# Cells of the Nervous System

Jason Ryan, MD, MPH



## Nervous System Cells

- Neurons
- Astrocytes
- Microglia
- Oligodendroglia
- Schwann cells



# **Glial Cells**

- Support neurons
- Macroglia
  - Astrocytes, oligodendrocytes, ependyma
- Microglia
- Gliosis:
  - Proliferation/hypertrophy of glial cells
  - Reaction to CNS injury
  - Astrocytes undergo major changes
- Glioma
  - Astrocytoma, Oligodendroglioma, Ependymomas



#### Neurons

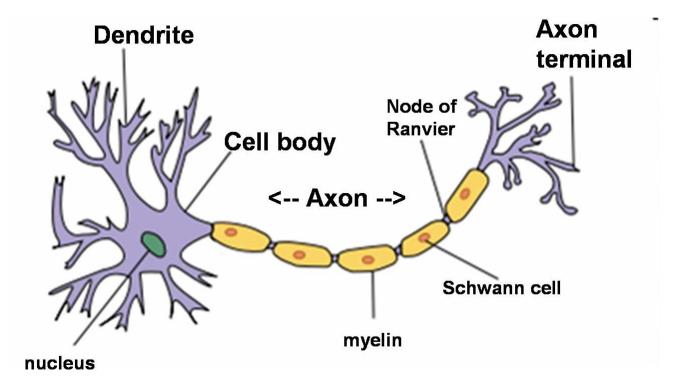
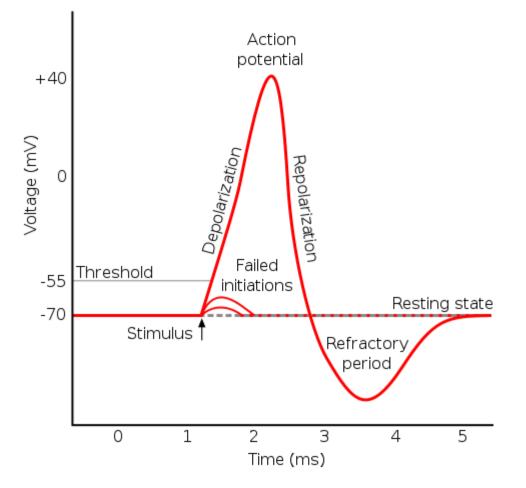





Image courtesy of Quasar Jarosz


# **Neuron Action Potentials**

**Key Facts** 

- At rest, neurons have voltage of -70mV
- This is maintained by "leak" of K+ out of cell
- To depolarize, Na channels open
- This allows Na into cell and raises voltage
- Na channels open along axon  $\rightarrow$  propagation
- At axon terminal, Ca channels open
- Triggers release of neurotransmitter
- Vesicles fuse with membrane  $\rightarrow$  exocytosis



#### **Action Potential**



Boards&Beyond.

Image courtesy of Tomtheman5

## **Clinical Relevance**

- Agents that block Na channels will inhibit signals
- Local anesthetics
  - Lidocaine, Benzocaine, Tetracaine, Cocaine, etc.
- Some neurotoxins block Na channels
  - Pufferfish  $\rightarrow$  tetrodotoxin
  - Japanese food



## Astrocytes

- Important for support of neurons
- Found in CNS: Gray and white matter
- Removes excess neurotransmitter
- Repair, scar formation
- Major part of reactive gliosis
  - Hypertrophy
  - Hyperplasia
- GFAP is key astrocyte marker



## Astrocytes

**Clinical Relevance** 

- Astrocytomas
  - Cerebellum of children
  - GFAP positive
- JC Virus infects astrocytes and oligodendrocytes
  - Causes PML in HIV patients



# Microglia

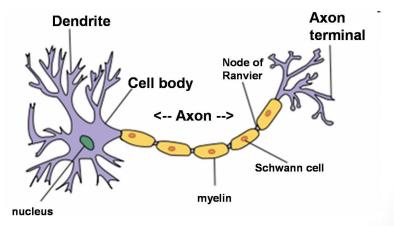
- CNS macrophages
- Proliferate in response to injury
- Differentiate into larger phagocytes after injury
- HIV can persist in the brain via microglia
- Chronic HIV encephalitis: nodules of activated microglia



# Oligodendroglia

- Myelinate CNS axons
- Each cell myelinates multiple axons
- Most common glial cell in white matter
- Destroyed in multiple sclerosis




# Schwann Cells

- Myelinate PNS axons
- Each cell myelinates one axons
- Very important for neuron regeneration
- Destroyed in Guillain-Barre syndrome
- Form Schwannomas
  - Also called acoustic neuromas
  - Classically affect CN VIII



# Myelin

- Lipids and proteins
- Increases SPEED of impulse propagation in axon
- Saltatory Conduction
  - Only need to depolarize Nodes of Ranvier
  - Do not need to depolarize entire axon
  - This makes process faster
  - ↑ conduction velocity
  - 1 length constant
- CNS: Oligodendrocytes
- PNS: Schwann cells





# **Types of Nerve Fibers**

- Classification by diameter, myelin
- A-alpha:
  - Large, myelinated fibers, 6 to 15 microns diameter
  - Most efferent motor fibers
  - Touch, vibration, and position
- A-delta
  - Small, myelinated fibers, 3 to 5 microns in diameter
  - Cold, pain
- C fibers
  - Unmyelinated fibers, 0.5 to 2 microns in diameter
  - Warm, pain



Small



#### **How Nerves Sense**

- Four structures on nerve ending allow us to sense the world
- Free nerve endings
- Meissner's Corpuscles
- Pacinian Corpuscles
- Merkel's disks



# **Free Nerve Endings**

- Mostly found in skin
- Sense pain and temperature
- Separate pain, cold and warm receptors
- C and A-delta fibers



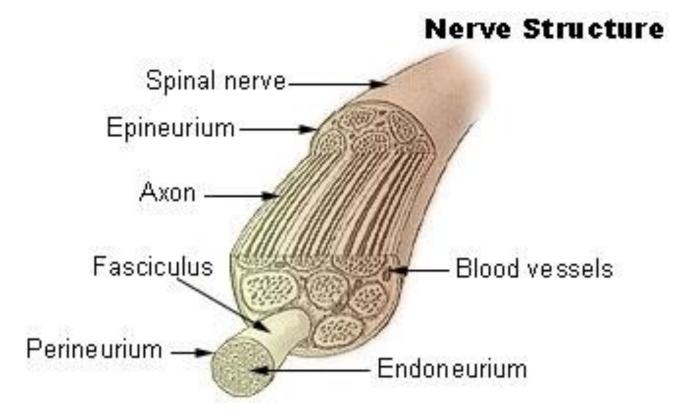
# Meissner's Corpuscles

- Touch receptors
- Located near surface of skin
- Concentrated sensitive areas like fingers
  - "Glabrous" (hairless) skin
- Deformed by pressure  $\rightarrow$  nerve stimulation
- A-alpha (large, myelinated) fibers



# **Pacinian Corpuscles**

- Vibration, pressure receptors
- Located deep skin, joints, ligaments
- Egg-shaped structure
- Layers of tissue around free nerve ending
- Deformed by pressure  $\rightarrow$  nerve stimulation
- A-alpha (large, myelinated) fibers




### Merkel's Discs

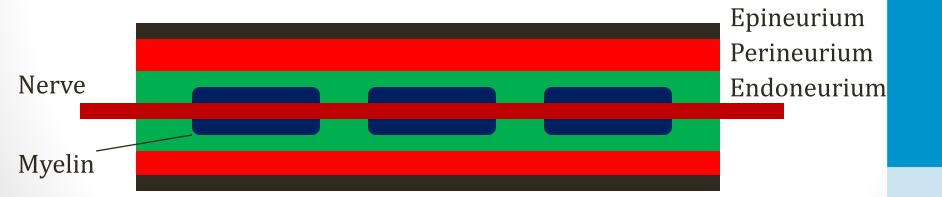
- Pressure, position receptors
- Many locations, but especially hair follicles
- A-alpha (large, myelinated) fibers
- Sustained response to pressure
  - "Slowly adapting"
  - Provide continues information
- Contrast with Meissner's, Pacinian
  - "Rapidly adapting"
  - Respond mostly to *changes*



## **Peripheral Nerves**



Severed nerve repair = neurorrhaphy Boards&Beyond.


# Nerve Damage

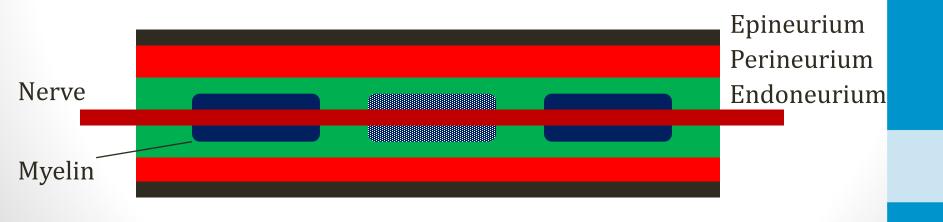
Jason Ryan, MD, MPH



# Peripheral Nerve Damage

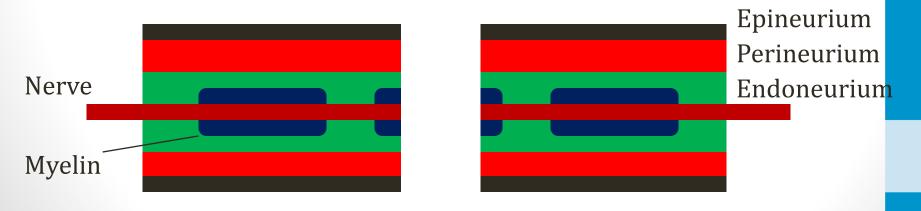
- Mild: Neurapraxia
- Moderate: Axonotmesis
- Severe: Neurotmesis
- Can result in weakness or sensory loss





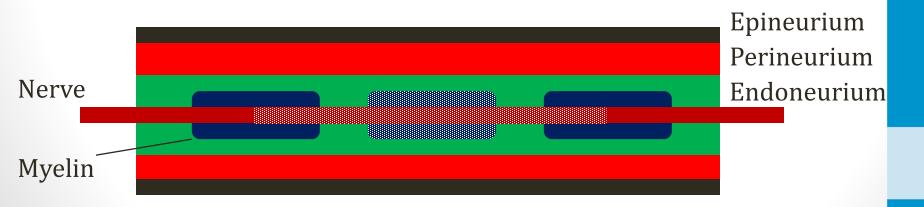

# Neurapraxia

• Mild injury


**Boards**&Beyond

- Focal demyelination
- Axon distal to injury intact
- Continuity across injury
- Excellent recovery




#### Neurotmesis

- Severe lesions
- Axon, myelin sheath irreversibly damaged
- External continuity of the injured nerve disrupted
- No significant regeneration occurs
- Bad prognosis

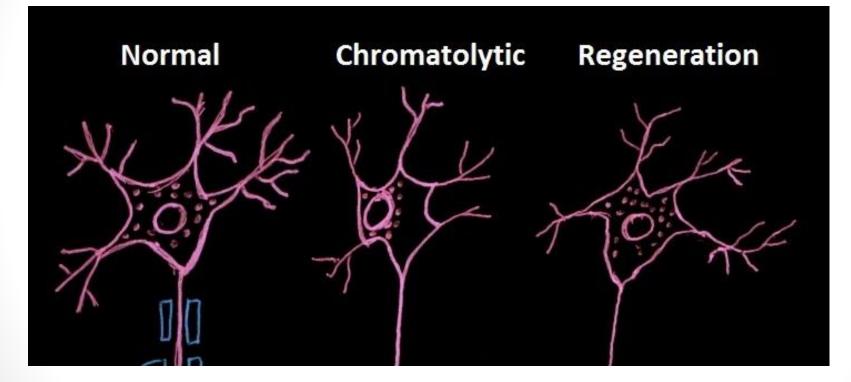




- Demyelination plus damage to axon
- Endoneurium, perineurium remain intact



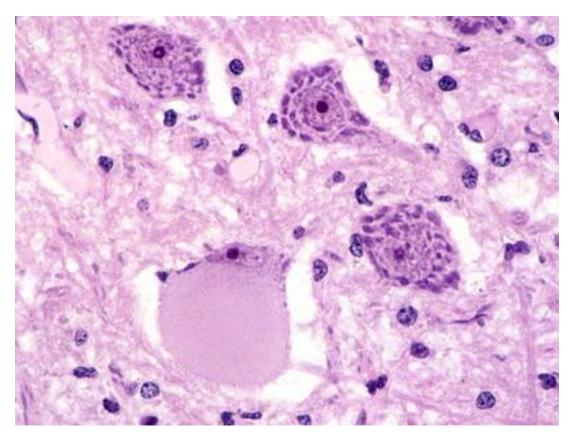



- Distal to the lesion: "Wallerian degeneration"
  - Also occurs just proximal to injury
- Axon degenerates, myelin sheath involutes
- Axon regrowth sometimes occurs
- Possible if Schwann cells maintain integrity



- Proximal to the lesion: "Axonal reaction"
- Also called central chromatolysis
- Up-regulation of protein synthesis for repair
- Cell body changes
  - Swelling
  - Chromatolysis (disappearance of Nissl bodies)
  - Nucleus moves to periphery
- Resolves with time




## Chromatolysis



Alexanae/Wikipedia



#### Chromatolysis



Dr. Dimitri Agamanolis neuropathology-web.org



- Variable prognosis
  - Extent of damage
  - Distance to target
  - Complexity of nerve
- Usually partial recovery
- Longer recovery time than neurapraxia



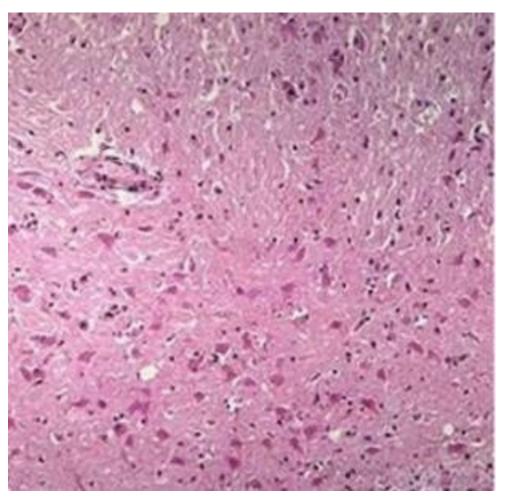
# **Central Nerve Damage**

Ischemia

- $\sim$  **4-5** minutes of ischemia  $\rightarrow$  irreversible damage
- Neurons more sensitive than glial cells
  - Higher energy demands; lack glycogen
- Most sensitive neurons:
  - Hippocampus
  - Purkinje cells (Cerebellum)
  - Neocortex
  - Striatum (Basal ganglia)



# **Central Nerve Damage**


**Changes after Infarction** 

#### • 12-24 hours

- No changes for about 12 hours
- First changes occur in **neurons**
- Microvacuoles (small holes) develop in neuron cytoplasm
- Neurons become deep pink-red color "Red neurons"
- Nucleus changes shape, color



#### **Red Neurons**





SV Murthy

# **Central Nerve Damage**

**Changes after Infarction** 

#### • 24-48 hours

- Neutrophils, macrophages, microglia
- Liquefactive necrosis from lysosomal enzymes release



# **Central Nerve Damage**

**Changes after Infarction** 

#### Days to weeks

- Macrophages eliminate debris
- Cyst forms
- Astrocytes undergo gliosis multiply, enlarge
- Astrocyte processes form wall around cyst



# **UMN and LMN**

- Somatics: two neuron chain
- Upper motor neuron
  - Brain to second nerve
- Lower motor neuron
  - CNS to muscle/target

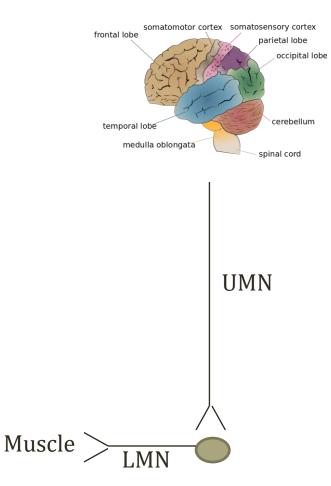





Image courtesy of Wikipedia and Jkwchui

#### UMN and LMN

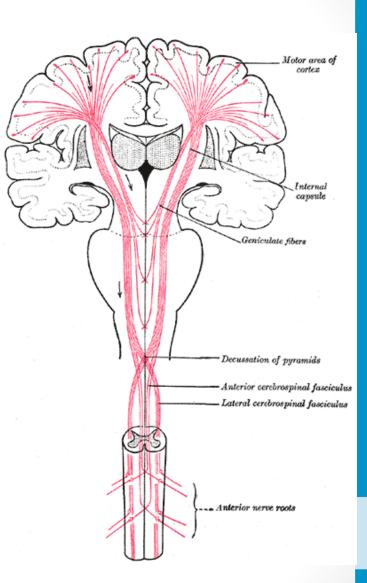
- UMN: Cortex, internal capsule, corticospinal tract
- LMN: Brainstem, spinal cord (anterior horn)



## UMN and LMN

- Upper motor damage (pyramidal signs)
  - Spastic paralysis (stiff, rigid muscles)
  - Hyperreflexia
  - Muscle overactive
  - Clasp knife spasticity: passive movement → initial resistance, sudden release




## UMN and LMN

- Lower motor damage
  - Flaccid paralysis
  - Fasciculation (spontaneous contractions/twitches)
  - Loss of reflexes



#### Decussation

- UMN cross just below medulla
  - Decussation
- Lesions above decussation
  - Contralateral dysfunction
- Lesions below decussation
  - Ipsilateral dysfunction





## Bulbar

- Bulbar muscles are supplied by CN in brainstem
  - V (jaw)
  - VII (face)
  - IX (swallowing)
  - X (palate)
  - XI (head)
  - XII (tongue)



### Bulbar vs. Pseudobulbar

- Bulbar palsy
  - Cranial nerve damage
  - LMN signs
- Pseudobulbar
  - Corticobulbar tract damage
  - UMN signs



## **Key Differences**

- Bulbar
  - Absent jaw/gag reflex
  - Tongue flaccid/wasted
- Pseudobulbar
  - Exaggerated gag reflex
  - Tongue spastic (no wasting)
  - Spastic dysarthria



# **Blood Brain Barrier**

Jason Ryan, MD, MPH



#### **Blood Brain Barrier**

- Surrounds CNS blood vessels
- Controls content CNS interstitial fluid
- Tight junctions btw endothelial cells of capillaries
- Astrocytes foot processes
  - Terminate in overlapping fashion on capillary walls



#### **Blood Brain Barrier**

- Water, some gases, and lipid soluble small molecules easily diffuse across
- Keeps out bacteria, many drugs
- Glucose/amino acids can't cross directly
  - Use carrier-mediated transport



# Circumventricular Organs (CVO)

- Vascular brain structures around ventricles
- No blood brain barrier
- Allow communication CNS  $\rightarrow$  blood stream
- Some sensory, some secretory
- Key CVOs
  - Area postrema
  - OVLT
  - Subfornical Organ (SFO)
  - Median Eminence of Hypothalamus



#### Area Postrema

- Caudal end of 4<sup>th</sup> ventricle in medulla
- "Chemoreceptor trigger zone"
- Outside blood brain barrier
- Chemo agents affect this area
- Sends signals to vomiting center in the medulla



## OVLT

- Organum vasculosum of the lamina terminalis
- Anterior wall of the third ventricle
- Osmosensory neurons



## Subfornical Organ (SFO)

- Anterior wall 3<sup>rd</sup> ventricle
- Responds to many circulating substances
- Exact roles not clear
- Responds to angiotensin II
- Projects to other brain areas



# Median Eminence of Hypothalamus

- Releases hormones into vascular system to pituitary
- Allows hypothalamus to regulate pituitary



# Other Brain Areas Without BBB

- Posterior Pituitary Gland
  - Oxytocin, ADH
- Pineal Gland
  - Melatonin



## Vasogenic (Cerebral) Edema

- Breakdown of blood brain barrier
- Trauma, stroke
- Swelling of brain tissue

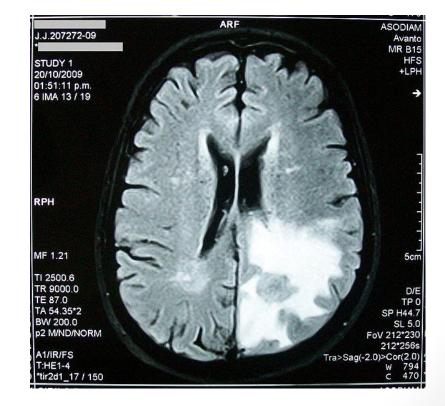





Image courtesy of Bobjgalindo

# Neurotransmitters

Jason Ryan, MD, MPH



### **Peripheral Neurotransmitters**

- Norepinephrine
- Acetylcholine
- Dopamine



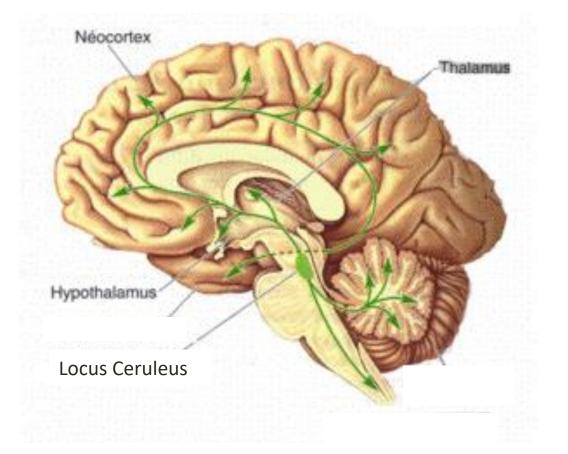
## **Key CNS Neurotransmitters**

- Norepinephrine
- Acetylcholine (ACh)
- Dopamine
- Serotonin (5-HT)
- γ-aminobutyric acid (GABA)
- Glutamate



## Norepinephrine

- Stress/panic hormone
- Increased levels in anxiety
- Decreased levels in depression
  - Some antidepressants *îNE* levels
  - Serotonin-norepinephrine reuptake inhibitors (SNRIs)
  - Desipramine (TCA)
  - Monoamine Oxidase inhibitors (MAOi)




#### Locus Ceruleus

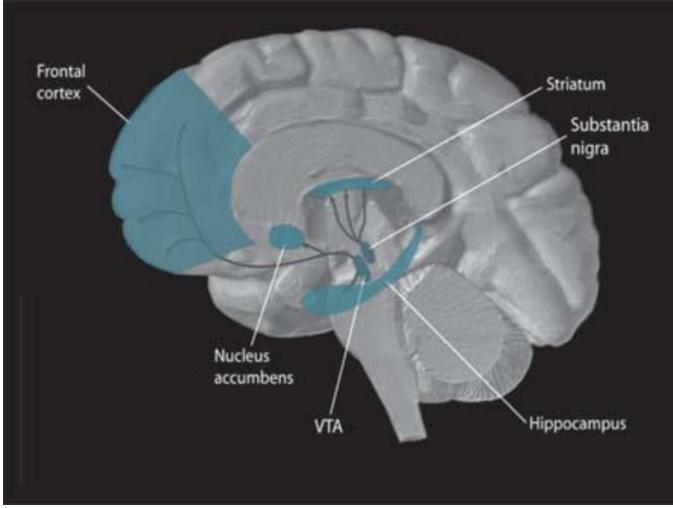
- Posterior pons near 4<sup>th</sup> ventricle
- Main source of NE in brain
- Critical for response to stress
- Extensive projections that activate under stress
- Activated in opiate withdrawal



#### Locus Ceruleus



Boards&Beyond.


Image courtesy of Diego69

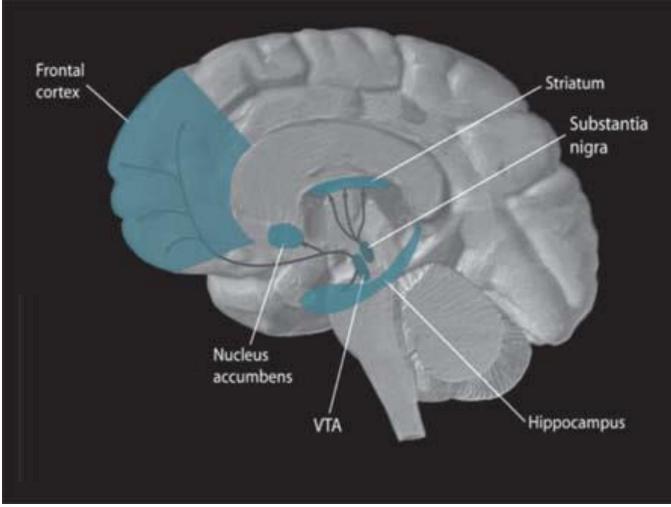
## Dopamine

- Synthesized in:
  - Ventral tegmentum (midbrain)
  - Substantia nigra (midbrain)
- Increased levels in schizophrenia
- Decreased levels in Parkinson's
- Decreased levels in depression



#### **Dopamine Synthesis**






### GABA

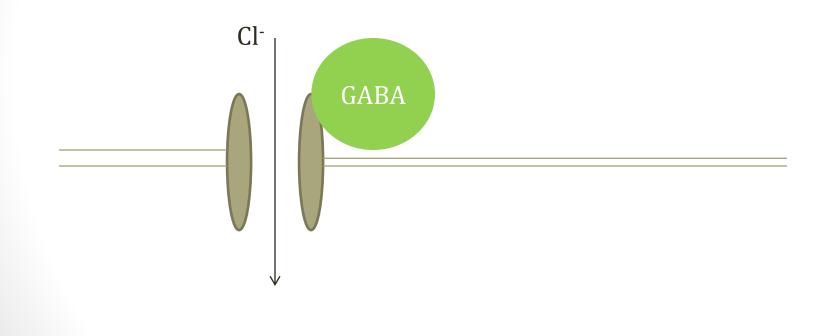
- γ-aminobutyric acid
- GABA is largely inhibitory
- Synthesized in nucleus accumbens (subcortex)
- Decreased levels in anxiety
- Decreased levels in Huntington's disease



#### **GABA Synthesis**



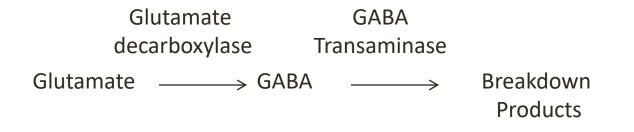



## **GABA Receptor Anesthetics**

- Etomidate
- Propofol
- Benzodiazepines
- Barbiturates
- These drugs activate receptor  $\rightarrow$  sedation



#### **GABA Receptor**


• GABA binds to receptor allows Cl<sup>-</sup> into cell





#### **GABA Synthesis**

- Synthesized via glutamate decarboxylase in neurons
- Broken down by GABA transaminase
- Both enzymes need B6 cofactor





## **GABA Receptor**

- Three GABA receptor subtypes
- GABA<sub>A</sub> GABA<sub>B</sub> in brain
- GABA<sub>c</sub> in retina
- Benzodiazepines act on GABA<sub>A</sub>
  - Stimulate Cl<sup>-</sup> influx
- Alcohol, zolpidem, and barbiturates also GABA<sub>A</sub>



## **Nucleus Accumbens**

- Important for pleasure/reward
- Research shows NA activated in
  - Drug addiction
  - Fear



## Serotonin

- Various functions
- Synthesized in raphe nucleus (pons)
- Decreased levels in anxiety
- Decreased levels in depression
  - Some antidepressants 15-HT levels
  - Selective-serotonin reuptake inhibitors (SSRIs)
  - Serotonin–norepinephrine reuptake inhibitors (SNRIs)
  - Monoamine Oxidase inhibitors (MAOi)



#### **5-HT Synthesis**

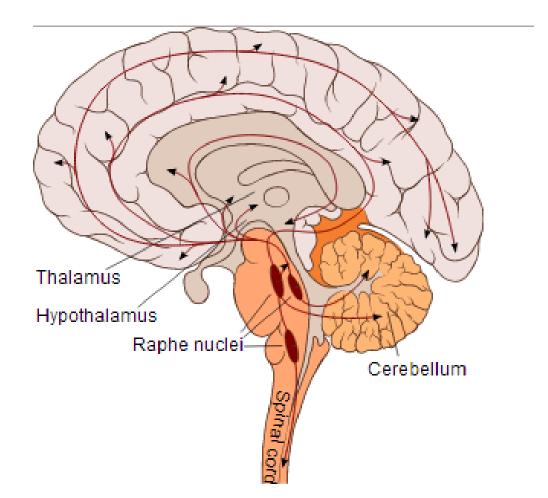





Image courtesy of S. Jähnichen.

## Serotonin Syndrome

- Can occur any drug that that fserotonin
  - SSRIs, MAO inhibitors, SNRis, TCAs
- Classically triad
- #1: Mental status changes
  - Anxiety, delirium, restlessness, and disorientation
- #2: Autonomic hyperactivity
  - Diaphoresis, tachycardia, hyperthermia
- #3: Neuromuscular abnormalities
  - Tremor, clonus, hyperreflexia, bilateral Babinski sign



## Serotonin Syndrome

- Watch for patient on anti-depressants with fever, confusion, and rigid muscles
- Don't confuse with NMS
  - Both: muscle rigidity, fever,  $\Delta$  MS, and autonomic instability
  - NMS: "Lead pipe" rigidity, **↑**CK
  - SS: Clonus
- Treatment: cyproheptadine (5 –HT antagonist)



### Acetylcholine

- Synthesized in basal nucleus of Meynert (subcortex)
- Increased levels in REM sleep
- Decreased levels in Alzheimer's
- Decreased levels in Huntington's disease



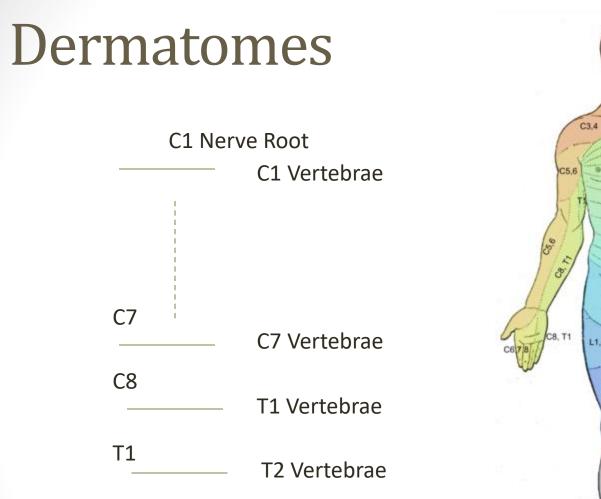
#### Glutamate

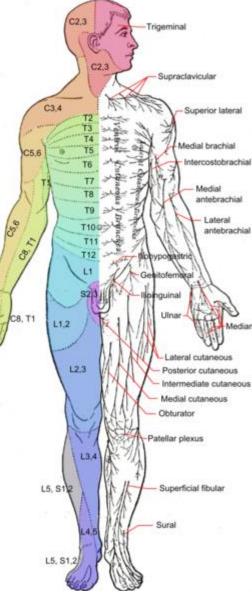
- Major excitatory neurotransmitter
- N-methyl-D-aspartate (NMDA) receptor is target
- Huntington's: neuronal death from glutamate toxicity
  - Glutamate binds NMDA receptor
  - Excessive influx calcium
  - Cell death



## Phencyclidine (PCP)

Angel Dust


- Antagonist to NMDA receptor
- Violent behavior
- Hallucinations
- Ataxia, nystagmus
- Hypertension, tachycardia, diaphoresis
- Can cause seizures, coma, or death




# Dermatomes and Reflexes

Jason Ryan, MD, MPH









## **Key Spinal Nerves**

- Phrenic nerve C3-C5
  - Innervates diaphragm
  - Diaphragm irritation  $\rightarrow$  "referred" shoulder pain
  - Classic example is gallbladder disease
  - Also lower lung masses
  - Irritation can cause dyspnea and hiccups
  - Cut nerve  $\rightarrow$  diaphragm elevation, dyspnea
- T10 = umbilicus
  - Referred pain for appendicitis



#### Herpes Zoster Shingles

- Reactivation of latent varicella-zoster virus
  - Primary VZV = chicken pox
  - Fever, pharyngitis, vesicular rash
  - Shingles = reactivated VZV
- Lies dormant in dorsal root ganglia
- Rash along dermatome
- Does not cross midline
- Common in elderly or immunocompromised



#### Herpes Zoster





Image courtesy of Fisle

#### Reflexes

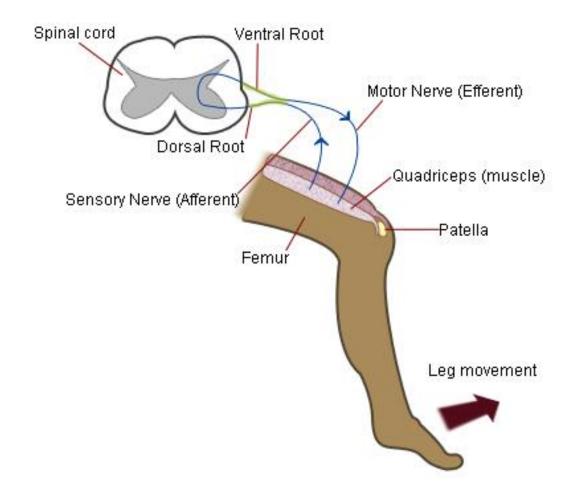





Image courtesy of ChristinaT3

#### **Clinically Tested Reflexes**

- Biceps C5
- Triceps C7
- Patella L4
- Achilles (ankle jerk) S1



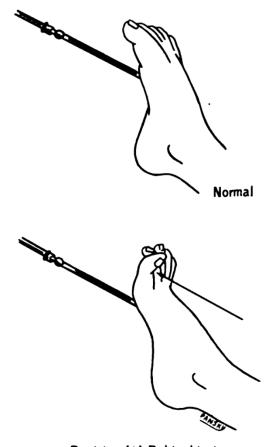
#### Reflexes

- 0 = No reflex
- 1+ = diminished (LMN lesion)
- 2+ = Normal
- 3+ = Brisk (UMN lesion)
- 4+ = Very brisk
- 5+ = Sustained clonus



