Knee

Jason Ryan, MD, MPH

Knee

- Four bones
 - Femur, tibia, fibula, patella
- Four ligaments
 - Anterior cruciate
 - Posterior cruciate
 - Medial collateral
 - Lateral collateral
- Two menisci
 - Medial
 - Lateral

Boards&Beyond

BruceBlaus/Wikipedia

Anatomography/Wikipedia

Tibia, Fibula, Patella

Anatomography/Wikipedia

Patella

Cruciate Ligaments

- Cruciate = cross shaped
- Two ligaments (ACL/PCL)
- Form X

Anterior Cruciate Ligament

- Lateral femoral condyle → anterior tibia
- Resists anterior movement of tibia

Boards&Beyond.

Posterior Cruciate Ligament

- Medial femoral condyle \rightarrow **posterior** tibia
- Resists posterior movement of tibia

Boards&Beyond.

Boards&Beyond.

Collateral Ligaments

- Lateral and medial bands
- Resist valgus and varus deformity

STUDY SMARTER

Collateral Ligaments

- Valgus
 - Knock kneed
 - Lower leg abducted
- Varus
 - Bow legged
 - Lower leg adducted

Valgus Deformity

BioMed Central/Wikipedia

Medial Collateral Ligament

- Medial epicondyle of femur
- Medial condyle of tibia
- Resist valgus (knock knee) stress

Lateral Collateral Ligament

- Lateral epicondyle of femur
- Head of fibula
- Resists varus (bow leg) stress

Menisci

- Two crescent-shaped pads (medial and lateral)
- Fibrous tissue and cartilage
- Between tibia and femoral condyles

Knee Injuries

- Often involve tears of ligaments or menisci
- Swelling
- Instability
- Sensation that knee will "give out"

James Heilman, MD/Wikipedia

ACL Injury

Anterior Cruciate Ligament

- Most commonly injured knee ligament
- Often a noncontact athletic injury
 - Running/jumping
 - Sudden change of direction (cutting/pivot)
- Classically senses as a "pop" in knee

ACL Injury

Anterior Cruciate Ligament

- Patient supine
- Anterior drawer sign
 - Bend knee 90° angle
 - Tibia drawn forward
 - Forward movement greater than normal in ACL tear
- Lachman test
 - Same as drawer sign but 30° angle

PCL Injury

Posterior Cruciate Ligament

- Often from trauma
 - Force directed posteriorly at knee
 - Classic cause: "dashboard injury" knee into dashboard
- Posterior drawer sign
 - Patient supine
 - Knee bent at at 90° angle
 - Tibia moves backwards more than normal

MCL Injury

Medial Collateral Ligament

- Damaged by valgus stress
 - Contact
 - Non-contact (twisting)

Abnormal passive abduction

- Force from lateral side (valgus)
- Lower leg away from midline (abduction)
- Medial space widens

Valgus Deformity

BioMed Central/Wikipedia

Unhappy Triad

- Triad of injury common in contact sports
- Lateral force applied to knee when foot planted
- Original triad description:
 - Anterior cruciate ligament (ACL) tear
 - Medial collateral ligament (MCL) tear/sprain
 - Medial meniscal tear
- Modern studies: lateral meniscus more common

Shelborune KD, Nitz PA. Am J Sports Med **The O'Donoghue triad revisited. Combined knee** injuries involving anterior cruciate and medial collateral ligament tears. 1991 19(5): 474-7

Unhappy Triad

OpenStax College/Wikipedia

LCL Injury

Lateral Collateral Ligament

- Rarely injured in isolation
- Often trauma to medial knee

Abnormal passive adduction

- Force from medial side (varus)
- Lower leg toward midline (adduction)
- Lateral space widens

Meniscal Tear

- Often occurs when foot is planted
- Sudden change in direction \rightarrow twisting of knee
- Often occurs in sports (soccer, basketball)
- Pain and swelling following injury
- Pain worse with twisting or pivoting

McMurray Test

- Patient supine
- Flexed (bent) knee held by examiner's hand
- Foot held by examiner's other hand
- Extend knee while rotating foot
- Pain or "pop" = positive McMurray test
- Internal rotation tibia \rightarrow tests lateral meniscus
 - Foot toward midline
- External rotation \rightarrow tests medial meniscus
 - Foot away midline

Knee

- Synovial joint
 - Connects bones
 - Synovial membrane
 - Synovial fluid

OpenStax College/Wikipedia

Bursitis

- Bursa = synovial-lined sac
- Cushion between bones and tendons/muscles
- Four bursa near knee

Boards&Beyond.

Madhero88/Wikipedia

Prepatellar Bursitis

- Inflammation of prepatellar bursa
- Often caused by repeated kneeling
 - "Housemaid's knee"
- Other causes: infection, gout
- Pain with activity
- Swelling anterior to patella
- Warmth

Anish Choudhary

OpenStax College/Wikipedia

Baker's Cyst

Popliteal Cyst

- Popliteal fluid collection
- Gastrocnemius-semimembranosus bursa
 - Bursa between two muscle tendons
 - Found in back of the knee
- Often communicates with synovial space
- Often related to chronic joint disease
 - Degenerative
 - Inflammatory
 - Joint injury

Dr. Johannes Sobotta/Public Domain

Baker's Cyst

Popliteal Cyst

- Often small, asymptomatic
 - Detected by imaging for unrelated joint symptoms
- May cause posterior knee pain
- Pain with prolonged standing
- Symptoms/swelling worse with activity
- Rupture may cause acute pain (mimics DVT)
- Common in patients with rheumatoid arthitis

Hellerhoff/Wikipedia

Siwaporn Khureerung

Osgood-Schlatter Disease

Tibial tuberosity avulsion

- Occurs in children
- Pain/swelling at tibial tubercle from overuse
 - Insertion point of patellar tendon
- Secondary ossification center of tibia
- Usually benign, self-limited condition

BruceBlaus/Wikipedia

Patellar Fracture

- Results from trauma to knee
- Swollen, painful knee
- Cannot extend knee against gravity
 - Indicates loss of knee extension
 - Classic cause: patellar fracture
 - Quadriceps tendon tear
 - Injury to patellar tendon
- Diagnosis: X-ray

Public Domain

Shoulder and Elbow

Jason Ryan, MD, MPH

Shoulder

- Ball and socket joint
 - "Glenohumeral joint"
 - Glenoid = fossa of scapula bone
- Three bones
 - Clavicle, scapula, humerus

BodyParts3D/Wikipedia

Shoulder Movements

5

Rotator Cuff

- Rotator cuff
 - Four muscles surrounding joint ightarrow conjoint tendon
 - Supraspinatus, infraspinatus, subscapularis, teres minor
 - Draws humerus head into glenoid during **abduction**
- Tendonitis: common cause of shoulder pain
 - Pain with abduction
- Tears: inability to abduct

Supraspinatus

- Above spine of scapula
- Initial abduction (0-15°)
 - Main abductor: deltoid (15-100°)
- Innervation: suprascapular nerve
 - Also infraspinatus muscle
- Most common rotator cuff injury

Mikael Häggström/Wikipedia

BodyParts3D/Wikipedia

Supraspinatus

- Common cause or rotator cuff injury
- Impingement
 - Compression of tendon
 - Between humeral head and acromion process of scapula
 - Impingement in the subacromial space
- Leads to tendinopathy (inflammation) or tear
- Occurs is swimmers and throwers
 - "Swimmer's shoulder"
 - "Thrower's shoulder"

BodyParts3D/Wikipedia

Supraspinatus

OpenStax College/Wikipedia

Empty/Full Can Tests

- Identify supraspinatus injury
- Empty Can Test
 - Arms out (90° abduct; 30° in front)
 - Thumbs down
 - Examiner pushes arms down
 - Positive if pain
- Full Can Test
 - Thumbs up

MaxPixel/Public Domain

Infraspinatus

• Below spine of scapula

Spine of Scapula

BodyParts3D/Wikipedia

Mikael Häggström/Wikipedia

Infraspinatus

- Assists in external rotation/abduction of shoulder
- Innervation: suprascapular nerve
- Commonly injured in overhead throwers (pitchers)
 - Most common rotator cuff injuries: supra/infraspinatus
- Difficult to assess in isolation

Keith Allison/Wikipedia

Teres Minor

- Assists in external rotation/adduction of shoulder
- Innervation: axillary nerve

Subscapularis

- Internal rotation of shoulder/arm
- Innervation: Upper/lower subscapular nerves

BodyParts3D/Wikipedia

Brachial Plexus

Boards & Beyond.

Shoulder Movement

- Deltoid: primary shoulder abductor up to 90°
 - Innervated by axillary nerve
- Other muscles
 - Supraspinatus: initiates abduction; first 15°
 - Trapezius/serratus anterior: abduction beyond 90°

Användare:Chrizz

Shoulder Dislocation

- Trauma \rightarrow anterior dislocation of humeral head
 - Vulnerable arm: abducted, externally rotated, extended
 - Blocking a basketball shot
 - Tackle while throwing a football
- Commonly injures **axillary nerve**
 - Runs below humeral head
 - Wraps around neck
 - Sensory loss of deltoid
 - Weak abduction (shoulder usually too painful to move)

Humerus Fracture

- Common in elderly (falls)
- Often occur in the proximal humerus
 - Blood supply: branches of axillary artery
 - Fractures may disrupt blood supply
 - Avascular necrosis of head
- Proximal humerus nerves
 - Brachial plexus
 - Axillary nerve \rightarrow loss of arm abduction (deltoid)

Elbow

- Three bones
 - Humerus (upper arm)
 - Radius/ulna (lower arm)
- Prone to overuse injuries
 - Golfers, tennis players

- Lateral epicondyle
 - Bone origin of wrist extensors
- Medial epicondyle
 - Bone origin of wrist flexors
- Epicondylitis
 - Pain at epicondyle from overuse
 - Form of "chronic tendinosis"
 - Few inflammatory cells
 - Disorganized tissue/vessels

- Pain in medial or lateral elbow
- Worse with repetitive movements

- Lateral epicondylitis (tennis elbow)
 - Tenderness: lateral epicondyle and proximal wrist extensors
 - Elbow pain with resisted wrist **extension**

François GOGLINS

- Medial epicondylitis (golfer's elbow)
 - Tenderness: medial epicondyle
 - Pain with resisted wrist flexion

Pixabay/Public Domain

Nursemaid's Elbow

Radial head subluxation

- Subluxation = partial dislocation
- Caused by "axial traction" on pronated forearm
 - Arm pulled when extended at elbow
- Annular ligament slips over head of radius
 - Trapped in radiohumeral joint

Supracondylar Facture

- Most common pediatric elbow fracture
- Often from fall on outstretched arm

Supracondylar Facture

- Brachial artery may be injured
- Median nerve travels with brachial artery
- Injury to both: most common neurovascular injury
- Radial or ulnar nerves may also be injured
 - Ulnar nerve travels under medial epicondyle
 - Radial nerve wraps around humerus laterally

Supracondylar Facture

Wikipedia/Public Domain

Boards & Beyond.

Brachial Plexus

Jason Ryan, MD, MPH

Brachial Plexus

- Network of nerves
- Motor and sensory innervation of arm
- Damage to plexus elements \rightarrow nerve syndromes

Spinal Nerve Roots

guest334add Boards&Beyond.

- Cervical (8)
- Thoracic (12)
- Lumbar (5)
- Sacral (5)

Brachial Plexus

Boards&Beyond.

Brachial Plexus Lesions

- Nerves
 - Axillary
 - Radial
 - Median
 - Ulnar
 - Musculocutaneous
- Trunks
 - Upper: C5-C6
 - Lower: C8-T1
- Long thoracic nerve

Axillary Nerve

Deltoid muscle

- Abduction 15° to 90°
- Loss of sensation over deltoid
- Proximal humerus fracture
 - Elderly patient with fall
- Dislocated shoulder
 - Anterior displacement of humerus

Radial Nerve

- **Extensor** to arm, wrist, fingers
- Triceps (extends at the elbow)
- Extensor muscles in forearm
 - Extends wrist and fingers
 - Supinates the forearm
- Sensory to back of hand/forearm

Wrist Flexion and Extension

<u>Major Flexors</u> <u>Median and Ulnar Nerves</u> Flexor carpi radialis Flexor carpi ulnaris

Major Extensors Radial Nerve

Extensor carpi radialis longus Extensor carpi radialis brevis Extensor carpi ulnaris

Public Domain Boards&Beyond.

Public Domain

Radial Nerve Lesions

- Radial
 Triceps weakness (axillary injury)
- Wrist drop
 - Weakness wrist/finger extensors
- Sensory loss back of hand/forearm

Radial Nerve Lesions

- Causes
 - Humeral fracture (midshaft)
 - Crutches (compression)
 - Sleeping with arms out over chair
 - "Saturday night palsy"

Radial Nerve

- Runs adjacent to humerus
 - In spiral/radial groove
 - Vulnerable to compression against bone

Mikael Häggström/Wikipedia

Radial Nerve Lesions

- Axilla level damage
 - Triceps weakness
 - Weakness wrist/finger extensors
 - Sensory loss back of hand/forearm

Radial Nerve Lesions

- Radial groove damage
 - Triceps spared
 - Weakness wrist/finger extensors
 - Most sensory nerves (arm/forearm) unaffected
 - Superficial branch of radial nerve damaged
 - Sensory loss dorsal surface

Musculocutaneous Nerve

- Lateral cord of brachial plexus
 - C5, C6, and C7
- Innervates biceps and other muscles
- Sensation to lateral forearm
- Nerve lesion (rare)
 - Weakness of elbow flexion
 - Sensory loss lateral forearm

Everkinetic/Wikipedia

C5-C6 Trunk

Erb's Palsy/Upper Plexus Injury

- Caused by excessive angle at neck/shoulder
- Stretches/tears nerve roots \rightarrow nerve damage
- Classic cause: birth trauma
 - "Shoulder dystocia:" shoulder impedes delivery
 - Stretching of angle between neck/shoulder

MaxPixel/FreeGreatPicture.com
C5-C6 Trunk

Erb's Palsy/Upper Plexus Injury

- Axillary nerve
 - Deltoid \rightarrow abduction
 - Shoulder flat at side
- Musculocutaneous
 - Biceps \rightarrow elbow flexion
 - Forearm down
- Suprascapular
 - Infraspinatus \rightarrow external rotation
 - Arm internally rotated

C5-C6 Trunk

Erb's Palsy/Upper Plexus Injury

- Arm straight at side
- Internally rotated (hand facing out)
- "Waiter's tip"

Caryl Subion

Brachial Plexus

Erb's Palsy/Upper Plexus Injury

Boards&Beyond.

