
Lecture 9 

Bridge Measurements 



INTRODUCTION 

• A Wheatstone bridge is an electrical circuit used to measure 

an unknown electrical resistance by  

– balancing two legs of a bridge circuit,  

– one leg of which includes the unknown component.  

• Its operation is similar to the original potentiometer.  

• It was invented by Samuel Hunter Christie in 1833 

•  Improved and popularized by Sir Charles Wheatstone in 1843.  

• One of the Wheatstone bridge's initial uses was for the purpose 

of soils analysis and comparison 



INTRODUCTION…….. 

• Precision measurements of components values have been made for 
many years using various forms of bridges.  

• The simplest form of bridge is for the purpose is called the 
Wheatstone bridge.  

• There are variations of the Wheatstone bridge for measuring very 
high and very low resistances.  

• There is an entire group of ac bridges for measuring  
– Inductance 

– Capacitance,  

– Admittance 

– Conductance 

– any of the impedance parameters. 

• The bridge circuit still forms the backbone of some measurements 
and for the interfacing of transducers. 



WHEATSTONE BRIDGE 
Basic Operation 

• The bridge has four resistive arms, together with a source of 

emf (a battery) and a null detector, usually a galvanometer or 

other sensitive current meter.  

• The current through the galvanometer depends on the potential 

difference between points c and d.  

• The bridge is said to be balanced when the potential difference 

across the galvanometer is 0 V so that there is no current 

through the galvanometer.  



WEATSTONE BRIDGE 
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WHEATSTONE BRIDGE…… 

• This condition occurs when  

• the voltage from point c to point a equals the voltage from point 
d to point a; or  

• by referring to the other battery terminal, when the voltage from 
point c to point b equals the voltage from point d to point 1’. 
Hence the bridge is balanced when 

                              (5.1) 

• If the galvanometer current is zero, the following 
condition also exist:  

•                                                                                                        (5.2)   and 

•                                                                                                          

•                                                                                                         (5.3) 
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WHEATSTONE BRIDGE…… 

• Combining Eqs. (5-1), (5-2) and (5-3) and simplifying, we 

obtain                                                                  (5.4) 

• from which                                                          (5.5) 

• Which is the famous equation  for a balanced Wheatstone 

bridge 

• Wheatstone Bridge is used for the precision measurement of 

Resistances ranging from fractions of an ohm to several 

megohms.  

• The ratio control switches control the ratio arms in decade 

steps.  

• The remaining four step switches set the resistance of the 

standard arm which can be expressed in term of the remaining 

resistors as follows:                                                   (5.6) 

42

2

31

1

RR

R

RR

R






3241 RRRR 

1

1
3

R

R
RRx 



WHEATSTONE BRIDGE…… 

• Resistor R3 is called the standard arm of the bridge, and 

resistor R2 and R1 are called the ratio arms. 

• The measurement of the unknown resistance Rx is independent 

of the characteristics of the calibration of the null-detecting 

galvanometer  

– provided that the null detector has sufficient sensitivity to indicate the 

balance position of the bridge  

– with the required degree of precision 

 



Measurement Errors 

• Wheatstone bridge is widely used for precision measurement 

of resistance from approximately 1   to the low megohm range.  

• The main source of measurement error is found in the limiting 

errors of the three known resistors.  

• Other errors may include the following: 

– Insufficient sensitivity of the null detector.  

– Changes  resistance of the bridge arms due to the heating effect of the 

current through the resistors.  

– Heat effect (I2 R) of the bridge arm currents may change the resistance 

of the resistor in question.  

– The rise in temperature affects the resistance during the actual 

measurement and 

– excessive currents may cause a permanent change in resistance values. 



Measurement Errors….. 

• The power dissipation in the bridge arms must therefore be cornuted 
in advance,  

• particularly when low-resistance values are to be measured, and  

• the current must be limited to a safe value. 

• Thermal emfs in the bridge circuit or the galvanometer circuit can 
also cause problems when low value resistors are being measured.  

• To prevent thermal emfs, the more sensitive galvanometers 
sometimes have copper coils and copper suspension systems to 
avoid having dissimilar metals in contact with one another and 
generating thermal emfs. 