#### Nerve Root Syndromes

- L5 (L4/L5 disc)
  - Most common
  - Back pain down lat leg
  - Foot strength reduced
  - Reflexes normal


- S1 (L5/S1 disc)
  - 2<sup>nd</sup> most common
  - Pain down back of leg
  - Weakness plantar flexion
  - Ankle reflex lost



## Babinski Sign

**Plantar Reflex** 

- Rub bottom foot
- Normal: downward
  - Plantarflexion
- Abnormal: upward
  - Dorsiflexion
  - UMN damage
  - UMN suppress reflex
- Upward = normal infants
  - <12mo
  - Incomplete myelination



Positive (+) Babinski sign (dorsiflexion of big toe)



#### **Primitive Reflexes**

- All present at birth in normal babies
- Disappear in first year of life or less
- Babies lacking these may have CNS pathology
- Reflexes that persist can indicate pathology
- Inhibited by mature frontal lobe
- Can reappear with frontal lobe pathology
- Six key reflexes:
  - Moro, Rooting, Sucking, Palmar, Plantar, Galant



#### Moro Reflex

Startle Reflex

- Lie baby on back
- Lift slightly off back
- Let go
- Three phase reflex
  - Spreading of arms
  - Unspreading of arms
  - Crying



#### **Other Primitive Reflexes**

- Rooting
  - Stroke cheek, baby turns toward side of stroke
- Sucking
  - Baby will suck anything touching roof of mouth
- Palmar
  - Stroke baby's palm, fingers will grasp
- Plantar
  - Babinski reflex  $\rightarrow$  normal up to 1 year
- Galant
  - Stroke skin along babies back, baby swings legs to that side



## **Cerebral Cortex**

Jason Ryan, MD, MPH



#### **Cerebral Cortex**

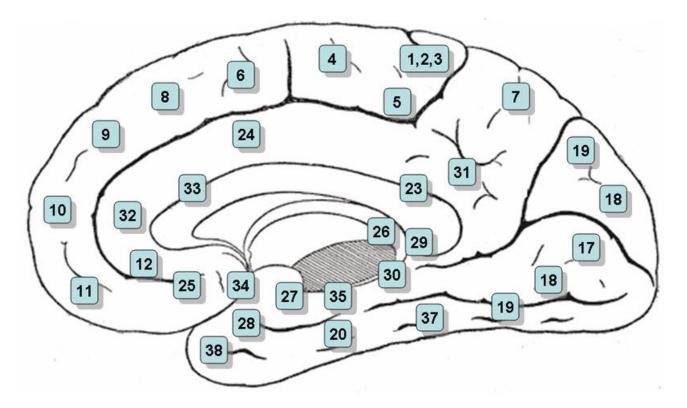





Image courtesy of RobinH

#### Brodmann areas

• 47 areas of human brain





#### Frontal Lobe

- Largest lobe
- Motor function, planning movements
- Thinking, feeling, imagining, making decisions
- Key Areas
  - Motor cortex
  - Frontal Eye Fields
  - Broca's speech area
  - Prefrontal Cortex



#### Motor Cortex

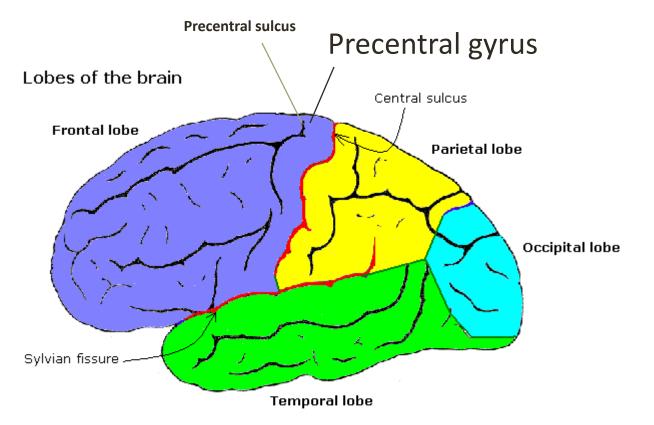
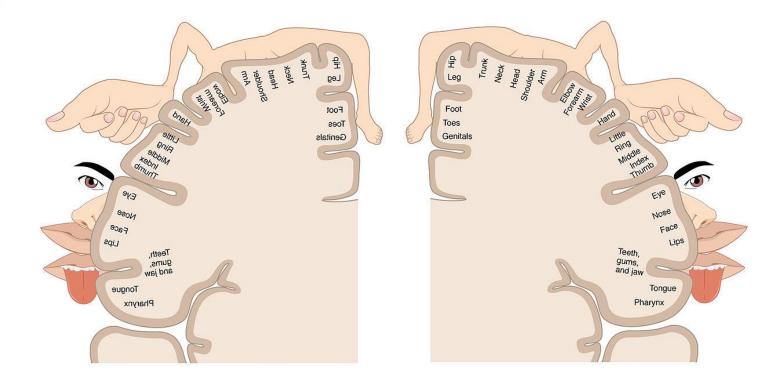






Image courtesy of RobinH

#### Homunculus



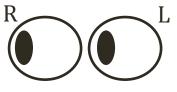

MCA: Upper limb, face ACA: Lower limb



Image courtesy of Wikipiedia and OpenStax College

### Frontal Eye Fields

- Found in frontal lobe
- Brodmann's Area 8
- Performs conjugate movement eyes to opposite side
- Saccadic movements: back-forth (reading)
- Complex function  $\rightarrow$  helps track objects
- Destructive lesion:
  - Both eyes deviate to side of lesion



**Right FEF Lesion** 



## Broca's Speech Area

- Located in frontal lobe LEFT hemisphere
- Speech production (not comprehension)
- Moves muscles for speech
- Makes speech clear, fluent
- Destruction  $\rightarrow$  "expressive" aphasia
  - Know what you want to say but cannot express speech
  - Short sentences, stutters, stops
- Watch for "broken" speech: stuttering, stop/start





'stool, is it boy, is it that landing down, girl is laughing, and cookie jar.....ok um....window....curtains and out the garden and trees low grass and um lady washing the dishes and hot and cold water....plashing running, floor, and the two cups of a, two cups of ah, two cups of ah, coffee or um....empty um......cupboard and cupboards .....um....washing.....flashing and um earth to roof'



### Wernicke's Aphasia

- Located in temporal lobe LEFT hemisphere
- Speech comprehension (not production)
- Destruction  $\rightarrow$  "fluent" aphasia
  - Fluent, but meaningless speech
- Watch for LACK of stutters, starts/stops





'Mother is away here working her work to get her better, but when she's looking the two boys looking in the other part. She's working another time.'



Image courtesy of coburgpsych

## **Global Aphasia**

- Both Broca's and Wernicke's (left side)
- Patient's often mute
- Cannot follow commands
- Can occur immediately following stroke
- Usually occurs with extensive CNS damage
  - Right Hemiparesis
  - Right visual loss



### **Prefrontal Cortex**

- Anterior 2/3 of frontal lobe
- Lesions:
  - Disinhibition
  - Deficits in concentration
  - Disorientation
  - Poor judgment
  - Reemergence of primitive reflexes



## **Phineas Gage**

- Railroad worker 1848
- Railroad iron thru skull
- Survived
- Personality change



Image courtesy of Jack and Beverly Wilgus

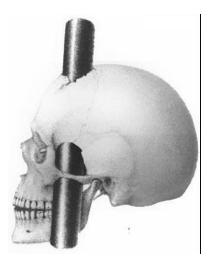
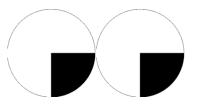





Image courtesy of Henry Jacob Bigelow


#### **Parietal Lobes**

- Contain sensory cortex
- Damage to right parietal lobe: spatial neglect
  - Contralateral (left) agnosia
  - Can't perceive objects in part of space
  - Despite normal vision, somatic sensation
  - Failure to report or respond to stimuli affected side
- Right-sided spatial neglect rare
  - Redundant processing of right by left/right brain



#### **Parietal Lobes**

- Baum's Loop
- Part of visual pathway
- Damage: Quadrantic Anopia



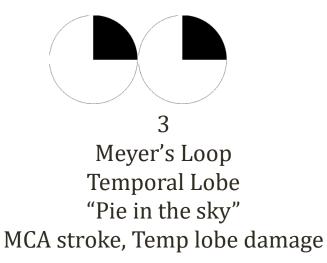
Baum's Loop Lesion Parietal Lobe "Pie in the floor" Parietal lobe damage



## **Temporal Lobe**

- Primary auditory cortex
  - Lesions  $\rightarrow$  "cortical" deafness
- Wernicke's speech area
  - Lesions  $\rightarrow$  Wernicke's aphasia
- Olfactory bulb
- Meyer's Loop
- Hippocampus
- Amygdala




## **Olfactory Bulb**

- Destruction  $\rightarrow$  ipsilateral anosmia
- Psychomotor epilepsy
  - Sights, sounds, smells that are not there
  - Can result from irritation olfactory bulb
  - Part of temporal lobe epilepsy
- Rare, olfactory groove meningiomas
  - About 10% of all meningiomas
  - Cause anosmia



## Meyer's Loop

Quadrantic Anopia





## Amygdala

- Temporal lobe nuclei
- Important for decision making, higher functions
- Part of limbic system



# **Kluver-Bucy Syndrome**

- Damage to bilateral amygdala (temporal lobes)
- Hyperphagia Weight gain
- Hyperorality tendency to examine all with mouth
- Inappropriate Sexual Behavior
  - Atypical sexual behavior, mounting inanimate objects
- Visual Agnosia
  - Inability to recognize visually presented objects
- Rare complication of HSV1 encephalitis



# **Occipital Lobe**

- Vision
- Lesions cause cortical blindness
- Blood supply  $\rightarrow$  PCA



### Homonymous Hemianopsia



Left PCA Stroke Right visual loss



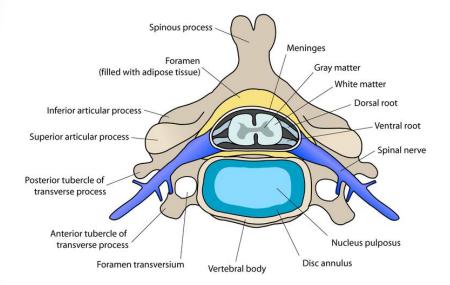
Right PCA Stroke Left visual loss



# **Macular Sparing**

- Macula: central, high-resolution vision (reading)
- Dual blood supply: MCA and PCA
- PCA strokes often spare the macula

# 




# Spinal Cord

Jason Ryan, MD, MPH



# Spine



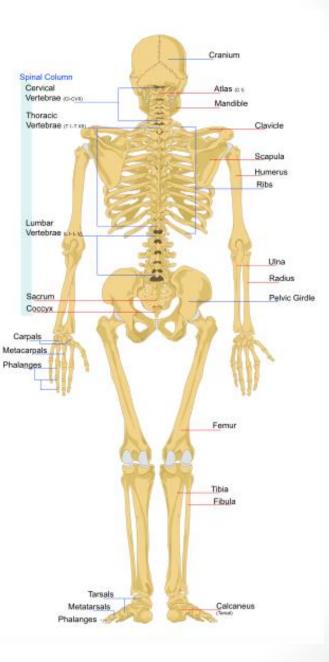
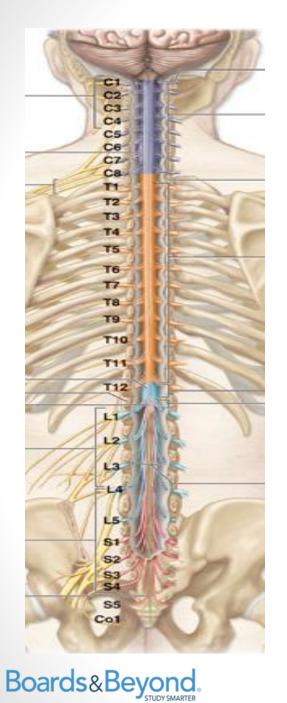
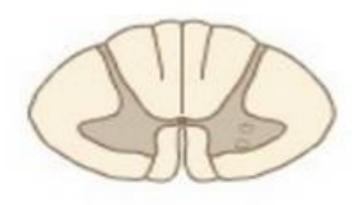




Image courtesy of debivort






- Cervical (8)
- Thoracic (12)
- Lumbar (5)
- Sacral (5)
- Cord ends L1/L2
  - Conus medullaris
- Cauda Equina

### **Spinal Cord Cross Section**





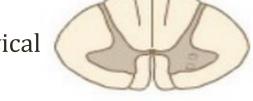
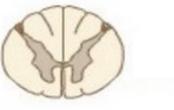

White matter = Fibers Gray matter = cells

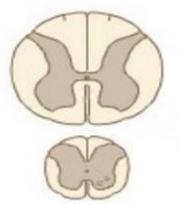


Image courtesy of OpenStax College


## **Spinal Cord Levels**

Cervical




White matter = Fibers Gray matter = cells

Thoracic

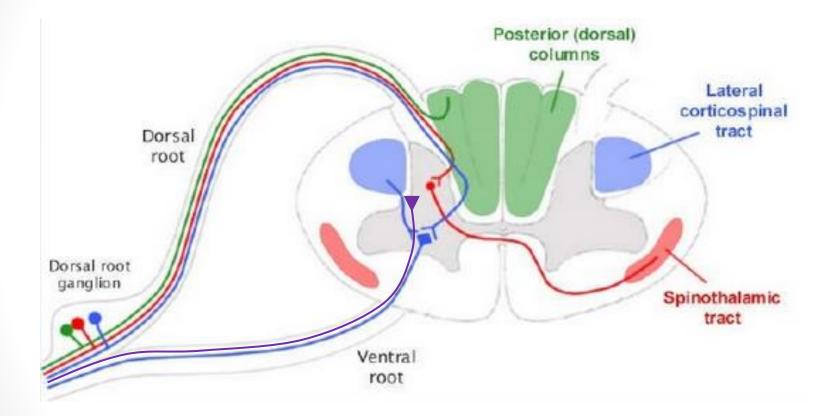


Lumbar

Sacral






# Terminology

- Dorsal
  - Posterior
  - Towards Back
- Ventral
  - Anterior
  - Towards Front

- Rostral
  - Towards top of head
- Caudal
  - Towards tail
  - Away from head



# **Spinal Cord**





# **Spinal Cord Tracts**

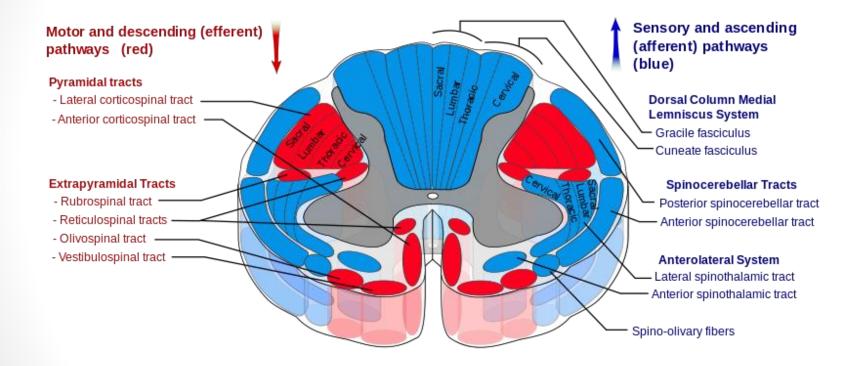
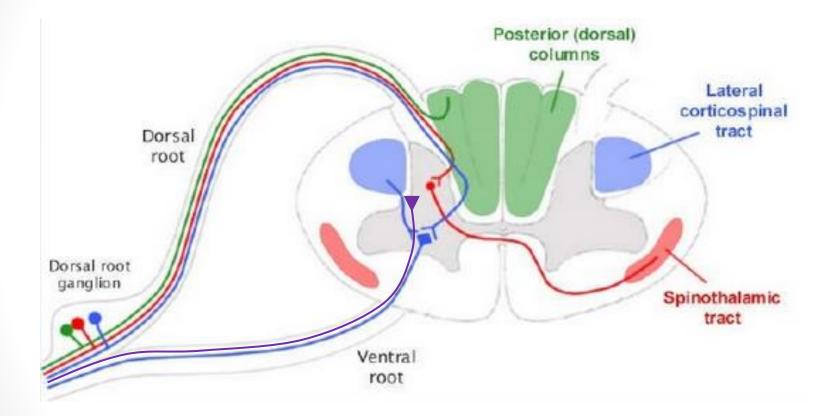
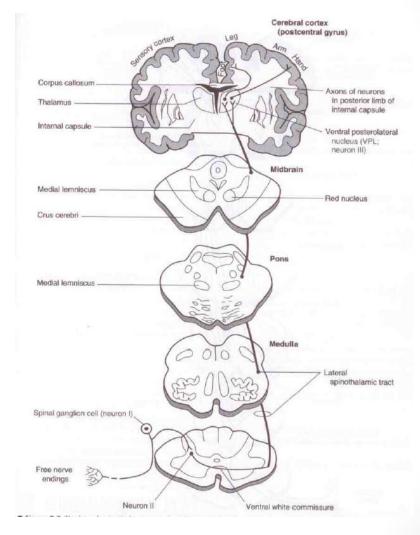






Image courtesy of Polarlys and Mikael Häggström

# **Spinal Cord**

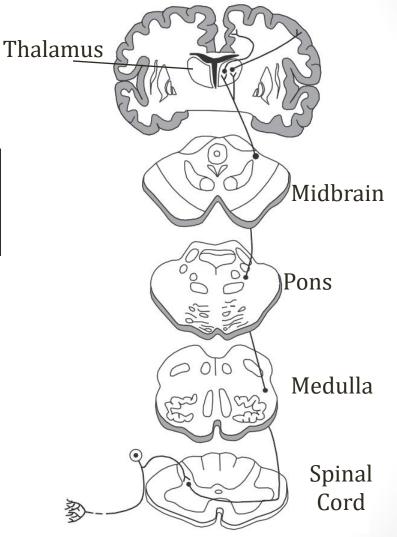





# **Spinothalamic Tract**

Pain/temperature/crude touch

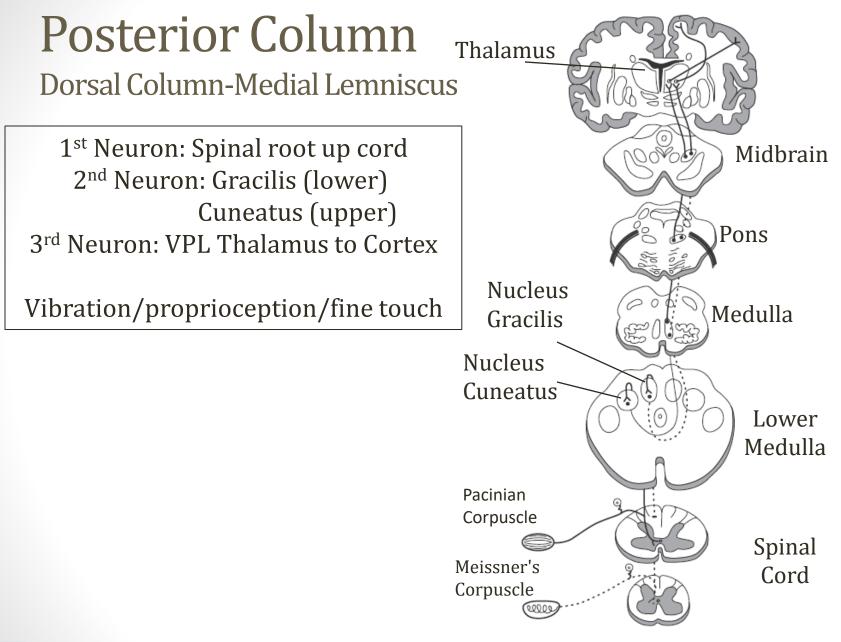
# 1<sup>st</sup> Neuron: Spinal root to cord 2<sup>nd</sup> Neuron: Dorsal Horn 3<sup>rd</sup> Neuron: VPL Thalamus to Cortex






# **Spinothalamic Tract**

Pain/temperature/crude touch

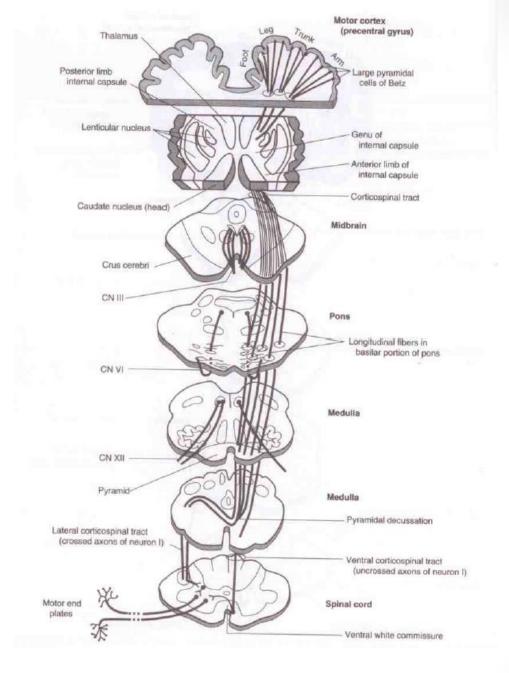

1<sup>st</sup> Neuron: Spinal root to cord
2<sup>nd</sup> Neuron: Dorsal Horn to Thalamus
3<sup>rd</sup> Neuron: VPL Thalamus to Cortex





#### ic cortex Leg area **Posterior Column** Trunk area Arm area Thalamus Head area Face area Dorsal Column-Medial Lemniscus<sup>Internal capsule</sup> Ventral posterolateral nucleus of thalamus Lentiform nucleus (neuron III) 12 Medial lemniscus Midbrain Medial lemniscus Trigeminal nerve Pons Medulla Nucleus gracilis Medial lemniscus 2 Nucleus cuneatus Spinal trigeminal nucleus Internal arcuate fibers (neuron II) -Decussation of Cuneate fasciculus medial lemniscus Gracile fasciculus Spinal ganglion cell (neuron I) Cuneate fasciculus Pacinian corpuscie Cervical spinal cord Gracile fasciculus Meissner's corpuscle Lumbosacral spinal cord 00000



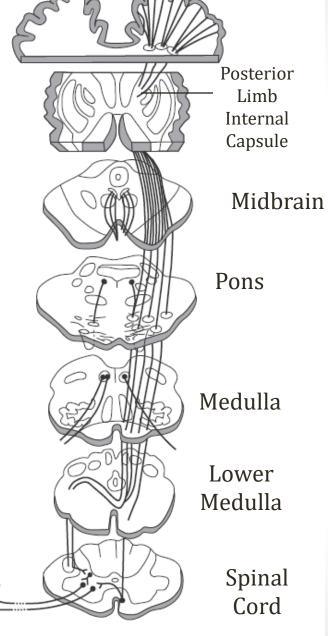





# Sensory Info to Brain

- Spinothalamic
  - Pain/temperature/crude touch
  - Synapse cord level
  - Cross cord level
- Posterior column
  - Vibration/proprioception/fine touch
  - Ascend in cord
  - Synapse nucleus gracilis/cuneatus
  - Cross medulla
- Key point: Both cross but in different places

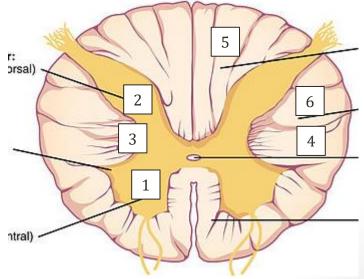







# Corticospinal Tract

#### <u>Motor</u>


1<sup>st</sup> Neuron: Cortex to Anterior Horn 2<sup>nd</sup> Neuron: Anterior Horn to muscle Decussation Lower Medulla





# **Key Points**

- 1. Anterior Horn Motor nerves
- 2. Posterior Horn Sensory Nerves (pain/temp)
- 3. Lateral Horn Autonomic Nerves
- 4. Spinothalamic Tract Pain/Temp
- 5. Medial lemniscus Vibration/Proprioception
- 6. Corticospinal Tract Motor





## **Testing Sensation**

- Romberg
  - Positive suggests posterior column problem
- Vibration
  - Tuning fork
- Proprioception
  - Close eyes; "Is toe up or down?"



## **Testing Sensation**

- Pain
  - Pin prick
- Temp
  - Hot/cold water (rarely done)



# **Peripheral Neuropathy**

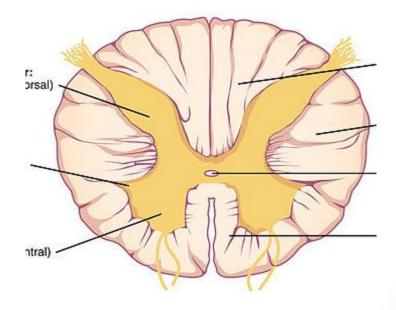
- Diabetes complication
  - Pin prick weak at feet, better further up leg
  - Changes with going up the leg
  - Not spinal cord problem



# Spinal Cord Syndromes

Jason Ryan, MD, MPH




# **Spinal Cord Syndromes**

- 1. Poliomyelitis and Werdnig-Hoffman disease
- 2. Multiple sclerosis
- 3. Amyotrophic lateral sclerosis (ALS)
- 4. Anterior spinal artery occlusion
- 5. Tabes dorsalis
- 6. Syringomyelia
- 7. Subacute combined degeneration (SCD)



# Polio

- Single stranded RNA virus
- Prevented by vaccination
- Destruction of anterior horn
- LMN lesions
- Flaccid paralysis

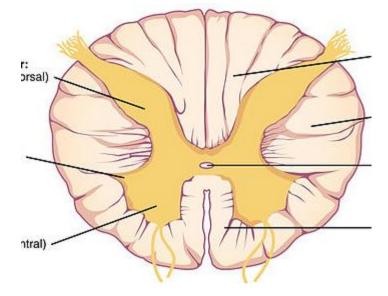




# Polio

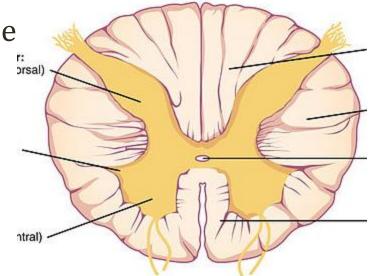
- Classic presentation
  - Unvaccinated child
  - Febrile illness
  - Neuro symptoms 4-5 days later
  - Weakness (legs>arms)
  - Flaccid muscle tone




# Werdnig-Hoffman Disease

- Spinal muscle atrophy disease
- Hypotonia/weakness in newborn
- Classic finding: tongue fasciculations
- "Floppy baby"
- Similar lesions to polio
- Death in few months




# **Multiple Sclerosis**

- Mostly cervical white matter
- Random, asymmetric lesions
- Relapsing, remitting pattern

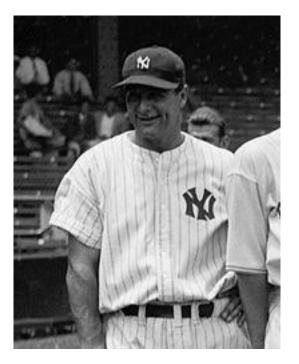




- Combined UMN/LMN disease
- No sensory symptoms!!
- Upper symptoms
  - Spasticity, exaggerated reflexes
- Lower symptoms
  - Wasting, fasciculations






- Cranial nerves can be involved
  - Dysphagia
- Most common 40-60 years old
- Usually fatal 3-5 years
- Common cause of death: aspiration pneumonia
- Riluzole for treatment (↓glutamate release neurons)



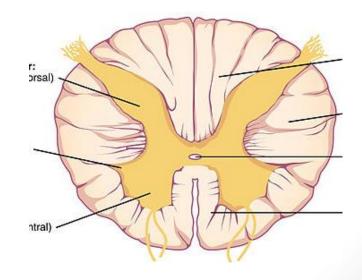
- Familial cases:
  - Zinc copper superoxide dismutase deficiency
  - Increased free radical damage



# Lou Gehrig



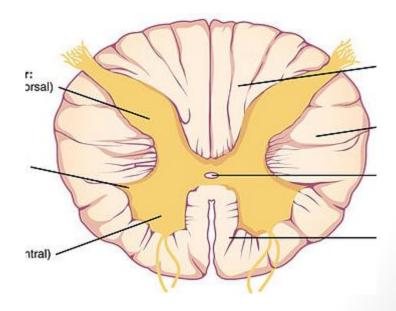
- Baseball player
- NY Yankees 1930s
- The Iron Horse




- Classic Presentation
  - 50-year old patient
  - Slowly progressive course
  - Arm weakness
  - Dysphagia to solids/liquids
  - Some flaccid muscles
  - Some spastic muscles
  - No sensory symptoms



## **ASA Occlusion**


- Loss of all but posterior columns
  - Only vibration, proprioception intact
- Acute onset (stroke)
- Initial spinal shock
  - Flaccid bilateral paralysis (loss of LMN) below lesion
- Weeks later
  - LMN defect at level of lesion
  - UMN damage below lesion
  - Hyperreflexia, spasticity

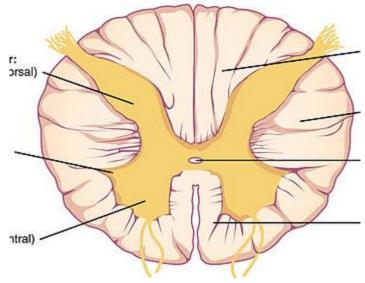




#### Tabes dorsalis

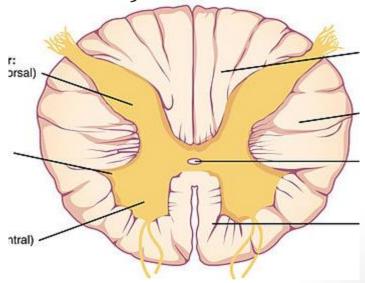
- Tertiary syphilis
- Demyelination of posterior columns
- Loss of dorsal roots






#### Tabes dorsalis

- Classic Signs/Symptoms
  - Patient with other STDs
  - Difficulty walking
  - 5/5 strength legs and arms
  - Positive Romberg (no proprio)
  - Wide-based gate
  - Fleeting, recurrent shooting pains
  - Loss of ankle/knee reflexes
  - Argyll Robertson pupils




- Fluid-filled space in spinal canal
- Damages ST nerve fibers crossing center
- Bilateral loss pain/temp
- Usually C8-T1 (arms/hands)





- Can expand to affect anterior horn
  - Muscle weakness
- Can expand to affect lateral horn
  - Loss of sympathetic to face
  - Horner's syndrome
- Can cause kyphoscoliosis (spine curve)

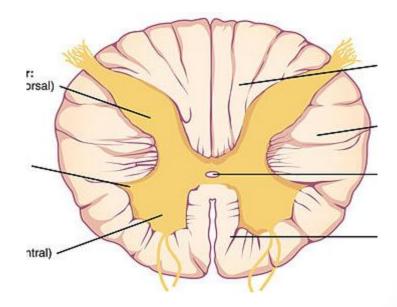




- From trauma or congenital
- Can occur years after spinal cord injury
- Seen in Chiari malformations



- Symptoms only at level of the syrinx
- Usually C8-T1
  - Watch for pin prick/temp loss on only hands/back
  - Legs will be normal
- Position, vibration normal all levels
- Temp loss may present as burns not felt
- Pain loss may present as cuts not felt
- If large, motor symptoms may develop
- If large, Horner's syndrome may develop




- Classic presentation
  - Cuts/burns on hands that were not felt
  - Loss of pinprick and temp in back, shoulders, arms
- May also include:
  - Motor weakness arms
  - Horner's syndrome

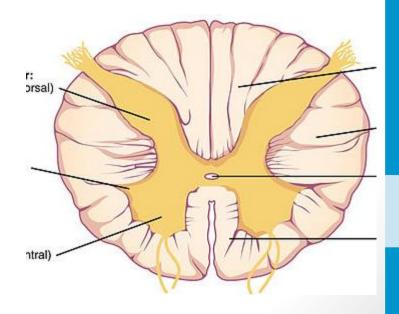


### SCD

- B12 Deficiency
- Demyelination posterior columns (vibr/proprio)
- Loss of lateral motor tracts
- Slowly progressive
- Weakness
- Ataxia
- May not have macrocytosis

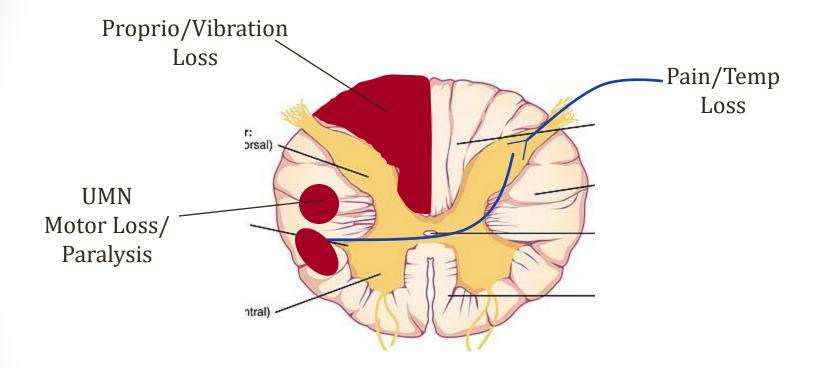





#### SCD

- Classic presentation
  - Problems walking
  - Positive Romberg
  - Spastic paresis in legs
  - Lower extremity hyperreflexia
  - Positive Babinski

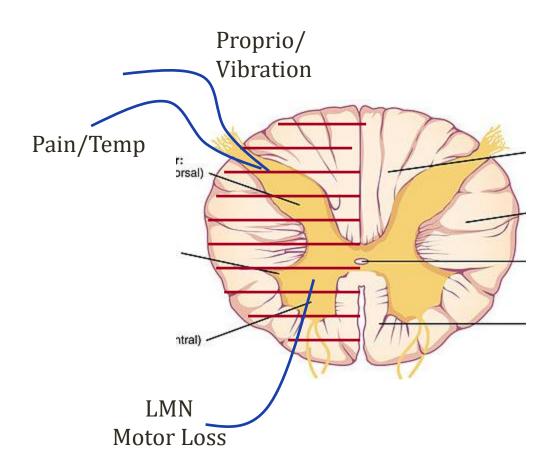



## **Brown-Sequard Syndrome**

- Loss of half of spinal cord
- Trauma or tumor
- Lose pain/temp contralateral side
- Lose motor, position, vibration ipsilateral side