Wikipedia/Public Domain

C8-T1 Trunk

Klumpke Palsy/Lower Plexus Injury

- Caused by excessive abduction of arm
- Catching a tree branch while falling
- Rarely occurs from birth trauma

Pixabay/Public Domain

C8-T1 Trunk

Klumpke Palsy/Lower Plexus Injury

- Ulnar and median nerves
- Affects intrinsic hand muscles
- Flexors at wrist arm spared
 - Also supplied by ulna and median nerves
 - Innervated by different roots
- Metacarpophalangeal joints hyperextended
- Interphalangeal joints flexed
- Result: clawed hand

Wikipedia/Public Domain

Brachial Plexus

Klumpke Palsy/Lower Plexus Injury

Boards&Beyond.

Wikipedia/Public Domain

- Compression of nerves/vessels leaving thorax
- Occurs above first rib and behind clavicle
 - "Thoracic outlet"

Boards&Beyond.

BruceBlaus/Wikipedia

- Scalene triangle
 - Anterior scalene
 - Middle scalene
 - Above first rib

Causes

Cervical rib

- Anomalous extra rib from 7th cervical vertebrae
- Predisposes to outlet syndrome
- Often occurs after hyperextension-flexion (whiplash)

Boards&Beyond.

Clinical Features

- Brachial plexus: Klumpke palsy
 - Lower plexus injury
 - Symptoms worse with elevation of arms/hands
- Venous compression: Arm swelling
- Arterial compression (rare)
 - Hand ischemia (pain, pallor, cool temperature)
 - Lower systolic blood pressure
 - Weak distal pulses

Long Thoracic Nerve

- Innervates serratus anterior muscle
 - Pulls scapula against rib cage
- Lesion (trauma): winging of scapula
 - Patient presses outstretched arm against wall
 - Scapula protrudes from back

Dwaipayanc/Wikipedia Boards&Beyond

Bildbearbetning: sv:Användare:Chrizz

Wrist

Jason Ryan, MD, MPH

Wrist Bones

- Carpus = wrist
- Eight carpal (wrist) bones
 - A: Scaphoid
 - B: Lunate
 - C: Triquetrum
 - D: Pisiform
 - E: Trapezium
 - F: Trapezoid
 - G: Capitate
 - H: Hamate

Dr. Jochen Lengerke/Wikipedia

Scaphoid

- Most commonly fractured carpal bone
- Palpable in anatomic snuff box
- Classically from FOOSH injury
 - Falling On an Out-Stretched Hand
- Complications of fractures
 - Avascular necrosis
 - Nonunion

M0rphzone/Wikipedia

Public Domain

Scaphoid Blood Supply

- Blood supply: Radial artery
 - Palmar and dorsal branches
- Radial artery supplies distal bone
- Proximal portion relies on retrograde flow

BruceBlaus/Wikipedia

Scaphoid Fracture

Complications

Avascular necrosis

- Loss of blood supply
- Especially waist fractures
- Nonunion
 - Failure of bone to heal

Public Domain

Lunate Dislocation

- Caused by trauma/fall
- Lunate attached to radius
- Other bones forced backwards
- Lunate displaced toward palm
- Wrist painful/swollen

Dr. Jochen Lengerke/Wikipedia

Lunate Dislocation

- Lunate may compress carpal tunnel
- Median nerve dysfunction

Boards&Beyond^{Blausen.com staff. WikiJournal of Medicine}

Carpal Tunnel

- Transverse carpal ligament (flexor retinaculum)
- Carpal bones (inferiorly)

OpenStax College/Wikipedia

Carpal Tunnel Syndrome

- Entrapment of median nerve in carpal tunnel
- Symptoms of median nerve dysfunction

Median Nerve Lesions

- Motor loss to thumb side:
 - Thumb movement (thenar muscles)
 - Flexion/extension of lateral fingers (lumbricals)
- Sensory loss thumb side:

Boards&Beyond

• Thenar eminence, lateral 3 ¹/₂ fingers

Wikipedia/Public Domain

Carpal Tunnel Syndrome

- Begins with sensory symptoms
- Untreated can lead to motor symptoms
- Classic hallmark: pain or paresthesia
 - Described as numbress and tingling
 - Distribution of median nerve

Carpal Tunnel Syndrome

Risk Factors

- Repetitive use of hands/wrists (controversial)
- Obesity
- Pregnancy (edema)
- Other disorders
 - Diabetes
 - Rheumatoid arthritis
 - Hypothyroidism

Acromegaly

- Growth hormone excess in adults
- Often caused by pituitary adenoma
- Enlarged jaw and course facial features
- Enlarged hands and feet
 - Classic sign: Increasing glove/shoe size
 - Rings that no longer fit
 - Up to 1/3 have carpal tunnel syndrome

Philippe Chanson and Sylvie Salenave

Dialysis-related Amyloidosis

- Amyloid deposits form from **β2 microglobulin**
- Complication of renal failure
- Dialysis does not effectively remove β2 microglobulin
- Bones, joints, tendons
- Shoulder pain
- Carpal tunnel syndrome

atropos235

Carpal Tunnel Syndrome

Physical Exam

- Tinel's sign
 - Patient extends wrist
 - Percussion (light tapping) over thumb side of wrist
 - Tingling in distribution of median nerve = positive
- Phalen maneuver
 - Patient asked to flex wrist and hold for 60 seconds
 - Tingling in distribution of median nerve = positive

Guyon's Canal Ulnar Canal

- Above transverse carpal ligament
- Roof formed by palmar fascia
- Passage of ulnar nerve and artery into wrist

Boards&Beyond. Wikipedia/Public Domain

Ulnar Nerve Lesions

- Loss of abduction/adduction (interossei)
- Motor loss to little finger side (little/ring fingers)
 - Hypothenar muscles, medial two lumbricals
- Sensory loss little finger side

Boards&Beyond.

Wikipedia/Public Domain

Guyon's Canal Syndrome

- Overuse of the wrist
- Many cases reported in bicyclists
 - Direct pressure from handlebars

Public Domain

Pediatric Fracture

- Often from trauma
- Often incomplete

Greenstick Fracture

- Bent bone from fracture
- Fracture does not extend through width of bone
- Often occur in distal radius from trauma
- Bending force (from side) applied to bone
- Often FOOSH injury (fall on an outstretched hand)

Greenstick Fracture

Hellerhoff/Wikipedia

Torus Fracture

Pediatric Fracture

- "Buckle fracture"
- Axial force trauma
 - Force into bone
- Occurs in distal metaphysis
 - Diaphysis = shaft
 - Epiphysis = rounded end
 - Metaphysis = widening
- Metaphysis: most porous bone

BruceBlaus/Wikipedia

Torus Fracture

James Heilman, MD/Wikipedia

Hand

Jason Ryan, MD, MPH

Terminology

- Thumb = 1st digit
- Index = 2nd digit
- Middle (long) = 3rd digit
- Ring = 4th digit
- Pinky (small) = 5th digit
- "Volar" = palm of hand
- "Dorsal" = back of hand
- Thumb = lateral
- Little finger = medial

Pixabay/Public Domain

Bones and Joints

Ulnar and Median Nerves

- Ulnar nerve
 - Structures toward ulnar bone (little finger)
- Median nerve
 - Structures toward radius (thumb)

Hand Muscles

• Intrinsic

- Thenar (thumb)
- Hypothenar (little finger)
- Interosseous muscles (abduction/adduction)
- Lumbrical muscles (four fingers)

The Photographer/Wikipedia

Thenar Muscles

- Three muscles
 - Abductor pollicis brevis
 - Flexor pollicis brevis
 - Opponens pollicis
- Associated with thumb
- Form thenar eminence of palm
- Innervated by median nerve
- Atrophy in median lesions

Pixabay/Public Domain

Thumb Opposition

Connexions/Wikipedia

Hypothenar Muscles

- Three muscles
 - Opponens digiti minimi
 - Flexor digiti minimi brevis
 - Abductor digiti minimi
- Associated with little finger
- Form hypothenar eminence
- Innervated by ulnar nerve
- Atrophy in ulnar lesions

Pixabay/Public Domain

Interosseous Muscles

Abduct and adduct fingers (not thumb)

- Dorsal = abduction
- Palmar = adduction
- Innervated by ulnar nerve

Boards&Beyond

Interossei muscles of left hand (dorsal view)

OpenStax College/Wikipedia

Lumbricals

- Originate: tendons of flexor digitorum profundus
 - Forearm (extrinsic) muscle that flexes fingers
- Flex metacarpophalangeal joints
- Extend interphalangeal joints
- Medial two lumbricals: ulnar nerve
 - Near little finger
- Lateral two lumbricals: median nerve
 - Near thumb

Lumbricals

- Loss of lumbricals: claw fingers
 - Metacarpophalangeal joints extended (cannot flex)
 - Interphalangeal joints flex (cannot extend)

Extrinsic Hand Muscles

Flexors

- Underside of forearm
- Flexor digitorum profundus
 - Median/ulnar portions
- Flex digits \rightarrow make fist
- Lateral two digits (thumb)
 - Median nerve
- Medial two digits (little finger)
 - Ulnar nerve

Extrinsic Hand Muscles

Extensors

- Back of the forearm
- Straighten digits
- Extensor digitorum (radial nerve)
- Strongly extends MCP joints
- PIP/DIP extension: Lumbricals
 - Lateral two digits: Median nerve
 - Medial two digits: Ulnar nerve

Wrist Flexion and Extension

<u>Major Flexors</u> <u>Median and Ulnar Nerves</u> Flexor carpi radialis Flexor carpi ulnaris

Major Extensors Radial Nerve

Extensor carpi radialis longus Extensor carpi radialis brevis Extensor carpi ulnaris

Public Domain Boards&Beyond.

Public Domain

Wrist Deviation

- Seen in lesions involving flexor muscles
- To ulnar (little finger) side with median lesions
- To radial (thumb) side with ulnar lesions

PublicDomainPictures.net

- Motor loss to thumb side:
 - Thumb movement (thenar muscles)
 - Flexion/extension of lateral fingers (lumbricals)
- Sensory loss thumb side:
 - Thenar eminence, lateral 3 ¹/₂ fingers

- Thumb:
 - Flexion/abduction/opposition absent (thenar muscles)
- Lateral digits:
 - Loss of lumbricals
 - "Clawed" lateral digits

- "Pope's blessing"
 - Also called Hand of Benediction
 - Ask patient to make fist
 - Thumb, lateral fingers cannot flex
 - MCP extended

Public Domain

- "Ape hand"
 - At rest
 - Thumb adducted
 - Cannot oppose/abduct thumb
 - Thenar atrophy

Mcstrother/Wikipedia

- Wrist lesions
 - Laceration
 - Carpal tunnel syndrome
- Flexor muscles intact
- No wrist deviation

- Elbow lesions
 - Supracondylar fracture of humerus
 - Loss of most flexors/pronators in forearm
 - Forearm supinated
 - Flexion weak
 - Ulnar deviation
 - Pull of the flexor carpi ulnaris

BDB/Wikipedia

Recurrent Branch

Median Nerve

- Motor innervation to thenar muscles
- No sensory innervation
- Superficial nerve near flexor retinaculum
 - Fibrous band on palm side of hand
 - Covers carpal bones
 - Forms carpal tunnel
- Injured in superficial laceration
- Immobilizes thumb
- Sensation normal

Ulnar Nerve Lesions

- Loss of abduction/adduction (interossei)
- Motor loss to little finger side (little/ring fingers)
 - Hypothenar muscles, medial two lumbricals
- Sensory loss little finger side

Boards&Beyond.

