positive phase angles), Z2 is 

a pure capacitance (-90o phase angle), and Z3 is a variable 

resistance (zero phase angle).  

• The resistance of R3 needed to obtain bridge balance can be 

determined by applying the first balance condition 

(magnitudes) and we find that 

 

• R3 =  

 

• Hence adjusting R3 to a value of 300  will satisfy the first 

condition 
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UNBALANCE CONDITIONS 

• Considering the second balance condition (phase angles) 

yields the following 

• situation: 

 

 

• Obviously,                           and the second condition is not 

satisfied. 

•  In this case, bridge balance cannot be obtained. 

• An interesting illustration of a bridge balancing problem is 

given in Example 5-5 

– where minor adjustments to one or more of the bridge arms result in a 

situation where balance can be obtained. 
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EXAMPLE 5-5 





EXAMPLE 5-5 

• Substituting the known values and solving for R1, we obtain 

 

 

• It should he noted that the addition of R1 upsets the first 

balance condition of the circuit (the magnitude of Z1 has 

changed)  

– variable resistor R3 should be adjusted to compensate for this effect. 

• The second option is to modify the phase angle of arm 2 or 

arm 3 by adding a series capacitor, as shown in Fig. 5-17(c).  

• Again writing the general balance equation, using impedances 

this time, we obtain  

 

• Z3 =  
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EXAMPLE 5-5 

• Substituting the component values and solving for X yields 

• 1,000 – jXc =  

• or 

• Xc = 200 

• Here the magnitude of Z3 has increased so that the first 

balance condition has changed. 

•  A small readjustment of R1 is necessary to restore balance. 
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WIEN BRIDGE 

• Developed by Max Wien in 1891 

• The Wien bridge is used  
– Used for precision measurement of capaciatance in terms of resistance 

& frequency 

– for measuring frequency  (mainly audio) in ac bridges  

– as a notch filter in harmonic distortion analyzer 

– as the frequency-determining element in audio and HF oscillators 

– Bridge does not require equal values of R and C 

• Has a series RC combination in one arm and a parallel RC 

combination in the adjoining arm 





WIEN BRIDGE 

• The impedance of arm 1 is Z1 =R1 – j/         .  

• The admittance of arm 3 is Y3 = 1/R3 + j/        .  

• Using the basic equation for bridge balance and substituting 

the appropriate values, we obtain 

• R2=                              (5-46) 

 

• Expanding this expression, we get 

• R2 =                               (5-47) 

 

• Equating the real terms, we obtain 

• R2 =         +     (5-48) 
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WIEN BRIDGE 

•                                                                   (5-49) 

 

• Equating the imaginary terms, we obtain 

•                                                                   (5-50) 

 

     solving for f, we get 

•            f =      (5-51) 

 

– The two conditions for bridge balance now result in an expression 

determining the required resistance ratio, R2/R4 and 

– another expression determining the frequency of the applied voltage
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WIEN BRIDGE 

• In most Wien bridge circuits, the components are chosen such 

that R1 = R3 and C1 = C3.  

• This reduces Eq. (5-49) to R2/R4 = 2 and Eq. (5-51) to 

• f =                   (5-52) 

• This is the general expression for the frequency of the Wien 

bridge.  

• In a practical bridge, capacitors C1 and C3 are fixed capacitors, 

and resistors R1 and R3 are variable resistors controlled by a 

common shaft.  

– Provided now that R2 = 2R4,  

– the bridge may be used as a frequency determining device balanced by 

a single control.  

• This control may be calibrated directly in terms of frequency. 
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WIEN BRIDGE 

• Because of its frequency sensitivity, the Wien bridge may be 

difficult to balance (unless the waveform of the applied 

voltage is purely sinusoidal).  

• Since the bridge is not balanced for any harmonics present in 

the applied voltage, these harmonics will sometimes produce 

an output voltage masking the true balance point. 

 



WAGNER GROUND CONNECTION 

• The discussion so far has assumed that the four bridge arms 

consist of simple lumped impedances which do not interact in 

any way.  

• In practice, however, stray capacitances exist between the 

various bridge elements and ground, and also between the 

bridge arms themselves.  



WAGNER GROUND CONNECTION 

• These stray capacitances shunt the bridge arms and cause 

measurement errors,  

– particularly at the higher frequencies or  

– when small capacitors or large inductors are measured.  

• One way to control stray capacitances is by shielding the arms 

and connecting the shields to ground.  

• This does not eliminate the capacitances but at least makes 

them constant in value, and they can therefore b compensated. 



WAGNER GROUND CONNECTION…. 

• One of the most widely used methods for eliminating some of 

the effects of capacitance in a bridge circuit is the Wagner 

ground connection.  

• This circuit eliminates the troublesome capacitance which 

exists between the detector terminals and ground.  

• Figure 5-19(a) shows the circuit of a capacitance bridge.  

– where C1 and C2 represent these stray capacitances.  



WAGNER GROUND CONNECTION… 

• The oscillator is removed from its usual ground connection 

and bridged by a series combination of resistor Rw and 

capacitor Cw.  

• The junction of Rw and Cw is grounded and is called the 

Wagner ground connection.  

• The procedure for initial adjustment of the bridge is as 

follows:  

– The detector is connected to point 1, and R1 is adjusted for null or 

minimum sound in the headphones.  

• The switch is then thrown to position 2, which connects the 

detector to the Wagner ground point.  

• Resistor Rw, is now’ adjusted for minimum sound.  



WAGNER GROUND CONNECTION…. 

• When the switch is thrown to position 1 again.  

– some unbalance will probably be shown.  

• Resistors R1 and R3 are then adjusted for minimum detector 

response, and the switch is again thrown to position 2.  

• A few adjustments of Rw and R1 (and R3) may be necessary 

before a null is reached on both switch positions.  

• When null is finally obtained, points 1 and 2 are at the same 

potential, and this is ground potential.  

• Stray capacitances C1 and C2 are then effectively shorted out 

and have no effect on normal bridge balance.  



WAGNER GROUND CONNECTION…. 

• There are also capacitances from points C and D to ground,  

– but the addition of the Wagner ground point eliminates them from the 

detector circuit,  

– since current through these capacitances will enter through the Wagner 

ground connection. 

• capacitances across the bridge arms arc not eliminated by the 

Wagner ground connection  

– they will still affect the accuracy of the measurement.  

• The idea of the Wagner ground can also be applied to other 

bridges, as long as care is taken that the grounding arms 

duplicate the impedance of one pair of bridge arms across 

which they are connected.  

• Since the addition of the Wagner ground connection does not 

affect the balance conditions, the procedure for measurement 

remains unaltered. 

 

 

 



Thank you 