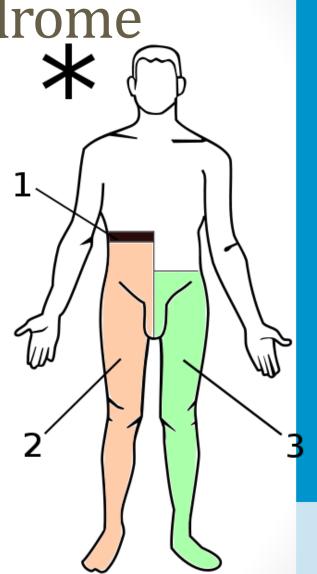

### **Below Level of Injury**



No Motor, Proprio, Vibration Injured Side No Pain or Temp Contralateral Side



## Level of Injury




No Motor, Proprio, Vibration, Pain, or Temp



## **Brown-Sequard Syndrome**

- Weak side = side with lesion
- UMN signs below
- 1: Level of lesion
  - LMN signs
  - Loss of all sensation
  - If above T1  $\rightarrow$  Horner's
  - Constricted pupil, eyelid droop
- 2: Loss of motor, posterior columns
- 3: Loss of pain/temp



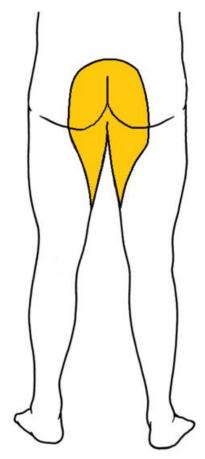


## **Brown-Sequard Syndrome**

- Classic Presentation
  - Prior trauma (knife, gunshot)
  - Level of injury: No sensation
  - Side with injury
    - Spastic paresis; Babinski sign
    - Loss of vibration/proprioception
  - Other side
    - Loss of pain/temp

| 2 | 3 |
|---|---|
|   |   |




## Cauda Equina Syndrome

- Spinal cord ends about L2 (conus medullaris)
- Spinal nerves continue inferiorly (cauda equina)
- Cauda equina nerve roots:
  - Motor to lower extremity
  - Sensory to lower extremity
  - Pelvic floor/sphincter innervation
- Cauda equina syndrome:
  - Compression cauda equina
  - Massive disk rupture
  - Trauma, tumor



#### Cauda Equina Syndrome

- Classic Presentation
  - Severe low back pain
  - "Saddle anesthesia"
  - Loss of anocutaneous reflex
  - Bowel and bladder dysfunction
  - Normal Babinski





#### **Conus Medullaris Syndrome**

- Perianal anesthesia, bilateral
- Impotence



# Brainstem

Jason Ryan, MD, MPH



## Terminology

- Dorsal
  - Posterior
  - Towards Back
- Ventral
  - Anterior
  - Towards Front

- Rostral
  - Towards top of head
- Caudal
  - Towards tail
  - Away from head



#### The Brainstem

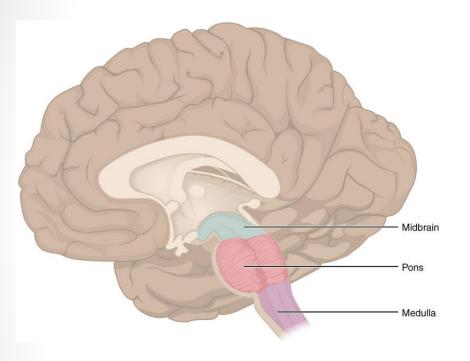
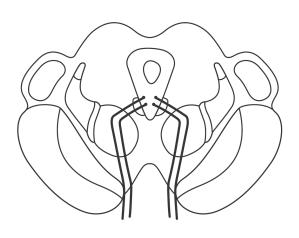
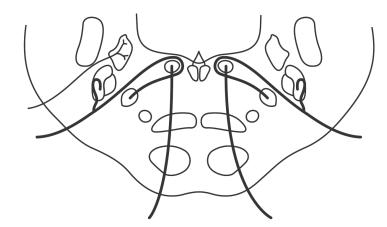
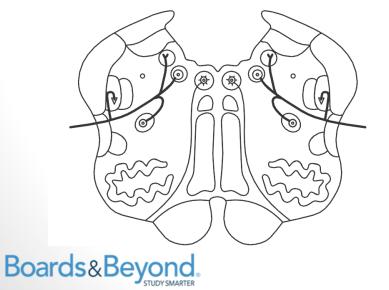





Image courtesy of OpenStax college

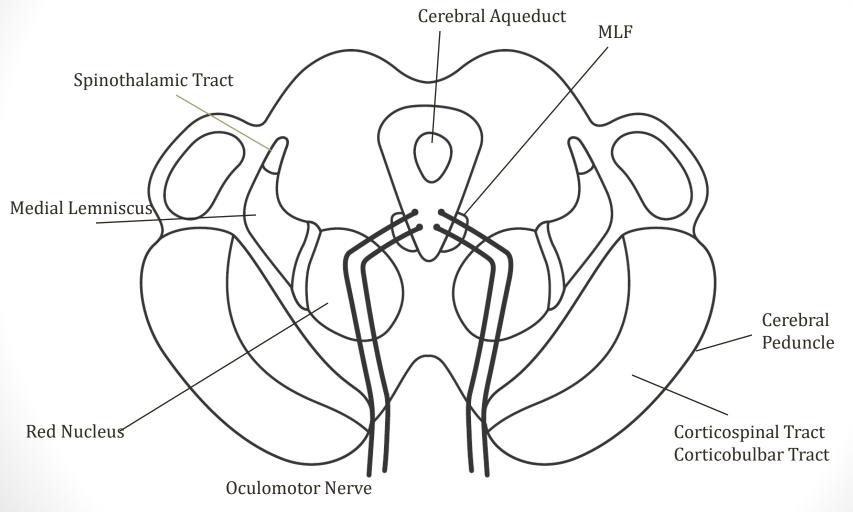




#### The Brainstem


- Sensory and motor fibers
- Nuclei of cranial nerves
- Important to know what lies in each section
  - Midbrain
  - Pons
  - Medulla
- Focus on
  - Which cranial nerves each level?
  - Where are the tracts traveling btw brain/cord?
  - Medial versus lateral?

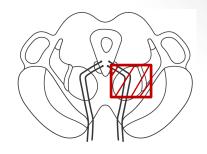


#### **Brainstem Sections**





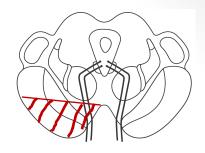




## Midbrain

Mesencephalon



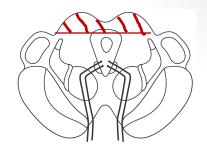



## Benedikt Syndrome



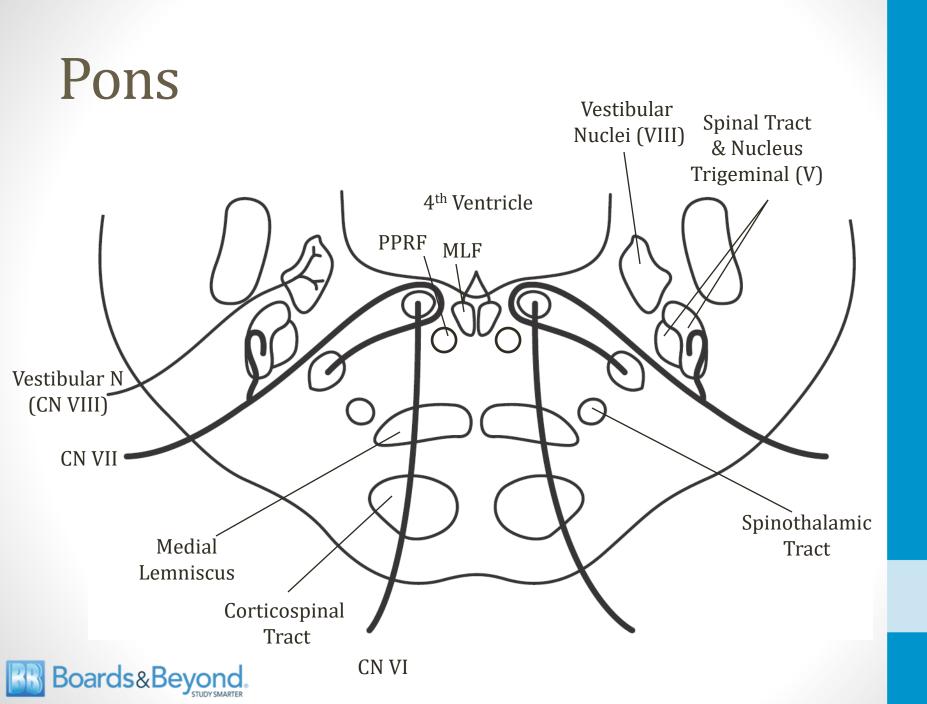
- CN 3, medial leminiscus, red nucleus
- Oculomotor palsy
- Contralateral loss proprioception/vibration
- Involuntary movements
  - Tremor
  - Ataxia




## Weber's Syndrome

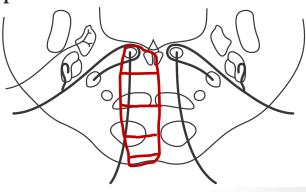


- CN3, corticospinal tract, corticobulbar tract
- Occulomotor nerve palsy
- Contralateral hemiparesis
- Pseudobulbar palsy
  - UMN cranial nerve motor weakness
  - Exaggerated gag reflex
  - Tongue spastic (no wasting)
  - Spastic dysarthria




## Parinaud's Syndrome

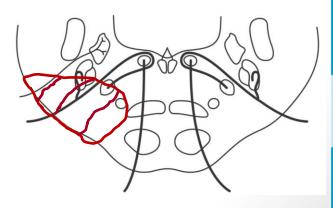



- Posterior midbrain
- Superior colliculus and pretectal area
  - Can't look up (vertical gaze palsy)
- Pseudo Argyll Robertson pupil
- Often from pinealoma/germinoma of pineal region
- Watch for cerebral aqueduct obstruction
  - Non-communicating hydrocephalus
  - Compression from a pineal tumor

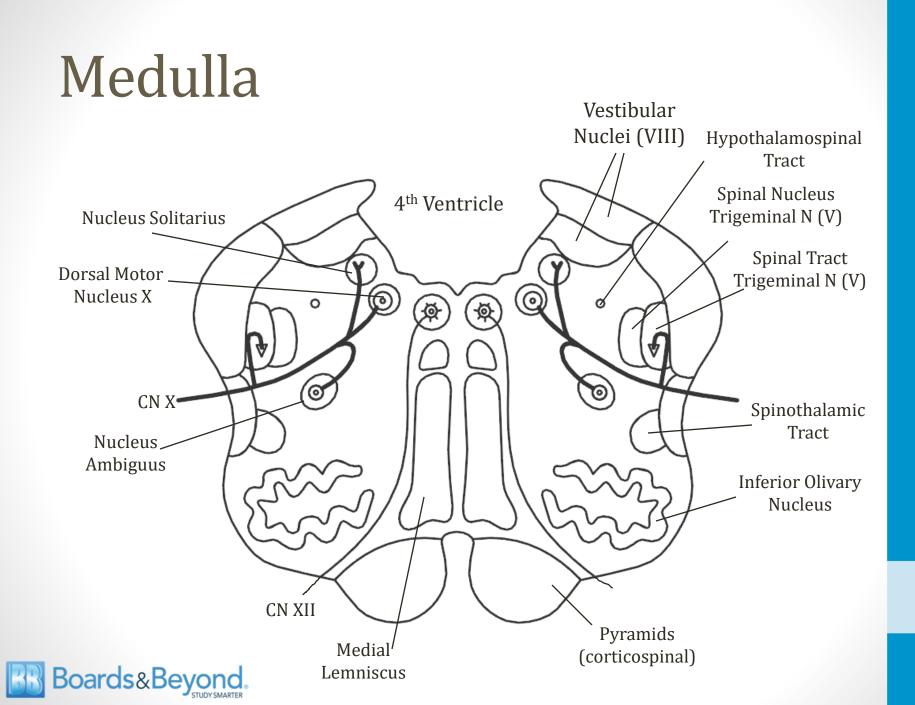




## Medial Pontine Syndromes

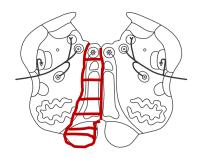

- Corticospinal tract, CN 6, CN 7
- Contralateral hemiparesis
- CN 6 palsy
- Facial weakness/droop affected side
- Lateral gaze structures: MLF, CN VI nucleus
- Gaze palsies
  - Can't look to affected side
  - Damage to either PPRF or nucleus CN VI






## Lateral Pontine Syndromes

- Vestibular nuclei: nystagmus, vertigo, N/V
- Spinothalamic tract: Contralateral pain/temp
- Spinal V nucleus: ipsilateral face pain/temp
- Sympathetic tract: Horner's syndrome
- Facial nucleus:
  - Ipsilateral facial droop
  - Loss corneal reflex
- Cochlear nuclei
  - Deafness
- AICA stroke

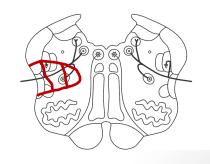







## Medial Medullary Syndrome

- Corticospinal, medial lemniscus, CN 12
- Contralateral Hemiparesis
- Contralateral loss of proprioception/vibration
- Flaccid paralysis tongue
  - Deviation to side of lesion
- Anterior spinal artery stroke






## Lateral Medullary Syndrome

Wallenberg's Syndrome

- Vestibular nuclei: Nystagmus, vertigo, N/V
- Sympathetic tract: Horner's syndrome
- Spinothalamic tract: Contralateral pain/temp
- Spinal V nucleus: ipsilateral face pain/temp
- Nucleus ambiguus (IX, X)
  - Hoarseness, dysphagia
- PICA Stroke





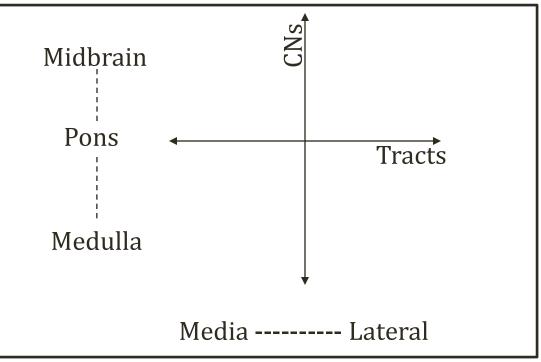
#### How to Find Lesions

- Option 1: Know the syndromes
- Option 2: Use the Rule of 4s



## Rule of 4s

- 4 CNs in:
  - Medulla
  - Pons
  - Above Pons
- 4 CNs divide into 12
  - III, IV, VI, XII
  - Motor nuclei are midline
- 4 CNs do not divide/12
  - V, VII, IX, XI
  - All are lateral


- 4 midline columns
  - Motor nucleus
  - Motor pathway
  - MLF
  - Medial Lemniscus
- 4 lateral (side) columns
  - Sympathetic
  - Spinothalamic
  - Sensory
  - Spinocerebellar

Dr. Peter Gates. The rule of 4 of the brainstem: a simplified method for understanding brainstem anatomy and brainstem vascular syndromes for the non-neurologist. Internal Medicine Journal Volume 35, Issue 4, pages 263–266, April 2005



## Localizing Lesions

- Medial vs. Lateral
  - Which tracts affected?
- Medulla vs. Pons vs. Midbrain
  - Which cranial nerves affected?





#### 4 Above Pons CNs

|                | Deficit                                              |
|----------------|------------------------------------------------------|
| Olfactory CN1  | Not in midbrain                                      |
| Optic CN2      | Not in midbrain                                      |
| Oculomotor CN3 | Eye turned out and down                              |
| Trochlear CN4  | Eye unable to look down when<br>looking towards nose |



### 4 Pons CNs

|                | Deficit                            |
|----------------|------------------------------------|
| Trigeminal CN5 | Ipsilateral facial sensory loss    |
| Abducens CN6   | Ipsilateral eye abduction weakness |
| Facial CN7     | Ipsilateral facial weakness/droop  |
| Auditory CN8   | Ipsilateral deafness               |



### 4 Medulla CNs

| Cranial Nerve         | Deficit                             |
|-----------------------|-------------------------------------|
| Glossopharyngeal CN9  | Ipsilateral pharyngeal sensory loss |
| Vagus CN10            | Ipsilateral palatal weakness        |
| Spinal accessory CN11 | Ipsilateral shoulder weakness       |
| Hypoglossal CN12      | Ipsilateral weakness of tongue      |
|                       |                                     |



### Midline Structures (M)

| Midline Structure                      | Deficit                                      |
|----------------------------------------|----------------------------------------------|
| Motor pathway<br>(Corticospinal tract) | Contralateral weakness                       |
| Medial lemniscus                       | Loss contralateral proprioception/ vibration |
| Medial longditudinal<br>fasciculus     | Ipsilateral INO                              |
| Motor nucleus and nerve                | Ipsilateral CN motor loss<br>(3,4,6,12)      |



### Side/Lateral Structures (S)

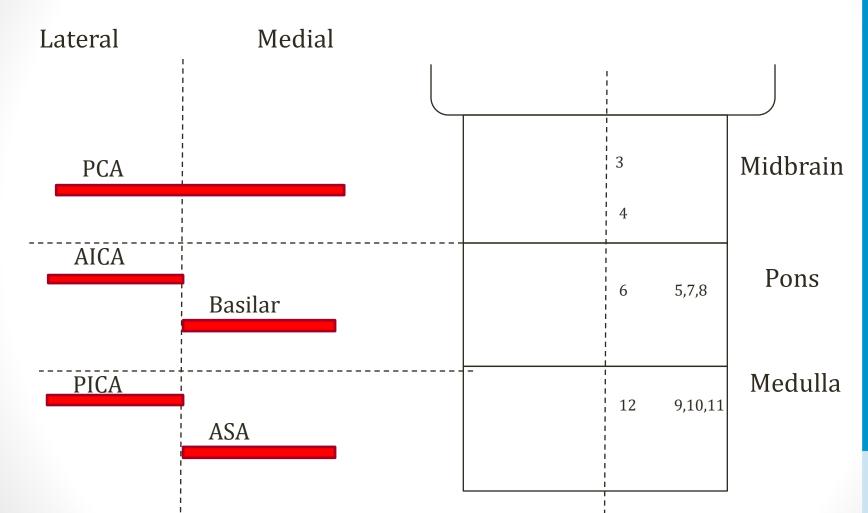
| Lateral Structure          | Deficit                                 |
|----------------------------|-----------------------------------------|
| Spinocerebellar<br>pathway | Ipsilateral ataxia                      |
| Spinothalamic              | Contralateral pain/temp<br>sensory loss |
| Sensory nucleus of<br>CN5  | Ipsilateral pain/ temp<br>loss in face  |
| Sympathetic pathway        | Ipsilateral Horner's<br>syndrome        |



### **Rule of 4s Caveats**

- Trigeminal Nerve (V)
  - Lesion: loss of ipsilateral pain/temp face
  - Rule of 4 Pons Nuclei and side (lateral tract)
  - Don't use to localize to Pons
  - Use for lateral tract localization
- Vestibulocochlear (VIII)
  - Don't use vestibular sings to localize to pons
  - Vestibular signs can be medulla/pons
  - Lesion: hearing loss




 A 75-year-old man presents for evaluation of weakness. He reports that two hours ago he suddenly was unable to move his left arm or leg. He denies any difficulty with speech. On examination, he is able to move all facial muscles normally. There is no ophthalmoplegia. On tongue protrusion, the tongue is deviated to the right. He in unable to detect lower or upper extremity vibration on the left.



- Complete motor weakness
  - Not MCA or ACA stroke
- Tongue involved: brainstem lesion
- Motor pathway involved left side weak
  - Right medial lesion
- Medial lemniscus involved left (vibration/prop)
  - Right medial lesion
- CN XII involved tongue deviation
  - Medulla
- Answer: Right medial medullary syndrome
- Anterior spinal artery



### **Brainstem Blood Supply**





- Right sided weakness
- Left eye down/out, dilated



- Right sided weakness
  - Motor pathway
  - Medial lesion
  - Complete motor loss: not MCA, ACA
- Left eye down/out, dilated
  - CNIII
- Left medial midbrain lesion
- Weber's syndrome
- Stroke of branches of PCA



- Unable to do left hand finger to nose test
- Loss of pain and temperature to left face
- Left eyelid droop, small pupil
- Loss of pain/temp right arm and leg
- Hoarse voice
- Loss of gag reflex left throat
- Palate raised on right side



- Unable to do left hand finger to nose test Left ataxia
- Loss of pain and temperature to left face Left CN V
- Left eyelid droop, small pupil
   Left Horner's
- Loss of pain/temp right arm and leg Left ST Tract
- Hoarse voice CN X
- Loss of gag reflex left throat
   CN IX
- Palate raised on right side
   CN X



- Left ataxia = spinocerebellar
- Left face pain/temp = sensory (CN V) face
- Left Horner's = sympathetic
- Right pain/temp = left spinothalamic
- Speaking, gag, palate = CN IX, X
- Left lateral medulla
- Wallenberg's syndrome
- Left PICA stroke



- Right deafness/tinnitus
- Loss right finger to nose
- Right facial numbness
- No corneal reflex
- Right facial spasms



- Right deafness/tinnitus
- Loss right finger to nose
- Right facial numbness
- No corneal reflex
- Right facial spasms

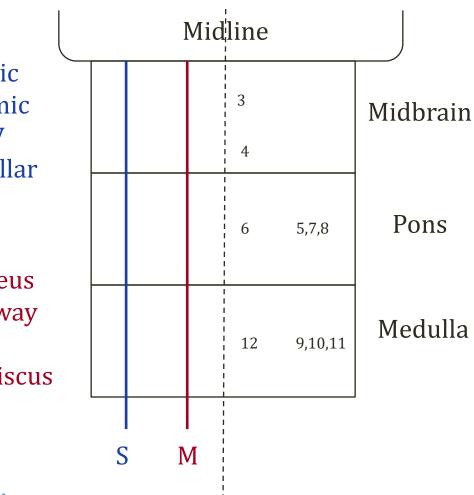
Right VIII

Right spinocerebellar

Right sensory

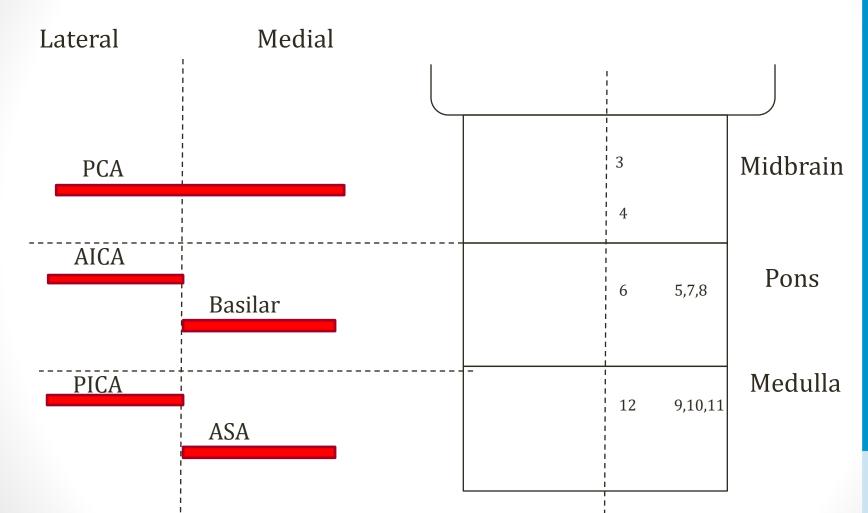
Right CN V

Right CN VII


Right Lateral Pons Cerebellopontine angle syndrome Often caused by tumors (schwannomas)



### Rule of 4s


<u>Side</u> Sympathetic Spinothalamic Sensory V Spinocerebellar

<u>Motor</u> Motor Nucleus Motor Pathway MLF Medial Lemniscus



Boards&Beyond.

### **Brainstem Blood Supply**





# **Cranial Nerves**

Jason Ryan, MD, MPH



### **Cranial Nerves**

- 12 nerves with roots in brainstem and CNS
- Sensory, Motor, Visceral
- Things to know:
  - Sensory vs. Motor vs. Both
  - Special features
  - Lesions



# Olfactory (I)x

- Smell (sensory)
- Pathway: cribriform plate of ethmoid bone
- Synapse in olfactory bulb  $\rightarrow$  piriform cortex
- Lesions: anosmia
- Only sensory nerve no thalamus input
- Damage by trauma
  - Skull fracture
- Rarely infections or tumors



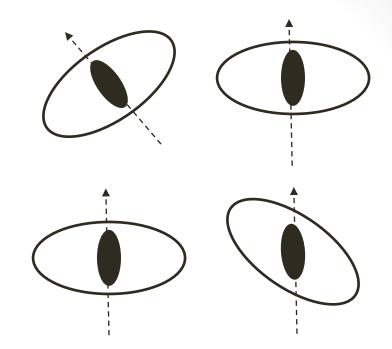
# Optic (II)



- Sight (sensory)
- Pathway: optic canal of the sphenoid bone
- Not really a peripheral nerve
- Arises from diencephalon
  - Embryonic structure
  - In adults: upper end of brain stem
  - Thalamus, hypothalamus
- Only CN I & II found outside brainstem



# Oculomotor (III)


- Moves eye
  - Up (superior rectus)
  - Medial (medial rectus)
  - Inferior (inferior rectus)
  - Superior rotation (inferior oblique)
- Elevates eyelid (levator palpebrae)
- Pupillary constriction (sphincter pupillae)
- Palsy: eye down, out, pupil dilated, ptosis





### Trochlear(IV)

- Eye movement (motor)
- Smallest cranial nerve
- Superior oblique
  - Turns eye down/in
  - Reading/stairs
- Palsy symptoms
  - Diplopia
  - Eye tilted outward
  - Unable to look down/in (stairs, reading)
  - Head tilting away from affected side (to compensate)





### Trigeminal (V)

- Sensory and Motor
- Key function: Sensor (touch-pain-temp) to face
- Largest cranial nerve
- 3 divisions: ophthalmic, maxillary, mandibular
  - V1, V2, V3
- 3 important functions:
  - Part of corneal reflex (sensory, V1)
  - Muscles of mastication (chewing)



# Trigeminal (V)

- Palsy
  - Numb face
  - Weak jaw  $\rightarrow$  deviates to affected side
    - Unopposed action of normal side
  - Trigeminal neuralgia
    - Recurrent, sudden sharp pains in half of face
    - Tic douloureux (painful tic)
    - So intense you wince ("tic")
    - Treatment: Carbamazepine

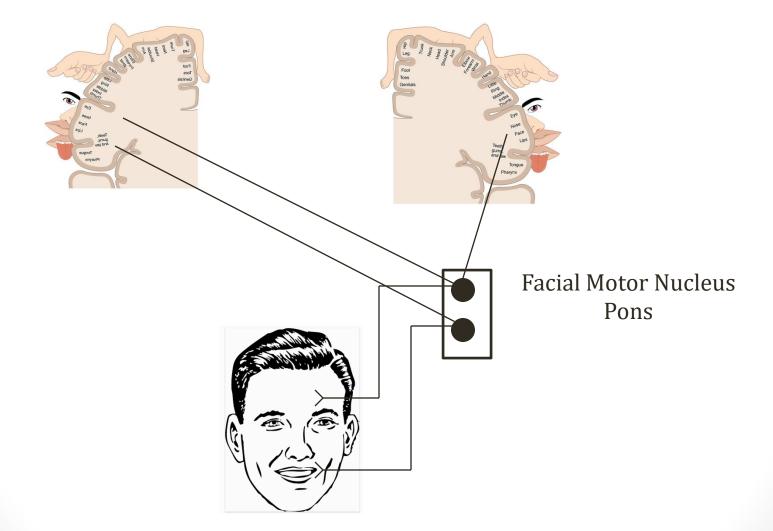


### **Corneal Reflex**

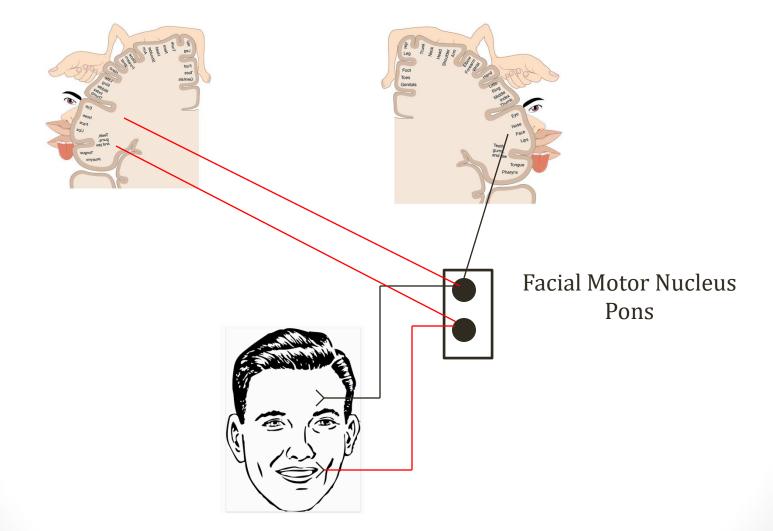
- Touch eye with Q-tip
- Sensed by V1 of CN V
- Transmit to VII (bilaterally)
- CNVII  $\rightarrow$  blink
- Key points:
  - Need CN V for sense
  - Need CN VII for blinking



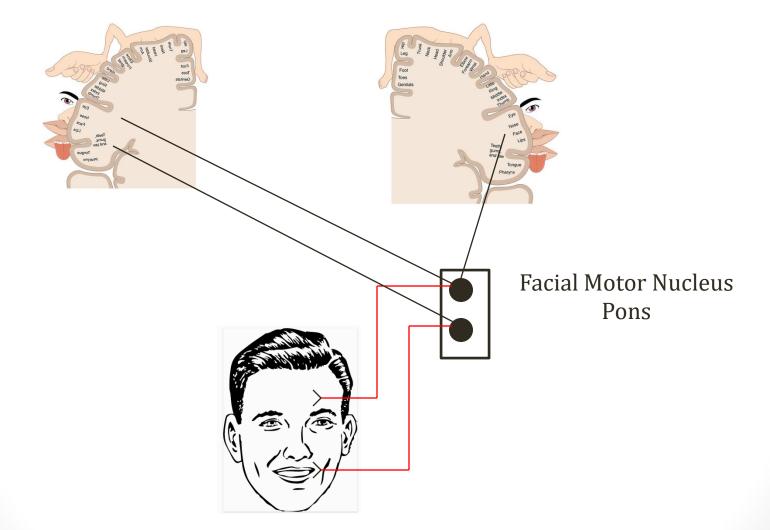
### Abducens (VI)


- Eye movement (motor)
- Lateral rectus
- Palsy
  - Diplopia
  - Can't laterally move (look out) affected eye




# Facial (VII)

- Motor, sensory
- Muscles of facial expression
- Taste, salivation, lacrimation
- Some ear muscles
- Special feature
  - Dual UMN innervation
















- UMN damage (MCA Stroke)
  - Upper face intact (dual supply)
  - Lower face affected
- LMN damage
  - Whole half of face affected



# Facial (VII)

- Palsy
  - Loss of corneal reflex (motor part)
  - Loss of taste anterior 2/3 tongue
  - Hyperacusis (stapedius paralysis)
    - Pt cannot tolerate sounds



### Bell's Palsy

- Idiopathic mononeuropathy of CN VII
- Facial paralysis
- Usually resolves in weeks to months
- Thought to be due to HSV-1 induced nerve damage
- Other causes of CN VII neuropathy (technically not BP)
  - Lyme
  - Tumor
  - Stroke



### Vestibulocochlear (VIII)

- Sensory
- Equilibrium, balance, hearing
- Vestibular portion
  - Compensatory eye movements
  - Lesions: vertigo, nystagmus, disequilibrium
- Cochlear portion
  - Hearing
  - Lesions: tinnitus, hearing loss



### **Testing CN VIII**

- Doll's eyes testing (unconscious patient)
- Head rotated from side to side with eyelids held open
- "Positive doll's eyes:" eyes stay fixed
  - Do not turn with head
  - Both CN VIII are working
- "Negative doll's eyes:" eyes move with head
  - CN VIII lesion



## **Testing CN VIII**

- Unconscious patient
- Inject cold water into ear
  - Cold water disrupts CN VIII function
  - Eyes slowly move toward cold water
  - Rapid correct opposite side
  - Normal response is slow toward cold then fast away
  - If CN VIII not working, no slow toward
  - If cortex not working, slow toward, no fast away



## **Testing CN VIII**

- Unconscious patient
- Inject warm water into ear
  - Warm water stimulates CN VIII function
  - Creates "relative" opposite side CN VIII dysfunction
  - Eyes slowly move away warm water
  - Rapid correct back towards warm water
  - Normal response is slow away then fast toward
  - If CN VIII not working, no slow away
  - If cortex not working, slow away, no fast toward



## **Testing CN VIII**

- COWS: Cold Opposite, Warm Same
  - Named for side of fast correction



## Glossopharyngeal (IX)

- Motor, Sensory
- Taste/sensation posterior 1/3 tongue
- Swallowing
- Salivation (parotid gland)
- Carotid body and sinus
  - Chemo- and baroreceptors
- Stylopharyngeus (elevates pharynx)



## Glossopharyngeal (IX)

#### • Palsy

- Loss of gag reflex
- Loss of taste posterior 1/3 tongue
- Loss sensation upper pharynx/tonsils
- Hemodynamic effects
  - Tricks body into thinking low BP
  - ↑HR, Vasoconstriction, ↑BP



## Vagus (X)

- Motor, sensory
- Taste epiglottis
- Swallowing (dysphagia = vagus)
- Palate elevation
- Midline uvula
- Talking
- Coughing
- Autonomic system
  - Aortic arch chemo/baroreceptors



## Vagus (X)

- Palsy
  - Hoarseness, dysphagia, dysarthria
  - Loss of gag reflex
  - Loss of sensation pharynx and larynx
  - Weak side of palate collapses (lower)
  - Uvula deviates AWAY from affected side
- Hemodynamic effects
  - Unopposed sympathetic stim of heart
  - Result is ↑HR