Ulnar Claw

- Hand position at rest (fingers straight/not flexed)
- Caused by paralysis of medial lumbricals
- Extension of metacarpophalangeal joints
- Flexion at interphalangeal joints

Mcstrother /Wikipedia

Ulnar Nerve Lesions

- Wrist lesions
 - Lacerations
 - Guyon Canal Syndrome
- Elbow lesions
 - Fracture at medial epicondyle
 - Loss of flexor carpi ulnaris
 - Radial deviation of wrist with flexion

BDB/Wikipedia

Ulnar Paradox

- Proximal (elbow) lesions: ulnar claw may not be seen
- Flexion at interphalangeal joints not present
- Proximal lesions: loss of flexor digitorum profundus
- Ulnar digits paralyzed without clawing
- Proximal lesions appears less severe ("paradox")

Mcstrother /Wikipedia

Lumbosacral Plexus

Jason Ryan, MD, MPH

Lumbar Plexus

- Network of nerves T12 to L4
- Lumbar region of spine
- Supplies skin and muscles of lower limb

Sacral Plexus

- Network of nerves L4-S4
- Sacral region of spine
- Supplies skin/muscles of pelvis and lower limb

Iliohypogastric

- T12-L1
- Motor: internal oblique and transversus abdominis
- Sensory: Suprapubic (hypogastric) region
 - **Below umbilicus**
 - Above pubic bone

Iliohypogastric

- Commonly injured in abdominal/pelvic surgery
 - Laparotomy, laparoscopic surgery
 - Hernia surgery, hysterectomy
 - Transverse incisions
 - Sutures may trap nerves
 - May also involve Ilioinguinal nerve
- Symptoms occur after surgery:
 - Burning pain or paresthesia (tingling)
 - Radiates from incision to suprapubic area
 - Sometimes labia/scrotum, or thigh

Wikipedia/Public Domain

Genitofemoral Nerve

- L1-L2
- Motor: Cremasteric muscle
 - Muscle covering testis and spermatic cord
- Sensory (genital branch):
 - Males: skin of anterior scrotum
 - Females: skin over mons pubis and labia majora
- Sensory (femoral branch): skin upper anterior thigh

Genitofemoral Nerve

Injured in abdominal surgery

Often damaged by retractor blades

Absent cremasteric reflex (males)

- Stroke inner thigh
- Scrotum rises ipsilateral side
- \downarrow sensation anterior thigh
- ↓ sensation labia/scrotum

Lateral Femoral Cutaneous

- Pure sensory nerve from L2-L3
- Courses under inguinal ligament into thigh
- Compressed by tight clothing, obesity, pregnancy

Tibor Végh

Lateral Femoral Cutaneous

Meralgia paresthetica

- Outer thigh nerve syndrome
- Burning pain
- Paresthesia (numbness/tingling)
- Hypoesthesia (diminished sensation)

Obturator Nerve

- Obturare = Latin "to close"
- Closes (adducts) thigh
- Motor: Thigh adductors
 - Adductor Longus
 - Adductor Brevis
 - Adductor Magnus
 - Gracilis
 - Obturator Externus
- Sensory: Medial thigh

Obturator Nerve

- Courses through posterior pelvis
- Injured in pelvic surgery
- Trocar into pelvis
- Weak adduction
- Numbness medial thigh

Trocar

- L2-L4
- Motor and sensory
- Motor: anterior thigh muscles
- Hip flexors and knee extensors

Hip Flexors

- Pectineus
- Iliacus (part of iliopsoas)
- Sartorius

Beth ohara/Wikipedia

Knee Extensors

- Quadriceps femoris
 - Rectus femoris
 - Vastus lateralis
 - Vastus medialis
 - Vastus intermedius (deep to rectus)

Sensory

- Anterior cutaneous branches
 - Skin of anteromedial thigh
- Saphenous nerve
 - Skin on medial leg and foot

Saphenous vein stripping

- CABG
- May damage saphenous nerve
- Numbness lower leg

Femoral Nerve Block

- Anesthesia to leg for surgical procedures
 - Along with obturator and femoral cutaneous block
- Femoral nerve at groin
 - Lateral to medial
 - Nerve-artery-vein-lymph (NAVL)

Injury

- Rarely injured by pelvic fracture or surgery
- Weakness: flexion of thigh, extension at knee
- Absent patellar reflex
- Numbness, tingling, burning pain in thigh/knee

Image courtesy of ChristinaT3

Sciatic Nerve

- L4-S3
- Largest nerve in the body (2cm wide!)
- Motor/Sensory
- Branches: common peroneal and tibial

Common Fibular Nerve

- Motor/sensory to lower leg
- Fibula: Latin word for clasp
- Peroneus: Greek work for clasp

Anatomography/Wikipedia

Motor Functions

- Short head of biceps femoris
 - Hamstring muscle (flexes knee)
- Branch: Superficial fibular nerve
 - Muscles of lateral lower leg
 - Fibularis longus and brevis
 - Evert the foot

Boards&Beyond

- Branch: Deep fibular nerve
 - Muscles of anterior lower leg
 - Tibialis ant, extensor digitorum longus, extensor hallucis longus
 - **Dorsiflexion of foot**, extension of toes
 - Also some intrinsic muscles of foot

Connexions/Wikipedia

Sensory Functions

- Lower leg
- Dorsum of foot

- Wraps around fibula below knee
- Injured by:
 - Prolonged lying (bed rest, surgery)
 - Leg casts
 - Fibular neck fracture
- Symptoms:

Boards&Beyond

- Foot drop (weak dorsiflexion)
- Foot feels limp (patient may trip)
- Sensory loss dorsum foot, lateral shin

Tibial Nerve

- Course: down the leg, posterior to tibia
- Motor to posterior leg muscles
- At foot travels under medial malleolus
 - Through tarsal tunnel
- Sensory to heel/sole

Tibial Nerve

Posterior Leg Muscles

- Many deep and superficial muscles
 - Popliteus
 - Flexor hallucis Longus
 - Flexor digitorum Longus
 - Tibialis posterior
 - Plantaris
 - Soleus
 - Gastrocnemius

Boards&Beyond.

OpenStax College/Public Domain

Tibial Nerve

Posterior Leg Muscles

- Many actions:
 - **Plantar flexion**
 - Toe flexion
 - **Inversion**

Tibial Nerve Damage

- At heel from tarsal tunnel narrowing
 - Often following fracture/dislocation
 - Symptoms mostly sensory
 - Pain, burning, numbness on sole of foot
- At knee from large Baker's cyst or trauma (rare)
 - Loss of plantar flexion (can't stand on toes)
 - Loss of toe flexion
 - Loss of inversion

Pudendal Nerve

S2-S4

- Pudendal = Latin "to be ashamed"
- Nerve supply to genital area
- Motor:
 - Muscles of perineum
 - External urethral sphincter
 - External anal sphincter
 - Levator ani
- Sensory: penis/clitoris and skin of perineum

Perineum

• Floor of pelvis between legs

Sphincter ani externus

Pudendal Nerve

- Often injured from stretching in vaginal childbirth
- Perineal pain worse with sitting
- Vulvar/scrotal pain
- Fecal/urinary incontinence

Tom Adriaenssen/Wikipedia

Pudendal Nerve Block

- Used in vaginal childbirth to reduce pain
 - Largely replaced by epidural anesthesia
- Anesthesia to ischial spine of pelvis
 - Point of entry for nerve to pelvis
 - Lithotomy position: spine palpable through vagina

Saltanat ebli/Wikipedia

BodyParts3D/Wikipedia

Lumbar Radiculopathy

Jason Ryan, MD, MPH

Radiculopathy

- Compression of nerve root at spine
- Lumbar radiculopathy = radiculopathy lumbar spine
- Many causes:
 - Herniated disc
 - Spondylolisthesis
 - Spinal stenosis

Intervertebral Discs

- Cushion between vertebrae
- Outer fibrous ring: annulus fibrosus
- Soft center: nucleus pulposus

debivort/Wikipedia

Herniated Disc

- Most common cause of radiculopathy
- Degeneration of annulus fibrosis
- Bulging/extrusion of nucleus pulposus
- Unilateral nerve compression

Vertebra Herniated disc Pinched nerve Lumbar spine

BruceBlaus/Wikipedia

debivort/Wikipedia

Herniated Disc

- Often occurs posteriorly
- Two ligaments contain disc in spine
 - Anterior and posterior longitudinal ligaments

Posterior longitudinal ligament

- Sits within spinal canal
- Covers posterior surface of vertebrae
- Weaker containment than anterior ligament

Spondylolisthesis

- Forward displacement of one vertebra over another
 - Spondylo = vertebrae/spine
 - Listhesis = movement
 - Spondylosis = degeneration of the spinal column
- May cause radiculopathy

Spinal Stenosis

- Narrowing of spinal canal
- Usually age-related
- Intervertebral discs shrink \rightarrow narrows foramen
- Facet joint arthritis \rightarrow bone spurs
- Ligamentum flavum hypertrophies
- Leads to nerve root compression
- Standing (straight spine) narrows lumbar canal

Spinal Stenosis

Wikipedia/Public Domain

BruceBlaus/Wikipedia

Neurogenic Claudication

- Leg pain with walking in spinal stenosis
- Can mimic vascular claudication
- Features of neurogenic claudication
 - Often persists with rest when standing
 - Improves with stooped/flexed posture

Boards&Beyond.

Sciatic Nerve

- Largest nerve in the body (2cm wide!)
- Branches into common peroneal/tibial

• Motor:

- Muscles of posterior thigh
- Hamstring portion of adductor magnus
- Branches: muscles of leg/foot

• Sensory:

- No direct sensory functions
- Branches: skin of lateral leg, heel, and foot

Sciatic Nerve

Motor

- Hamstrings
 - Three posterior thigh muscles
 - Semimembranosus (medial)
 - Semitendinosus
 - Biceps Femoris (lateral)
- Adductor magnus
 - Medial thigh muscle
 - Two portions
 - Hamstring portion similar to hamstrings
- Knee flexion, hip extension, hip rotation

Sciatica

- Clinical syndrome with many causes
- Often used to describe **pain** of lumbar radiculopathy
- Low back pain radiating along path of sciatic nerve
 - Low back \rightarrow buttocks \rightarrow back of thigh
- Commonly caused by herniated disk
 - Compresses nerve at root (radiculopathy)
 - Inflammation, pain and numbness in affected leg

Sciatic Neuropathy

Hip fracture or dislocation

- Sciatic nerve behind hip joint
- Posterior dislocations: most common type
- Hip replacement surgery
- Prolonged compression (coma/bed rest)
- If severe may cause:
 - Hamstring muscle weakness
 - Loss of dorsiflexion /foot drop (common peroneal nerve)
 - Sensory loss in lower leg/foot

Radiculopathy Syndromes

Nerve root L5: most common

- Herniated disc at L4/L5 vertebrae
- Back pain down lateral leg
- Weak **foot dorsiflexion**, toe extension
- Difficult walking on heels
- Common Peroneal Nerve

Radiculopathy Syndromes

- S1 nerve root: 2nd most common
 - L5/S1 disc
 - Pain down back of leg
 - Weakness plantar flexion
 - Difficulty standing on toes
 - Ankle reflex lost
 - Tibial nerve

Radiculopathy Syndromes

- L2/L3/L4 nerve roots
 - Higher nerve roots → thigh/knee symptoms
 - Supply **femoral nerve**
 - Pain to anterior thigh and knee
 - Weakness: hip flexion, knee extension
 - Reduced knee (patellar) reflex

Straight Leg Raise Test

- Bedside maneuver for lumbar radiculopathy
- Examiner raises extended leg on symptomatic side
- Stretches sciatic nerve and nerve roots
- Lasègue's sign: worsening pain

Davidjr74/Wikipedia

Hip

Jason Ryan, MD, MPH

Hip Joint

- Head of femur
- Acetabulum of pelvis
- Movements
 - Abduction
 - Adduction
 - Flexion
 - Extension
 - Internal/external rotation

Protohiro

Major Flexors

Iliopsoas

- Psoas major and iliacus
- Combine at inferior ends
- Tensor fasciae latae
- Sartorius
- Pectinius

Beth ohara/Wikipedia

Major Extensors

- Gluteus maximus
- Hamstrings
 - Hip extenders/knee flexors
 - Semimembranosus
 - Semitendinosus
 - Biceps femoris

Wikipedia/Public Domain

Major Abductors

- Gluteus medius
- Gluteus minimus

Gluteus Medius

Gluteus Minimus

Anatomography /Wikipedia

Major Adductors

- Adductor magnus
- Adductor longus
- Adductor brevis
- Others (pectineus, gracillis)

Beth ohara/Wikipedia

External Rotation

Knee away midline/Foot toward midline

- Gluteus maximus
- Several "external rotators"
 - Obturator internus
 - Gemellus superior/inferior
 - Quadratus femoris

Beth ohara/Wikipedia

Internal Rotation

Knee toward midline/Foot away midline

- No primary/major internal rotator muscles
- Many muscles contribute
 - Gluteus medius/minimus
 - Tensor fasciae latae
 - Adductor longus/brevis
 - Posterior head of adductor magnus
 - Pectineus

Superior Gluteal Nerve

- From sacral plexus (L4-S1)
- Pure motor nerve
- Gluteus minimus/medius (abductors)
- Tensor fasciae latae (flexor)

Superior Gluteal Nerve

- Injured by intramuscular injection to buttocks
 - Upper/outer quadrant used to avoid injury
- Weakness on hip abduction \rightarrow difficulty walking
- Classic finding: Trendelenburg sign
 - Pelvis tilts with walking
 - Weight bearing leg cannot maintain balance

Bebop7/Wikipedia

Trendelenburg Sign/Gait

- Classically seen with weak hip abduction
- Also seen in some other hip disorders

sportEX journals/Flikr

Inferior Gluteal Nerve

- Motor to gluteus maximus
- Rarely injured by pelvic masses
- Weakness of hip extension
 - Standing from sitting position

Avascular Necrosis

Osteonecrosis

- Compromise of bone blood vessels
- Necrosis of bone tissue
- Common at femoral head
- Groin pain: most common complaint
- Also thigh, buttock pain
- Difficulty with weight bearing or hip movement

Avascular Necrosis

Osteonecrosis

- Often caused by trauma
 - Femoral neck fracture
- Medial circumflex femoral artery
 - From profunda femoris artery
 - Blood supply to neck of femur
- Damage: avascular necrosis

Avascular Necrosis

Osteonecrosis

- Many non-traumatic causes
 - Steroid therapy
 - Systemic lupus erythematosus
 - Heavy alcohol consumption
 - Sickle cell anemia
 - Gaucher disease (lysosomal storage disease)

SCFE

Slipped Capital Femoral Epiphysis

- Fracture through growth plate
- Slippage of overlying end of femur
- Most common hip disorder in adolescence (12-14yrs)
- Causes groin pain on affected side
- Can lead to avascular necrosis

Dr. Jochen Lengerke

Legg-Calvé-Perthes Disease

- Idiopathic avascular necrosis
- Hip disorder in **children** (4-8 years)
- Abnormal blood flow to femoral head
- Presents as hip pain and limping

James Heilman, MD/Wikipedia

Skeletal Muscle

Jason Ryan, MD, MPH

Types of Muscle

- Cardiac and Skeletal
 - "Striated" muscle
 - Striations seen under microscope
- Smooth

Nephron/Wikipedia

Skeletal Muscle

- Bundles of muscle fibers (cells)
 - Narrow and long
 - Contain myofibrils (contractile structures)
- Attaches to skeletal bones
- Attachment closest to spine: origin
- Attachment furthest from spine: insertion

Skeletal Muscle

Vocabulary

- Fiber = muscle cell
- Sarcolemma = plasma membrane
- Myofibrils = contractile structures within cells
- T-tubule = invaginations of plasma membrane
- Sarcoplasmic reticulum
 - Intracellular structure
 - Similar to endoplasmic reticulum
 - Important for calcium storage
- Terminal cisternae = SR near T-tubule
- Triad = T-tubule with cisternae on either side

Muscle Fiber

Skeletal Muscle Fiber

BruceBlaus/Wikipedia

Muscle Fiber

BruceBlaus/Wikipedia

- Contractile structures within myofibrils
- Contain actin and myosin filaments
- Actin
 - Forms thin filaments
 - **Polymers** of protein actin
- Myosin
 - Forms thick filaments
 - Composed of protein myosin
 - Head and tail domains

- Z disks
 - Ends of sarcomeres
 - Mechanical stability
 - Contain filaments vimentin and desmin
- Titin
 - Cytoskeletal protein
 - Tethers myosin to Z disks

Boards&Beyond.