• Errors due to the resistance of leads and contacts exterior to the 
actual bridge circuit play a role in the measurement of very low-
resistance values.  

• These errors may be reduced by using a Kelvin bridge 



Thevenin Equivalent Circuit 

• To determine whether or not the galvanometer has the required 

sensitivity to detect an unbalance condition, it is necessary to 

calculate the galvanometer current.  

• Different galvanometers may require  

• different currents per  unit deflection (current sensitivity),  

• may have a different internal resistance.  

• It is impossible to say, without prior computation, which galvanometer 

has the required degree of precision. 

• Wheatstone Bridge will make the bridge circuit more sensitive 

to an unbalance condition.  

• This sensitivity can be calculated by “solving” the bridge 

circuit for a small unbalance.  

• The solution is approached by converting the Wheatstone 

bridge of Fig. 5-1 to its Thevenin equivalent. 
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Thevenin Equivalent Circuit…. 

• Since we are interested in the current through the 

galvanometer, the Thevenin equivalent circuit is determined by 

looking into galvanometer terminals c and d in Fig. 5.1  

• Two steps must be taken to find the Thévenin equivalent;  

• the first step involves finding the equivalent voltage appearing at 

terminals c and d when the galvanometer is removed from the circuit.  

• The second step involves finding the equivalent resistance looking into 

terminals c and d, with the battery replaced by its internal resistance.  

• The Thevenin, or open-circuit, voltage is found by referring to 

Fig. 5-2(a), and we can write 

•                                         Ecd = Eac — 11R1 — I2R2 

 



Thevenin Equivalent Circuit….. 

• This is the voltage of the Thévenin generator. 

• The resistance of the Thevenin equivalent circuit is found by 

looking back into terminals c and d and replacing the battery 

by its internal resistance.  

• The circuit of Fig. 5-2(b) represents the Thévenin resistance. 

• Notice that the internal resistance, Rb of the battery has been included 

in Fig. 5-2(b).  

• Converting this circuit into a more convenient form requires 

use of the delta-wye transformation theorem.  

• In most cases, however, the extremely low internal resistance 

of the battery can be neglected  

• this simplifies the reduction of Fig. 5-2(a) to its Thévenin equivalent 

considerably. 



Solve the related examples yourself 

• Referring to Fig. 5-2(b), we see that a short circuit exists between points a 

and b when the internal resistance of the battery is assumed to be  .  

• The Thevenin resistance, looking into terminals c and d, then becomes 

•                                        

•                                               Rth =                                            (5-8) 

 

• The Thévenin equivalent of the Wheatstone bridge circuit therefore reduces 

to a Thevenin generator  with an emf described by Eq. (5-7) and an internal 

resistance given by Eq. (5-8).  See Fig. 5-2(c). 

• When the null detector is now connected to the output terminals of the 

Thévenin equivalent circuit, the galvanometer current is found to be    

•                                  

•                              Ig =  

 

• where Ig is the galvanometer current and Rg its resistance. 
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Limitations 

• The Wheatstone bridge is limited to the measurement of 
resistances ranging from a few ohms to several megohms.  

• The upper limit is set by the reduction in sensitivity to 
unbalance, caused by high resistance values 
• in this case the equivalent Thevenin resistance becomes high,  

• thus reducing the galvanometer current.  

• The lower limit is set by the resistance of the connecting 
leads and the contact resistance at the binding posts  

• The resistance of the leads could be calculated or measured, 
and the final result modified  
• but contact resistance is very hard to compute or measure.  

• For low-resistance measurements, therefore, the Kelvin 
bridge is generally the preferred instrument 

 



KELVIN BRIDGE 

• The Kelvin bridge is a modification of the Wheatstone bridge 

– provides greatly increased accuracy in the measurement of low-value 

resistances, generally below1 .  

• Consider the bridge circuit where Ry represents the resistance 

of the connecting lead from R3 to Rx.  

• Two galvanometer connections are possible, to point n or to 

point m.  

• When the galvanometer is connected to point m, the resistance 

Ry of the connecting lead is added to the unknown Rx  

– resulting in too high indication for Rx.  