#### **Cranial Nerve Speech Test**

- "Kuh kuh kuh"
  - CN X
  - Raise palate
- "Mi mi mi"
  - CN VII
  - Move lips
- "La La La"
  - CN XII
  - Move tongue



### **Recurrent Laryngeal Nerve**

- Branch of vagus
- Ascends towards larynx between trachea/esophagus
  - "tracheoesophageal groove"
- Right RL: loops around R subclav Left RL: loops around aortic arch
- Compression  $\rightarrow$  hoarseness
- Dilated left atrium (mitral stenosis)
- Aortic dissection

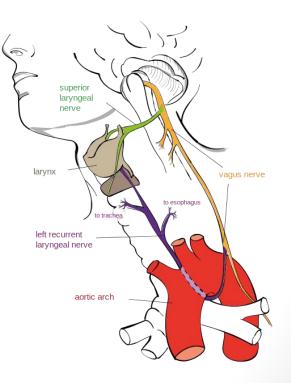





Image courtesy of Jkwchui

## Vasovagal Syncope

- Most common cause of syncope (fainting)
- Trigger to vagus nerve
  - Increased parasympathetic outflow via vagus
- $\downarrow$ HR  $\downarrow$ BP  $\rightarrow$  fainting
- Many triggers
  - Hot weather
  - Prolonged standing
  - Pain
  - Sight of blood



## Accessory (XI)

- Motor
- Turning head
- Shoulder shrugging
  - Sternocleidomastoid
  - Trapezius



## Accessory (XI)

- Palsy
  - Difficulty turning head toward normal side (SCM)
  - Shoulder droop (affected side)



## Hypoglossal (XII)

- Motor
- Tongue movement
- Palsy:
  - Protrusion of tongue TOWARD affected side
  - Opposite side pushes tongue away unopposed



#### **Cranial Nerve Reflexes**

- Corneal
  - V1 sense, VII blinking
- Lacrimation
  - V1 sense, VII for tearing
  - Cut V1  $\rightarrow$  No reflex tears, Yes emotional tears
- Gag
  - IX sense, X gag



#### **Cranial Nerve Reflexes**

- Jaw Jerk
  - Place finger patient's chin and tap finger
  - Jaw will jerk upwards
  - V3 sense, V3 jerk (Trigeminal nerve test)
- Pupillary
  - II senses light
  - III constricts pupil



## Tongue

- Motor:
  - Hypoglossal (XII)
  - Lesion deviates tongue to affected side
  - One exception: palatoglossus (CN X)
- General Sensory (pain, pressure, temp, touch)
  - Anterior 2/3: Mandibular branch (CN V3)
  - Posterior 1/3: Glossopharyngeal (IX)
  - Tongue root: CN X
- Taste
  - Anterior 2/3: CN VII
  - Posterior 1/3: Glossopharyngeal (IX)
  - Tongue root, larynx, upper esophagus: CN X
- Terminal sulcus separates ant 2/3 from post 1/3



### **Cranial Nerve Skull Pathways**

- Cribriform plate CN I
- Middle cranial fossa CN II-VI
  - CNII: Optic canal
  - III, IV, V1, VI: Superior orbital fossa
  - V2: Foramen rotundum
  - V3: Foramen Ovale
- Posterior cranial fossa CN VII-XII
  - VII, VIII: Internal auditory meatus
  - IX, X, XI: Jugular foramen
  - Foramen magnum: XI (also brainstem)
  - XII: Hypoglossal canal





# Auditory System

Jason Ryan, MD, MPH



#### How We Hear

- Sound waves cause tympanic membrane vibration
- Malleus, incus, stapes
  - Tiny bones
  - Amplify tympanic membrane motion
- Stapes pushes fluid-filled cochlea
- Tiny hair cells stimulated
  - Organ of Corti
  - Different frequencies of sound move different fibers
- Nerve (electrical) signal generated



#### The Inner Ear

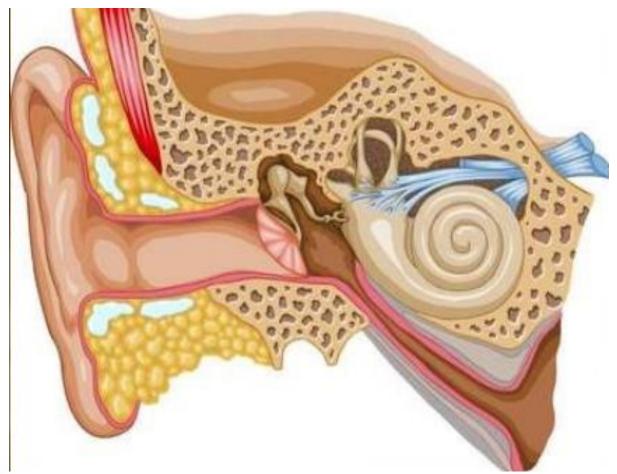





Image courtesy of Harshita Yadav

## **Auditory Pathway**

- Cochlear nerve (CN VIII)
- Cerebellopontine angle
  - Lateral Pons
  - Watch for brainstem lesions with hearing loss
- Connects with many structures
  - Superior olivary nucleus
  - Trapezoid body
  - Lateral lemniscus
  - Inferior colliculus
  - Medial geniculate body
  - Transverse temporal gyri of Heschl



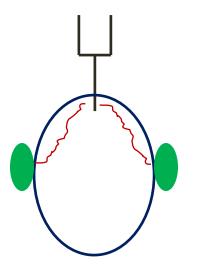
## **Types of Hearing Loss**

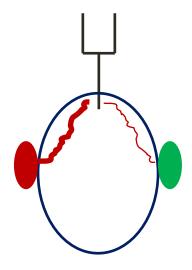
- Conductive
  - Sound waves can't convert to nerve signals
  - Obstruction (wax)
  - Infection (otitis media)
  - Otosclerosis (bony overgrowth of stapes)
- Sensorineural
  - Cochlea disease
  - Cochlear nerve failure (acoustic neuroma)
  - CN damage

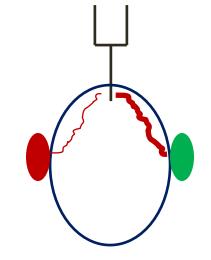


#### Presbycusis

- Age-related hearing loss
- Degeneration of Organ of Corti
- Results in sensorineural hearing loss
- Slow development over time





#### Weber Test


- Vibrating tuning fork
- Bridge of the forehead, nose, or teeth
- Should be equal in both ears



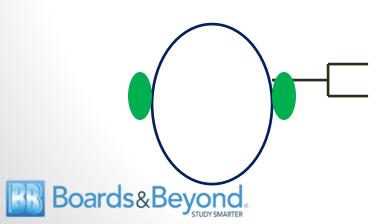


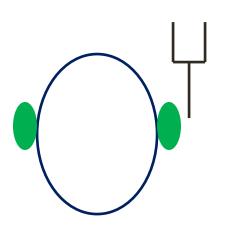






Normal Signal equal both ears


Conductive Louder bad ear No background noise


Sensorineural Louder good ear No nerve to sense vibration

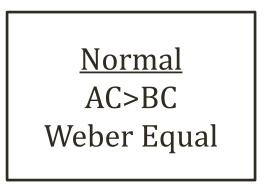
If sound goes to one side, tells you there is a hearing defect Does not tell you which type Boards&Beyond.

#### **Rinne Test**

- Tuning fork placed mastoid bone (behind the ear)
  - Tests bone conduction => vibration waves through bone
- Wait until patient no longer hears
- Move tuning fork to just outside ear
  - Tests air conduction only
- Ask if patient can still hear

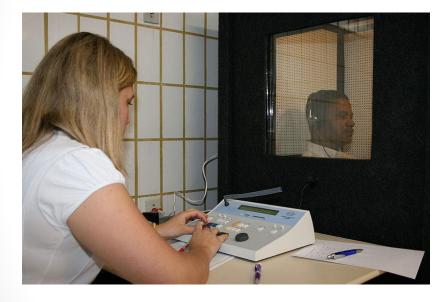





#### **Rinne Test**

- Normal patient can still hear next to ear
  - AC > BC
- Conductive Loss
  - Patient CANNOT hear next to ear
  - AC<BC
- Sensorineural loss
  - Patient can still hear next to ear
  - Both AC and BC reduced
  - AC still > BC




#### **Diagnosing Hearing Loss**

| Test  | Conductive                                                 | Sensorineural   |
|-------|------------------------------------------------------------|-----------------|
| Weber | Louder bad ear                                             | Louder good ear |
| Rinne | AC <bc bad="" ear<="" td=""><td>AC&gt;BC bad ear</td></bc> | AC>BC bad ear   |





### Audiometry



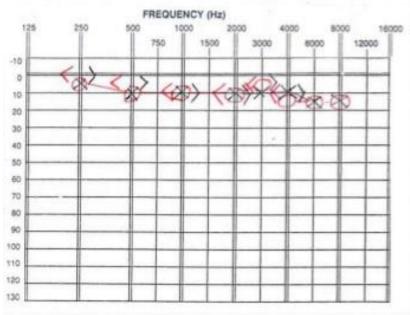



Image courtesy of Flávia Costa



Image courtesy of bethfernandezaud

### Noise-induced Hearing Loss

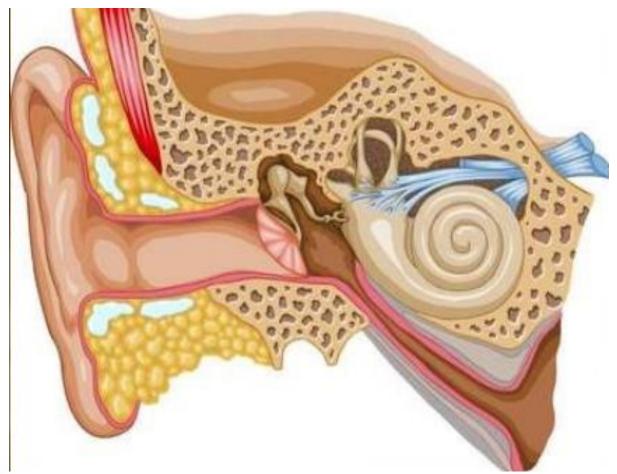
- Sudden after loud noise
  - Tympanic membrane rupture
- Long term noise exposure
  - Damage to ciliated (hair) cells Organ of Corti
  - High-frequency hearing lost first



Jason Ryan, MD, MPH



#### The Inner Ear



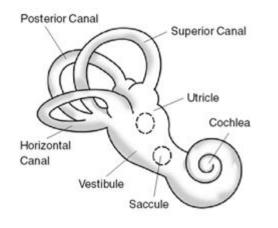
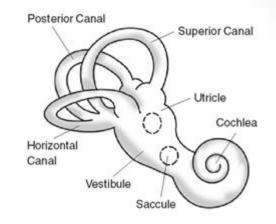




Image courtesy of Harshita Yadav

- Vestibule: Central portion inner ear
- Found within temporal bone
- Contains system for balance, posture, equilibrium
- Also coordinates head and eye movements




- Three semicircular canals (x, y, z planes of motion)
  - Respond to ROTATION of head
  - Filled with endolymph
  - Bulges at base (ampulla)
  - Ampulla have hair cells that bend with rotation
  - Hair cells release neurotransmitters  $\rightarrow$  action potential
  - More/less signals based on motion



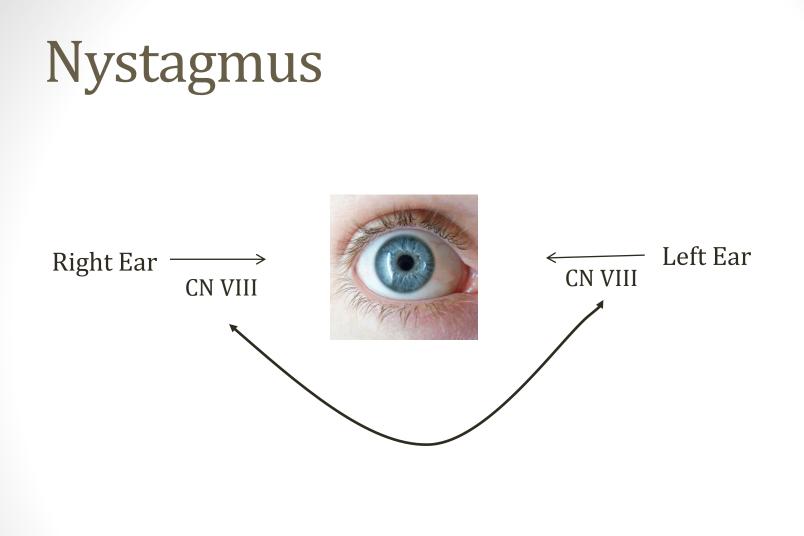


- Utricle and saccule (otolith organs)
  - Respond to LINEAR motion
  - Gravity, moving forward/backward
  - Contain otoliths (Greek word: ear stones)
  - Calcium carbonate crystals
  - Sit on top of hair cells
  - Drag hair cells in response to motion
  - This generates vestibular neural activity





### Vestibular Nerve Signals


- Vestibulocochlear nerve
  - Two nerves in 1 sheath: Vestibular & Cochlear
- Vestibular nerve
  - Send signals to brainstem (vestibular nuclei)
  - Also sends signals to Cerebellum
- Vestibular nuclei
  - Beneath floor of 4<sup>th</sup> ventricle in pons/medulla
  - Receive input from vestibular nerve
  - Many outputs: Cerebellum, CNs III, IV, VI, Thalamus



# **Vestibular Dysfunction**

- Vertigo: Room spinning when head still
  - Contrast with dizzy, lightheaded
- Nystagmus : Rhythmic oscillation of eyes
- Nausea/vomiting







"A human eye" courtesy of 8thstar and Wikipedia

# Nystagmus

- Vestibulo-ocular reflex
- Focuses eyes when body moves
- Vestibular dysfunction  $\rightarrow$  disrupts reflex
- Eyes move slowly one direction  $\rightarrow$  fast correction
- "Jerk" nystagmus named for fast direction
  - Left
  - Right
  - Torsional/rotational
  - Upbeat
  - Downbeat
- Pendular nystagmus Rare, congenital



# Nystagmus

- Left, right, torsional/rotational
  - Seen with "peripheral" vestibular dysfunction
- Upbeat, downbeat
  - Seen with "central" vestibular dysfunction



# Central vs. Peripheral

Nystagmus/Vertigo

- Peripheral = Benign (usually)
  - Inner ear problem
  - Benign positional vertigo (BPV)
  - Vestibular neuritis
  - Meniere's disease
- Central = BAD
  - Brainstem or cerebellar lesion
  - Vertebrobasilar stroke/TIA
  - Cerebellar infarction/hemorrhage
  - Tumor (posterior fossa)



## **Clinical Features**

- Central Vertigo
  - <u>Purely</u> vertical nystagmus
  - Nystagmus changes direction with gaze
  - Positional testing: IMMEDIATE nystagmus
  - Skew deviation: Vertical misalignment of eyes
  - Diplopia, Dysmetria (ataxia)
  - Other CNS symptoms (weakness, sensory)



## **Clinical Features**

- Peripheral Features
  - Mixed horizontal/torsional nystagmus
  - Positional testing: DELAYED nystagmus
  - Nystagmus may fatigues with time
  - No other symptoms
  - Normal proprioception, stable Romberg



# Dix-Hallpike Maneuver

- Done to reproduce vertigo and cause nystagmus
- Seated patient
- Extend neck, turn head to side
- Rapidly lie patient down on table
- Let head hang over end of table



# Dix-Hallpike Maneuver

- Typical result in BPV
  - No symptoms for 5-10 seconds
  - Vertigo develops
  - Torsional nystagmus develops
  - Symptoms resolve with sitting up
  - Fewer symptoms with repeated maneuvers



# **Benign Positional Vertigo**

- Vertigo with head turning/position
- Due to calcium debris semicircular canals
  - Canalithiasis
- Diagnosis: Dix Hallpike Maneuver
- Deviations from typical result = consider imaging
- Epley Maneuver can reposition otoconia



# Vestibular Neuronitis

Labyrinthitis

- Cause of vertigo
- Neuropathy of vestibular portion CN VIII
- Benign, self-limited
- Usually viral or post-inflammatory



#### Meniere's Disease

- Endolymph fluid accumulation (hydrops)
- Swelling of the labyrinthine system



#### Meniere's Disease

- Tinnitus
- Sensorineural hearing loss
  - Weber louder normal ear
  - Rinne: AC>BC
- Vertigo



#### Meniere's Disease

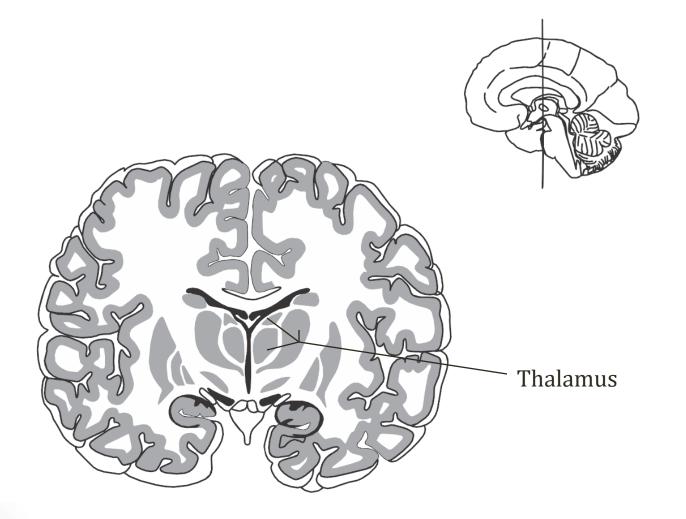
#### Treatment

- Avoid high salt decrease swelling
- Avoid caffeine, nicotine–vasoconstrictors, ↓flow from inner ear
- Diuretics

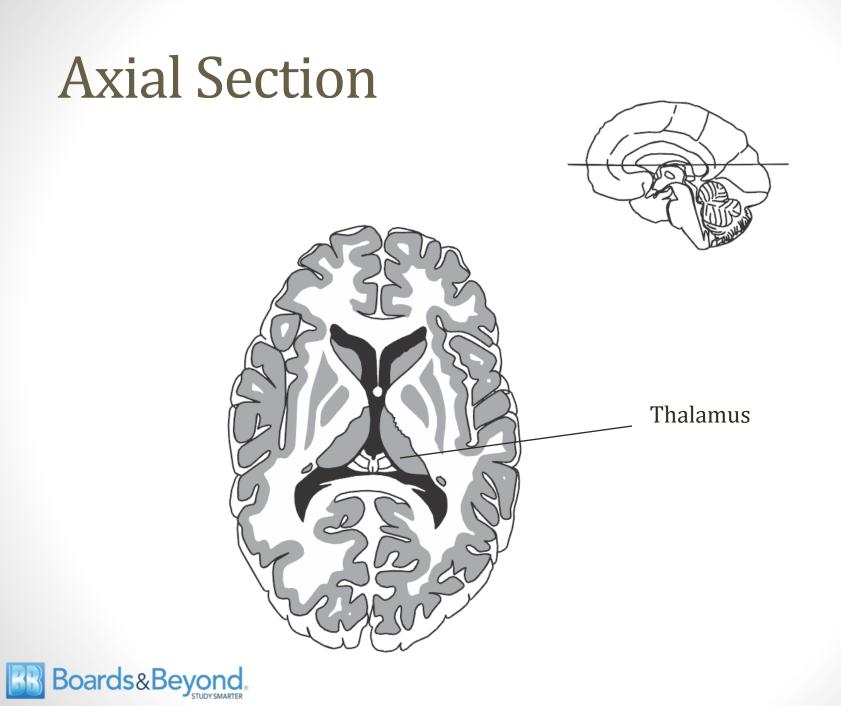


# Thalamus, Hypothalamus, Limbic System

Jason Ryan, MD, MPH




## **Subcortical Structures**


- Thalamus
- Hypothalamus
- Limbic System
- Basal Ganglia
  - Substantia Nigra
  - Subthalamic nucleus
  - Putamen
  - Caudate nucleus
  - Globus pallidus



#### **Coronal Section**







# Thalamus

- "Gateway to the cortex"
- Greek word: "Inner chamber"
- Sits on top of brainstem
- Symmetrical two halves
- Sensory relay  $\rightarrow$  cortex
  - Except olfaction
- Consciousness
- Sleep
- Alertness





# **Thalamic Nuclei**

- Many, many thalamic nuclei
- Most named by location
  - Anterior, posterior, ventral, medial
- Five nuclei worth knowing
  - Ventral posterorlateral (VPL)
  - Ventral posteromedial (VPM)
  - Lateral geniculate nucleus (LGN)
  - Medial geniculate nucleus (MGN)
  - Ventral lateral (VL)



# Thalamic Nuclei

| Nucleus | Info                                                   | Input                                                     | Output                         |
|---------|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------|
| VPL     | All Sensory – pain,<br>temp, touch, prop,<br>vibration | Spinothalamic,<br>Post column-<br>medial<br>lemniscus     | Somatosensory<br>cortex        |
| VPM     | Sensory face and taste                                 | Trigeminal and gustatory                                  | Somatosensory<br>cortex        |
| LGN     | Vision                                                 | CN II                                                     | Calcarine Sulcus               |
| MGN     | Hearing                                                | Superior olive<br>and inferior<br>colliculus of<br>tectum | Temp Lobe –<br>Auditory Cortex |
| VL      | Motor                                                  | Basal ganglia                                             | Motor Cortex                   |



# **Thalamic Syndrome**

- Usually a lacunar stroke
- Contralateral sensory loss
  - Face, arms, legs
  - All sensory modalities
- Resolution can lead to long term chronic pain
  - Contralateral side
  - Sensory exam normal
  - Severe pain in paroxysms or exacerbated by touch



# Hypothalamus

- Found below thalamus
- Like thalamus, many nuclei with different functions

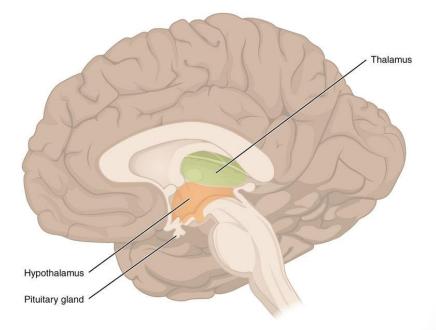





Image courtesy of OpenStax College

# **Hypothalamic Functions**

- Autonomic control
  - Excites sympathetic/parasympathetic system
- Temperature regulation
- Water balance
- Pituitary control



# Hypothalamic Areas

| Area                       | Functions        | Lesion                                   |
|----------------------------|------------------|------------------------------------------|
| Lateral                    | Hunger           | Anorexia<br>Failure to thrive in infants |
| Ventromedial               | Satiety          | Hyperphagia, obesity                     |
| Anterior                   | Cooling          | Hyperthermia                             |
| Posterior                  | Heating          | Inability to thermoregulate              |
| Suprachiasmatic<br>nucleus | Circadian rhythm |                                          |



#### Fever

- Triggered by pyrogens, inflammatory proteins
- IL-1, IL-6, and TNF enter brain
- Stimulate <u>prostaglandin E2</u> synthesis
  - Via arachidonic acid pathway
  - Mediated by PLA2, COX-2, and prostaglandin E2 synthase
- Increases anterior hypothalamus set point
- Temp >42C = hyperpyrexia
- May cause permanent brain damage
  - Facilitate heat loss: cooling blankets, fans
  - Lower set point: NSAIDs, tylenol (block PGE2 synthesis)



#### Hormones

- Hypothalamus releases multiple hormones to stimulate release of other hormones from anterior pituitary
- TRH → TSH
- CRH  $\rightarrow$  ACTH
- GHRH  $\rightarrow$  Growth Hormone (GH)
- GNRH  $\rightarrow$  FSH, LH



#### Hormones

- Some HT substances shut down hormone release
  - Dopamine (prolactin inhibiting hormone)  $\rightarrow \downarrow$  Prolactin
  - Somatostatin (GHRH inhibiting hormone)  $\rightarrow \downarrow$  GH
- Prolactin feedback  $\rightarrow \downarrow$  GnRH



#### Hormones

- ADH and Oxytocin synthesized by HT
- Supraoptic nucleus  $\rightarrow$  ADH
- Paraventricular nucleus  $\rightarrow$  Oxytocin
- Both stored/released by posterior pituitary
  - \*\* Post. Pituitary also called neurohypophysis
  - \*\* Ant. Pituitary also called adenohypophysis
- Loss of ADH  $\rightarrow$  Diabetes Insipidus
  - Polyuria, polydipsia, dilute urine



# Leptin

- Hormone secreted by adipocytes
- Involved in food intake
- Regulation of homeostasis
- Lateral HT (hunger)  $\rightarrow$  inhibited by Leptin
- Ventromedial (satiety)  $\rightarrow$  stimulated by Leptin



# Craniopharyngioma

- Rare tumor from Rathke's pouch
- Pressure on optic chiasm
  - Bitemporal hemianopia
- Pressure on hypothalamus
- Hypothalamic syndrome



# Hypothalamic Syndrome

- Diabetes insipidus (loss of ADH)
- Fatigue (loss of CRH  $\rightarrow$  low cortisol)
- Obesity
- Loss of temperature regulation



# Limbic System

- Emotion
- Long-term memory
- Smell
- Behavior modulation
- Autonomic nervous system function



# Limbic System

#### **Key Components**

- Cingulate gyrus
- Hippocampus
- Fornix
- Amygdala
- Mammillary bodies

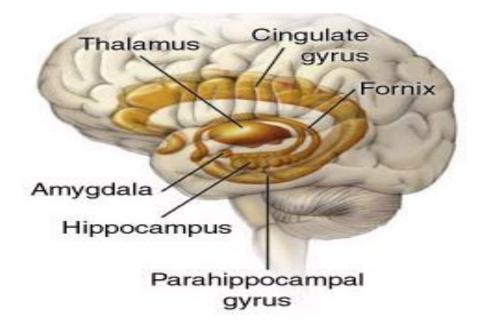





Image courtesy of Anant Rathi

# **Kluver-Bucy Syndrome**

- Damage to bilateral amygdala (temporal lobes)
- Hyperphagia Weight gain
- Hyperorality tendency to examine with mouth
- Inappropriate Sexual Behavior
  - Atypical sexual behavior, mounting inanimate objects
- Visual Agnosia
  - Inability to recognize visually presented objects
- Rare complication of HSV1 encephalitis



# **Hippocampus Lesion**

- Anterograde amnesia
- Cannot make new memories
- Very sensitive to hypoxic damage
- Infarction:
  - Hippocampal branches PCA
  - Anterior choroidal arteries



#### Wernicke-Korsakoff Syndrome

- Wernicke: Acute encephalopathy
- Korsakoff: Chronic neurologic condition
  - Usually a consequence of Wernicke
- Both associated with:
  - Thiamine (B1) deficiency
  - Alcoholism
- Atrophy of mammillary bodies common finding
  - 80% for both conditions
- Associated with damage to thalamic nuclei



#### Wernicke-Korsakoff Syndrome

- Triad Wernicke:
  - Visual disturbances/nystagmus
  - Gait ataxia
  - Confusion
  - Often reversible with thiamine
- Korsakoff: Amnesia
  - Recent memory affected more than remote
  - Can't form new memories
  - Confabulation: Can't remember so make things up
  - Lack of interest or concern
  - Personality changes
  - Usually permanent



#### Wernicke-Korsakoff Syndrome

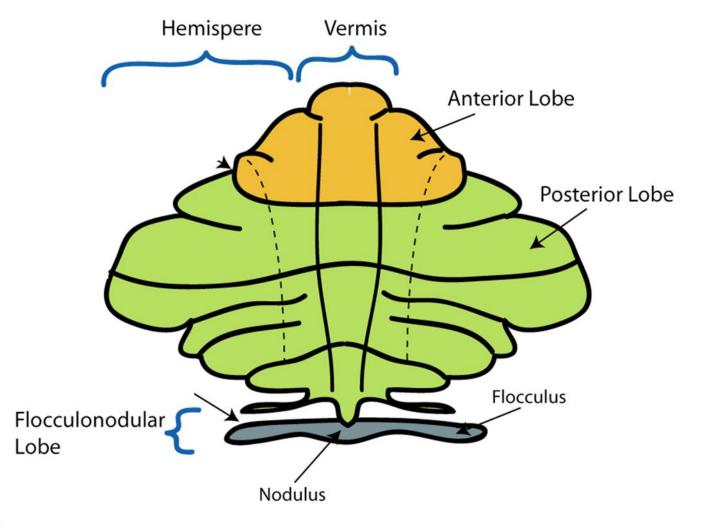
- Wernicke precipitated by glucose without thiamine
  - Thiamine co-factor glucose metabolism
  - Glucose will worsen thiamine deficiency
- Banana bag
  - IV infusion to alcoholics
  - Thiamine, folic acid, and magnesium sulfate



## Cerebellum

Jason Ryan, MD, MPH




#### Cerebellum

- "Little brain"
- Posture/balance
- Muscle tone
- Coordinates movement





#### Anatomy





NRETS/Wikipedia

#### **Cerebellar Peduncles**

#### In and Out Pathways

- Inferior cerebellar peduncle
- Middle cerebellar peduncle
- Superior cerebellar peduncle





#### **Inferior Cerebellar Peduncle**

- Major pathway INTO cerebellum from spine
- Numerous inputs:
  - Spinocerebellar tract
  - Cuneocerebellar tract
  - Olivocerebellar tract
  - Vestibulocerebellar tract
- Ipsilateral spinal cord information: proprioception



#### Middle Cerebellar Peduncle

- Pontocerebellar tract fibers
- Fibers from contralateral pons



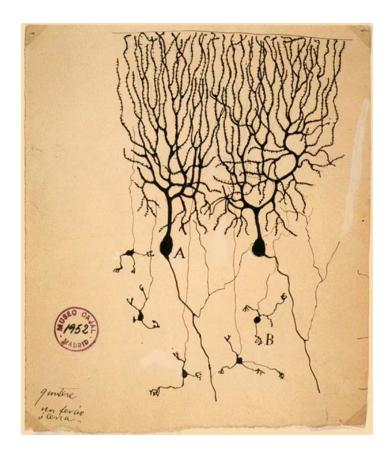


### **Climbing and Mossy Fibers**

- Two types of axons that enter cerebellum
- Climbing fibers: arise from inferior olivary nucleus
- Mossy fibers: all other cerebellar inputs
- Synapse on Purkinje cells and deep nuclei



#### **Superior Cerebellar Peduncle**


- Major pathway OUT of cerebellum
- Axons from deep cerebellar nuclei
- All outputs originate from deep nuclei
- Fibers to red nucleus and thalamus

Boards&Beyond



### Purkinje Cells

- Cerebellar neurons
- Receive numerous inputs
- Project to deep nuclei
- Inhibitory
- Release GABA



Wikipedia/Public Domain



### Deep Nuclei

- Projections OUT of cerebellum
- Dentate nucleus:
  - Contralateral VA/VL nuclei of thalamus
- Interposed nuclei: globose/emboliform
  - Contralateral red nucleus
- Fastigial:
  - Vestibular nuclei and reticular formation



# Deep Nuclei Dentate nucleus **Emboliform nucleus Globose nucleus** Fastigial nucleus



Dr. Manah Chandra Changmai

#### **Cerebellar Circuitry**

Inputs Middle Peduncle Inferior Peduncle Climbing Fibers Mossy Fibers

Cerebellum

Outputs Deep Nuclei

Purkinje Cells Deep Nuclei



#### **Cerebellum Control**

- In general, cerebellum controls IPSILATERAL side
- Cerebellar fibers  $\rightarrow$  contralateral cortex
- Contralateral cortex  $\rightarrow$  contralateral arm/leg
- Crosses twice
- Also right proprioception  $\rightarrow$  right cerebellum
- Result:
  - Left cerebellar lesion  $\rightarrow$  left symptoms
  - Right cerebellar lesion  $\rightarrow$  right symptoms



#### **Clinical Disease**

- Lateral lesions
  - Cerebellar hemispheres
  - Dentate nucleus
  - Affect extremities
- Midline lesions
  - Vermis
  - Emboliform, globus and fastigial nuclei
  - Floculonodular lobe
  - Affect **trunk**



#### Lateral Lesions

- Extremities
- Direction, force, speed, and amplitude of movements
- Lesions:
  - Dysmetria
  - Intention tremor
- Fall toward injured side



#### **Central Lesions**

- Affect trunk/midline
- Central (vermis)
  - Truncal ataxia
  - Can't stand independently
  - Falls over when sitting
- Flocculonodular lobe
  - Connects to vestibular nuclei
  - Lesions: nystagmus, vertigo



#### Cerebellar Ataxia

- Loss of balance
- Classically a "wide-based" gait



#### **Romberg Test**

- Test for sensory (not cerebellar) ataxia
- Loss of proprioception: compensate through vision
- Feet together, eyes closed
- Positive test: patients will lose balance or fall
- If test positive: ataxia is SENSORY
- Cerebellar ataxia occurs even with eyes open



### **Other Cerebellar Symptoms**

- Hypotonia
  - Loss of muscle resistance to passive manipulation
  - Loose-jointed, floppy joints
- Scanning speech
  - Irregular speech
  - "How are you doing?"
  - "How...are...you...do...ing"
- Dyssynergia

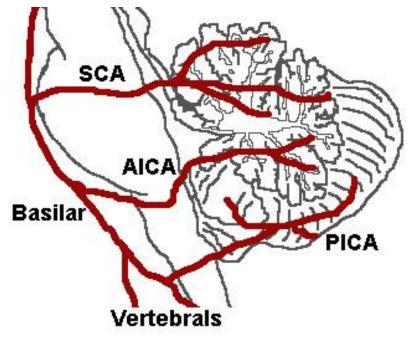


## Dyssynergia

Loss of coordinated activity

- Dysmetria
  - Loss of movement coordination
  - Under or over-shoot intended position of hand
- Intention tremor
  - Can't get hand to target
  - Contrast with resting tremor (Parkinson's)
- Dysdiadochokinesia
  - Can't make movements exhibiting a rapid change of motion
  - Can't flip hand in palm




#### **Other Cerebellar Symptoms**

- Nystagmus
  - Up/down beat (vertical)
  - Gaze-evoked
- Nausea/vomiting
- Vertigo



#### **Cerebellar Strokes**

- SCA, AICA, PICA
- Often has other brainstem stroke signs/symptoms





Wikipedia/Public Domain

#### Hereditary Ataxias

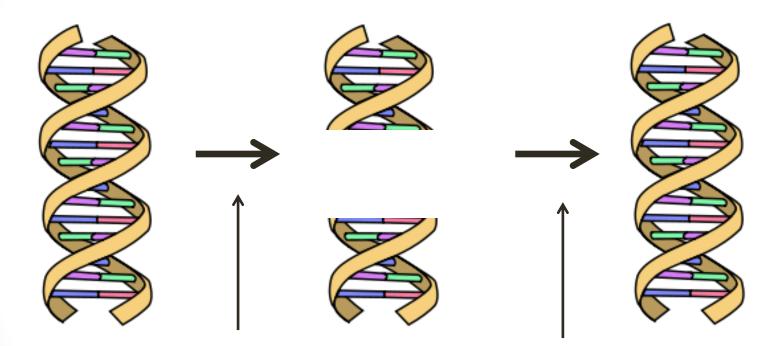
- Numerous hereditary disorders
- Motor incoordination related to cerebellum
- Ataxia Telangiectasia
- Friedreich's Ataxia



- Autosomal recessive
- Cerebellar atrophy
  - Ataxia in 1<sup>st</sup> year of life
- Telangiectasias
  - Dilation of capillary vessels on skin
  - Ears, nose, face, and neck
- Repeated sinus/respiratory infections
  - Severe immunodeficiency
- High risk of cancer



**Clinical Features** 


- Most children healthy for first year
- Begin walking at normal age but slow development
- Progressive motor coordination problems
- By 10 years old, most in wheelchairs
- Other symptoms
  - Recurrent sinus/respiratory infections
  - Telangiectasias
- High risk of cancer



- Cause: DNA hypersensitivity to ionizing radiation
- Defective ATM gene on chromosome 11
  - Ataxia Telangiectasia Mutated gene
  - Repairs double stranded DNA breaks
  - Nonhomologous end-joining (NHEJ)
- Mutation: Failure to repair DNA mutations



## Nonhomologous end-joining



Double Strand Break (ionizing radiation)

NHEJ



#### Lab Abnormalities

- **↑**AFP
  - Often elevated in pregnant women
  - Also elevated in ataxia telangiectasia
  - Most consistent lab finding
- Dysgammaglobulinemia
  - Low or absent IgA

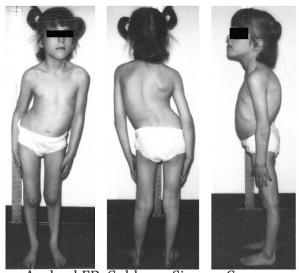


- Autosomal recessive
- Mutation of frataxin gene chromosome 9
  - Needed for normal mitochondrial function
  - Increased number of trinucleotide (GAA) repeats present
  - More repeats = worse prognosis
  - Leads to decreased frataxin levels
- Frataxin: **mitochondrial protein** 
  - High levels in brain, heart, and pancreas
  - Abnormal frataxin  $\rightarrow$  mitochondrial dysfunction



- Begins in adolescence with progressive symptoms
- Cerebellar and spinal cord degeneration
- Degeneration of spinocerebellar tract
  - Ataxia, dysarthria
- Loss of spinal cord: dorsal columns
  - Position/vibration
- Loss of corticospinal tract
  - UMN weakness in lower extremity




**Other Features** 

- Hypertrophic cardiomyopathy
- Diabetes
  - Insulin resistance and impaired insulin release
  - Beta cell dysfunction



**Other Features** 

- Kyphoscoliosis
- Foot abnormalities (pes cavus)
  - High arch of foot; does not flatten with weight bearing
  - Seen in other neuromuscular diseases (Charcot-Marie-Tooth)



Axelrod FB, Gold-von Simson G.