- I Band: Light band near Z disks
 - Mostly actin
- A Band: Between I bands
 - Actin and myosin overlap
 - No change with contraction
- H Band: Center of sarcomere
 - Myosin only (no actin)
 - Shrinks in size with contraction
- M line: Central proteins for alignment/stability

Z line

Sameerb/Wikipedia

- Thin filaments
 - Mostly actin
 - Troponin
 - Tropomyosin
- Thick filaments
 - Myosin
 - Myosin head binds actin \rightarrow contraction

Skeletal Muscle

Troponin

- Complex of three subunits
- Troponin C: binds calcium
- Troponin T: binds tropomyosin
- Troponin I: inhibits myosin binding to actin
- Cardiac troponin used to diagnose MI

Muscle Contraction

- Initiated with calcium
- Tropomyosin blocks "binding groove" for myosin
- Calcium binds troponin

Boards&Beyond

- Ca-Troponin \rightarrow removal of tropomyosin block
 - Conformational change in tropomyosin
 - Skeletal muscle contraction: "Thin filament regulated"

Muscle Contraction

- Myosin binds ATP at rest
- Hydrolyzes to ADP and Pi
- Assumes "cocked" position (ready for contraction)
- Tropomyosin block removed \rightarrow myosin binding
 - Myosin binds to actin
 - Moves along actin filament
 - "Power stroke"
- Myosin binds new ATP

Boards&Beyond.

OpenStax College/Wikipedia

Boards&Beyond.

Contraction

Myosin Power Stroke

Raul654/Wikipedia

Action Potential

Skeletal Muscle

- Action potential = change in membrane voltage
- Required for skeletal muscle contraction

EC Coupling

Excitation-Contraction Coupling

- Contraction (via Ca²⁺) linked to action potential
- Contraction occurs when cell depolarizes

Neuron Depolarization \downarrow Synaptic Acetylcholine Release \downarrow Muscle cell Depolarization \downarrow Contraction

Neuron depolarization → presynaptic **calcium entry** into neuron Muscle: **Nicotinic Acetylcholine Receptors**

Boards&Beyond.

Boards&Beyond.

Action Potential

Skeletal Muscle

EC Coupling

Excitation-Contraction Coupling

Boards&Beyond.

Dihydropyridine Receptors

- Proteins that span gap between T-tubule and SR
- 5 subunits one subunit binds dihydropyridine drugs
- L-type Ca²⁺ channels (capable of conducting Ca²⁺)
- Conformational change with depolarization
- Opens **ryanodine receptor** on terminal cisternae

Pyridine Boards&Beyond.

Dihydropyridine

Amlodipine

Ryanodine Receptors

- Bind ryanodine (poison found in plants)
 - No role in physiologic function of receptor
- Large protein embedded in SR
- Releases calcium → initiates contraction
- Opened by DHPRs

Ryanodine

SERCA

Sarco/endoplasmic reticulum Ca²⁺-ATPase

- Transfers Ca²⁺ from cytosol back into SR
- ATPase uses ATP hydrolysis

Malignant Hyperthermia

- Rare, dangerous reaction to anesthetics
 - Halothane, succinylcholine
- Muscle damage: ↑CK, K+
- Fever, muscle rigidity after surgery
- Cause: abnormal ryanodine receptors
 - Excessive calcium release
 - Consumption of ATP for SR reuptake of calcium
 - ATP consumption \rightarrow heat \rightarrow tissue damage
- Treat with dantrolene

Dantrolene

- Muscle relaxant
- Antagonist to ryanodine receptors
- Blocks release of calcium from SR
- Reduces calcium in cytoplasm for contraction

Pixabay/Public Domain

Slow and Fast Twitch

Slow-twitch fibers

- Time to peak tension = slow
- Also called red fibers (deep red color)
- Color from amount of myoglobin (binds O2)
- Extra myoglobin resists fatigue
- More mitochondria = more oxidative phosphorylation
- More fatty acid metabolism
- Moderate glycolysis activity
- Postural muscles (spine) = more slow twitch
 - Sustained tone

Pixabay/Public Domain

Slow and Fast Twitch

Fast-twitch fibers

- Time to peak tension = fast
- Also called white (pale color)
- Primarily metabolize glucose and glycogen
- More glycogen storage
- Increased activity of glycolysis enzymes
- Few mitochondria = less oxidative phosphorylation
- Eyes muscles = many fast twitch fibers
- Most muscles a mixture of fast/slow fibers

Cardiac Muscle

Jason Ryan, MD, MPH

Cardiac Muscle

- Many similarities with skeletal muscle
 - Striated
 - Sarcomeres for contraction
 - Actin and myosin
 - Troponin and tropomyosin
 - T-tubules abut sarcoplasmic reticulum

Dyads

Mitochondria Myofibrils Sarcolemma Nucléus T tubule Terminal cisterna-Triad -Sarcoplasmic Reticulum -

Skeletal Muscle Fiber

BruceBlaus/Wikipedia

Cardiac Muscle

- Involuntary
- Depolarized by pacemaker cells (SA node)
- Gap junctions
 - Depolarization spreads from cell to cell

Cardiac Muscle

- Different action potential
- Phase 2: Calcium influx via L-type calcium channels

Cardiac L-type Ca+ Channels

- Also dihydropyridine receptors
- Low affinity for dihydropyridine Ca+ blockers
 - Amlodipine, nifedipine
- Higher affinity for non-dihydropyridine Ca+ blockers
 - Diltiazem, verapamil

Cardiac L-type Ca+ Channels

- Ca influx important (unlike skeletal muscle)
- Triggers SR calcium release via ryanodine receptor
- "Calcium-triggered calcium release"

Contractility

- All cardiac muscle cells contract
- Cannot recruit extra fibers to 1 contractility
- More calcium into cell \rightarrow more contraction
 - More Ca+ entry via L-type Ca channels
 - More Ca-triggered calcium release from SR
 - "Increased calcium transient"

Contractility

- Non-dihydropyridine calcium channel blockers
 - Diltiazem, verapamil
 - Block L-type calcium channels in cardiac myocytes
 - Decrease contractility (negative inotropes)
 - Also slow conduction and lower heart rate

Sympathetic Nervous System

- Increases contractility
- Works through G proteins on cardiac myocytes
- Alter intracellular cAMP levels via adenyl cyclase
- cAMP increase protein kinase A (PKA)
- PKA phosphorylates Ca channels \rightarrow more Ca into cell

Cardiac Muscle Cells

Cardiac Muscle

<u>β1 Receptors</u>
Linked Gs proteins
↑cAMP
↑Calcium
↑Contractility

Lusitropy

- Lusitropy = myocardial relaxation
- Opposite of contractility
- Accompanies increases in contractility
- Faster contraction \rightarrow faster relaxation

SERCA

Sarco/endoplasmic reticulum Ca²⁺-ATPase

- Mediates lusitropy
- Transfers Ca²⁺ from cytosol back into SR
- ATPase uses ATP hydrolysis

Lusitropy

- Key regulatory protein: **Phospholamban**
 - Inhibitor: sarcoplasmic reticulum Ca2+-ATPase (SERCA)
 - Phosphorylated via beta adrenergic stimulation (PKA)
 - Stops inhibiting SERCA
 - Result: SERCA takes up calcium \rightarrow relaxation

SERCA

Sarco/endoplasmic reticulum Ca²⁺-ATPase

- Sympathetic stimulation \rightarrow phosphorylates PLB
- Inactivates PLB (relieves inhibitory effect)
- Allows SERCA to uptake more calcium

Smooth Muscle

Jason Ryan, MD, MPH

Types of Muscle

- Cardiac and Skeletal
 - "Striated" muscle
 - Striations seen under microscope
- Smooth

Nephron/Wikipedia

Smooth Muscle Cells

- Components of organs
 - Intestines, airways, blood vessels
- Propels organ contents (intestines)
- Changes resistance to flow (blood vessels)
- Contains actin and myosin
- Function differently than in striated muscle

Smooth Muscle Cells

- Do not depend on action potentials
- Do not require membrane depolarization to contract
- Slow, sustained contraction
 - Contrast with cardiac cells: rapid, quick contraction
- Calcium → contraction (as in striated muscle)

Myosin Light Chain

- Actin = thin filaments
- Myosin = thick filaments
- Myosin = heavy and light chains
- Myosin light chains = modified to control contraction
- Smooth muscle: "Thick filament regulated"

MLC Phosphorylation

- Regulates contraction/tone
- Only phosphorylated MLC interacts with actin
- Myosin light chain kinase
 - Phosphorylates myosin
- Myosin light chain phosphatase
 - De-phosphorylates myosin

Calcium-Calmodulin

Calmodulin (CAM)

- Smooth muscle cell protein
- Ubiquitous (lots inside cells)
- Binds calcium
- Calcium-CAM activates MLCK
- Calcium → contraction

L-type Calcium Channels

- Allow calcium into smooth muscle cells
- Bind dihydropyridines
- "Dihydropyridine receptors"

Pyridine

Dihydropyridine

Dihydropyridine Drugs

Amlodipine, Felodipine, Nicardipine

• L-type calcium channel blockers

- Vascular smooth muscle relaxation
 - Less Ca \rightarrow relaxation
- Used to lower blood pressure in hypertension

Pyridine

Dihydropyridine

Amlodipine (*Dihydropyridine* Calcium Channel Blocker)

Smooth Muscle Tone

Regulation

- Two major regulators of contraction/tone:
 - Calcium in cell
 - Myosin light chain phosphorylation
- Both modified to alter tone
 - Autonomic nervous system
 - Local factor (i.e. vasodilator)
- Work through 2nd messengers and G proteins

Second Messengers

- Three major 2nd messengers: **cAMP, cGMP, IP3**
 - Cyclic AMP
 - Cyclic GMP
 - Inositol trisphosphate

Second Messengers

• Calcium

• IP3 \rightarrow Calcium release from SR \rightarrow *contraction*

Myosin light chain phosphorylation

- cAMP \rightarrow MLC kinase inhibition \rightarrow *relaxation*
- cGMP \rightarrow MLC phosphatase activation \rightarrow *relaxation*

2nd Messengers

- Norepinephrine/epinephrine
 - IP3, cAMP
- Vasopressin
 - IP3
- Adenosine
 - cAMP
- Prostaglandins
 - cAMP

Smooth Muscle Tone

Regulation

Nitric Oxide

- Also called EDRF
 - Endothelial derived relaxing factor
- Synthesized by endothelial cells from L-arginine
- Basal production
- Many stimuli for increased production
 - Blood flow/shear stress
 - Acetylcholine
 - Bradykinin
 - Substance-P

Nitric Oxide

- NO diffuses into smooth muscle cells
- Activates guanylyl cyclase
- GTP \rightarrow cGMP
- cGMP → + MLC Phosphatase → relaxation

Nitric Oxide Drugs

- Nitroglycerine
 - Vasodilator
 - Angina, heart failure
 - Converted to NO in smooth muscle cells
- Nitroprusside
 - Vasodilator for hypertensive emergency
 - Nitric oxide donor

 $2Na^{+} \begin{bmatrix} 0 \\ N \\ N \\ C \\ N \end{bmatrix} C \begin{bmatrix} 0 \\ N \\ C \\ C \\ C \\ N \end{bmatrix}^{2-}$

Nitroprusside

G Proteins

- Activated by neurotransmitters (i.e. epinephrine)
- Transmit signals to smooth muscle cells
- Work through smooth muscle 2nd messengers

G Proteins

Smooth Muscle Effects

- Gs proteins \rightarrow relaxation
 - Increase cAMP
 - Inhibit MLCK
- Gi proteins \rightarrow contraction
 - Decrease **cAMP**
- Gq proteins \rightarrow contraction
 - Increase IP3

Gs and Gi Systems

Vascular Smooth Muscle

Stimulation (Gs) \rightarrow Relaxation Inhibition (Gi) \rightarrow Contraction

Gq Systems

Vascular Smooth Muscle

 $Gq \rightarrow Contraction$

G-Protein Systems

Receptor	G protein Class
α1	q
α2	i
β1	S
β2	S
M1	q
M2	i
M3	q

Bone

Jason Ryan, MD, MPH

Types of Bones

- Long bones
 - Support weight, allow movement
 - Legs, arms
- Flat bones
 - Protect organs (skull)
- Short bones (wrists, ankle)
- Irregular bones (vertebrae)
- Sesamoid bones
 - Embedded in tendons
 - Patella

Bone

Macroscopic Structure

- Periosteum
 - Membrane
 - Covers outer surface of bones
 - Blood vessels
 - Sensory nerves
- Cortical bone
 - "Compact bone"
 - Hard, exterior bone

Bone

Macroscopic Structure

- Trabecular bone
 - "Cancellous bone"
 - "Spongy bone"
 - Soft, flexible
 - Found at ends of long bones
 - Trabeculated
 - Lots of surface area
- Medullary cavity
 - Contains marrow

Long Bones

- Epiphysis
 - Covered by cartilage
- Metaphysis
 - Widening
- Diaphysis
 - Shaft