• When connection is made to point n, Ry is added to bridge arm 

R3 and the resulting measurement of Rx will be lower than it 

should be  

– because now the actual value of R3 is higher than its nominal value by 

resistance Ry.  



KELVIN BRIDGE 



KELVIN BRIDGE….. 

• If the galvanometer is connected to a point p, in between the 

two points m and n, in such a way that the ratio of the 

resistances from n to p and from m to p equals the ratio of 

resistors R1 and R2, we can write                                       (5-10) 

 

• The balance equation for the bridge yields 

•                                                                Rx + Rnp =       (R3 + Rmp)                    (5-11)

  
• Substituting Eq. (5-10) into Eq. (5-11), we obtain 

•                                    Rx + (           ) Ry = [R3 + (           )Ry ]                  (5-12) 

 

• which reduces to                        Rx =                                         (5-13) 
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KELVIN BRIDGE….. 

• Equation (5-13) is the usual balance equation developed for 

the Wheatstone bridge  

– it indicates that the effect of the resistance of the connecting lead from 

point n to point m has been eliminated by connecting the galvanometer 

to the intermediate position p. 

• This development forms the basis for construction of the 

Kelvin double bridge, commonly known as the Kelvin bridge. 



Kelvin Double Bridge 



Kelvin Double Bridge…. 

• The term double bridge is used because the circuit contains a 

second set of ratio arms, as shown in the schematic diagram of 

Fig. 5-5.  

• This second set of arms, labeled a and b in the diagram, 

connects the galvanometer to a point p at the appropriate 

potential between m and n  

• it eliminates the effect of the yoke resistance Ry.  

• An initially established condition is that the resistance ratio of 

a and b is the same as the ratio of R1 and R2. 

• The galvanometer indication will be zero when the potential at 

k equal the potential at p, or when Ekl = EImp where 

 



Kelvin Double Bridge…. 

• Ekl =                                                                     (5-14) 

 
• and         EImp = I {R3 +                            }                         (5-15) 

 

• We can solve for R1 by equating Ekl, and EImp in the following 

manner: 

• Or simplifying, we get 
•                          R3 + Rx +                                                                 

•   

• and expanding the right-hand member yields 

 

• R3 + Rx +  
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Kelvin Double Bridge…. 

• Solving for Rx yields 

 
• Rx =                                                  so that 

 

• Rx =                                                                         (5-16) 

 

• Using the initially established condition that a/b = R1/R2, we see that Eq. 

(5-16) reduces to the well-known relationship     Rx = R3                 (5-17)  

 

• Equation (5-17) is the usual working equation for the Kelvin bridge.  

• It indicates that the resistance of the yoke has no effect on the 

measurement, provided that the two sets of ratio arms have equal resistance 

ratios. 
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Applications 

• The Kelvin bridge is used for measuring very low resistances, 

from approximately 1  to as low as 0.00001 .  

• Figure 5-6 shows the simplified circuit diagram of a 

commercial Kelvin bridge capable of measuring resistances 

from 10  to 0.00001 .  

• In this bridge, resistance R3 of Eq. (5-17) is represented by the 

variable standard resistor in Fig. 5-6.  

• The ratio arms (R1 and R2) can usually be switched in a 

number of decade steps. 

• Contact potential drops in the measuring circuit may cause 

large errors 



Applications….. 

• To reduce this effect, the standard resistor consists of nine 

steps of 0.001 each, plus a calibrated manganin bar of 0.0011  

with a sliding contact.  

• The total resistance of the R3 arm therefore amounts to 0.0101  

and is variable in steps of 0.001  plus fractions of 0.0011  by 

the sliding contact.  

• When both contacts are switched to select the suitable value of 

standard resistor, the voltage drop between the ratio-arm 

connection points is changed 

– but the total resistance around the battery circuit is unchanged.  

• This arrangement places any contact resistance in series with 

the relatively high-resistance values of the ratio arms 

– the contact resistance has negligible effect. 



Applications….. 

• The ratio R1/R2 should be selected such that a relatively large 

part of the standard resistance is used in the measuring circuit.  

• In this way the value of unknown resistance Rx is determined 

with the largest possible number of significant figures, and the 

measurement accuracy is improved. 





Thank you 