Benefros/Wikipedia

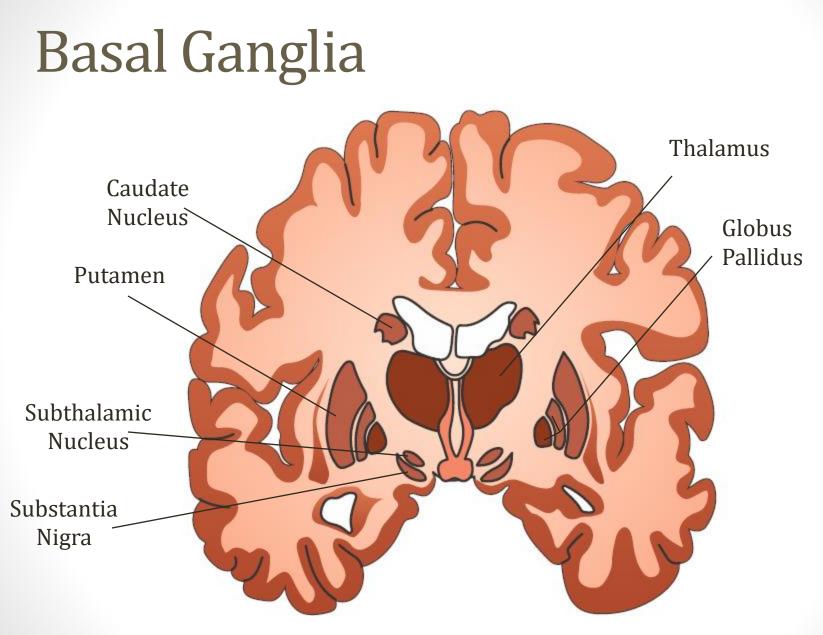
#### **Other Cerebellar Disorders**

#### Tumors

- Pilocytic astrocytoma
- Medulloblastoma
- Ependymoma
- Congenital disease
  - Dandy Walker malformation
  - Chiari malformations



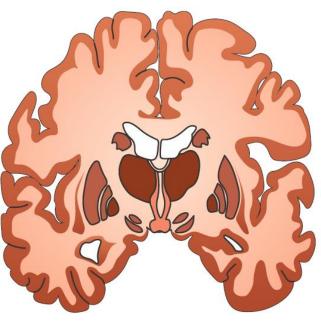
# Basal Ganglia


Jason Ryan, MD, MPH



# **Basal Ganglia**

- Substantia Nigra
- Subthalamic nucleus
- Putamen
- Caudate nucleus
- Globus pallidus



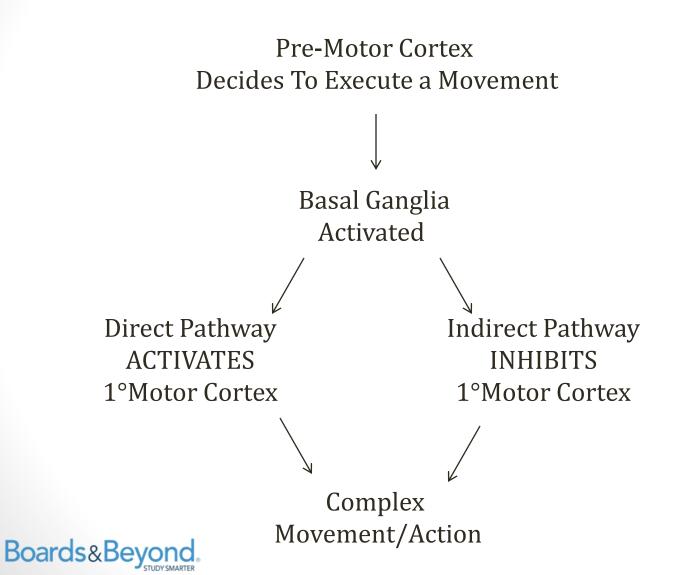




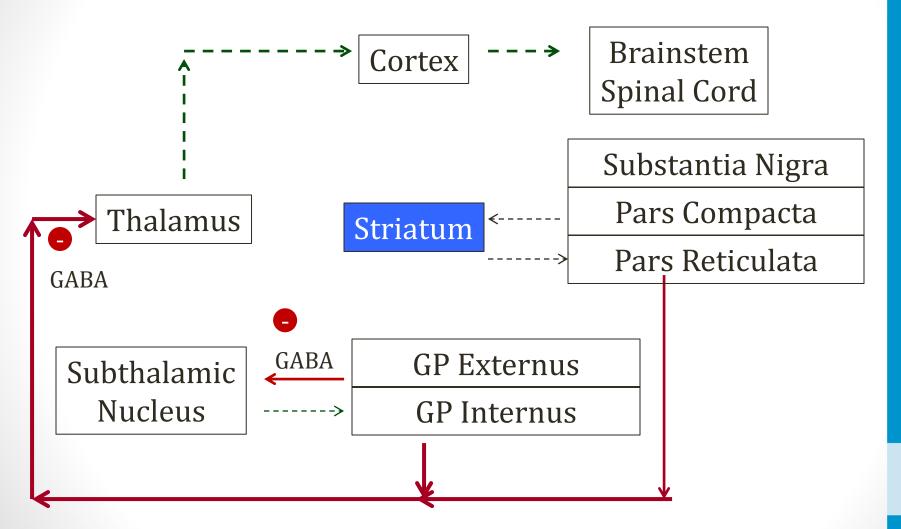

# **Basal Ganglia Terms**

- Striatum = Putamen + Caudate
  - Also called striate nucleus
  - Putamen/Caudate divided by internal capsule
  - Major INPUT from cortex
- Lentiform Nucleus = Putamen + Globus Palidus





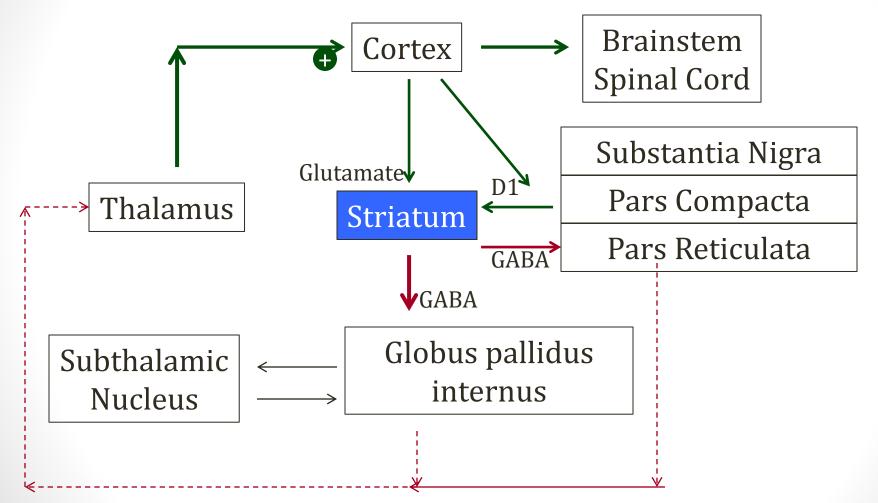

### Function


- Modifies voluntary movements
- Receives cortex input
- Provides feedback to cortex to either
  - #1: Stimulate motor activity
  - #2: Inhibit motor activity
- Combination stim/inhibition  $\rightarrow$  complex movements



#### **Movement Execution**



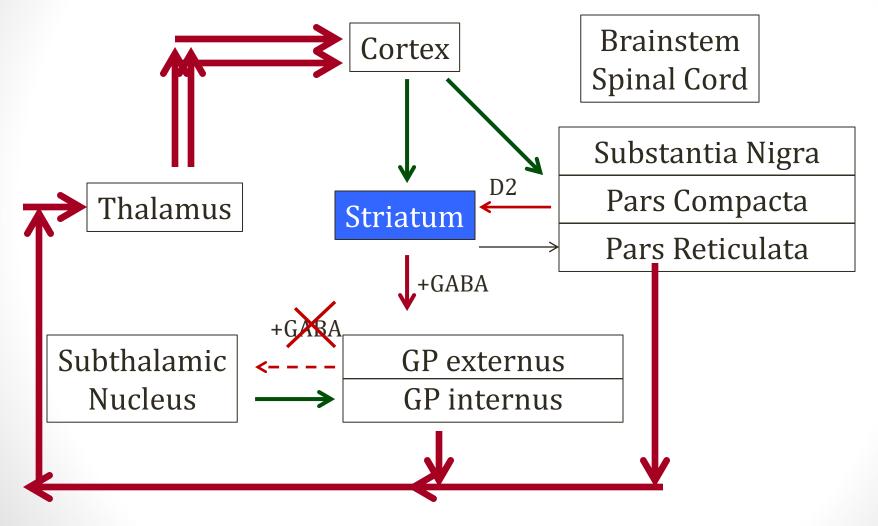

#### **Basal Ganglia Connections**





#### **To Stimulate Movement**

**Direct Pathway** 






#### **To Inhibit Movement**

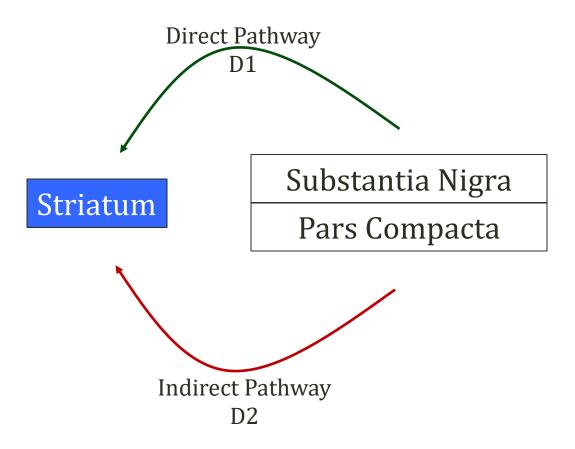
**Indirect Pathway** 

Boards&Beyond



# **Key Points**

- Direct pathway
  - Goal is to create movement
  - Striatum inhibits (GABA) GPi and Pars Reticulata
  - GPi and Pars STOP inhibiting Thalamus
  - Thalamus free to activate cortex
- Modifier: SN pars compacta modifies striatum via D1



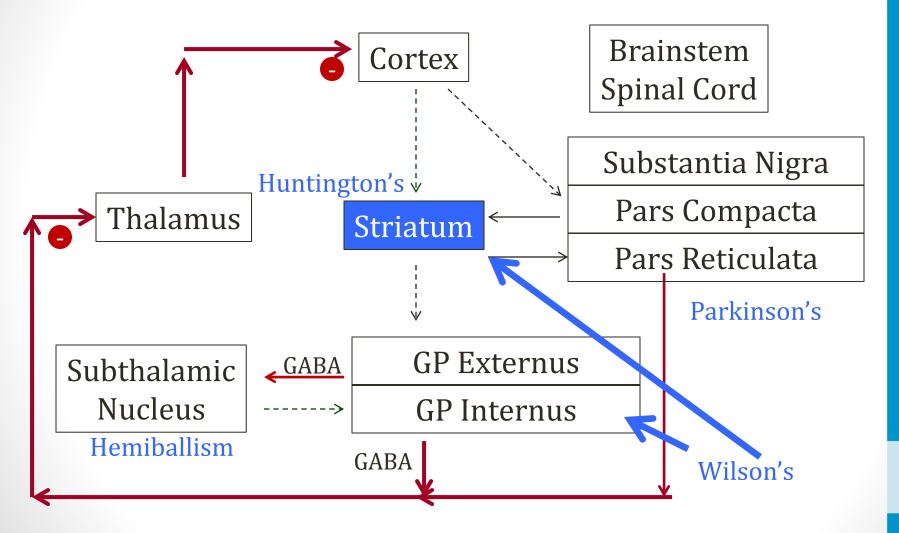

# **Key Points**

- Indirect pathway
  - Goal is to further inhibit movement
  - Striatum inhibits GPe (GABA)
  - GPe stops inhibiting Subthalamic nucleus
  - Subthalamic nucleus stimulates GPi
  - GPi further inhibits thalamus
- Modifier: SN pars compacta modifies striatum via D2



#### Pars Compacta






#### **Movement Disorders**

- Parkinson's disease
- Huntington's Disease
- Hemiballism
- Wilson's Disease
- All result from damage to part of basal ganglia



### **Basal Ganglia Connections**





# Ventricles and Sinuses

Jason Ryan, MD, MPH

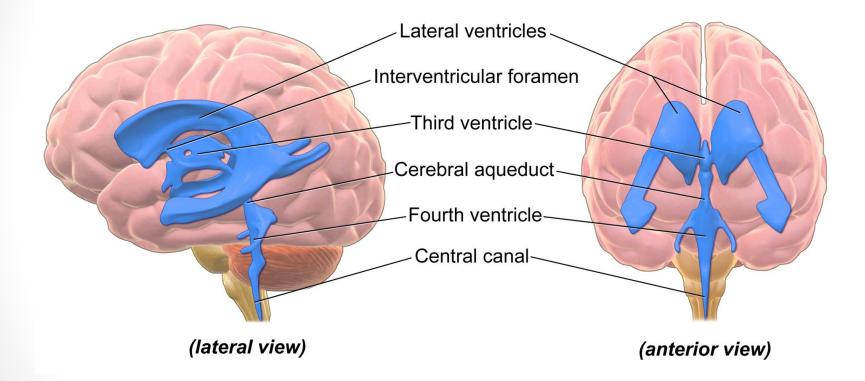
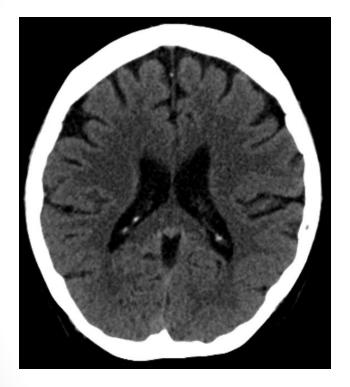


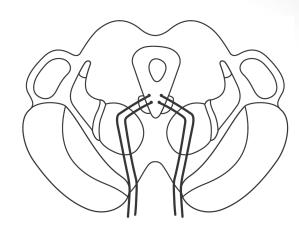
#### **CNS Ventricles**

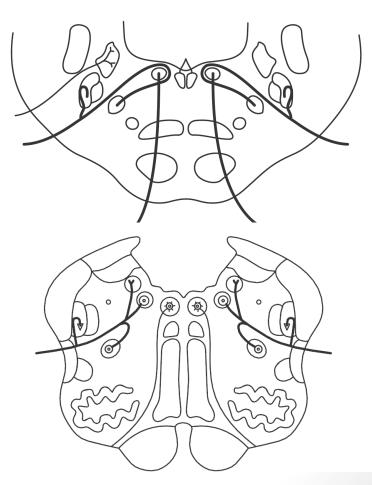
- Four structures that contain CSF in brain
  - Two lateral ventricles
  - 3<sup>rd</sup> ventricle
  - 4<sup>th</sup> ventricle
- Continuous with central canal of spinal cord



#### Ventricles



Image courtesy of BruceBlaus

#### Ventricles









# **Cerebrospinal Fluid**

- Clear, colorless fluid
- Acts as cushion for brain
  - Mechanical protection
  - Shock absorber
- Also circulates nutrients removes waste



### **CSF** Production

- Production
  - Ependymal cells of choroid plexus (ventricles)
- Absorption
  - Arachnoid villi
- CSF drained to superior sagittal sinus
  - Then to venous system



# **Choroid Plexus Cysts**

- Can be detected by ultrasound in utero
- A normal finding but associated with chromosome abnormalities



# Hydrocephalus





Image courtesy of Lucien Monfils

# Hydrocephalus

- Dilation of ventricles
- Excessive accumulation of CSF
- Communicating
  - Ventricles CAN communicate
  - CSF not being absorbed
- Non-communicating
  - There is a blockage to flow
  - Ventricles CAN'T communicate



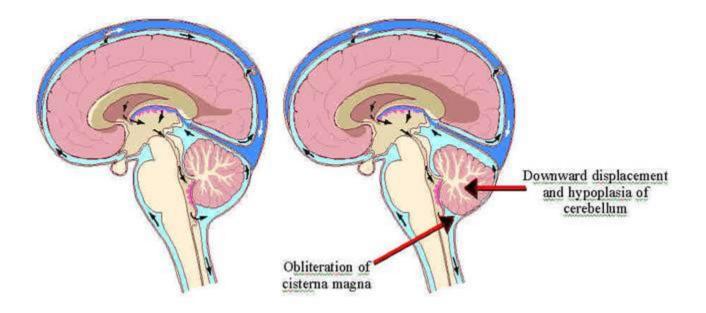
# Communicating Hydrocephalus

- ↓ CSF absorption by arachnoid, ↑ ICP
- Headache
- Key sign: papilledema
- CT Hallmark: Dilation ALL ventricles
- Often occurs from scarring after meningitis
- Can cause herniation
- Key clinical scenario
  - Prior meningitis
  - Headache
  - Papilledema on eye exam
  - Enlarged ventricles on CT scan



# Non-Communicating Hydrocephalus

- Structural blockage of CSF flow within ventricles
- Often congenital
- Many etiologies
- Three worth knowing:
  - Aqueductal stenosis
  - Chiari Malformations
  - Dandy Walker malformation




# **Aqueductal Stenosis**

- Stenosis of cerebral aqueduct
- Blocked drainage from 3<sup>rd</sup> to 4<sup>th</sup> ventricle
- Congenital narrowing
  - X-linked (boys)
- Inflammation due to intrauterine infection
  - Rubella, CMV, toxo, syphilis
- Presentation: Enlarging head circumference



#### **Chiari II Malformation**




Downward displacement of the cerebellar tonsils and medulla



Image courtesy of obinno59

#### Myelomeningocele (Spina Bifida)

- Type of neural tube defect
- Failure of spine and meninges to close around cord
- Myelomeningocele: cord/meninges outside spine
- Almost always has Chiari II malformation
- Hydrocephalus major cause morbidity
- Obstruction 4th ventricular outflow





# **Dandy Walker Malformation**

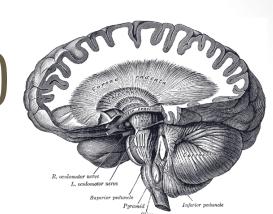
- Developmental anomaly of the fourth ventricle
- Hypoplasia or agenesis of cerebellar vermis
- Cysts of  $4^{\text{th}}$  ventricle  $\rightarrow$  hydrocephalus
- Massive 4<sup>th</sup> ventricle, small cerebellum
- Many, many associated symptoms/conditions
- Affected children
  - Hydrocephalus (macrocephaly)
  - Delayed development
  - Motor dysfunction (crawling, walking)



#### **Dandy Walker Malformation**






#### Pseudotumor Cerebri

- Idiopathic intracranial hypertension
- **TICP** in absence of tumor or other cause
- Intractable, disabling headaches
- Papilledema, visual loss
- Pulsatile tinnitus
  - Rushing water or wind sound
  - Transmission of vascular pulsations
- Classic patient: overweight woman, childbearing age
- Diagnosis: spinal tap (measure pressure)
- Medical treatment: acetazolamide



# Normal Pressure Hydrocephalus (NPH)

- Enlarged ventricles on imaging
- Compression of corona radiata
- Normal opening pressure on LP

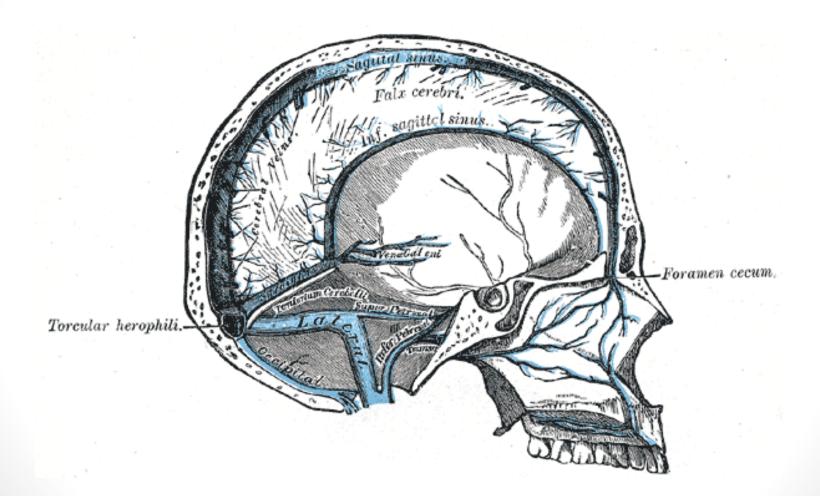


- Suspected mechanism: Impaired absorption CSF
- Classic triad:
  - Urinary incontinence, gait disturbance, dementia
  - Wet, wobbly, and wacky
- Treatment: Ventriculoperitoneal(VP) Shunt
  - Drains CSF to abdomen



# Hydrocephalus ex Vacuo

- Ventricular enlargement that:
  - Occurs with age
  - As cortex atrophies (Alzheimer's, Pick, HIV)
- Brain shrinkage
- Usually after age 60
- Increase size of ventricles
  - IN PROPORTION to increase size of sulci
- If out of proportion: hydrocephalus




### **Dural Sinuses**

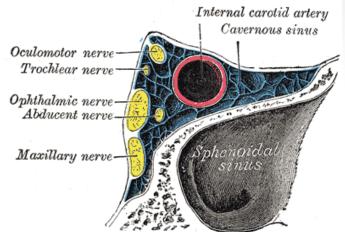
- Large venous channels
- Travel through dura
- Drain blood from cerebral veins
- Receive CSF from arachnoid granulations
- Empty into internal jugular vein



#### **Dural Sinuses**






# Some Key Sinuses

- Sagittal Superior sagittal receives CSF
- Cavernous



# **Cavernous Sinus**

- Large collection veins
- Bilateral
- Between temporal/sphenoid bones
- Collects blood eye/cortex
- Drains into internal jugular vein
- Many nerves:
  - CN III, IV, V1, V2 , VI, sympathetic fibers
  - All traveling to orbit
- Also portion of internal carotid artery





# **Cavernous Sinus Syndrome**

- Compression by tumor, thrombus, fistula
- Infections of face, nose, orbits, tonsils, and soft palate can spread to cavernous sinus (septic thrombosis)
- Internal carotid travels THROUGH venous structure
  - Rupture carotid  $\rightarrow$  fistula
- Symptoms
  - Headache
  - Swollen eyes
  - Impairment of ocular motor nerves
  - Horner's syndrome
  - Sensory loss 1<sup>st</sup>/2nd divisions trigeminal nerve



## **AV Malformations**

- Artery to vein connection  $\rightarrow$  no capillary bed
- Enlarge over time
- Commonly result in Vein of Galen enlargement
- Usually occur in utero
- May be asymptomatic until adolescence/adulthood
- Cause headaches and seizures



#### **AV Malformations**



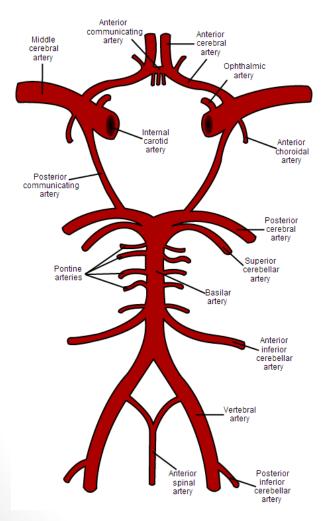




Image courtesy of LearningRadiology.com

# Cerebral and Lacunar Strokes

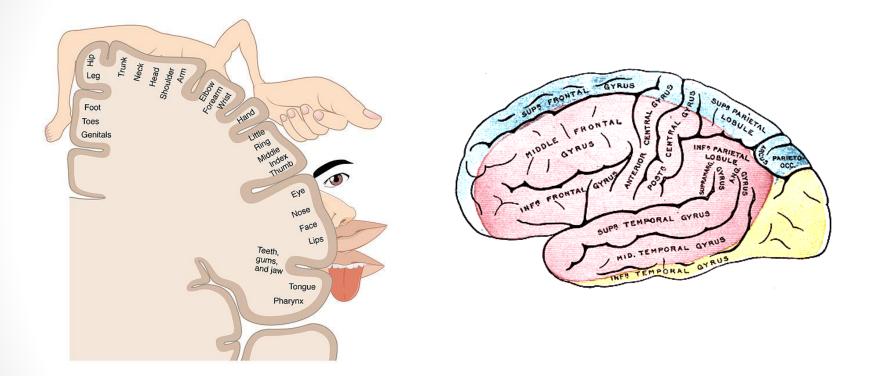
Jason Ryan, MD, MPH




# Etiology

- Ischemic (80%)
  - Insufficient blood flow
  - Thrombosis, embolism, hypoperfusion
  - Symptom onset over hours
- Hemorrhagic (20%)
  - Brain bleeding
  - Sudden onset
- Best first test: <u>Non-contrast CT of head</u>

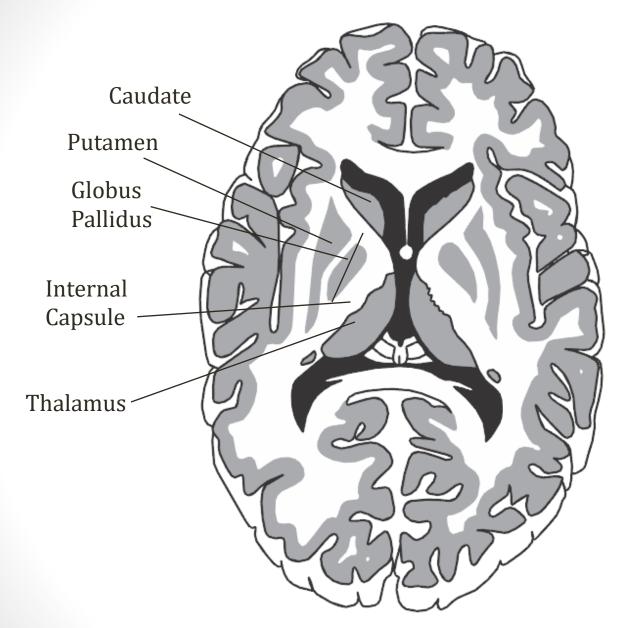



# **CNS Blood Supply**



#### Main Cerebral Arteries: MCA, ACA, PCA




# Homunculus



MCA: Upper limb, face ACA: Lower limb PCA: Vision



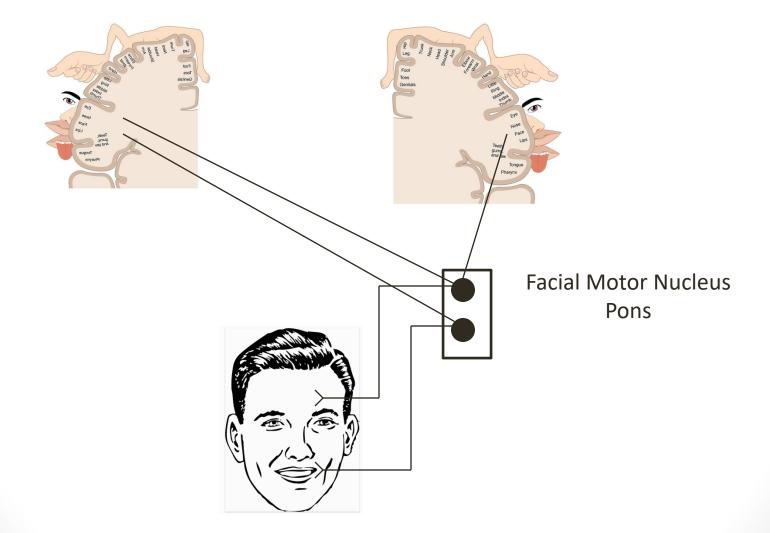
Image courtesy of Wikipiedia and OpenStax College





# MCA Stroke

 A 75-year-old man presents with recent onset loss of movement of his right arm. The right side of his face also droops and there is drooling from the corner of his mouth on the right side. He has <u>difficulty speaking</u>.




# MCA Stroke

- Most common site of stroke
- Contralateral motor/sensory sx
- Arm>leg, face
- Spastic (UMN) paralysis
- If left sided
  - Aphasia
  - Speech center is left sided most patients
- If right (nondominant) side
  - Hemineglect



#### Lower Facial Droop





# Lower Facial Droop

- Upper face: Dual UMN supply; right & left
- Lower face: Single UMN supply
  - Contralateral Motor Cortex
  - Fibers run in corticobulbar tract
- MCA stroke damage  $\rightarrow$  UMN damage
  - Upper face intact (dual supply)
  - Lower face affected

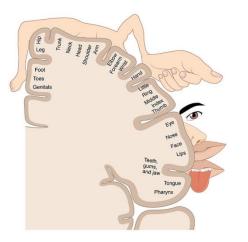


#### **CT** Head





Image courtesy of Wikipiedia and Lucien Monfils


# ACA Stroke

 A 75-year-old man presents with acute loss of ability to move his right hip and leg. On exam, he has <u>decreased sensation</u> to pinprick and vibration of his right leg.



# Anterior Cerebral Artery (ACA)

- Left ACA stroke
- Leg>Arm
- Second most common stroke site
- Medial cortex (midline portion)
- Leg-foot area (motor and sensory)

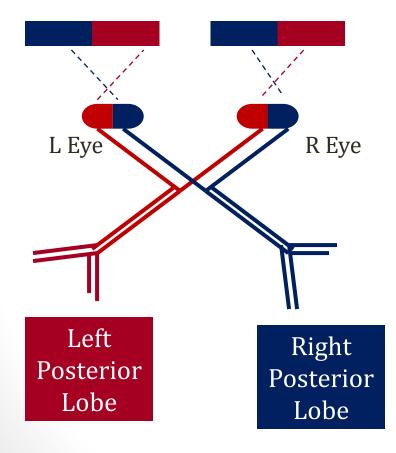




# **PCA Stroke**

 An 80-year-old man presents with acute <u>visual loss</u>. He reports difficulty seeing objects on his right side. His wife said he also reports seeing people who are not in the room. On exam, there are <u>no motor or</u> <u>sensory deficits</u>. Visual fields are shown below (black = no vision).