BruceBlaus /Wikipedia

Bone Cells

- Osteoblasts
 - Synthesize bone matrix
- Osteoclasts
 - Specialized macrophages
 - Derived from circulating monocytes
 - Secrete acid (H+) and proteases
 - Dissolve bone matrix
- Osteocyte
 - Osteoblasts buried in bone matrix become osteocytes
 - Control local calcium and phosphate levels

Bone Matrix

- Extracellular component of bone
- Synthesized by osteoblasts
- Type I collagen
- Hydroxyapatite: Ca₁₀(PO₄)₆(OH)₂
- Bone: 99% of body calcium; 85% phosphorus

Bone Matrix

- First synthesized as osteoid
 - Non-mineralized bone matrix
 - Mostly proteins
 - Laid down by osteoblasts
- Followed by mineralization with calcium/phosphate

Bone Turnover

- Balance between formation/breakdown
- Modulated by signals from osteoblasts
- Some stimulate osteoclasts
- Some limit osteoclasts
- Combination determines formation/breakdown

Bone Turnover

- RANK
 - Receptor activating nuclear factor kβ
 - Receptor expressed on surface of osteoclasts
 - Ligand binds to receptor \rightarrow synthesis of NF-kB
 - Osteoclast stimulation
- RANK-L
 - Receptor activating nuclear factor kβ ligand
 - Binds RANK
 - Expressed by osteoblasts

Bone Turnover

Osteoprotegerin (OPG)

- Decoy receptor for RANK-L
- Binds RANK-L
- Prevents RANK-L from binding RANK
- Made by osteoblasts

• M-CSF

- Macrophage colony stimulating factor
- Secreted by osteoblasts
- Stimulates osteoclasts

Bone Formation

More RANK-L/MCSF \rightarrow More osteoclast activity More OPG \rightarrow Less osteoclast activity

Bone Formation

- Endochondral ossification
- Membranous ossification

Endochondral Ossification

- Occurs during embryogenesis
- Long bones develop from hyaline cartilage
- Secreted by chondroblasts and chondrocytes
- Cartilage "mold" of bone forms (anlagen)
- Growth \rightarrow chondrocytes die
- Osteoblasts delivered from blood

Hyaline cartilage "model"

Chaldor/Wikipedia

Endochondral Ossification

- At center (diaphysis)
 - Osteoblasts lay down matrix ("ossification")
 - "Primary center of ossification"
- At ends (epiphysis)
 - Osteoblasts also lay down matrix
 - "Secondary center of ossification"
- Eventually anlagen (cartilage) trapped
- Forms epiphyseal (growth) plate

Endochondral Ossification

Chaldor/Wikipedia

Growth Plate

Epiphyseal Plate

- Found at ends of long bones
 - Between metaphysis and epiphysis
 - Physis = growth plate
- Contains hyaline cartilage
- Chondrocytes grow toward epiphysis
- Osteoblasts lay down matrix
- Growth toward diaphysis
- Growth plate "closes" at puberty
- Forms epiphyseal line

Gilo1969/Wikipedia

Woven and Lamellar

- First type of bone formed: woven bone
 - Also called primary or immature
 - Disorganized collagen fibers
 - Weaker
- Woven bone later remodeled to lamellar bone
 - Layered bone
 - Organized
 - Stronger
- Woven bone seen in adults after injury

Membranous Ossification

- Matrix formed directly
- Not from cartilage
- Osteblasts lay down woven bone
- Later remodeled to lamellar bone
- Formation of most flat bones
 - Calvaria (skull)
 - Facial bones

Achondroplasia

- Most common cause of dwarfism
- Genetic disorder
 - Fibroblast growth factor receptor-3 (FGFR3) gene mutation
 - Most (80%) cases due to **spontaneous mutation**
 - Autosomal dominant
 - Survivors = heterozygous
 - Homozygous = stillborn

Achondroplasia

- Defective endochondral ossification
 - Gain-of-function mutation
 - Growth factor activated (turned on)
 - Inhibits chondrocyte proliferation
- Arms, legs short
- Torso, head largely normal

Wikipedia/Public Domain

Mucopolysaccharidoses

Lysosomal storage diseases

Hunter's and Hurler's syndromes

- Inability to metabolize heparan and dermatan sulfate
- Chondrocytes degrade mucopolysaccharides
- Accumulation \rightarrow chondrocyte death
- Short stature, malformed bones common

Osteoblasts

Activity Markers

- Alkaline phosphatase
- Osteocalcin
 - Major non-collagen protein in bone matrix
- Type I procollagen
 - Three pro-alpha chains
 - Secreted from osteoblasts
 - Forms tropocollagen and collagen

Alkaline Phosphatase

- Enzyme found in bone and liver (different forms)
- Also a placental form
 - Placental alkaline phosphatase (PALP)
 - Seen in some germ cell tumors
- Major protein present in bone tissue
- Bound to osteoblasts and free
- Creates alkaline environment for calcium deposition

Acidosis

- Stimulates osteoclasts
- May cause hypercalcemia from bone breakdown
- May reduce bone mineral density
- Complication of some RTAs

- Multiple effects on bone
- Stimulates bone resorption and formation
- Dominant effect varies with dosage/timing

- Continuous administration of PTH
 - Bone resorption \rightarrow f serum calcium
 - Important physiologically
- Low dose once daily bolus administration
 - Increased bone mass (bone formation)
 - **Teriparatide** used to treat osteoporosis

- Cortical bone
 - \downarrow in response to continuous PTH
- Trabecular bone
 - ↑ in response to intermittent, low dose PTH
 - Teriparatide strengthens spine (lots of trabecular bone)

Pbroks13/Wikipedia

Osteoblasts

- Contain PTH receptors
- Can ↑ bone mass in response to PTH

Osteoclasts

- No PTH receptors
- Activated indirectly by osteoblasts

• M-CSF

- Secreted by osteoblasts
- RANK-L
 - Expressed on surface of osteoblasts
- Both produced by osteoblasts \rightarrow activate osteoclasts

Estrogens

- Numerous effects on bone
- Close growth plate at puberty
- Increase bone density
- Loss of estrogen at menopause \rightarrow osteoporosis

Estrogens

- Induce apoptosis of osteoclasts
- Stimulate OPG synthesis by osteoblasts
 - More OPG → Less osteoclast activity
- Decrease M-CSF and RANK production

Bone Disorders

Jason Ryan, MD, MPH

Bone Disorders

- Osteoporosis (thin bones)
- Osteopetrosis (thick bones)
- Rickets/Osteomalacia (nutritional bone disorders)
- Paget's disease (1 bone turnover)

- Defective osteoclast activity
- Osteoblastic activity >> osteoclastic activity
- Increased bone density

- Autosomal recessive (infantile) form
 - Most severe form
 - Presents in infancy
 - Mutations in carbonic anhydrase type II gene
 - Also may have renal tubular acidosis
 - Children may have seizures, intellectual disability
- Autosomal dominant form
 - Albers-Schönberg disease
 - Presents in adolescence
 - Milder form of disease
 - May be asymptomatic identified by x-ray

- Bones prone to fracture
- Excess bone \rightarrow loss of bone marrow
 - Pancytopenia
 - Enlarged liver and spleen (extramedullary hematopoiesis)
- Excess bone in skull → cranial nerve compression
 - Vision loss
 - Deafness

Boards&Beyond

- Facial paralysis
- Hydrocephalus

Konstantinos et al. Rare causes of scoliosis and spine deformity, 10.1186/1748-7161-2-15

- Potentially curable with bone marrow transplant
- Used for infantile form
- Osteoclasts derived from monocytes/macrophages

Dr Graham Beards/Wikipedia

Rickets and Osteomalacia

- Nutritional bone disorders
- Low calcium or vitamin D intake

Feedmystarvingchildren/Flikr

Rickets and Osteomalacia

- Poor mineralization of osteoid
 - Non-mineralized bone matrix
 - Mostly proteins
 - Laid down by osteoblasts
 - Later mineralized with calcium and phosphate
- Sites of osteoid and new bone growth:
 - Children: Growth plates
 - Children and adults: Bone turnover

Growth Plates

- Found at ends of long bones in children
- Contains hyaline cartilage
- Chondrocytes grow toward epiphysis
- Osteoblasts lay down matrix toward diaphysis

Gilo1969/Wikipedia

Rickets

Growth plate thickens

- Chondrocytes expand (disorganized growth)
- Osteoblasts lay down osteoid only
- Bone thickening from osteoid accumulation
- Distorted bone growth

Rickets

- Epiphyseal widening
- Bowed legs (genu varum)
- Swelling at costochondral junctions
 - Rachitic rosary
- Craniotabes (soft skull)
 - Occipital/parietal bones
 - Collapse with pressure

Epiphyseal Widening

Wikipedia/Public Domain

BruceBlaus /Wikipedia

Growth Plate Fraying

Normal

Pro Faather/Slideshare

Rickets

Genu Varum

Michael L. Richardson, M.D./Wikipedia

Rachitic Rosary

Ma Wady/Public Domain

Frank Gaillard/Wikipedia

Osteomalacia

- Children and adults
- Occurs in areas of bone turnover
- Bone pain/tenderness
- Most often spine, pelvis, and legs
- Fractures

Osteomalacia

- Two classic x-ray findings:
 - Pseudofractures
 - Looser Zones
- Caused by:
 - Repaired stress fractures, inadequately mineralized
 - Erosion of bone by arterial pulsations

Pseudofracture

CalgaryCentre/Slideshare

Looser Zone

Boards & Beyond.

Pintrest/Public Domain

Rickets and Osteomalacia

Causes

- Vitamin D deficiency
 - Maternal deficiency during pregnancy
 - Reduced sun exposure
 - Fat malabsorption
 - Cystic fibrosis, pancreatitis, Celiac disease, IBD
 - Liver and renal failure (both activate viatamin D)
- Calcium deficiency (rare)
 - Only seen with severe dietary deficiency
- Treatment: Vitamin D and Ca supplementation

Rickets and Osteomalacia

Lab Findings

- ↓ Calcium
- \downarrow Vitamin D

Vitamin D

- Liver: 25-OH Vitamin D (calcidiol)
- Kidney: 1,25-OH₂ Vitamin D (calcitriol; active form)
- 25-OH Vitamin D = storage form
 - Constantly produced by liver
 - Available for activation by kidney as needed
- Serum 25-OH VitD best indicator vitamin D status
 - Long half-life
 - Liver production not regulated by PTH

Rickets and Osteomalacia

Lab Findings

- ↑ Parathyroid hormone (PTH)
 - Normal response of parathyroid gland
- ↓ Phosphate
 - Excretion promoted by PTH
- ↑ Bone alkaline phosphatase
 - ↑ osteoblast activity

Osteitis Deformans

- Focal disorder
- Common in older patients
 - Average age at diagnosis: 70

Osteitis Deformans

- Excessive bone remodeling
- Overgrowth of bone at focal sites of bone
- New bone: abnormally large, deformed
- Exact cause unknown
- Believe to be due to abnormal osteoclasts

Osteitis Deformans

- Evolves through phases/stages
- Initial phase: osteolytic
 - Osteoclasts breakdown bone
 - Bizarre shape, numerous
 - Multi-nucleated
- Mixed phase: osteolytic-osteoblastic
- Final phase: Osteosclerotic
 - Bone formation dominates
 - Hypervascularity of bone occurs

Paget's Disease Bone Morphology

- Hallmark: mosaic pattern of lamellar bone
- Cement lines

Paget's

Normal

Nephron/Wikipedia

Paget's Disease Clinical Features

- May be asymptomatic
- Often affects long bones, skull, spine
- Pathologic fractures (most common complication)
 - "Chalkstick" fracture
- Bone pain (microfractures)
- Bowing of legs

Chalkstick Fracture

Hellerhoff/Wikipedia

Paget's Disease Clinical Features

- Enlarged skull (increased hat size)
- Cranial nerve compression (deafness)
- Radiculopathy at spine
- Erythema may occur over affected bone area
 - Due to hypervascularity

Clinical Features

High output heart failure

- AV fistula in new bone
- Osteosarcoma
 - Increased risk in Paget's disease

Paget's Disease Clinical Features

- Increase bone alkaline phosphatase
- Treatment: bisphosphonates and calcitonin

Osteitis Fibrosa Cystica

- Classic bone disease of hyperparathyroidism
- Clinical features: Bone pain and fractures
- Parathyroid adenoma
 - ↑ PTH
 - Hypercalcemia
 - ↓ Phosphate

Osteitis Fibrosa Cystica

Subperiosteal bone resorption

- Commonly seen in bones of fingers
- Irregular or indented edges to bones
- Brown tumors (osteoclastoma)

Boards&Beyo

- Collections of giant osteoclasts in bone
- Mixed with stromal cells and matrix proteins
- Appear as black spaces in bone on x ray

Osteitis Fibrosa Cystica

Frank Gaillard/Wikipedia

Renal Osteodystrophy

- Bone abnormalities seen in renal failure
- Hypocalcemia
- Hyperparathyroidism
- Osteitis Fibrosa Cystica
- Rickets/osteomalacia
- Osteopenia/osteoporosis
- Growth retardation
- Bone pain
- Fractures

Jason Ryan, MD, MPH

- Porous bone
- Weak bones prone to fracture
- No clinical symptoms until fracture

Normal bone

Osteoporosis

BruceBlaus/Wikipedia

Terminology

- Osteopenia: ↓ bone mass
- Osteoporosis: markedly \downarrow bone mass
- Osteoporosis associated with 1 fracture risk

- Trabecular bone > cortical bone
 - Trabecular bone: high surface area
 - Osteoblasts/osteoclasts found on surface
- High trabecular bone content:
 - Spine
 - Head of femur (hip)
 - Wrist (distal radius)

• Common in elderly, white women

Dr. Ryan's Grandmother

Bone Mass

- Peak bone mass occurs in young adulthood
 - Many influences: gender, genetics, diet
- Decreases slowly thereafter
 - Each resorption/formation cycle \rightarrow some bone loss

OpenStax College/Wikipedia

Bone Loss

- Males achieve higher peak bone mass
- Bone loss less likely to lead to osteoporosis
- Whites > African Americans
- Weight-bearing activity → ↑ bone mass

Everkinetic/Wikipedia

Menopause

- Accelerates bone loss in women
- Caused by estrogen deficiency
 - Increased osteoclast activity
 - Increased levels of RANK-L
 - Decreased osteoprotegerin (OPG)

- Most osteoporosis: senile/postmenopausal
- Calcium, PTH, Alkaline phosphatase all normal
- Less commonly: secondary osteoporosis

Secondary Causes

Glucocorticoids

- Increase bone resorption
- Reduce bone formation
- Suppress synthesis of OPG
- Increase RANK production

Secondary Causes

- Alcohol
 - Heavy use associated with osteoporosis
 - Often leads to falls/hip fracture
 - Moderate use effects not clear
- Smoking

Boards&Beyond

Accelerates bone loss

Pixabay/Public Domain

Pixabay/Public Domain

Anticonvulsants

- Phenobarbital, Phenytoin, Carbamazepine
- Used to treat seizures/epilepsy
- Risk of osteoporosis with long term therapy
- Increase activity of P450 enzymes
- Increases breakdown of vitamin D
- Less calcium \rightarrow increased PTH \rightarrow bone loss

Pixabay/Public Domain

Anticoagulants

Unfractionated Heparin

- Decreases bone formation
- Increases resorption
- Only with long term use
- Low molecular weight heparin: unclear bone effects

Thyroid Replacement

- *Hyper*thyroidism \rightarrow osteoporosis/fractures
- Levothyroxine (T4) used in *hypothyroidism*
- Too high dose → iatrogenic hyperthyroidism
 - If mild may produce no symptoms
- Key test: TSH
- If TSH is low ("suppressed") need to lower dose
- Many elderly, post-menopausal women take T4

Secondary Causes

- Hyperparathyroidism
- Hyperthyroidism
- Multiple myeloma
 - Myeloma cells \rightarrow Increase osteoclast activity
 - Results in "lytic" bone lesions of MM
- Malabsorption syndromes
 - Celiac disease, Crohn's, Ulcerative Colitis
 - Poor absorption calcium and vitamin D

Osteoporosis

Diagnosis

Fragility fracture

- Fall from standing height or less
- Not from major trauma (i.e. MVA)
- Spine, hip, wrist, humerus, rib, or pelvis
- Also a spontaneous vertebral "compression" fracture
- T score of -2.5 or lower

DXA

Dual-energy X-ray absorptiometry

- Two X-rays of different energy levels aimed at bones
- **T score**: patient BMD vs. healthy 30-year-old BMD
- Normal: -1.0 or higher (least fractures)
- Osteopenia: -1.0 to -2.5
- Osteoporosis: -2.5 or lower (most fractures)
- Recommended for screening in women >65

Nick Smith photography/Wikipedia

Fractures

• Hip

- Weight-bearing joint
- Easily injured from fall
- Spine
 - Lower thoracic/lumbar spine
 - "Compression" fractures
 - Often occur slowly over time
 - Minor trauma of daily activates
 - Loss of height
 - Kyphosis (forward curved spine)
 - Back pain

James Heilman/Wikipedia

Osteoporosis Drugs

Jason Ryan, MD, MPH

Osteoporosis Therapy

- All patients: lifestyle modification
- Weight-bearing exercise
- Avoidance of heavy alcohol use
- Smoking cessation
- Calcium and vitamin D supplementation

Alendronate, Pamidronate, Ibandronate, Zoledronate

- First line therapy
- Analogs of pyrophosphate
- Used to make nucleotides
 - Pyrimidines/purines
 - Purines: ATP, GTP
 - Pyrimidines: Uridine, Cytidine, Thymidine

Ribose 5-phosphate

Boards&Beyond

5-Phosphoribosyl-1-pyrophosphate (PRPP)

- Two phosphonate (PO₃) groups attached to carbon
- Vary by side chains (R1 and R2)
- Oral and IV drugs

Boards&Beyond

Agent	R ₁ side chain	$R_{_2}$ side chain
Etidronate	-OH	-CH ₃
Clodronate	-CI	-CI
Tiludronate	-Н	-s- 🚫-ci
Pamidronate	-OH	-CH ₂ -CH ₂ -NH ₂
Neridronate	-ОН	-(CH ₂) ₅ -NH ₂
Olpadronate	-OH	-(CH ₂) ₂ N(CH ₃) ₂
Alendronate	-OH	-(CH ₂) ₃ -NH ₂
Ibandronate	-OH	$-CH_2-CH_2N \subset CH_3$
Risedronate	-OH	
Zoledronate	-OH	

Wikipedia/Public Domain

- Phosphonate groups bind calcium
- Accumulate in bone
- Taken up by osteoclasts
- Inhibit osteoclasts
- Various mechanisms depending on drug/side chain

Adverse Effects

- Oral drugs (Alendronate, Risedronate)
 - Upper GI upset
 - Reflux, esophagitis, esophageal ulcers
 - Local effects of bisphosphonates on mucosa
 - Often taken weekly
 - Take with water on empty stomach
 - Remain upright for 30 minutes

Adverse Effects

- IV drugs (Pamidronate, Ibandronate, Zoledronate)
 - Flu-like symptoms
 - 24 to 72 hours after infusion
 - Low-grade fever, myalgias
 - Treated with ibuprofen and acetaminophen
 - Long dosing intervals: 3-months to annually

Adverse Effects

- Atypical femur fractures
- Osteonecrosis of the jaw
- Rare, serious complications
- Associated with IV and oral drugs

Atypical Femur Fractures

- Most hip fractures:
 - Intracapsular (femoral neck or head)
 - Trochanteric
 - Associated with trauma
- Atypical fractures
 - Below lesser trochanter
 - Diaphyseal (femoral diaphysis)
 - No or minimal trauma

Wikipedia/Public Domain

Jaw Osteonecrosis

- Avascular necrosis of jaw
- Pain, swelling of mandible
- May lead to exposed bone, local infection
- May cause pathologic fracture of jaw
- Often occurs in setting of dental disease

Dake/Wikipedia

Teriparatide

- Recombinant human parathyroid hormone (PTH)
- Continuous administration of PTH
 - Bone resorption \rightarrow f serum calcium
 - Important physiologically
- Low dose once daily bolus administration
 - Increased bone mass
 - Increased osteoblast bone formation
 - Contrast with most therapies: inhibit osteoclasts
- Teriparatide: Subcutaneous daily injection

Teriparatide

Adverse Events

- Brief rise in serum calcium
 - Drug has quick on/off effect over hours
 - Rarely leads to very high levels or symptoms
- Theoretical risk of osteosarcoma
 - Very few cases reported
 - High doses for long duration \rightarrow cancer in rats

Raloxifene

SERM (Selective Estrogen Receptor Modulator)

- Estrogen actions on bone
- Anti-estrogen in breast/uterus
- Also used for prevention of breast cancer
- May cause hot flashes
- Associated with DVT/PE
- Minimal effects on uterus
 - Not associated with bleeding, hyperplasia/cancer

Calcitonin

- Hormone produced by thyroid
- Synthesized by parafollicular cells (C-cells)
- Binds to osteoclasts
- Inhibits bone resorption
- Salmon calcitonin used in humans

Wikipedia/Public Domain

Denosumab

- Monoclonal RANK-L antibody
- Blocks osteoblast activation of osteoclasts

Bone Tumors

Jason Ryan, MD, MPH

Bone Metastasis

- Bone metastasis >> primary bone tumors (rare)
- Common in diaphysis
- Osteoclastic lesions
 - Bone breakdown by metastasis
 - Multiple Myeloma: classic osteolytic disease
- Osteoblastic lesions
 - Deposition of new bone
 - Prostate CA: classic osteoblastic lesion

BruceBlaus /Wikipedia

James Heilman, MD /Wikipedia

James Heilman, MD /Wikipedia

Primary Bone Tumors

- Often occur in children/young adults
- Often involve long bones especially at knees
- Most are more common in males

Primary Bone Tumors

- Can be an incidental finding
- May cause bone pain
- May cause pathologic fractures
 - Fracture in bone weakened by underlying abnormality
 - Often from minor trauma
 - Proximal femur and humerus: Most frequent sites

Osteoid Osteoma

- Benign tumor of bone
- Small tumors (<2cm) of young men (teens/20s)
- Occur in "appendicular skeleton"
 - Not in "axial" skeleton
- Most cases at knee
 - Tibia/fibula
- Presents as **bone pain** at night
- Responsive to aspirin

Osteoid Osteoma

- Surface of cortex/diaphysis
- Tumor of osteoblasts
- Osteoid core
 - Non-mineralized bone matrix
 - Mostly proteins
- Rim of woven bone

BruceBlaus /Wikipedia

Nephron/Wikipedia

Osteoid Osteoma

- Central osteoid core = radiolucent (clear)
- Surrounded by "reactive" bone

Vinod Naneria/Slideshare

Osteoblastoma

- Larger (>2cm) tumor
- Often involves spine
- Pain not responsive to aspirin

Gardner's Syndrome

- Variant of FAP
 - Familial Adenomatous Polyposis
 - APC gene mutation
- Colonic polyp disorder
- Multiple extra-colonic manifestations
- Osteomas (benign bone growths)
 - Often occur in patients with Gardner's
 - Usually in **skull or mandible**
 - Often painless, palpable
- May precede development of colon symptoms

Osteoma of Ear Canal (Didier Descouens)

- Malignant bone tumor of osteoblasts
- Most common primary bone tumor
- More common in males

Bimodal age distribution

- 75% young adults (<20years)
- 25% older adults with bone disease (i.e. Paget's)

- Malignant cells of varying shape (pleomorphic cells)
- Irregular osteoid formation (pink)

Nephron/Wikipedia

- Painful, enlarging mass on bone
- May present as pathologic fracture
- Usually occurs in metaphysis of long bones
- 50% cases occur at knee
 - Distal femur
 - Proximal tibia

BruceBlaus /Wikipedia

Classic X-ray Findings

Codman triangle

- Tumor breaks through cortex
- Lifts periosteum
- Sunburst/Sunray sign
 - Tiny bone fibers in periosteum

Classic X-ray Findings

Ernesto Dury/Slideplayer

Associated Conditions

Prior radiation

- Often years after radiation therapy for childhood cancer
- Paget's disease
- Inherited genetic conditions
 - Familial cancer syndromes
 - Germline mutations
 - Familial retinoblastoma (Rb gene mutation)
 - Li Fraumeni syndrome (p53 tumor suppressor gene)

Treatment

- Treated with surgical resection or amputation
 - "En bloc" resection
 - Removal of entire tumor in one piece
 - Together with a layer of healthy tissue
 - Limb salvage when possible

Always treated with chemotherapy

- Presumed all patients have metastasis
- Prior treatment with surgery alone \rightarrow poor survival
- Chemo may be given before surgery to shrink tumor
- "Neoadjuvant" therapy

- Malignant bone tumor
- Undifferentiated primitive neuroectoderm cells
- Youngest age of presentation of all bone tumors
 - 80% cases < 20 years old
- Boys > Girls
- Whites >> African Americans

- Occurs in diaphysis of long bones
 - Most commonly femur
 - Also tibia, fibula, humerus
 - Seen in bones of pelvis
- Aggressive with early metastasis
- Treatment: surgery/chemo/radiation
 - 5-year survival: 70% in localized disease
 - 33% metastases at diagnosis

Michael Richardson, M.D.

- Painful, growing mass over bone
- Often warm, swollen
- May see fever, leukocytosis
- May be confused with osteomyelitis
- Blood cultures and tumor aspiration: sterile

Image courtesy Wikipedia/Public Domain

Onion Skin

- Classic X-ray finding
- Layering near periosteum
- Splitting/thickening of cortex

Michael Richardson, M.D.

• Sheets of small, round cells

Nephron/Wikipedia

- 85% of cases associated with genetic translocation
- Chromosomes 11 and 22
- Fusion of EWSR1 gene (22) to FLI1 gene (11)
- Detected with FISH

Osteoclastoma

- Multi-nucleated giant osteoclasts
- Bone resorption by tumor
- Usually benign but locally aggressive
- Occurs in epiphysis
- Most commonly in femur/tibia (at knee)

BruceBlaus /Wikipedia

Osteoclastoma

- Stromal tumor cells express high levels RANK-L
- Drives osteoclasts activity in tumor
- Leads to giant osteoclastic cells

Nephron/Wikipedia

Sudheer Kumar/Slideshare

Osteochondroma

- Benign cartilage-forming tumor
- Occur in late adolescence/early adulthood
- More common in males
- Slow growing mass attached to stalk
 - Cartilage-capped bone spur
 - "Exostosis:" new bone on surface of bone
- Can cause pain
- Often detected incidentally

Michael R Carmont, Sian Davies, Daniel Gey van Pittius and Robin Rees

Osteochondroma

- Arise from growth plate
- Lateral projection
- Found at metaphysis
- Stop growing with GP closure
- Treated with simple excision
- Rarely lead to chondrosarcoma
- Cartilage cap \rightarrow malignant

BruceBlaus /Wikipedia

Fibrous Dysplasia

- Benign tumor
- Woven bone surrounded by fibroblasts
- Occurs in early adolescence
- Grows until growth plate closes
- Often asymptomatic
- May cause pain, fractures
- Occurs in medulla/diaphysis

Fibrous Dysplasia

• "Chinese character" trabeculae of woven bone

Nephron/Wikipedia

Fibrous Dysplasia

• X-ray: Lytic lesion in diaphysis

Alison Leggitt/Slideplayer

Simple Bone Cyst

Unicameral Bone Cyst

- Fluid-filled spaces with fibrous lining
- Usually occur < 20 years old
- Most common locations: proximal humerus and femur
- Commonly an incidental finding
- May lead to pathologic fracture
- Treatment: Observation with serial X-rays
- Rarely require surgery
- Often spontaneously improve

Simple Bone Cyst

Unicameral Bone Cyst

- Found in metaphysis
- Abutting growth plate

BruceBlaus /Wikipedia

Arif S/Slideshare

Chondroma

- Benign cartilage tumor
 - In medullary cavity: endochondromas
 - Surface of bone: juxtacortical chondromas
- Occur in small bones of hands and feet

Bratgoul/Wikipedia

Chondrosarcoma

- Malignant cartilage tumor
- Also occurs in medulla
- Occur centrally
- Pelvis, shoulder, ribs
- Distal extremities rarely involved

Wikipedia/Public Domain

Boards&Beyond.