# **PCA Stroke**

- Posterior portion of brain
- Visual cortex
- Visual hallucinations
- Visual agnosia (seeing things but can't recognize)
- Contralateral hemianopia with macular sparing



# Homonymous Hemianopsia



Boards&Beyond

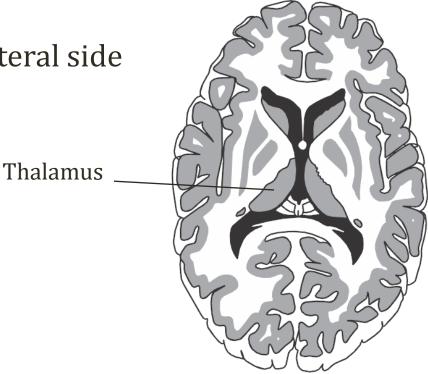


Left PCA Stroke Left Optic Tract Lesion Right visual loss



Right PCA Stroke Right Optic Tract Lesion Left visual loss

# **Macular Sparing**


- Macula: central, high-resolution vision (reading)
- Dual blood supply: MCA and PCA
- PCA strokes often spare the macula

# 



# **Thalamic Syndrome**

- PCA  $\rightarrow$  lateral thalamus
- Contralateral sensory loss: face, arms, legs
- Proprioception deficit: loss of balance, falls
- No motor defects
- Chronic pain contralateral side





# Hypoxic Encephalopathy

- Loss of CNS blood flow
- Loss of consciousness <10sec</li>
- Permanent damage <4min</li>
  - Neurons: No glycogen storage!
- Coma, vegetative states common
- Causes:
  - Shock
  - Anemia
  - Repeated hypoglycemia



# Hypoxic Encephalopathy

- Hippocampus (pyramidal cells) first area damaged
- Cerebellum (Purkinje cells) also highly susceptible



# Watershed Area Infarct

- Most distal branches of major arteries vulnerable
  - "Watershed infract"
- Borders between MCA/ACA/PCA
- Classic scenario: CNS damage after massive MI





#### Watershed Area

- Weakness of the shoulders and thighs
- Sparing of the face, hands, and feet
- Bilateral symptoms
- A "man-in-a-barrel"



#### Lacunar Strokes

- Anatomically small strokes associated with HTN
- Stroke resolves and leaves lacunae in brain
  - Lacunae = Latin for "empty space"
- May not show initial CT
- Also associated with DM, smoking



# Lacunar Strokes

- Noncortical infarcts
- Different from ACA, MCA, PCA
- Lack "cortical signs"
  - Aphasia, agnosia, or hemianopsia



# **Common Locations**

- Internal capsule
- Thalamus
- Basal ganglia
- Pons





# Vessels

- Lenticulostriate branches (MCA)
- Anterior choroidal artery (ICA)
- Recurrent artery of Heubner (ACA)
- Thalamoperforate branch (PCA)
- Paramedian branches (basilar artery)



# Lacunar Strokes

- Substrate: arteriolar sclerosis (HTN)
- Proposed causes:
  - Lipohyalinosis: small vessel destruction, necrosis
  - Microatheroma: macrophages in vessel



#### Lacunar Strokes

| Subtype                            | Symptoms                                                          | Other Details                                                   |
|------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|
| Pure Motor                         | Paralysis of face, arm<br>and leg on one side                     | Posterior limb<br>internal Capsule                              |
| Pure Sensory                       | Numbness, sensory loss<br>one side of body: Face,<br>arm, and leg | VPL Thalamus                                                    |
| Sensorimotor                       | Paralysis & sensory loss                                          | Thalamus, internal<br>capsule, caudate and<br>putamen, and pons |
| Ataxic Hemiparesis                 | Weakness, dysarthria,<br>ataxia out of proportion<br>to weakness  | Base pons, internal<br>capsule                                  |
| Dysarthria-Clumsy Hand<br>Syndrome | Dysarthria and<br>clumsiness (weakness)<br>of the hand            | Pons, internal capsule                                          |



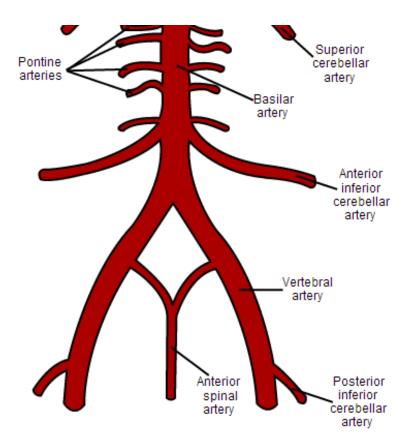
# Hemiballism

- Wild, flinging movements of extremities (ballistic)
- Damage to subthalamic nucleus
- Seen in rare subtypes of lacunar strokes



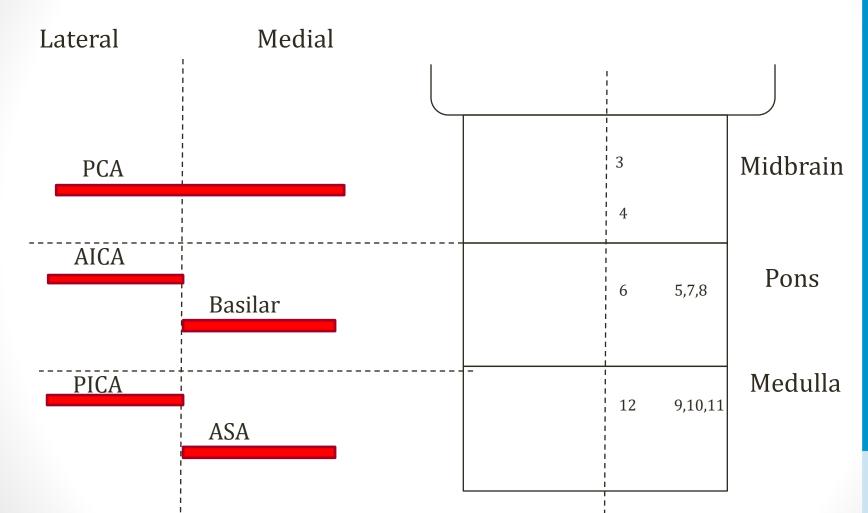
# **Classic Lacunar Stroke**

- Patient with uncontrolled hypertension
- Symptoms consistent with 1 of 5 lacunar subtypes
  - Pure motor (legs=arms; internal capsule)
  - Pure sensory (thalamus)
- Negative initial head CT




# Vertebral Basilar Stroke Syndromes

Jason Ryan, MD, MPH




#### Vertebral Artery Anatomy

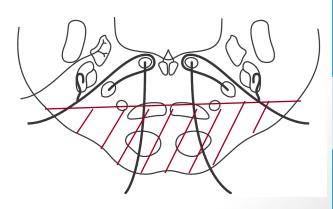




# **Brainstem Blood Supply**






#### SCA Stroke

- Rarest of all cerebellar (AICA, PICA) strokes
- Mostly cerebellar symptoms
- Ipsilateral cerebellar ataxias
- Nausea and vomiting



# **Basilar Artery Stroke**

- Locked-in Syndrome
- Ventral pontine syndrome
- Loss of corticospinal and corticobulbar tracts
- Bilateral paralysis (quadrapalegia)
- Patient can blink (upper brainstem intact)
- Contrast with vegetative state
  - Motor function intact
  - Cortical dysfunction





# **Central Pontine Myelinolysis**

"Osmotic demeyelination syndrome"

- Demyelination of central pontine axons
- Lesion at base of pons
- Loss of corticospinal and corticobulbar tracts
- Associated with overly rapid correction  $\downarrow$ Na
- Quadriplegia
- Can be similar to locked-in syndrome



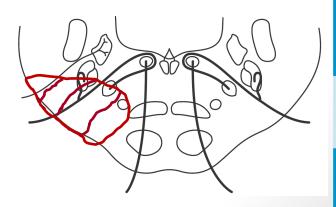
# Top of the Basilar Syndrome

- Very rare
- Occlusion of upper basilar artery (usually embolic)
- Changes in the level of consciousness (coma)
- Visual symptoms: hallucinations, blindness
- Eye problems:
  - 3<sup>rd</sup> nerve palsy
  - Loss of vertical gaze
  - Problems with convergence
- Usually no significant motor loss



# Key VB Stroke Syndromes

- AICA
- PICA
- ASA



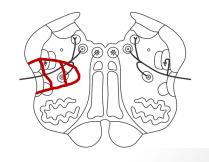

# **AICA Stroke**

- Lateral pontine syndrome
- Vestibular nuclei: nystagmus, vertigo, N/V
- Spinothalamic tract: Contralateral pain/temp
- Spinal V nucleus: ipsilateral face pain/temp
- Sympathetic tract: Horner's syndrome
- Facial nucleus:
  - Ipsilateral facial droop
  - Loss corneal reflex
- Cochlear nuclei
  - Deafness

Boards&Beyond

Taste on anterior tongue (VII)

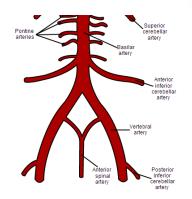



# Horner's Syndrome

- Compression/disruption sympathetic ganglia
- Hypothalamus  $\rightarrow$  T1  $\rightarrow$  Face/eyes
- Lesion anywhere along pathway = Horner's
- Miosis, ptosis, and anhidrosis
- Small/constricted pupil (miosis)
  - Unequal pupils
  - Affected side smaller
- Drooping eyelid (ptosis)
- No sweat (anhidrosis)



### **PICA Stroke**

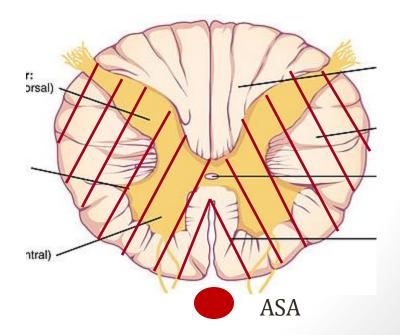

- Lateral medullary (Wallenberg's) syndrome
- Vestibular nuclei: Nystagmus, vertigo, N/V
- Sympathetic tract: Horner's syndrome
- Spinothalamic tract: Contralateral pain/temp
- Spinal V nucleus: ipsilateral face pain/temp
- Nucleus ambiguus (IX, X)
  - Hoarseness, dysphagia, ↓gag reflex





#### **ASA Stroke**

- Midline structures damaged
- Can affect medulla or spinal cord






# ASA Stroke

Level of Spinal Cord

- Anterior spinal artery syndrome
- ASA supplies anterior 2/3 of spinal cord
- Loss of all but posterior columns
- Only vibration, proprioception intact
- Paralysis below lesion





## **ASA Stroke**

#### Level of Medulla

- Medial medullary syndrome
- Corticospinal, medial lemniscus, CN 12
- Contralateral Hemiparesis
- Contralateral loss of proprioception/vibration
- Flaccid paralysis tongue
  - Deviation to side of lesion



# Key VB Stroke Syndromes

| Vessel | Area            | Key Findings                                               |
|--------|-----------------|------------------------------------------------------------|
| AICA   | Lateral pons    | Facial droop, hearing loss                                 |
| PICA   | Lateral medulla | Dysphagia, hoarseness                                      |
| ASA    | Medial medulla  | Contralateral motor, tongue deviation                      |
|        | Anterior spine  | Bilateral motor, pain, temp;<br>sparing vibratrion/proprio |



# Cerebral Aneurysms

Jason Ryan, MD, MPH



### Aneurysms

- Weak vessel wall
- Abnormal dilation



## Aneurysms

- Saccular or Berry
  - More common type
- Charcot-Bouchard aneurysms
  - Microaneurysm
  - Cause of hemorrhagic stroke in HTN
  - Severe HTN
  - Similar: lacunar strokes



# **Berry Aneurysms Associations**

- ADPKD
- Ehlers-Danlos
- Aortic coarctation
- Older age
- Hypertension
- Smoking
- African Americans



# Aneurysm Rupture

- Subarachnoid hemorrhage (berry)
  - Bleeding into CSF space
  - Neuro symptoms rare  $\rightarrow$  mostly headache
- Hemorrhagic stroke (micro)
  - Symptoms based on site of bleeding



## Subarachnoid Hemorrhage

 Bleeding into space b/w arachnoid & pia mater

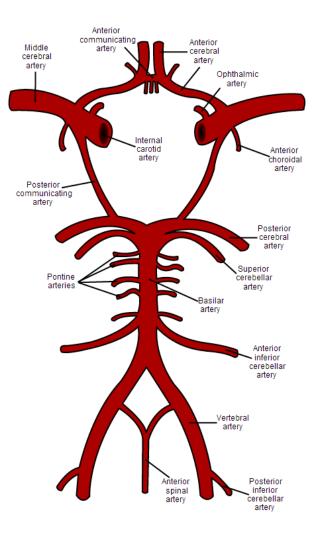




Image courtesy of James Heilman, MD

# Subarachnoid Hemorrhage

- "Worst headache of my life"
- Sudden onset symptoms
- Fever, nuchal rigidity common
- CT scan usually diagnostic
- Xanthochromia on spinal tap
- No focal deficits!




# Subarachnoid Hemorrhage

- Treat with clipping or endovascular coiling
- Re-bleeding common
- Vasospasm
  - Triggered by blood
  - Worsening neuro symptoms
  - Days after initial bleed
- Nimodipine (calcium-channel blocker)
  - Improves outcome
  - Unclear mechanism
  - May prevent vasospasm



#### **Berry Aneurysm Sites**





# **AComm Aneurysm**

- Headache
- Visual field defects

Bitemporal Hemianopsia Optic Chiasm Compression Pituitary Tumor/Aneurysm



# **PComm Aneurysm**

- Unilateral headache, eye pain
- CN III palsy
  - Eye: "down and out"
  - Ptosis
  - Pupil dilation nonreactive to light



# **Pupil Sparing**

- Is pupil normal (not dilated)?
- If yes, pupil is spared  $\rightarrow$  lesion not aneurysm
- Pupillary constrictors easily compressed in subarachnoid space
- If pupil is "spared"
  - Palsy often associated with DM
  - Ischemic neuropathy of CN III (small vessel disease)
  - Sometimes painful
  - Spontaneously resolves
- "Rule of the pupil"



### **Charcot-Bouchard Aneurysms**

- Micro-aneurysms
- Small branches lenticulo-striate arteries
- Basal ganglia, thalamus
- Possible origin of hypertensive ICH



# Intracranial Bleeding

Jason Ryan, MD, MPH



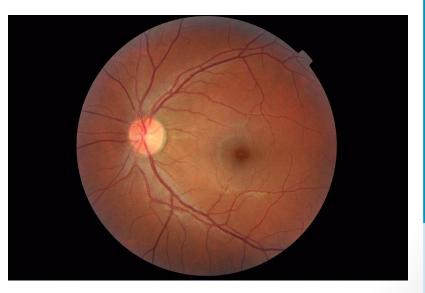
# Raised Intracranial Pressure

- Mass lesions (tumors)
- Cerebral edema (large stroke, severe trauma)
- Hydrocephalus
- Obstruction of venous outflow (thrombosis)
- Idiopathic intracranial hypertension
  - Pseudotumor cerebri



# **Increased Intracranial Pressure**

General symptoms


- Headache (pain fibers CN V in dura)
- Depressed consciousness
  - Pressure on midbrain reticular formation
- Vomiting



# Papilledema

- Optic disc swelling
- Due to ↑ICP
  - i.e. mass effect
- Also seen in severe HTN
- Usually bilateral
- Blurred margins optic disc on fundoscopy

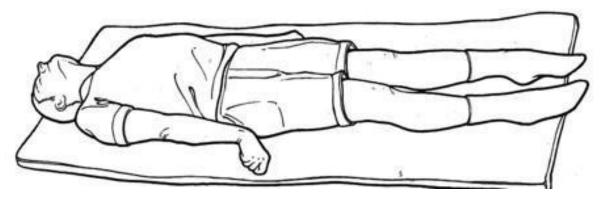






Images courtesy of Warfieldian and OptometrusPrime

# **Cushing's Triad**


- Hypertension
- Bradycardia
- Irregular respiration



# Posturing



Decorticate (arms flexed) Cerebral Hemisphere Damage



Decerebrate (arms extended) Brainstem Damage

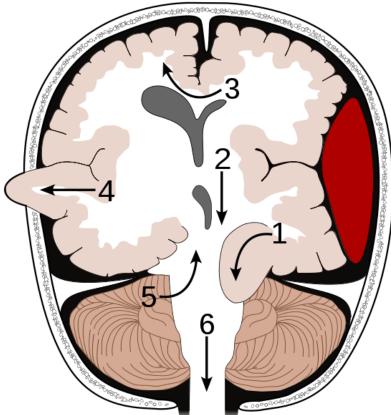


Image courtesy of Djsilverspoon

# **Glasgow Coma Scale**

- Three tests: eye, verbal and motor
- GCS score: 3 to 15
- Eye (1-4 points)
  - Does not open, opens to painful stimuli, opens to voice, opens spontaneously
- Verbal (1-5 points)
  - No sound, incomprehensible sounds, inappropriate words, confused, oriented
- Motor (1-6 points)
  - No movements, decerebrate posturing, decorticate posturing, withdrawal to pain, localizes to pain, obeys commands

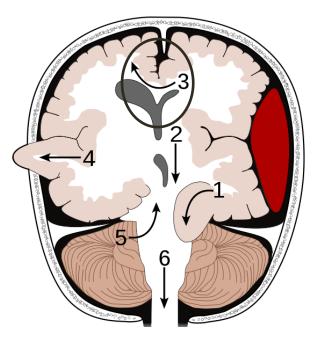



#### Herniation

- Expanding volume: blood, tumor
- Forces brain through weakest points



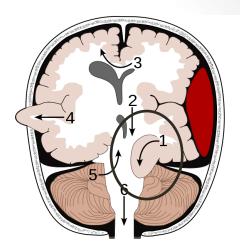
# Where can displaced brain go?


- Subfalcine
  - Side to side
- Uncal
  - Side to bottom
  - Transtentorial
- Central
  - Diencephalon  $\rightarrow$  midbrain
- Tonsillar
  - Cerebellum thru the "hole"





#### **Subfalcine Herniation**


- Cingulate gyrus
- Extends under falx
- Drags ipsilateral ACA with it
- ACA compression
- Contralateral leg paresis

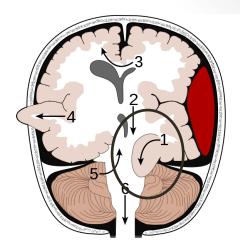




### **Uncal herniation**

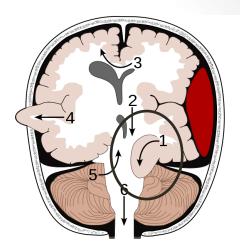
- Uncus = medial temporal lobe
- Across tentorium
- Midbrain compression






#### **Uncal herniation**

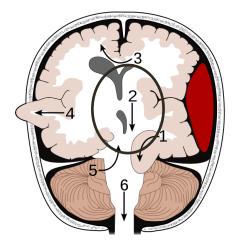
- Ipsilateral CNIII compression
  - Loss of parasympathetic innervation
  - Dilated ("blown") pupil
  - Lack of pupillary constriction to light
- Collapses ipsilateral posterior cerebral artery
  - Visual loss cortical blindness
  - Homonymous hemianopsia
- Cerebral peduncle compression
  - Can be on side of lesion (contralateral paresis)
  - Can also be on opposite side (ipsilateral paresis)
    - Kernohan's notch


Boards&Beyond

- Duret hemorrhage of pons and midbrain
  - Perforating branches basilar artery draining veins



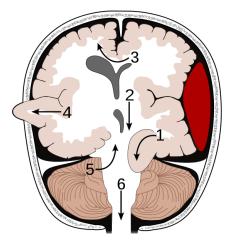
#### **Uncal herniation**


- Dilated pupil (side of lesion)
- Visual loss
- Hemiparesis or quadriparesis





#### **Transtentorial Herniation**


- Thalamus, hypothalamus, and medial parts of both temporal lobes forced through tentorium cerebelli
- Somnolence, LOC
- Initially: small, reactive pupils
- Later: nonreactive
- Posturing

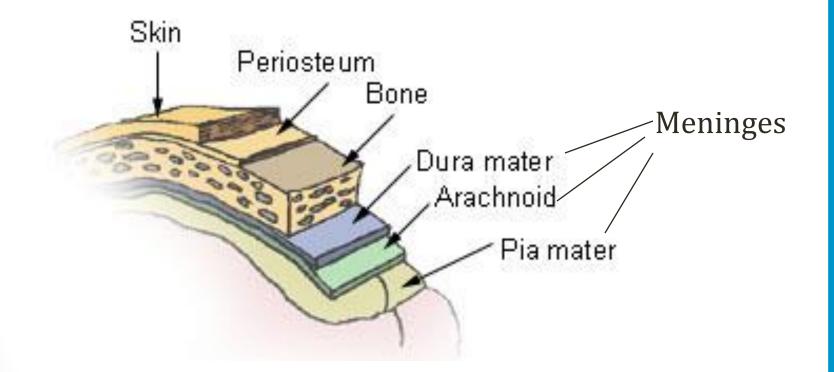




#### **Tonsillar Herniation**

- Cerebellar tonsils herniate downward through the foramen magnum
- Most commonly caused by a posterior fossa mass lesion
- Compression of medulla results in depression centers for respiration and cardiac rhythm control
- Cardiorespiratory failure






### **Types of Intracranial Bleeds**

- Epidural Hematoma
- Subdural Hematoma
- Subarachnoid Hemorrhage
- Hemorrhagic Stroke



# The Meninges



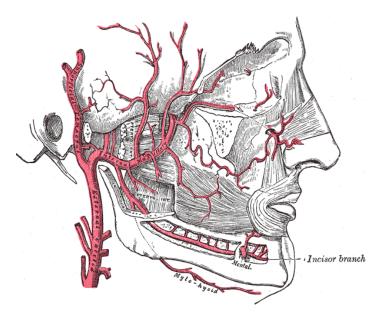


#### Epidural Hematoma

- Rupture of middle meningeal artery
  - Branch of maxillary artery
- Traumatic:
  - Often fracture of temporal bone
- Convex Shape on CT
- Dura attached sutures
  - Lesion cant cross suture lines






Image courtesy of Dryphi

#### Midline Shift





Image courtesy of James Heilman, MD



Maxillary Artery

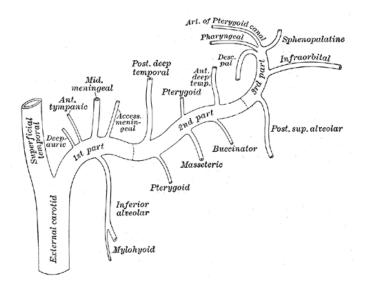
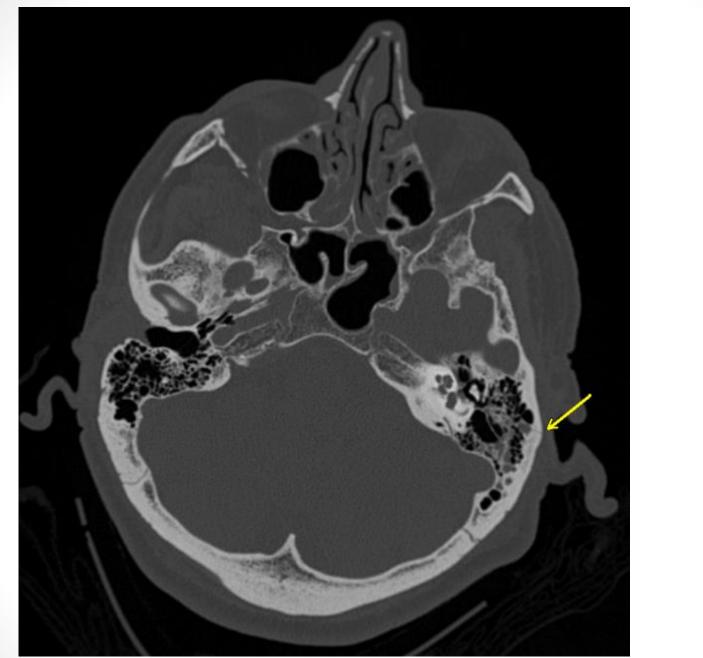






Image courtesy of James Heilman, MD





# Epidural Hematoma

- Symptoms
  - General symptoms:
    - Headache, drowsiness, loss of consciousness
  - Lucid interval



#### Subdural Hematoma

- Usually traumatic
- Rupture bridging veins
- Blood b/w dura and arachnoid space
- SLOW bleeding due to low pressure veins



#### Subdural Hematoma

- Crescent shaped bleed
- Crosses suture lines
- Limited by dural reflections
  - falx cerebri
  - tentorium
  - falx cerebelli





#### Subdural Hematoma

- Risk factors
  - Old age
  - Alcoholics
  - Blood thinners
- Brain atrophy increases space veins must cross
  - More vulnerable to rupture
- Classic history is confusion weeks after head injury
- Classic injury in shaken baby syndrome



#### Subarachnoid Hemorrhage

 Bleeding into space b/w arachnoid & pia mater





Image courtesy of James Heilman, MD

#### Subarachnoid Hemorrhage

- "Worst headache of my life"
- Sudden onset symptoms
- Fever, nuchal rigidity common
- CT scan usually diagnostic
- <u>Xanthochromia</u> on spinal tap
- No focal deficits!



#### Subarachnoid Hemorrhage

- Usually from ruptured berry aneurysms
  - Most common site: anterior circle of Willis
  - Branch points of AComm artery
- AVMs
- Other associations:
  - Marfan syndrome
  - ADPKD
  - Ehlers-Danlos



# Hemorrhagic Stroke

Intraparenchymal Bleed

- Often small arteries or arterioles
- HTN
- Anti-coagulation
- CNS malignancy
- Ischemic stroke followed by reperfusion

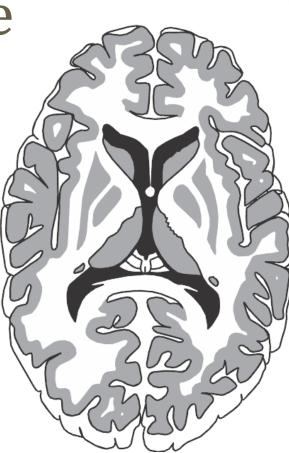


Image courtesy of OpenStax College



#### Sites of Bleed

Intraparenchymal Bleed


- Putamen (35%)
- Subcortex (30%)
- Cerebellum (16%)
- Thalamus (15%)
- Pons (5-12%)



# Hemorrhage Stroke

Intraparenchymal Bleed

- Putamen stroke
- Contralateral hemiparesis (IC)
- Hemisensory loss (thalamus)
- Gaze deviation toward side of bleed (FEF)
- Watch for:
  - Left paralysis, sensory loss
  - Eyes deviated to right





#### **Charcot-Bouchard Aneurysms**

- Micro-aneurysms
- Small branches lenticulo-striate arteries
- Basal ganglia, thalamus
- Possible origin of hypertensive ICH



# **Cerebral Amyloid Angiopathy**

- Recurrent hemorrhagic strokes
- Beta-amyloid deposits in artery walls
  - Weak, prone to rupture
- Typically lobar hemorrhages
  - Frontal, parietal, occipital
  - Usually smaller stokes
  - Contrast with HTN: Basal ganglia
- Watch for:
  - Elderly person
  - Recurrent hemorrhagic strokes



#### Intraventricular Hemorrhage

- Complication of premature birth
- Hemorrhage into lateral ventricle
- Usually first 5 days of life
- Sometimes asymptomatic
- LOC, hypotonia, loss of spontaneous movements
- Massive bleeds can cause seizures, coma



#### Intraventricular Hemorrhage

- Clot can obstruct the Foramen of Monro
  - Enlargement of lateral ventricles
  - Normal 3<sup>rd</sup>/4<sup>th</sup> ventricle
  - Treatment: Ventriculoperitoneal (VP)
- Germinal matrix problem
  - Highly vascular area near ventricles
  - Premature infants: poor autoregulation of blood flow here
  - In full term infants, this area has decreased vascularity



# Treatment of TIA/Stroke

Jason Ryan, MD, MPH



#### Stroke

- Brain attack
- Patient appears "struck" down
- Sudden loss of neurological function
- Symptoms resolve <24 hrs = TIA
- Resolve >24hrs or persist = Stroke



# Etiology

- Ischemic (80%)
  - Insufficient blood flow
  - Thrombosis, embolism, hypoperfusion
  - Symptom onset over hours
- Hemorrhagic (20%)
  - Brain bleeding
  - Sudden onset
- Best first test: <u>Non-contrast CT of head</u>
  - Provided patient is stable
- Diffusion weighted MRI is most accurate



#### Head CT

- Tells you ischemic versus hemorrhagic
- If ischemic must consider thrombolysis
- If hemorrhagic
  - Thrombolysis contraindicated
  - Reduce BP, reverse anti-coagulants, surgery
- NO benefit to heparin, warfarin, anti-platelets during acute stroke
  - Some role in prevention of recurrent stroke



#### **Thrombolysis for Stroke**

- 3-hour window of benefit for TPA (alteplase)
- Contraindications
  - Stroke or head trauma past 3 months
  - Arterial puncture in non-compressible site past week
  - Internal bleeding or trauma
  - BP>185/110
  - INR>1.7
  - Platelets <100k</li>
  - Elevated PTT
  - Glucose <50mg/dL
  - ANY history of intracranial bleed



#### **Post-Stroke Management**

- Aspirin for prophylaxis
  - If allergic: clopidogrel
- EKG: Look for afib
  - Afib plus stroke = Warfarin or other AC
- Echocardiogram (source of embolism/PFO)
- Carotid ultrasound
  - Surgery considered if >70% stenosis



#### Stroke in Afib

- CHADs Score
  - CHF (1point)
  - HTN (1point)
  - Age >75yrs (1point)
  - Diabetes (1point)
  - Stroke (2point)
- Score >2 = Warfarin or other AC
- Score 0 -1 = Aspirin



#### Stroke

- CHADs VASC Score
  - CHF (1point)
  - HTN (1pont)
  - Diabetes (1point)
  - Stroke (2points)
  - Female (1point)
  - Age 65-75 (1point)
  - Age >75yrs (2points)
  - Vascular disease (1point)
- Score >2 = Warfarin or other AC
- Score 0 -1 = Aspirin



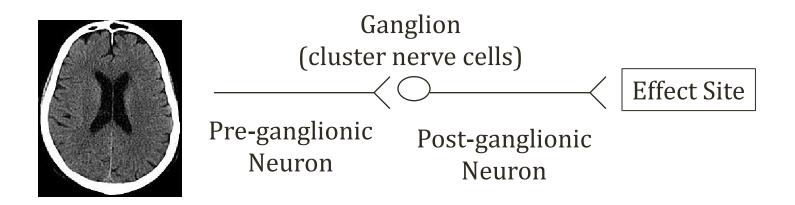
# Anticoagulation

- Warfarin
  - Requires regular INR monitoring
  - Goal INR usually 2-3
- Rivaroxaban, Apixaban
  - Factor X inhibitors
- Dabigatran
  - Direct thrombin inhibitor
- Whether Afib persists or sinus rhythm restored anticoagulation MUST be addressed

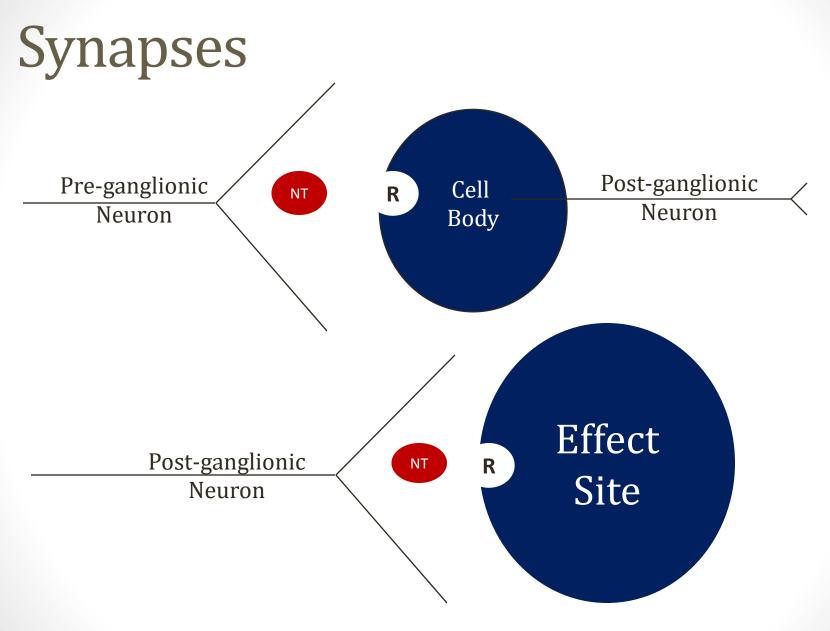


# Autonomic Nervous System

Jason Ryan, MD, MPH




# Vocabulary


- Somatic
  - Voluntary actions
  - Skeletal muscles
  - Movement, speech, etc.
- Autonomic
  - Involuntary actions
  - Smooth muscles, glands
  - Salivation, vessel constriction, etc.
- Enteric GI nervous system



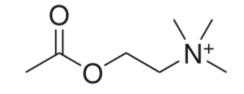
#### Autonomic Nervous System



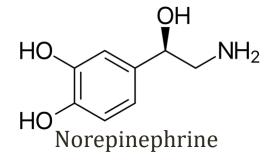







## Major Neurotransmitters

### Acetylcholine


- Binds to "cholinergic" receptors
- Two types: nicotinic and muscarinic
- Many subtypes: M1 to M5

### Norepinephrine (noradrenaline)

- Binds to "adrenergic" receptors
- Two types: alpha and beta
- Many subtypes: alpha 1, alpha 2, beta 1, beta 2, beta 3