Langerhans Cell Histiocytosis

- Bone variant: Eosinophilic granuloma
- Occurs as bone mass in children
- Most commonly involved bone: skull
- Biopsy: Langerhans cells/eosinophils
 - Langerhans cells: Dendritic cells
 - Myeloid origin
 - Similar to histiocytes (tissue macrophages)
 - Express CD1a, S100, CD207

Jason Ryan, MD, MPH

Arthritis

- Joint inflammation
- Joint pain, warmth, stiffness
- Many types
 - Osteoarthritis
 - Rheumatoid arthritis
 - Septic arthritis
 - Gouty arthritis
 - Psoriatic arthritis
 - Reactive arthritis

Synovial Joints

- Fingers, hips, knees
- Articular cartilage
 - Type II collagen
- Synovium
 - Secretes synovial fluid
 - Hyaluronic acid

OpenStax College/Wikipedia

Pathophysiology

- Hyaline cartilage breakdown
- Abnormal chondrocytes
 - Only cell type in cartilage
 - Normally quiescent
 - Proliferate in OA
 - Inadequate repair
 - Secrete proteases
 - Secrete cytokines
 - Eventually die \rightarrow exposed bone

OpenStax College/Wikipedia

- Low WBC in synovial fluid
- "Non inflammatory arthritis"

Disease	White Blood Count (cells/mm3)
Normal	<200
Osteoarthritis	200-2000
Rheumatoid Arthritis	2k-50k
Gout	2k-50k
Septic Arthritis	>50k

Classic X-ray Findings

- Joint space narrowing
- Subchondral sclerosis
- Osteophytes (bone spurs)
- Subchondral cyst

Joint Space Narrowing

James Heilman, MD/Wikipedia

Subchondral Sclerosis

- Thickening of the subchondral bone
- ↑ collagen with abnormal mineralization

James Heilman, MD/Wikipedia

Osteophytes

Bone Spurs

Boards&Beyond.

- Thickening of the subchondral bone at joint margins
- Often insertion points of tendons or ligaments

James Heilman, MD/Wikipedia

Subchondral Cysts

- Fluid filled sack
- Bone cracks \rightarrow synovial fluid accumulation

Anas Bahnassi/Slideshare

Knee Involvement

- Often involves both knees
- More weight bearing medial knee
 - Imaging may show asymmetric narrowing on medial side

Public Domain

Hand Involvement

- Distal interphalangeal (DIP) joints
- Proximal interphalangeal (PIP) joints
- Not MCP
- 1st Carpometacarpal (CMC) joint

Wikipedia/Public Domain

Hand Involvement

Wikipedia/Pulbic Domain

Hand Involvement

Pixabay/Public Domain
Nodal osteoarthritis

- Heberden's (DIP) and Bouchard's (PIP) nodes
- Occur in patients with interphalangeal (hand) OA
- Over years, joints become less painful
- Inflammatory signs subside
- Swellings (nodes) remain
- Common at index and middle fingers
- Believed to be caused by osteophytes

Nodal osteoarthritis

Drahreg01/Wikipedia

Spine Involvement

- Facet joints
- Lower cervical spine
- Lower lumbar spine

BruceBlaus/Wikipedia

Hip Involvement

BruceBlaus/Wikipedia

Symptoms

- Joint pain
 - Especially after use of joint
 - At end of day for weight-bearing joint
 - Improves with rest
- Stiffness
- Restricted motion

Risk Factors

- Advanced age
 - 80% patients over 55 years old
- Female gender
- Obesity
 - Modifiable risk factor
 - Especially the knee
 - Hands
 - Hip
- Joint injuries
 - Knee, hip

Dr. Ryan's Grandmother

Treatment

- Exercise
- Weight loss
- Pain control
 - Acetaminophen
 - NSAIDs
- Intraarticular glucocorticoid injection
 - Short term pain relief
- Surgery
 - Total knee and hip replacement

Rheumatoid Arthritis

- Autoimmune condition
- Women aged 40-50
- High synovial WBC
- Morning stiffness
- Pain improves with use
- Many systemic complications
 - Uveitis
 - Serositis
 - Baker's cyst

Pixabay/Public Domain

Septic Arthritis

- Acute onset
- Swelling and pain usually of single joint
- Acute monoarthritis = medical emergency
- Must exclude septic arthritis and gout

Septic Arthritis

- Fevers, chills, sweats
- Synovial fluid purulent with 50k to 150k WBC
- Positive gram stain and culture
- S. aureus or S. pneumoniae
 - Often from hematogenous seeding of joint
- Neisseria gonorrhoeae
 - Sexually transmitted infection

Hemochromatosis

- Iron overload disorder
- Arthritis: common in hemochromatosis
- May present as arthritis
- Most commonly involves MCP joints
- Often presents with pain, minimal swelling
- Younger patient
- High serum ferritin

Jason Ryan, MD, MPH

- Monosodium uric acid deposition in joints
- Crystals phagocytosed by macrophages/neutrophils
- Trigger inflammatory response
- Recurrent attacks of acute arthritis
- Severe joint pain
- Redness, swelling, warmth

Uric Acid/Urate

- Hyperuricemia + **cool temperatures** + genes
- Most common: base of great toe (podagra)
 - 1st metatarsophalangeal joint
- Also often occurs in knee

James Heilman, MD/Wikipedia

Chronic Tophaceous Gout

- **Tophi:** uric acid collections in connective tissue
- Ears, tendons, bursa
- Usually not painful or tender
- Usually follows gouty arthritis
- Seen with longstanding hyperuricemia

Tophi

Herbert L. Fred, MD/Hendrik A. van Dijk

NickGorton/Wikipedia

Urate Nephropathy

- Uric acid crystals in urine
- Uric acid kidney stones
- Chronic renal failure

- Primary gout
 - Not due to other disease or medication
 - Cause unknown
 - Most cases associated with under excretion of uric acid
- Secondary gout
 - Due to other disease or medication
 - Many causes

Perez-Ruiz. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum 2002 Dec 15 47(6):610-3

Uric Acid Excretion

- Mostly via kidneys/urine
- Any reduction in GFR $\rightarrow \downarrow$ uric acid excretion
 - Renal failure
 - Volume depletion
 - **Diuretics** (also ↓ uric acid secretion in urine)
- Commonly cause gout attacks

Uric Acid Production

Uric Acid/Urate

Uric Acid Production

Hypoxanthine

Uric Acid

Purine Sources

- Red meat
- Seafood
- Trauma/surgery (tissue breakdown)
- All classic causes of gout attack

Pixabay/Public Domain

Myeloproliferative Disorders

- Chronic myeloid leukemia
- Essential thrombocytosis
- Polycythemia vera
- Associated with high cell turnover
- Hyperuricemia \rightarrow gout

Databese Center for Life Science (DBCLS)

Lesch-Nyhan Syndrome

- Enzyme defect in purine salvage pathway
- X-linked absence of HGPRT
 - Hypoxanthine-Guanine phosphoribosyltransferase
- Excess uric acid production ("juvenile gout")
- Neurologic impairment (mechanism unclear)
- Hypotonia, chorea
- Self mutilating behavior
- Classic presentation
 - Male child with motor symptoms, self-mutilation, gout

Purine Salvage Pathway

Alcohol

- Classic trigger for gout
- Metabolism consumes ATP \rightarrow uric acid
- Urate transporter-1 (URAT1)
 - Renal uric acid transporter
 - Facilitates uric acid excretion in urine
 - Lactic acid produced in alcohol metabolism
 - Increased reabsorption of uric acid

Lactic Acid Boards&Beyond.

Wikipedia/Public Domain

Gout Attacks

- More common in males
- More common among obese patients
- Classic case:
 - Obese male
 - Steak dinner with heavy alcohol consumption

Pixabay/Public Domain

Von Gierke's Disease

Glycogen Storage Disease Type I

- Glucose-6-phosphatase deficiency
- Presents in infancy: 2-6 months of age
- Severe hypoglycemia between meals
 - Seizures
 - Lactic acidosis (Cori cycle)
- Urate transporter-1 (URAT1)

Gout Diagnosis

- Arthrocentesis
- Sampling of synovial fluid
- WBC 20k to 50k
- Polarized light microscopy

Polarized Light Microscopy

- White light
 - Unpolarized
 - Waves vibrate in random directions
- Polarized light
 - Waves vibrate only in one direction
- Isotropic
 - Reflects the same in all orientations
- Birefringent
 - Reflects polarized light in two ways
 - Reflection based on orientation

Gout Crystals

- "Negatively birefringent"
 - Two reflections of polarized
 - Change in index of refraction is negative
- Yellow when parallel to axis of the polarization
- Blue when perpendicular to polarization axis

Gout Crystals

Bobjgalindo/Wikipedia

Gout Drugs

Jason Ryan, MD, MPH

Gout Treatment

- Acute attacks
 - NSAIDs
 - Glucocorticoids
 - Colchicine
- Preventative
 - Xanthine oxidase inhibitors (allopurinol, febuxostat)
 - Pegloticase
 - Probenecid

Colchicine

Microtubule inhibitor

- Binding to intracellular protein tubulin
 - Microtubules: polymers of alpha and beta tubulin
- Prevents polymerization into microtubules
- Inhibits WBC migration and phagocytosis

Thomas Splettstoesser (<u>www.scistyle.com</u>)

Colchicine

- Adverse effects: GI
 - Diarrhea
 - Nausea, vomiting
 - Abdominal pain
- Three main niche uses:
 - Gout
 - Pericarditis
 - Familial Mediterranean Fever

Allopurinol, Febuxostat

- Inhibitors of xanthine oxidase
 - Allopurinol: competitive inhibitor
 - Febuxostat: non-competitive inhibitor
- Also used to prevent tumor lysis syndrome

Allopurinol, Febuxostat

- Both abruptly change serum uric acid levels
 - May precipitate a gout attack
 - Initiated together with NSAIDs/Colchicine

Allopurinol, Febuxostat

- Allopurinol
 - GI upset: nausea, vomiting, diarrhea
 - Hepatic toxicity
 - Skin rash (hypersentivity)
 - Rarely bone marrow suppression
- Febuxostat
 - 2nd line agent
 - Patients intolerant of allopurinol

Allopurinol

Allopurinol, Febuxostat

- Interact with azathioprine and 6-MP
- Both metabolized by xanthine oxidase
- Caution with XO inhibitors
- May boost effects
- May increase toxicity

Pegloticase

- Intravenous drug
 - Given at infusion center every two weeks
 - Used for severe, refractory gout
- Recombinant porcine uricase (uric acid oxidase)
 - Enzyme that degrades uric acid
- Attached to polyethylene glycol (PEG)
 - Prolongs half-life
 - Limits immune reaction to drug

Pegloticase

- Converts uric acid to allantoin
- More water soluble
- Excreted by kidneys

Rasburicase

- Also a recombinant uricase
- Also converts uric acid to allantoin
- Not attached to polyethylene glycol
 - Rapid on/off action
 - More immunogenic
- Used only in tumor lysis syndrome

Tumor Lysis Syndrome

- Occurs in treatment of some malignancies
- Rapid cell lysis \rightarrow \uparrow serum levels of cell contents
 - Potassium, phosphate
 - **Hyperkalemia** → arrhythmias
 - Hyperphosphatemia → hypocalcemia
- Hyperuricemia from breakdown of purines
- Uric acid nephropathy \rightarrow acute renal failure

Probenecid

- "Uricosuric drug"
- Promotes uric acid excretion in urine
- Blocks proximal tubule reabsorption of uric acid
- Also blocks secretion of **penicillin** in urine
 - Boosts PCN levels
 - Originally develops to enhance PCN effects
- Sulfa drug
- May cause uric acid kidney stones

Aspirin

- High dosages (>2.6grams/day)
 - Inhibit secretion and reabsorption
 - Net effect: same as probenecid (uricosuric)
 - Promote uric acid excretion
 - Lower serum uric acid levels
- Low dosages
 - Inhibit secretion only
 - Less uric acid excretion
 - Aspirin not used for pain control in gout

Jason Ryan, MD, MPH

Calcium Pyrophosphate Deposition Disease

- Calcium pyrophosphate deposition
- Affects joints and connective tissue
- Cause unknown

Uric Acid

Pyrophosphate

Calcium Pyrophosphate Deposition Disease

- Occurs in older patients
 - Average age: 72-years-old
- Men = women
- Clinical features
 - Asymptomatic (discovered on imaging)
 - Acute arthritis (similar to gout)
 - Chronic joint disease (similar to OA)

Asymptomatic CPPD

- Most joints with CPPD have no symptoms
- Crystal deposits discovered on imaging
- **Chondrocalcinosis**: calcification of hyaline cartilage

Public Domain

Pseudogout

- Acute attacks of arthritis
- Resemble attacks of gout: pseudogout
- Knee involved in 50% of cases
 - Pain, redness, warmth, swelling

James Heilman, MD/Wikipedia

Pseudogout

- Provoked by trauma, surgery, medical illness
- Many flares reported after parathyroidectomy

Wikipedia/Public Domain

Pseudogout

Polarized Light Microscopy

- Rhomboid crystals
- Positively birefringent
- Blue when parallel to light (yellow for gout)

Harriet Ribbons/Caroline Hoernig

Chronic Joint Disease

- Pseudo-osteoarthritis
- Progressive joint degeneration
- Occurs in ~50% of patients with CPPD joints
- Progressive cartilage deterioration
- Bony enlargement, tenderness similar to OA

Treatment

- Acute pseudogout attack
 - Intraarticular glucocorticoid injection
 - NSAIDs
 - Colchicine
- Prophylaxis for pseudogout: Colchicine
- Chronic joint disease: same treatment as OA

Associated Conditions

- Joint trauma
- Hyperparathyroidism
- Hemochromatosis

Hemochromatosis

- Hereditary iron overload disorder
- Arthritis: common in hemochromatosis
 - Iron deposition in synovial tissue
- Calcium pyrophosphate may also deposit
- Seen in 2/3 of patients

Seronegative Spondyloarthritis

Jason Ryan, MD, MPH

Seronegative Spondyloarthritis

• Spondylo = spine

- Arthritis = joint inflammation
- Seronegative = negative rheumatoid factor
- Family of disorders with common features
 - Ankylosing spondylitis
 - Psoriatic arthritis
 - Inflammatory bowel diseases
 - Reactive arthritis

Wikipedia/Public Domain

Seronegative Spondyloarthritis

- Autoimmune disorders
- Mediated by T-cells
- Unknown trigger

NicolasGrandjean/Wikipedia

Terminology

- Monoarthritis = 1 joint
- Oligoarthritis = 2-4 joints
- Polyarthritis = >5 joints

Seronegative Spondyloarthritis

Common Features

Asymmetric oligoarthritis

- Acute attacks of joint pain and swelling
- Often lower extremities
- Contrast with RA
 - Symmetric
 - Polyarthritis
 - Often hands

Wikipedia/Public Domain

Seronegative Spondyloarthritis

Common Features

- Axial spine inflammation
 - Commonly sacroiliac (SI) joints
- Dactylitis (sausage digits)
- Enthesitis
 - Inflammation of ligament/tendon attachment to bone

HLA B27

- Human Leukocyte Antigens
- Antigens that make up MHC class I and II molecules
- Genes on chromosome 6 determine "HLA type"
- MHC Class I Genes: HLA-A, HLA-B, HLA-C
- HLA B27: Common in spondyloarthritis disorders
 - 90% of ankylosing spondylitis cases
 - 50% of psoriatic arthritis cases
 - Most people with B27 never develop AS

- Classic form of seronegative spondyloarthritis
- Ankylosis = new bone formation in spine \rightarrow stiffness
- More common in males
- Usually 20-30 years old

- "Inflammatory" back pain (~75% of patients)
 - Younger age (<40 years)
 - Slow, insidious onset
 - Improves with exercise
 - Does NOT improve with rest
 - Pain at night (better with awakening/movement)

- Classically involves the sacroiliac (SI) joint
- Sacroiliitis

Mikael Häggström/Wikipdia

Bamboo Spine

Boards&Beyond.

Senseiwa/Wikipedia

Bamboo Spine

James Heilman, MD/Wikipedia

Enthesitis

- Inflammation of tendon insertions to bone
- Classically insertion of Achilles tendon to calcaneus
- Or plantar fascia to calcaneus
- Causes heel pain

Boards&Beyond

Common presenting feature

Tendons of Transcription Transcription Tendons of Tendons of Tendons of Peronae longus to revise

Wikipedia/Public Domain

Dactylitis

- Swelling of fingers and toes
- Caused by tendon and soft tissue inflammation

Wikipedia/Public Domain

Other Features

- Uveitis
- Aortitis
 - Often leads to aortic regurgitation

Petr Novák, Wikipedia
Ankylosing Spondylitis

Other Features

- Restrictive lung disease
- ↓ chest wall and spine mobility

Ankylosing Spondylitis Lab Testing

- Elevated acute phase reactants
- Most patients: **↑ESR and ↑CRP**

Ankylosing Spondylitis

Classic Case

- 25 year old male
- Inflammatory back pain
- Heel pain
- Swollen finger and toes
- Elevated ESR and CRP
- HLA B27 positive
- Treatment: Anti-inflammatory drugs
 - NSAIDs
 - Anti-TNF antibodies (infliximab)

Psoriatic Arthritis

- Arthritis associated with psoriasis
- Occurs in less than 1/3 of psoriasis patients

James Heilman, MD/Wikipedia

Psoriasis

Nail Findings

- Nail pitting
- Onycholysis (separation of nail from nailbed)
- Hyperkeratosis
- 46% of uncomplicated psoriasis cases
- 90% of psoriatic arthritis cases

Alborz Fallah/Wikipedia

Psoriatic Arthritis

Common Features

- Asymmetric polyarthritis
 - Mimics RA
 - Morning stiffness
 - Improves with use
- Distal interphalangeal (DIP) arthritis
- Sacroiliitis
- Dactylitis
 - Sausage digits occur in half of patients
- Heel pain (enthesitis)

Handarmdoc/Flikr

Psoriatic Arthritis

Common Features

- Distal interphalangeal (DIP) arthritis
- Classic finding: **"pencil in cup"** deformity DIP joint

Public Domain

Inflammatory Bowel Disease

Crohn's disease and Ulcerative colitis

- Frequently complicated by arthritis
- Type 1 pattern
 - <5 joints</p>
 - Usually large joints: knees, hips, shoulders
 - Symptoms often with flare of GI disease
- Type 2
 - >5 joints
 - Small joints of the hands
 - Independent of GI disease
- Can see spondylitis and sacroiliitis
- Rarely enthesitis and dactylitis

- Arthritis following infection
- Form of spondyloarthritis (autoimmune)
- Occurs days to weeks after an infection
- One or multiple joints affected
- Sometimes occurs with dactylitis and enthesitis
- Symptoms usually resolve in 6-12 months

Triggering Infections

- GI bacteria:
 - Salmonella
 - Shigella
 - Yersinia
 - Campylobacter
 - Clostridium difficile
- Urogenital: Chlamydia trachomatis

Clinical Features

Asymmetric oligoarthritis

- Usually 1-4 weeks after infection
- Most commonly affects lower extremities (knees)
- Enthesitis (heel pain)
- Dactylitis
- Inflammatory low back pain

Clinical Features

- Conjunctivitis
- Urethritis (dysuria)
- Oral ulcers
- Reiter Syndrome
 - Older term

Joyhill09/Wikipedia

Arthritis, urethritis, conjunctivitis following infection

Muscle Disorders

Jason Ryan, MD, MPH

Polymyalgia Rheumatica

- Inflammatory disorder
- Unknown cause
- Occurs in older patients (age > 50)
- Muscle pain/stiffness
- Diagnosed clinically: no pathognomonic test
- Commonly occurs with temporal arteritis

Polymyalgia Rheumatica Clinical Features

- Bilateral proximal muscle stiffness
 - Neck or torso
 - Shoulders/proximal arms
 - Hips/proximal thighs
- Worse in morning
- Often difficulty dressing

Wikipedia/Public Domain

Polymyalgia Rheumatica Clinical Features

- Does not cause muscle weakness
 - Strength testing normal
 - Normal CK level
- Muscle pain (myalgias) especially in shoulder
- Sometimes malaise, fever, fatigue

Polymyalgia Rheumatica

Diagnosis and Treatment

- Characteristic clinical features
- ↑ CRP, ↑ESR
- Responds well to glucocorticoids

Fibromyalgia

- Chronic pain disorder
- Widespread musculoskeletal pain
- Common in women 20 to 55 years old
- Depression/anxiety in 30 to 50% of patients
- Unknown cause
- Diagnosed clinically
- Muscle biopsy: normal
- Normal lab tests

Fibromyalgia

- Point tenderness on exam
- Usually in specific anatomic locations

Sav vas/Wikipedia

Fibromyalgia

- Exercise
- Tricyclic antidepressants (amitriptyline)
- SSRIs

- Autoimmune muscle disorders
- Polymyositis
- Dermatomyositis
- Usually involve skeletal muscle (weakness)
- Can involve heart

Diagnosis and Treatment

- Diagnosis: muscle biopsy
- Treatment: immunosuppression
 - Usually corticosteroids (prednisone) initially
 - Long term treatment with steroid sparing drugs
 - Often azathioprine or methotrexate

Clinical Features

- Myalgias
- Slow onset symmetric muscle weakness
- Hallmark: **proximal muscle weakness** at first
 - Muscles closest to midline
 - Difficulty rising from a chair
 - Difficulty climbing stairs
 - Difficulty combing hair
 - Fine hand movements intact
- Distal weakness occurs later in disease

Lab Testing

- Elevated creatinine kinase (CK)
- ESR can be elevated (sometimes normal)
- Anti-nuclear antibodies (ANA)
 - Not specific for myopathies
 - Positive in 80-90% of patients
- Anti-Jo1 antibodies
 - Histidyl t-RNA synthetase
 - Most common myositis antibody
- Other antibodies (anti-Mi2, anti-SRP)

Polymyositis

- Slow onset proximal muscle weakness
- No skin involvement
- Diagnosis: muscle biopsy

Skeletal Muscle

- Perimysium
 - Connective tissue surrounding fascicles (bundles of fibers)
- Endomysium
 - Connective tissue surrounding each muscle fiber (myocyte)

Polymyositis

- Endomysial inflammation
- Predominant cell type: CD8+ T-cells

Jensflorian/Wikipedia

- Slow onset proximal muscle weakness
- Skin changes
- Diagnosis: muscle biopsy

- Muscle biopsy: perimysial inflammation
- Major cell type: **CD4+ T-cells**

Nephron/Wikipedia

Classic Skin Findings

Heliotrope rash

- Purple discoloration of upper eyelid
- Gottron papules
 - Symmetric red, scaly papules on hand/finger joints
- Both pathognomonic for dermatomyositis

Elizabeth Dugan et al.

Other Skin Findings

- Malar rash (similar to SLE)
- "Shawl and V signs"
 - Red-brown discoloration of skin
 - Occurs in sun exposed area
 - Upper back (like a shawl)
 - Neck/upper chest sparing skin below chin (V sign)
- Mechanic's hands
 - Cracks/fissures on palms with increased pigmentation

Malignancy

- Associated with inflammatory myopathy
- Mechanism unclear
- Stronger evidence for DM versus PM
- Associated malignancies mostly adenocarcinomas
 - Cervix
 - Lung
 - Ovaries
 - Pancreas
 - Bladder
 - Stomach

Neuromuscular Disorders

Jason Ryan, MD, MPH

NMJ Disorders

- Myasthenia gravis
- Lambert-Eaton Myasthenic Syndrome

Neuromuscular Junction

- Pre-synapse: nerve terminal
 - Depolarization \rightarrow calcium influx
 - Release of acetylcholine (ACh) vesicles
- Post-synapse: motor end plate
 - Acetylcholine \rightarrow nicotinic receptors
 - Muscle depolarization \rightarrow contraction
- ACh broken down by acetylcholine esterase (AChE)

- Autoimmune disease
- Antibodies block nicotinic ACh receptors
- Compete with ACh for receptor biding
- Muscles weakness
- Diagnosis: Acetylcholine receptor antibodies

Martin Brändli /Wikipedia

Clinical Features

Muscle fatigability

- Repeated nerve stimulation $\rightarrow \downarrow$ ACh release
- Muscles weaken with use

Clinical Features

Diplopia and ptosis

- Extraocular muscle weakness
- 50% patients present with eye complaints
- Speech, chewing and swallowing problems
 - 15% patients present with "bulbar symptoms"

Andrewya/Wikipedia

Treatment

- Neostigmine, Pyridostigmine, Edrophonium
 - Acetylcholine esterase inhibitors
 - \downarrow ACh metabolism
 - ↑ ACh levels in synapse
- Immunosuppressants

Exacerbations

- Occur for two reasons
- #1: Insufficient dose AChE inhibitor
- #2: Cholinergic crisis
 - Too much medication
 - Muscle refractory to ACh
- Tensilon test: Administor edrophonium
 - Short acting AChE inhibitor
- Muscle function improves: 1 dose AChE inhibitor
- Muscle function fails to improve: \downarrow dose

Exacerbations

- Tensilon test may lead to complications
- Caused by diffusely increased ACh levels
- Activation of parasympathetic activity
- Salivation
- Abdominal cramping (bowel stimulation)
- Asthma (bronchoconstriction)
- Bradycardia

Disease Associations

- Most MG patients have abnormal thymus
 - Hyperplasia ~85%
 - Thymoma ~15%
- MG often resolves with thymectomy
- Key test: Imaging of mediastinum (CT or MRI)

Public Domain/Wikipedia

Lambert-Eaton Myasthenic Syndrome

- Also a disorder of NMJ (more rare)
- Paraneoplastic syndrome (small cell lung cancer)
- Antibodies against pre-synaptic Ca channels
- Prevent ACh release
- Diagnosis: VGCC antibodies
 - Antibodies to voltage-gated calcium channel (VGCC)

Lambert-Eaton Myasthenic Syndrome

- Slow onset symmetric proximal muscle weakness
 - Also seen in myositis
 - Normal CK levels
 - No muscle pain/myalgia
- Difficulty walking or rising from chair
- Difficulty combing hair

Lambert-Eaton Myasthenic Syndrome

- Autonomic dysfunction common
- Classically **dry mouth** from ↓ salivation
- Erectile dysfunction, constipation

Lambert-Eaton Myasthenic Syndrome

Muscle use → improved symptoms

- Contrast with myasthenia gravis
- More depolarization \rightarrow more ACh release
- Tensilon test: mild ↑ in muscle function
 - \uparrow ACh \rightarrow more contraction
 - Much less effective than in MG (reverses symptoms)
- Treat (or locate) underlying malignancy
- Guanidine: inhibits K+ channels \rightarrow 1 ACh release

NMJ Syndromes

	Myasthenia	Lambert-Eaton
Cause	ACh receptor ab	Calcium channel Ab
Muscle Use	Worsens	Improves
Eye Symptoms	Classic	Less common
Proximal Muscles	Rare	Common
Autonomic Symptoms	Absent	Common
Tensilon Test	Symptom reversal	Mild improvement