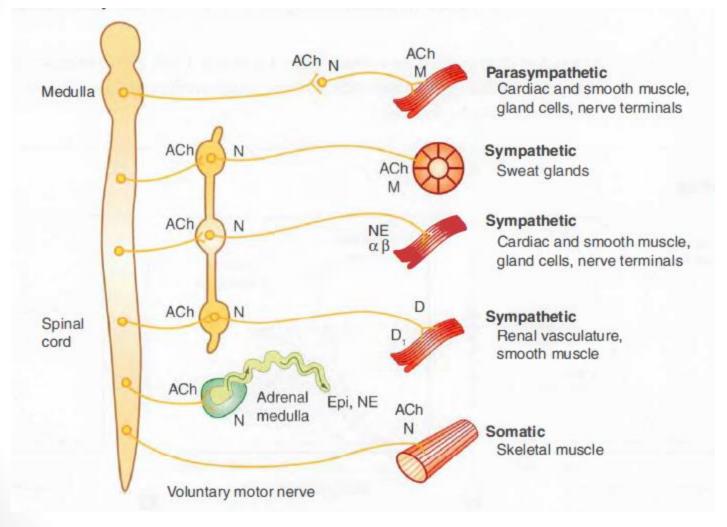
Acetylcholine





## The Two Systems

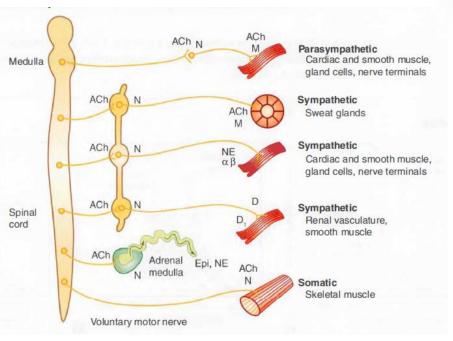
### Sympathetic System


• Fight or flight

### Parasympathetic System

• Rest and digest




Boards&Beyond



Use with permission, Katzung BG, Basic and Clinical Pharmacology, 10<sup>th</sup> ed. New York, McGraw Hill, 2007

## Anatomy

- Sympathetic ganglia
  - Paravertebral
  - T1-L3
- Parasympathetic
  - Brainstem (cranial nerves)
  - Sacrum
  - "Craniosacral"
  - Ganglia near target organs





- Ganglionic synapses
  - Neurotransmitter: acetylcholine
  - All ganglionic receptors: **nicotinic**
- Nicotinic receptors also found on skeletal muscle
  - Muscular subtype nicotinic receptors
- Major consequence nicotinic modulation:
  - Activation: fasciculations
  - Blockade: paralysis

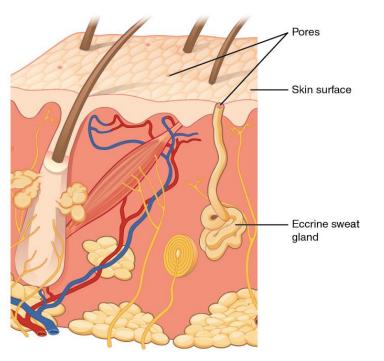


- Parasympathetic nervous system
  - Major effector neurotransmitter: **acetylcholine**
  - Receptors: Muscarinic
  - Muscarinic subtypes: M1, M2, M3, M4, M5
- M2: Heart
- M3: Most other locations
  - Blood vessels
  - Lungs
  - Salivary glands



- Sympathetic nervous system
  - Major effector neurotransmitter: norepinephrine
  - Binds adrenergic receptors
  - Alpha receptors: α1, α2
  - Beta receptors: β1, β2, β3
  - Exceptions: adrenal glands and sweat glands



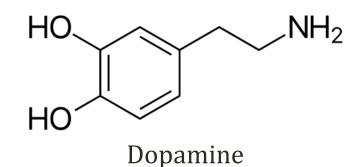

## Adrenal Gland

- Innervated by sympathetic nervous system
- Neurotransmitter: acetylcholine
- Receptor: nicotinic (neuronal subtype)
- SNS activation  $\rightarrow$  release of hormones
  - Adrenal medulla (specialized ganglion)
  - 80% epinephrine
  - 20% norepinephrine
- Amplifies sympathetic response



## Sweat Glands

- Activated by sympathetic nervous system
- Neurotransmitter: acetylcholine
- Receptor: muscarinic (M3)



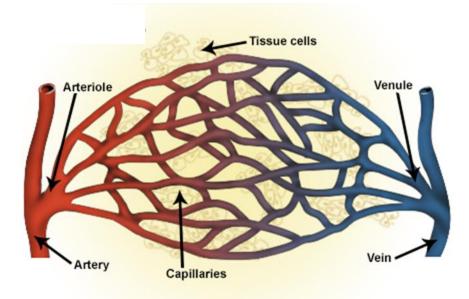



OpenStax College

## Dopamine

- Minor SNS neurotransmitter
- Released onto renal vasculature
- Vasodilates blood vessels
- Only at low dosages
- High dosages activate alpha/beta receptors
  - Used to treat shock





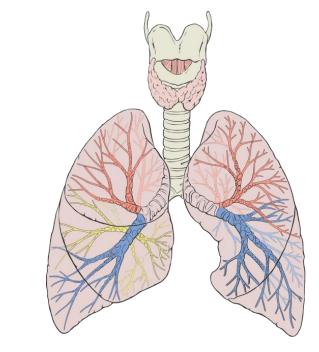

- Major target of autonomic nervous system
  - Arterioles, bronchioles, GI tract
- Sympathetic often contracts and relaxes
  - Depends on tissue beds
  - Different receptors in different tissue beds
  - Direct effect of norepinephrine on smooth muscle



### Alpha1 receptors

- Vascular smooth muscle
- Vasoconstriction to raise blood pressure
- Skin
- GI tract






Wikipedia/Public Domain

## α1

- Beta2 receptors: smooth muscle relaxation
  - Blood vessels of muscle, liver: 1 blood flow
  - Bronchioles: bronchodilation

β2



Patrick Lynch/Wikipedia



- Parasympathetic contracts and relaxes
- Smooth muscle contraction
  - Lungs: bronchoconstriction
  - Bladder: detrusor muscle
  - Direct effect of acetylcholine binding receptor



- Parasympathetic smooth muscle relaxation
  - Examples: GI peristalsis, penile erection
  - Indirect effect of acetylcholine
  - Triggers release of nitric oxide
  - Endothelium derived relaxing factor
- NO also stimulated by other substances
  - Bradykinin, serotonin, shear forces

# N≕=O



## Autonomic Nervous System

Major Organs

- Skin
- Heart
- Lungs
- Kidneys
- GI tract
- Eye

- Salivary glands
- Bladder
- Uterus
- Metabolism
- Sexual function



## Skin

- Largest organ in the body
- Under sympathetic control
  - No major parasympathetic effects
- SNS activation  $\rightarrow$  vasoconstriction
  - α1 receptors
  - Saves blood for vital organs (brain, heart)
  - Skin becomes cool/cold to touch
- Other SNS effects
  - Sweat ("cold sweat")
  - Arrector pili muscles ("goosebumps")



## Hot Sweat

- Blood flow and sweat also affected by HEAT
- Increased temperature sensed by hypothalamus
- Increases skin blood flow to dissipate heat
- Sweat  $\rightarrow$  evaporation dissipates heat
- Inability to sweat = red, flushed skin
  - Anticholinergic poisoning
  - Red as a beet

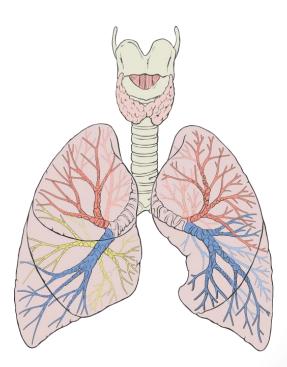


Pixabay/Public Domain



## Skin Autonomic System

**Clinical Examples** 


### Heart failure or hemorrhage

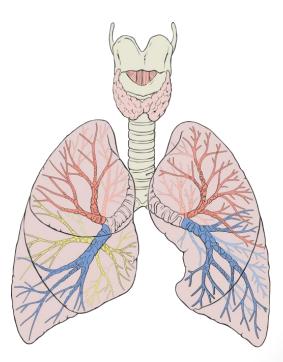
- Massive SNS activation
- Cold skin
- Sepsis
  - Massive SNS activation
  - Vasodilation from inflammation
  - Fever from infection
  - Result: warm skin



## Lungs

- Sympathetic activation
  - Bronchodilation (bronchioles = smooth muscle)
  - Beta 2 receptors
  - Epinephrine >> norepinephrine
- Parasympathetic activation (M3)
  - Bronchoconstriction




Patrick Lynch/Wikipedia



# Lungs Autonomic Function

**Clinical Examples** 

- Wheezing
  - Anaphylaxis, asthma
  - Treat by activating SNS
  - Albuterol (beta agonist); epinephrine
- Ipratropium
  - Muscarinic antagonist for asthma
- Methacholine
  - Muscarinic agonist
  - Used to diagnose asthma
  - "Methacholine challenge"



Patrick Lynch/Wikipedia



## Heart

- Autonomic control:
  - Heart rate (SA node)
  - Contractility (myocytes)
  - Conduction velocity (AV node; HIS-Purkinje)
- Sympathetic: **Beta 1 receptors**
- Parasympathetic: M2 receptors
  - Vagus nerve

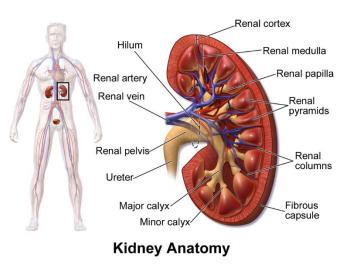


Prolonged PR Interval



### Heart

#### Selected Clinical Examples


- Inotropes (dobutamine)
  - Beta agonists
  - Increase heart rate, contractility
  - Used in advanced heart failure
- Beta blockers
  - Slow heart rate, decrease contractility
  - Many uses: hypertension, tachycardia
- Atropine
  - Muscarinic blocker
  - Increases heart rate
  - Used in cardiac arrest algorithms



## Kidneys

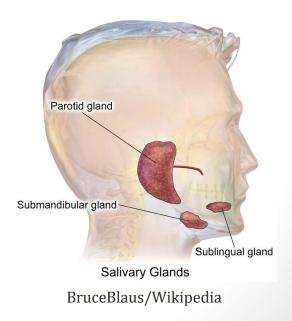
### Sympathetic activation

- β1 receptors: renin release
- Also constricts ( $\alpha$ ) afferent/efferent arterioles
- Decreases GFR to limit sodium/water excretion
- Net result: 1 sodium/water retention





Public Domain


## **Gastrointestinal Tract**

- Sympathetic nervous system (α1)
  - Decreases GI blood flow (vasoconstriction)
  - Slows transit/motility (constriction of sphincters)
- Parasympathetic system  $\rightarrow$  increases motility
  - Relaxation of sphincters
- Anticholinergic drugs: constipation
- Cholinergic excess: diarrhea (organophosphates)



## Salivary Glands

- Saliva production increased by SNS and PNS
  - SNS: thick saliva
  - PNS: watery saliva
- Parasympathetic control dominates
  - Activated by food smell, sight, etc.
  - Muscarinic receptors (M3)
  - Anticholinergic drugs: dry mouth





## **Blood Vessels**

### Arterioles

- Vessels of skin, GI tract, kidneys
- Determine overall resistance of vascular system
- Control systemic vascular resistance (SVR)
- Contract via α1 stimulation

### • Veins

- Constriction sends blood to heart
- Increases preload
- Mediated via α1 stimulation



## Eye

### Pupil diameter

- SNS ( $\alpha$ 1)  $\rightarrow$  increases (dilates; mydriasis)
- PNS (M3) → decreases (constricts; miosis)
- Accommodation (altered lens shape)
  - Ciliary muscle contraction
  - Mostly under parasympathetic control
  - PNS (M3)  $\rightarrow$  constriction for near vision
- Overall SNS effect: more light, far vision



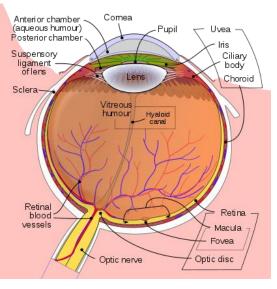


### **Parasympathetic**



Sphincter pupillae (Pupillary constrictor)

Boards & Beyond,


Dilator Pupillae (Radial muscle)

**Sympathetic** 



### Aqueous humor production

- Fluid allows eye to focus during fight/flight
- SNS ( $\beta$ 2 )  $\rightarrow$  produces fluid ( $\uparrow$  IOP)
- PNS  $\rightarrow$  constricts ciliary muscle; drains fluid ( $\downarrow$  IOP)
- Allows the eye to focus during fight/flight



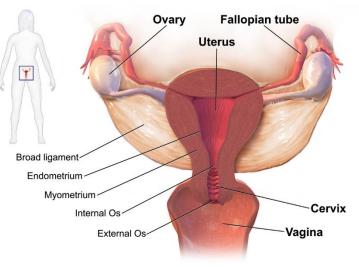


Rhcastilhos/Wikipedia



- Glaucoma
  - Reduce aqueous humor
  - Muscarinic agonists  $\rightarrow$  activate PNS (carbachol, pilocarpine )
  - Beta blockers (timolol)
- Pupillary dilation
  - Activate SNS  $\rightarrow$  cocaine
  - Block PNS  $\rightarrow$  tropicamide (anti-muscarinic)




## Uterus

### β2 receptors

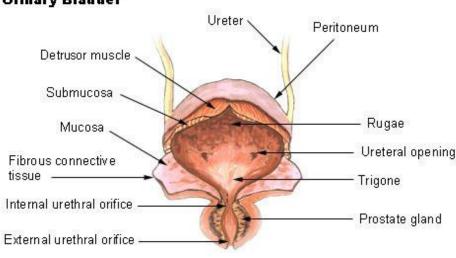
- Uterine smooth muscle relaxation
- Terbutaline: beta 2 agonist used in preterm labor

### Alpha receptors

• Uterine contraction at delivery



BruceBlaus/Wikipedia

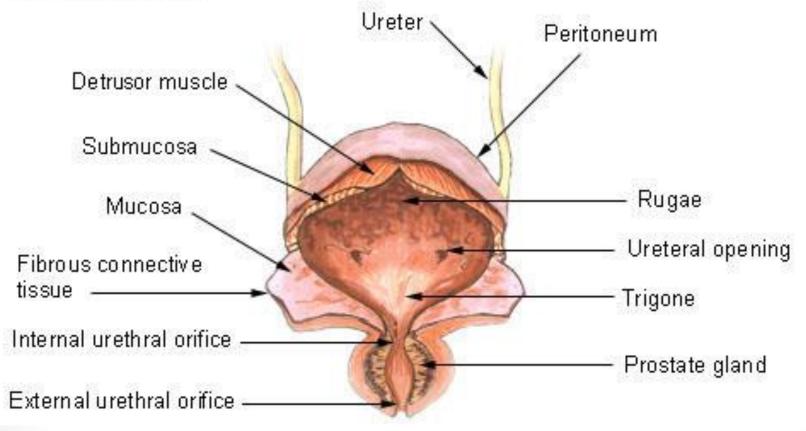



## Bladder

Boards&Beyond

### • Three muscles control urination

- Detrusor (smooth; autonomic control)
- Internal urethral sphincter (smooth; autonomic control)
- External urethral sphincter (skeletal; voluntary control)
- Sympathetic, parasympathetic, somatic control




#### Urinary Bladder

Wikipedia/Public Domain

## Bladder

#### Urinary Bladder



Boards&Beyond.

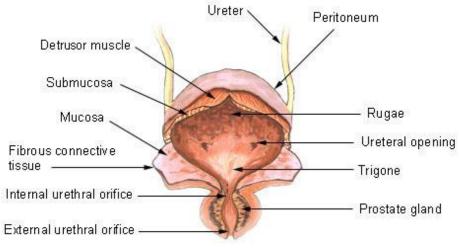
Wikipedia/Public Domain

## Bladder

- Bladder filling
  - Sympathetic control dominates
  - Detrusor relaxation (β3)
  - Internal urethral sphincter contraction (α1)
  - External urethral sphincter contraction (voluntary)



### Bladder


- Micturition
  - Parasympathetic control dominates
  - Detrusor contraction (M3)
  - Internal urethral sphincter relaxation (M3)
  - External urethral sphincter relaxation (voluntary)



### Bladder

Boards&Beyond.

Urinary Bladder



Wikipedia/Public Domain

|           | System          | Detrusor   | Internal   | External<br>(somatic) |
|-----------|-----------------|------------|------------|-----------------------|
| Filling   | Sympathetic     | Relaxed    | Contracted | Contracted            |
| Urination | Parasympathetic | Contracted | Relaxed    | Relaxed               |

### Bladder

**Clinical Examples** 

- Anticholinergic drugs
  - Inhibit urination
  - Urinary obstruction especially in older men

#### • Oxybutynin

- Treatment for overactive bladder and incontinence
- Anticholinergic
- Side effects: constipation, dry mouth



#### Metabolism

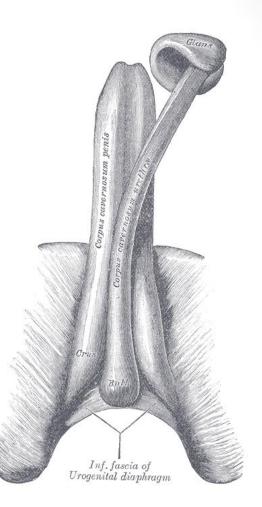
- SNS alters **glucose** and **lipid** metabolism
  - Raises serum glucose (↑ glycogenolysis and gluconeogensis)
  - Converts triglycerides → free fatty acids (lipolysis)

## 



### Metabolism

- Direct innervation of adipose tissue (β123)
- Epinephrine: anti-insulin hormone
  - Opposes effects of insulin
  - ↓ insulin release (pancreatic alpha2)
  - $\downarrow$  glycogen synthesis /  $\uparrow$  glycogen breakdown (hepatic  $\beta$ 2)
  - ↓ storage of fatty acids in adipose tissue

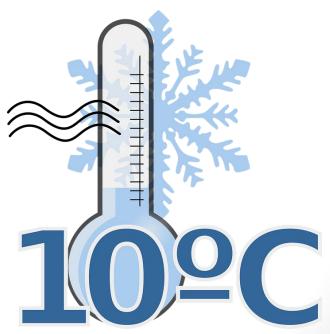

## 



### Male Sexual Function

#### Parasympathetic

- Smooth muscle relaxation  $\rightarrow$  blood flow
- Swelling of corpora  $\rightarrow$  erection
- Sympathetic
  - Ejaculation and detumescence
- Erectile dysfunction
  - Sildenafil (Viagra) relaxes smooth muscle
- SSRIs
  - Common side effect: anorgasmia
  - Blunted central sympathetic function




Wikipedia/Public Domain



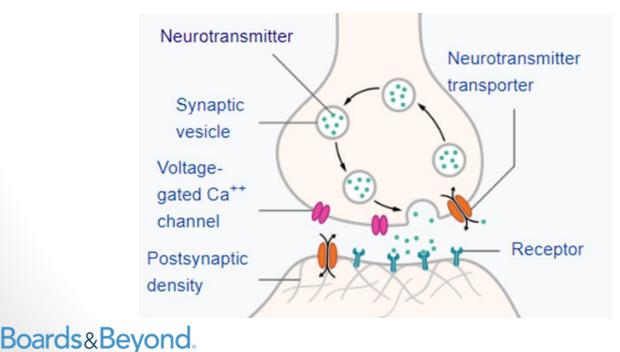
### **Cold Temperature**

- Activates sympathetic nervous system
- Stimulates  $\beta 3$  receptors in brown fat
  - Generates heat ("thermogenesis")
- Also stimulates α1 receptors in skin
  - Vasoconstriction to preserve heat
- Shivering
  - Triggered by hypothalamus
  - Activates motor neurons



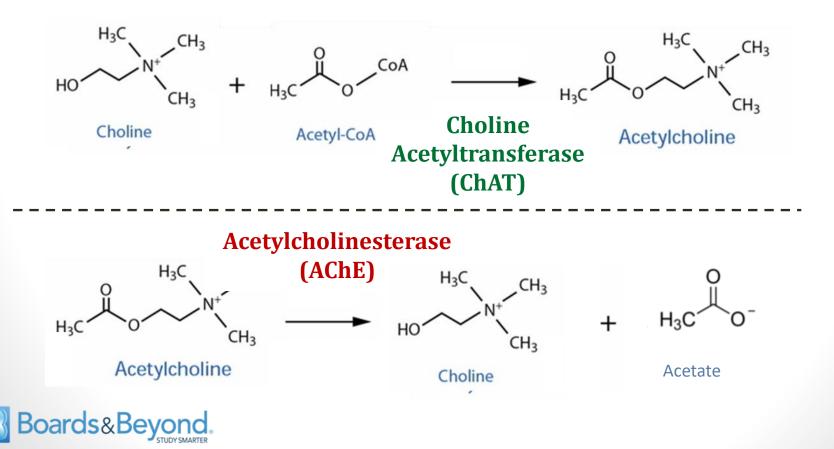


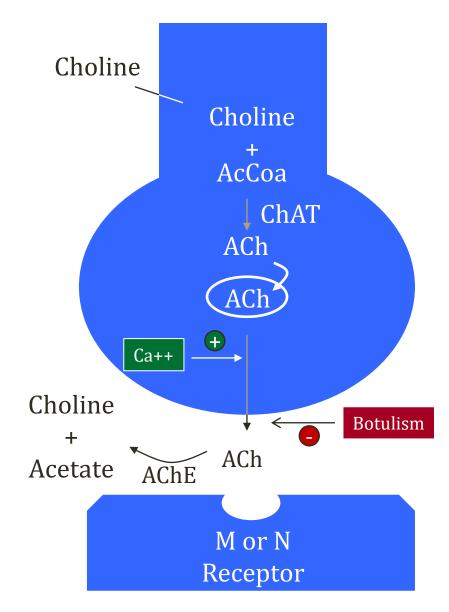
Pixabay/Public Domain


# Autonomic Receptors

Jason Ryan, MD, MPH



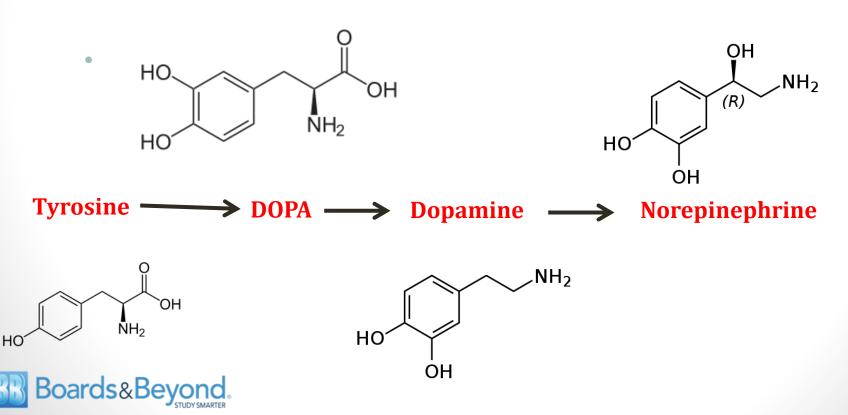

#### Autonomic Neurotransmitters

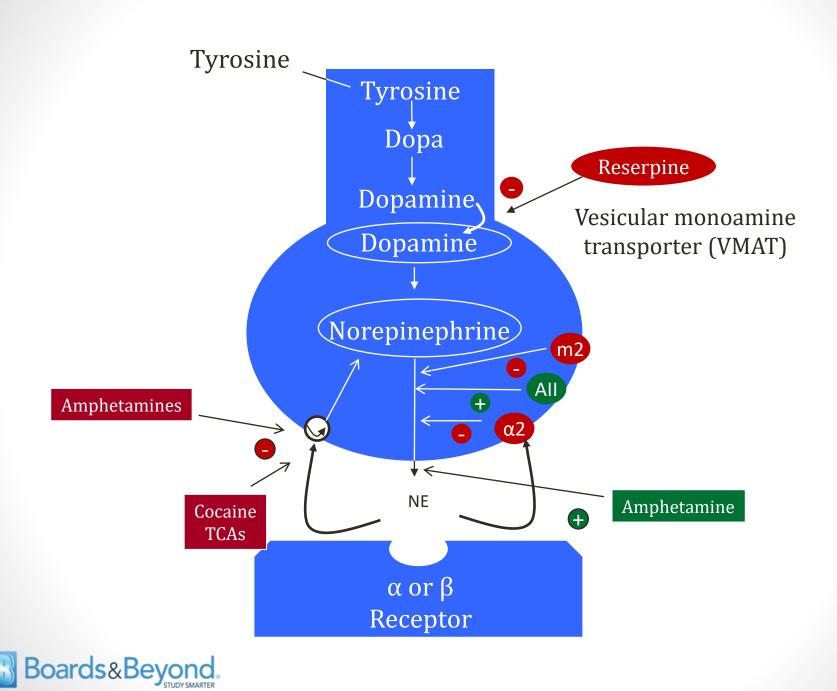

- Acetylcholine and norepinephrine
- Stored inside vesicles within nerve endings
- Nerve depolarization → calcium influx
- Calcium influx  $\rightarrow$  release of neurotransmitter



### Acetylcholine

- Synthesized from choline and acetyl-CoA
- Degraded by acetylcholinesterase (AChE)






### Norepinephrine

- Synthesized from tyrosine (amino acid)
- Converted to DOPA (dihydroxyphenylalanine)
- DOPA  $\rightarrow$  Dopamine  $\rightarrow$  norepinephrine





### Amphetamines

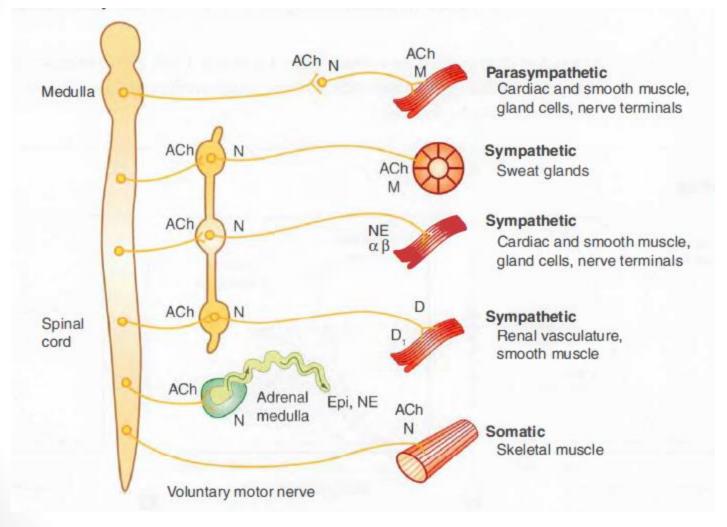
- Stimulants
- Drugs of abuse



Public Domain

- ↑ CNS dopamine and NE activity
- Three mechanisms:
  - Compete for reuptake transporters
  - Displace DA/NE from vesicles into cytoplasm
  - High DA/NE in cytoplasm  $\rightarrow$  transport into synapse

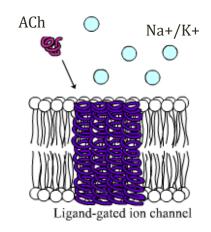


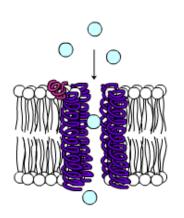

### **Autonomic Receptors**

- Nicotinic
  - Acetylcholine
- Muscarinic
  - Acetylcholine
  - M1, M2, M3, M4, M5
- Adrenergic
  - Norepinephrine
  - α1, α2, β1, β2, β3



### **Signal Transmission**


Boards&Beyond

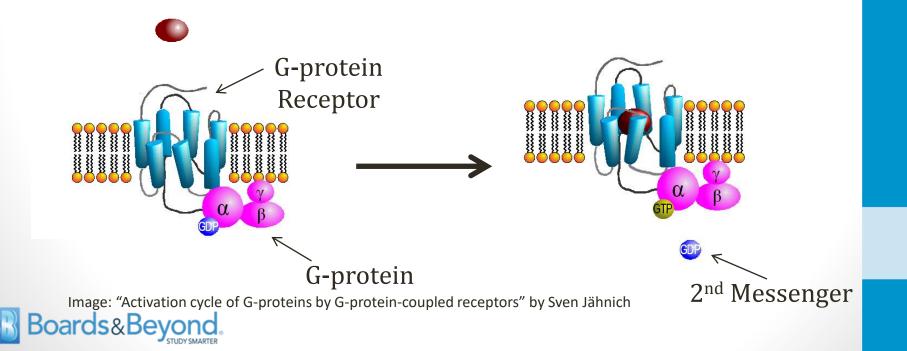



Use with permission, Katzung BG, Basic and Clinical Pharmacology, 10<sup>th</sup> ed. New York, McGraw Hill, 2007

### **Nicotinic Receptors**

- Ligand-gated ion channels
- Channel opens  $\rightarrow$  ion entry into target site
- Depolarization of target (neuron/muscle)






Bensaccount at the English Wikipedia project



#### Muscarinic/Adrenergic Receptors

- "G Protein-Coupled Receptors" (GPCRs)
- Protein receptors attached to "guanine nucleotides"
  - GDP, GTP
- Binding activates second messenger



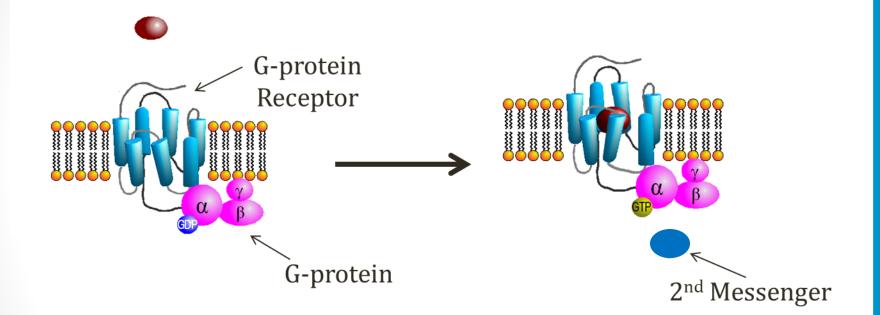
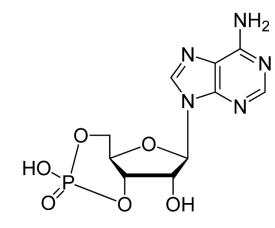
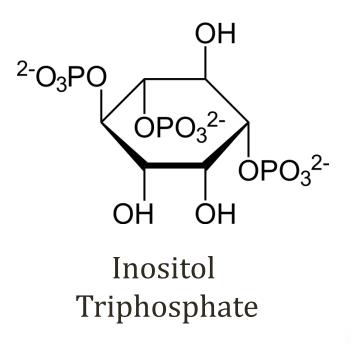
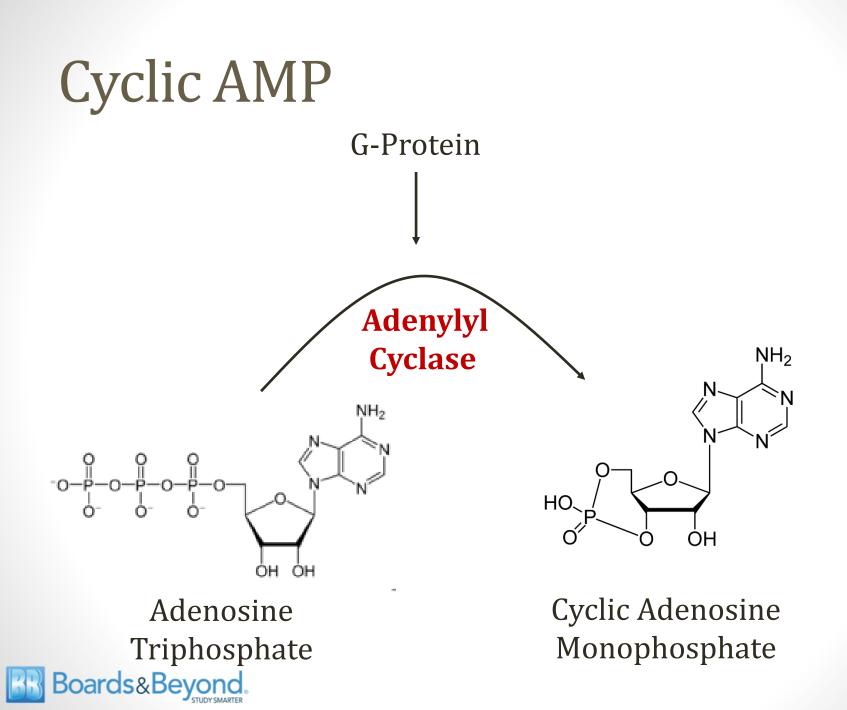
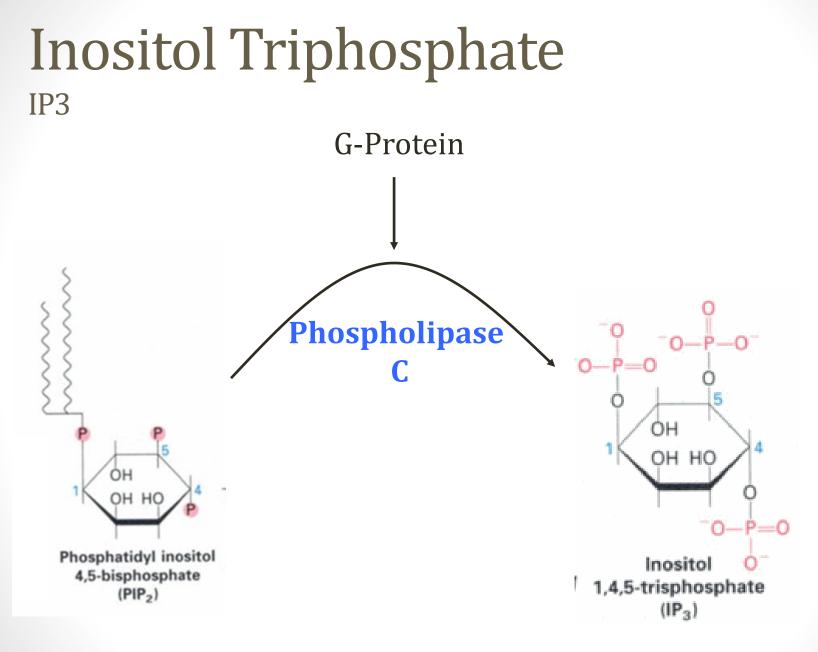




Image: "Activation cycle of G-proteins by G-protein-coupled receptors" by Sven Jähnich




### Second Messengers


- Cyclic AMP (cAMP)
- Inositol Triphosphate (IP3)




Cyclic Adenosine Monophosphate

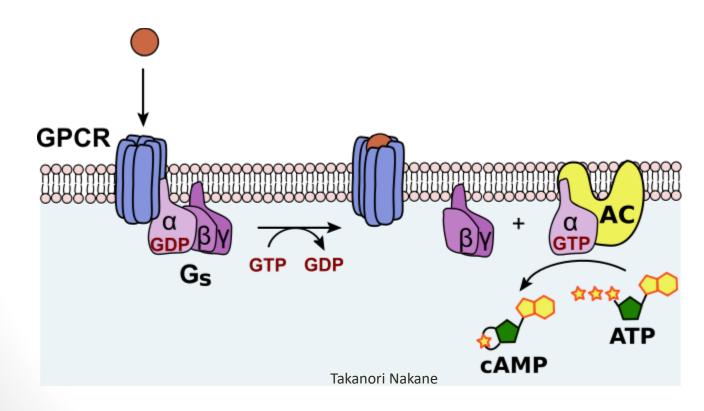








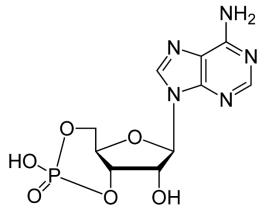
Boards&Beyond.


### **G-Protein Coupled Receptors**

- Three subtypes: Gs, Gi, Gq
  - Different second messenger effects/actions
- Gs subtype
  - Beta 1 and Beta 2
- Gi subtype
  - M2
- Gq subtype
  - Alpha 1
  - M3



### Gs Subtype

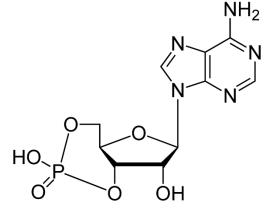

- Stimulate adenylyl cyclase
- Raise intracellular levels of cAMP





## Cyclic AMP

- *Stimulates* cardiac myocytes
  - Beta 1 receptors = Gs subtype
- *Relaxes* vascular smooth muscle
  - Beta 2 receptors = Gs subtype
- All beta receptors have Gs receptors
- Activation increases cAMP levels



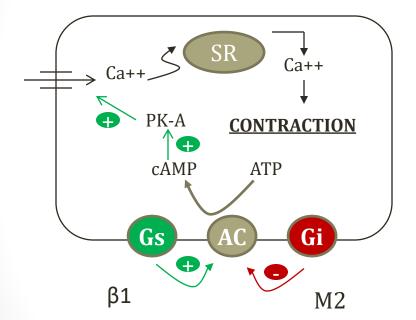

Cyclic Adenosine Monophosphate

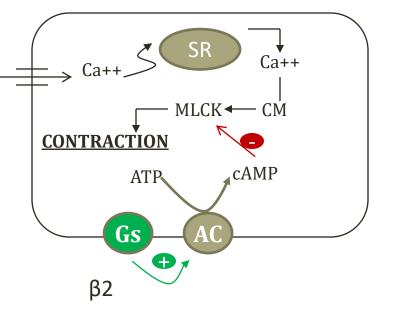


### Gi Subtype

- Inhibits adenylyl cyclase
- Decreases intracellular levels of cAMP
- Inhibits cardiac myocytes
  - Decreases contractility
  - M2 receptors = Gi subtype
- Also found in alpha2 receptors



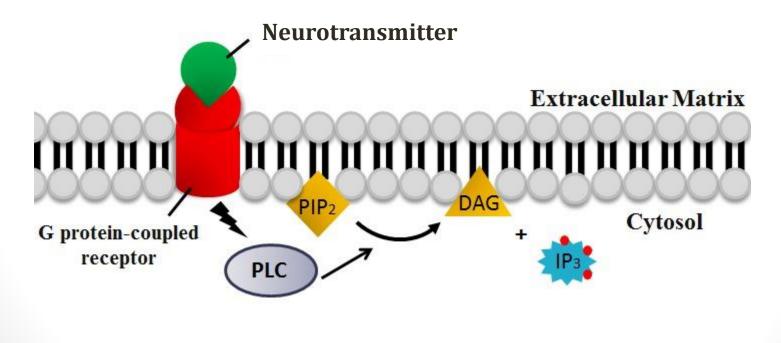

Cyclic Adenosine Monophosphate




### Gs and Gi Systems











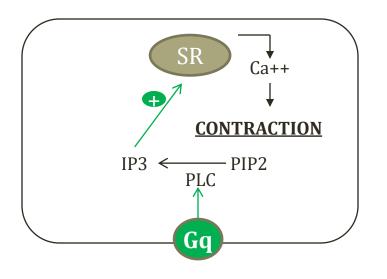

## Gq Subtype

- Activates phospholipase C
- Increases intracellular IP3 levels



Boards&Beyond

RaihaT


# Gq Subtype

- *Contracts* vascular smooth muscle
- Alpha1 receptors
- M3 receptors
  - Parasympathetic vasoconstriction
  - Bronchoconstriction
  - Detrusor muscle contraction (bladder)
  - Ciliary muscle (eye)



### **Gq Systems**

#### Vascular Smooth Muscle

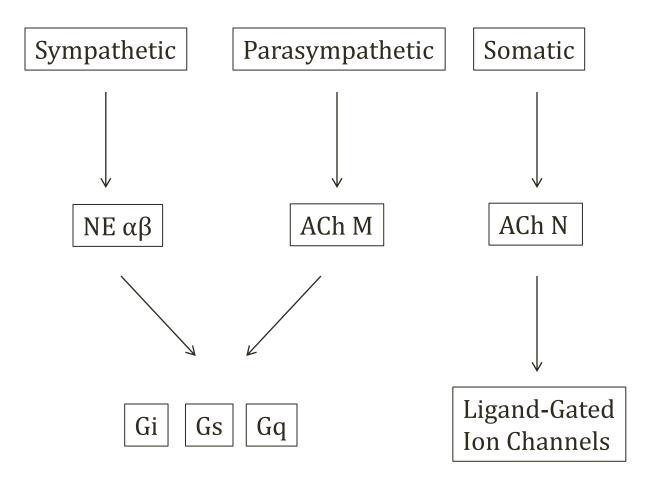


Gq only in vascular smooth muscle  $\rightarrow$  Contraction



### **G-Protein Receptors and Types**

| Receptor | G protein Class |  |
|----------|-----------------|--|
| α1       | q               |  |
| α2       | i               |  |
| β1       | S               |  |
| β2       | S               |  |
| M1       | q               |  |
| M2       | i               |  |
| M3       | q               |  |
| D1       | S               |  |
| D2       | i               |  |
| H1       | q               |  |
| H2       | S               |  |
| V1       | q               |  |
| V2       | S               |  |




#### **G-Protein Subclasses**

| G Protein | Receptors      |            |
|-----------|----------------|------------|
| q         | H1 α1 V1 M1 M3 | HAVe 1 M&M |
| i         | M2 α2 D2       | MAD2       |
| S         | β1 β2 D1 H2 V2 | All others |



#### **Take Home Points**



Boards&Beyond.

# Autonomic Drugs: Norepinephrine

Jason Ryan, MD, MPH



## **Adrenergic Drugs**

- Amplify sympathetic system
  - Sympathomimetic drugs
  - Direct: NE receptor agonists
  - Indirect: Block NE reuptake
- Block sympathetic system
  - Adrenergic antagonists/blockers
  - Alpha blockers
  - Beta blockers



### **Adrenergic Activation**

Hemodynamic Effects

- α1: Vasoconstriction
- α2: Vasodilation
- β1: ↑ Heart Rate/Contractility
- β2: Vasodilation



# **Direct Agonists**

| Drug           | α     | β1    | β2    | Comments           |
|----------------|-------|-------|-------|--------------------|
| Epinephrine    | +++++ | ++++  | +++   | All receptor types |
| Dopamine*      | +++   | ++++  | ++    | All receptor types |
|                |       |       |       |                    |
| Isoproterenol  |       | +++++ | +++++ | β1=β2; ↑HR↓BP      |
| Dobutamine     | +     | +++++ | +++   | Mostly β1; ↑HR↓BP  |
|                |       |       |       |                    |
| Norepinephrine | +++++ | +++   | ++    | Vasoconstrictor    |
| Phenylephrine  | +++++ |       |       | Vasoconstrictor    |

\*Only Dopamine activates D1 receptors  $\rightarrow$  frenal blood flow **Boards&Beyond**.

### Dopamine

- Does not cross blood brain barrier (no CNS effects)
- Peripheral effects highly dependent on dose
- <u>Low dose</u>: dopamine agonist
  - Vasodilation in kidneys
- <u>Medium dose</u>: beta-1 agonist
  - Increased heart rate and contractility
- <u>High dose</u>: alpha agonist
  - Vasoconstriction



# Epinephrine

- Also dose dependent effects
- Low dose: beta-1 and beta-2 agonist
  - Increased heart rate/contractility
  - Vasodilation
- <u>High dose</u>: alpha agonist
  - Vasoconstriction



# **Other Direct Agonists**

| Drug            | α1 | α2 | β1 | β2   | Comments              |
|-----------------|----|----|----|------|-----------------------|
| Pseudoephedrine | ++ | ++ |    |      | Nasal decongestant    |
| Albuterol       |    |    | ++ | ++++ | Asthma                |
| Salmeterol      |    |    | ++ | ++++ | COPD                  |
| Terbutaline     |    |    | ++ | ++++ | OB Drug:↓Contractions |
| Ritodrine       |    |    |    | ++++ | OB Drug:↓Contractions |



# Alpha Agonists

**Clonidine and Methyldopa** 

- Used in hypertension
- Agonists to CNS α2 receptors



# Alpha Agonists

Apraclonidine

- Used in glaucoma
- Agonists to α2 receptors (weak α1 activity)
- Lowers intraocular pressure

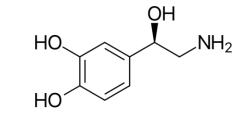


# Indirect Agonists

| Drug        | Effect                                   | Uses                                        |
|-------------|------------------------------------------|---------------------------------------------|
| Amphetamine | NE: Blocks reuptake,<br>promotes release | Stimulant: Narcolepsy,<br>obesity, ADHD     |
| Ephedrine   | NE: Promotes release                     | Nasal decongestant,<br>urinary incontinence |
| Cocaine     | NE: Blocks reuptake                      | Vasoconstrictor, local<br>anesthetic        |








#### Cocaine

- Enhances monoamine neurotransmitter activity
  - Dopamine, Norepinephrine, Serotonin
- Blockade of presynaptic reuptake pumps
- Generalized sympathetic activation
- Also blocks Na channels in nerves (local anesthetic)



Dopamine
Boards&Beyond



Norepinephrine



#### **Cocaine Intoxication**

- Massive alpha and beta stimulation
- Hypertension
- Tachycardia
- Classic case:
  - College student
  - Agitated, tremulous
  - Tachycardic/hypertensive
  - Chest pain (coronary spasm; increased O2 demand)



#### **Cocaine Intoxication**

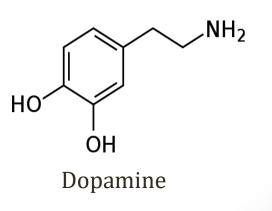
#### Treatment: Benzodiazepines

- Sedatives/anxiolytics
- Activate GABA receptors
- Inhibitory to central nervous system
- Avoid beta blockers for chest pain/hypertension
- β2 activation blunting alpha activation
- Beta blocker  $\rightarrow$  unopposed  $\alpha \rightarrow$  severe HTN



#### **Clinical Scenarios**


| Case                                                            | Drug                                           |  |
|-----------------------------------------------------------------|------------------------------------------------|--|
| 5-year-old boy<br>Bee sting<br>Hives, wheezing                  | Anaphylaxis: Epinephrine                       |  |
| 75-year-old man<br>Pneumonia, hypotension                       | Septic shock: Norepinephrine,<br>Phenylephrine |  |
| 66-year-old man<br>Massive myocardial infarction<br>Hypotension | Cardiogenic Shock: Dobutamine                  |  |
| 10-year-old boy<br>History of asthma<br>Wheezing, dyspnea       | Asthma flare: Albuterol                        |  |
| 22-year-old man, runny nose                                     | Rhinitis: Pseudoephedrine,<br>phenylephrine    |  |




# Alpha Blockers

#### Nonselective ( $\alpha 1 \alpha 2$ )

- Phenoxybenzamine (irreversible)
  - Used in pheochromocytoma
- Phentolamine (reversible)
  - Used to reverse "cheese effect"
  - MAOi drugs block breakdown neurotransmitters (depression)
  - Also block breakdown tyramine
  - Eat cheese (tyramine)  $\rightarrow$  dangerous HTN
- Side Effects: hypotension, reflex tachycardia





#### Alpha Blockers α1 Blockers

- Prazosin, terazosin, doxazosin, tamsulosin
- Used in hypertension, urinary retention BPH



#### Alpha Blockers α2 Blockers

- Mirtazapine
- Depression drug
- Affects serotonin and NE levels in CNS



#### **Beta Blockers**

- β1-selective antagonists
  - Esmolol, Atenolol, Metoprolol
- β1β2 (nonselective)antagonists
  - Propranolol, Timolol, Nadolol
- β1β2α1
  - Carvedilol, Labetalol
- Partial-agonists
  - Pindolol, Acebutolol

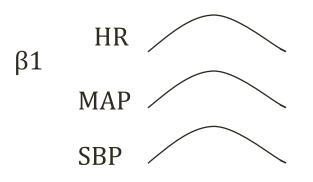


- Unknown drug given
- Heart rate and blood pressure response shown
- Question: Which receptors effected by drug?



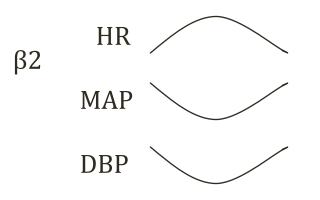


Heart Rate Effects


- $\beta 1 \rightarrow$  tachycardia
- $\beta 2 \rightarrow$  vasodilation  $\rightarrow$  tachycardia (reflex)
- $\alpha 1 \rightarrow$  vasoconstriction  $\rightarrow$  bradycardia (reflex)
- $\alpha 2 \rightarrow \downarrow$  norepinephrine  $\rightarrow$  bradycardia

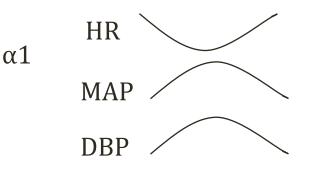


- Systolic blood pressure
  - Primary determinant: cardiac output
- Diastolic blood pressure
  - Primary determinant: peripheral resistance



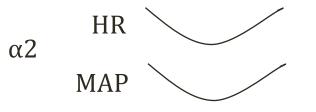

- Beta-1 effects
  - Increased heart rate/contractility
  - Increased cardiac output
- Main effect: systolic pressure goes up
  - Mean blood pressure rises






- Beta-2 effects
  - Vasodilation
  - Main effect: **Diastolic** blood pressure falls
- Overall result: Mean blood pressure will fall
- Reflex tachycardia






- Alpha-1 effects
  - Vasoconstriction
  - Main effect: **Diastolic** blood pressure rises
- Overall result: Mean blood pressure will increase
- Reflex bradycardia






- Alpha-2 effects
  - Blunts sympathetic nervous system
- Heart rate and MAP will fall
- Clonidine/Methyldopa used in hypertension







Peripheral **vasoconstriction** → Reflex bradycardia Peripheral **vasodilation** → Reflex tachycardia

Boards&Beyond.

#### Dobutamine

- Mostly β1
- ↑ cardiac output
- ↑ heart rate
- MAP pressure usually falls
  - ↓ TPR (β2)
  - Limited α1 effects
  - ↑ cardiac output
- Myocyte effect > SA node
- More inotropy than chronotropy

#### CO ↑ HR ↑ MAP↓



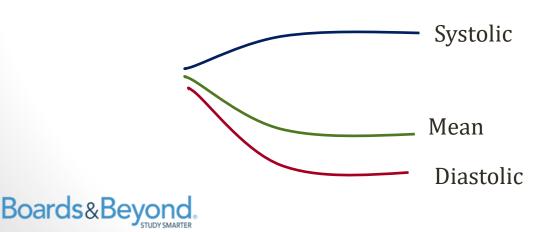
# **Dopamine/Epinephrine**

- β1β2α1
- Effects vary with dose
- $\uparrow$  cardiac output  $\rightarrow$   $\uparrow$  SBP
- 1 heart rate
- ↑ DBP (α1 dose dependent)
- 1 MAP

CO ↑ HR ↑ MAP ↑



### Norepinephrine


- α1β1
- α1 >> β1
- Major effect: Increased TPR
  - Increased DBP and MAP
- Heart rate effects variable
  - Some ↑ HR from β1
  - Some ↓ HR from reflex bradycardia
  - Can see no change in heart rate
- Cardiac output usually goes up from  $\beta 1$ 
  - Rise in SBP





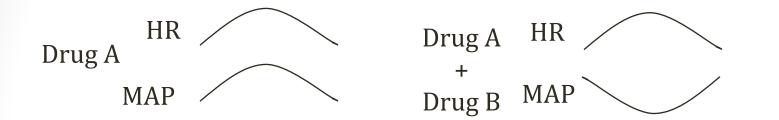
#### Isoproterenol

- β1β2
- $\uparrow$  HR/CO from  $\beta$ 1
- Mean blood pressure will fall
  - Lower diastolic pressure (β2)
  - Reflex tachycardia
- Systolic may rise (β1)
  - Pulse pressure may significantly increase





# Phenylephrine


- α1α2
- Vasoconstrictor (<sup>↑</sup>TPR)
- ↑ DBP and MAP
- Reflex bradycardia
- More afterload  $\rightarrow$  less CO

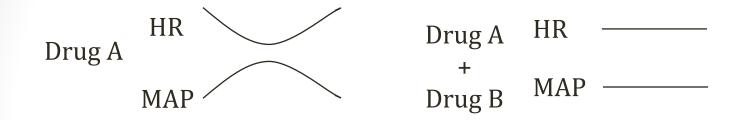
**CO** HR ↓ **MAP**↑↑



#### **Epinephrine Reversal**

Classic Pharmacology Experiment




Drug A = Epinephrine  $\beta 1 \beta 2 \alpha 1$ 

Drug B = Phenoxybenzamine Blocks α1

 $\beta$ 2 effects dominate ( $\downarrow$ BP)



#### Phenylephrine Block



Drug A = Phenylephrine  $\alpha 1$ 

Drug B = Phenoxybenzamine Blocks α1

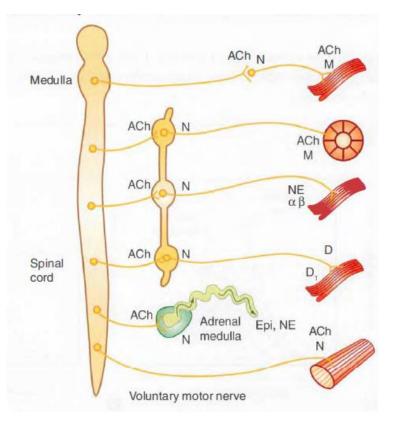


# Autonomic Drugs: Acetylcholine

Jason Ryan, MD, MPH



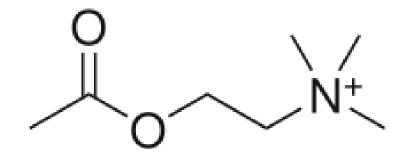
#### Autonomic System


Boards&Beyond



Use with permission, Katzung BG, Basic and Clinical Pharmacology, 10<sup>th</sup> ed. New York, McGraw Hill, 2007

#### **Nicotinic Receptors**


- Activation: Spasm/fasciculations
- Blockade: paralysis





## Vocabulary

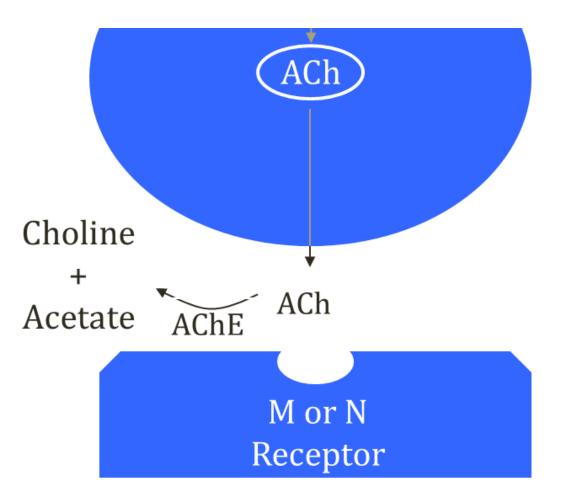
- **Cholinergic** = related to acetylcholine
  - Cholinergic receptors
- Toxidrome = signs/symptoms of poisoning/overdose
- Cholinergic and anti-cholinergic toxidromes



Acetylcholine



# **Cholinergic Toxidrome**


0 || R<sup>1</sup>0 - P - OR<sup>3</sup> R<sup>2</sup>O

- Classic cause: Organophosphates
- Found in pesticides
- Inhibit acetylcholinesterase (AChE)

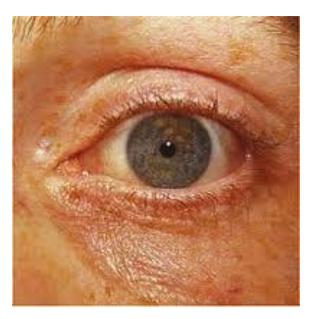




Pixabay/Public Domain






- Increase GI motility
  - Nausea, vomiting, cramps, diarrhea
- Secretory glands
  - Sweating, salivation, lacrimation
- Bladder
  - Detrusor (smooth muscle) contraction: **urination**
- Diarrhea, drooling, incontinence



- Heart
  - Decreased contractility
  - Decreased HR
- Lungs
  - Bronchoconstriction
  - Wheezing, dyspnea, flare of asthma/COPD
- Bradycardia and wheezing



- Eyes: pinpoint pupils
- Muscles: twitching
- CNS receptors: confusion, lethargy, seizures





Public Domain

- DUMBELS
- **D**efecation
- Urination
- Miosis
- Bronchospasm/Bradycardia
- Emesis
- Lacrimation
- **S**alivation



### **Organophosphate** Poisoning

 A 44-year-old <u>farmer</u> presents to the ER with difficulty breathing. There is audible <u>wheezing</u>. He also reports <u>diarrhea</u> and unintentional <u>loss of urine</u>. He appears confused. On exam, he has <u>pinpoint pupils</u>. He is <u>sweaty</u>, <u>drooling</u>, and his <u>eyes are watery</u>. His pulse is 30.

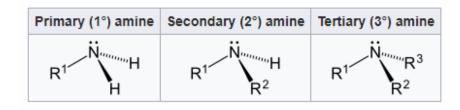




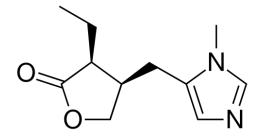
Public Domain

Treatment

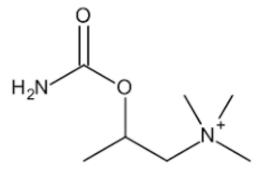
- Atropine Muscarinic antagonist
- Pralidoxime regenerates AChE
  - Cholinergic poisoning antidote
  - Binds AChE
  - Displaces organophosphates




### ACh Receptor Agonists


- Bethanechol
- Carbachol
- Methacholine
- Pilocarpine

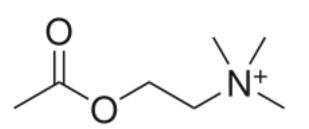



### Amines



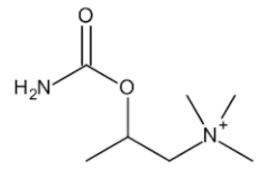
- Tertiary amine
  - Nitrogen with 3 carbon bonds
  - Penetrates blood brain barrier
- Quaternary amines
  - Nitrogen with 4 carbon bonds
  - Cannot cross blood brain barrier




Pilocarpine 3° Amine Boards&Beyond.



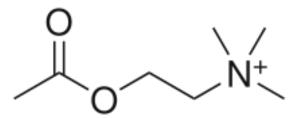
Bethenechol 4° Amine


### Bethanechol

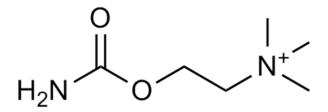
- Similar structure to acetylcholine
- NH<sub>2</sub> group: strong acetylcholinesterase resistance
  - Increases duration of action
- Beta-methyl group: reduced nicotinic activity
- Muscarinic activity only
- Treatment of ileus, urinary retention



Acetylcholine


Boards&Beyond



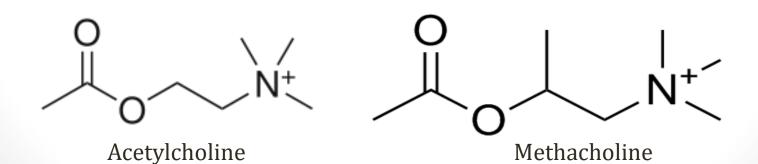

Bethenechol

### Carbachol

- NH<sub>2</sub> group: strong acetylcholinesterase resistance
  - Increases duration of action
- Active at nicotinic and muscarinic receptors
- Used topically for pupillary constriction



Acetylcholine Boards&Beyond.




Carbachol

### Methacholine

- Some acetylcholinesterase resistance
- Beta-methyl group: reduced nicotinic activity
- Asthma diagnosis (inhaled)

Boards&Beyond



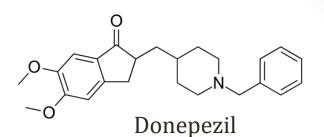
### Pilocarpine

- Stimulates nicotinic and muscarinic receptors
- 3° amine: can cross blood brain barrier
  - May cause seizures
- Glaucoma
- Sjogren's syndrome (dry mouth)
- Sweat test (cystic fibrosis)



### **Cholinesterase Inhibitors**

- ↑ ACh activity muscarinic and nicotinic receptors
- Neostigmine
- Pyridostigmine
- Physostigmine
- Edrophonium
- Donepezil




### **Cholinesterase Inhibitors**

| Drug           | Structure                                                                                                                                                                                                                       | Half Life | Uses                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|
| Neostigmine    | $\begin{array}{c} H_{3}C, \begin{array}{c} CH_{3} \\ H_{3}C \end{array}, \begin{array}{c} CH_{3} \\ H_{3}C \end{array}, \begin{array}{c} CH_{3} \\ H_{3}C \end{array}, \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array}$ | 1-2hrs    | Ileus<br>Myasthenia                             |
| Pyridostigmine |                                                                                                                                                                                                                                 | 3-6hrs    | Myasthenia                                      |
| Physostigmine  |                                                                                                                                                                                                                                 | 1-2hrs    | Anti-cholinergic<br>Toxicity<br>(BBB: 3° amine) |
| Edrophonium    | HONT                                                                                                                                                                                                                            | 5-15min   | Myasthenia<br>Diagnosis                         |



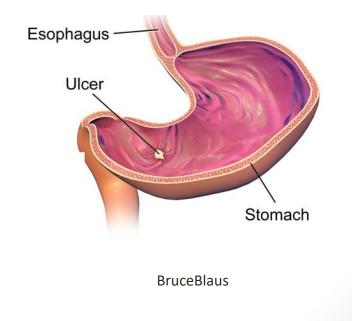
### Donepezil



- Tertiary amine: crosses blood brain barrier
- Selective for CNS synapses
- Treatment for Alzheimer's disease
- Similar drugs: galantamine, rivastigmine



Pixabay/Public Domain



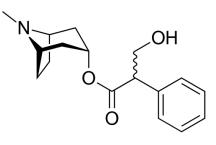

### **COPD** and Peptic Ulcers

- Cholinergic medications may worsen COPD or ulcers
  - ACh agonists and AChE inhibitors
- Bronchoconstriction  $\rightarrow$  COPD flare
- $\uparrow$  gastric acid  $\rightarrow$  ulcers

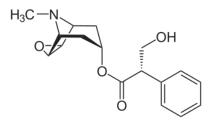


MaxPixel/Public Domain






- Drugs
  - Antihistamines (diphenhydramine)
  - Tricyclic antidepressants (amitriptyline)
  - Atropine
- Plants
  - Jimson weed (Datura stramonium)




### Jimson Weed

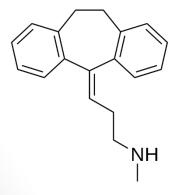
- Contains anticholinergic alkaloids
  - Alkaloid = nitrogenous plant compounds
  - Atropine and Scopolamine

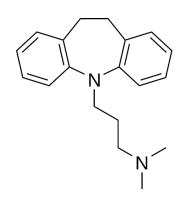


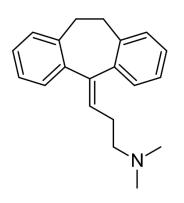
Atropine



Scopolamine


Boards&Beyond





Wikipedia

### **Tricyclic Antidepressants**

- Old antidepressants (1970s)
- "Broad spectrum"
  - Anti-histamine
  - Anti-muscarinic
  - Block alpha-1 receptors
  - Many side effects







Nortriptyline Boards&Beyond.

Imipramine

Amitriptyline

#### • Dry skin

- Blockade of sympathetic sweat glands
- Hyperthermia
  - Loss of sweating

#### Flushing

Reflex vasodilation in response to hyperthermia



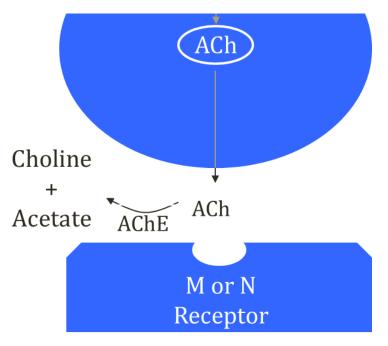


Wikipedia/Public Domain

- **Dry** mouth and eyes
  - No lacrimation, salivation
- Dilated **pupils** (mydriasis)
  - Can trigger acute angle closure glaucoma
- Loss of lens accommodation  $\rightarrow$  blurry vision
- Delirium from blockade of central (CNS) ACh

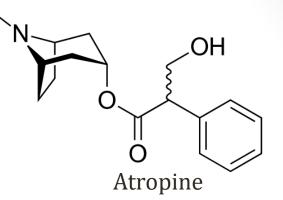





OpenStax College/Wikipedia

- Red as a beet (flushing)
- Dry as a bone (no sweat, tears)
- Blind as a bat (loss of lens accommodation)
- Mad as a hatter (delirium)
- Hot as a hare (loss of sweat)




#### Treatment: physostigmine

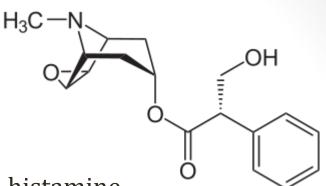
- Acetylcholinesterase (AChE) inhibitor
- Tertiary amine (crosses BBB)
- Increases acetylcholine (ACh) levels





### Atropine




- Classic muscarinic antagonist
- Used for bradycardia
- ACLS algorithm for cardiac arrest
- Overdose causes anticholinergic toxidrome





### Scopolamine

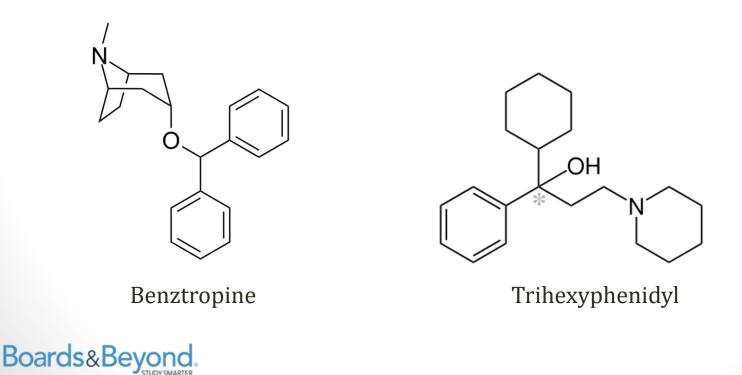
- Treatment for motion sickness
  - CNS over activity of acetylcholine and histamine
  - Leads to nausea/vomiting
- Scopolamine patch  $\rightarrow$  blocks M1 receptors
- Antihistamines: Meclizine, dimenhydrinate
- Side effects:
  - Dry mouth
  - Urinary retention
  - Constipation





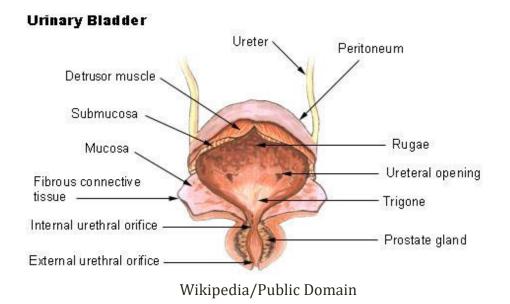
### Mydriasis

- Pupillary dilation for eye exam
- Anticholinergics commonly used
  - Tropicamide
  - Homatropine
  - Cyclopentolate
  - Atropine
  - Scopolamine




OpenStax College/Wikipedia




### Parkinson's Disease

- Disease of CNS dopamine depletion
- Leads to relative excess of ACh activity
- Anticholinergics restore Dopamine: ACh balance



### **Overactive Bladder**

- Cause of **urinary incontinence**
- Anticholinergics inhibit detrusor muscle function
- Oxybutynin
- Solifenacin
- Tolterodine





## Acetylcholine Antagonists

Other Drugs

#### • COPD

- Ipratropium
- Tiotropium

#### Airway secretions (pre-op)

• Glycopyrrolate



MaxPixel/Public Domain



### ACh Synapse Poisoning

- Cholinergic toxidrome (organophosphates)
  - Nicotinic and muscarinic <u>activation</u>
  - Wet: drooling, tears, sweaty
  - Slow: bradycardia
  - Small: pinpoint pupils
- Anticholinergic toxidrome (Jimson weed)
  - Muscarinic <u>blockade</u>
  - Dry: dry mouth, no sweat
  - Dilated: mydriasis



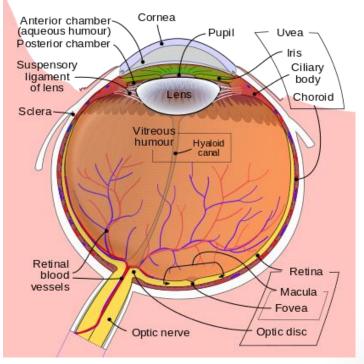
Cholinergic



Anticholinergic




# The Pupil


Jason Ryan, MD, MPH



### The Pupil



Petr Novák, Wikipedia



Wikipedia/Public Domain



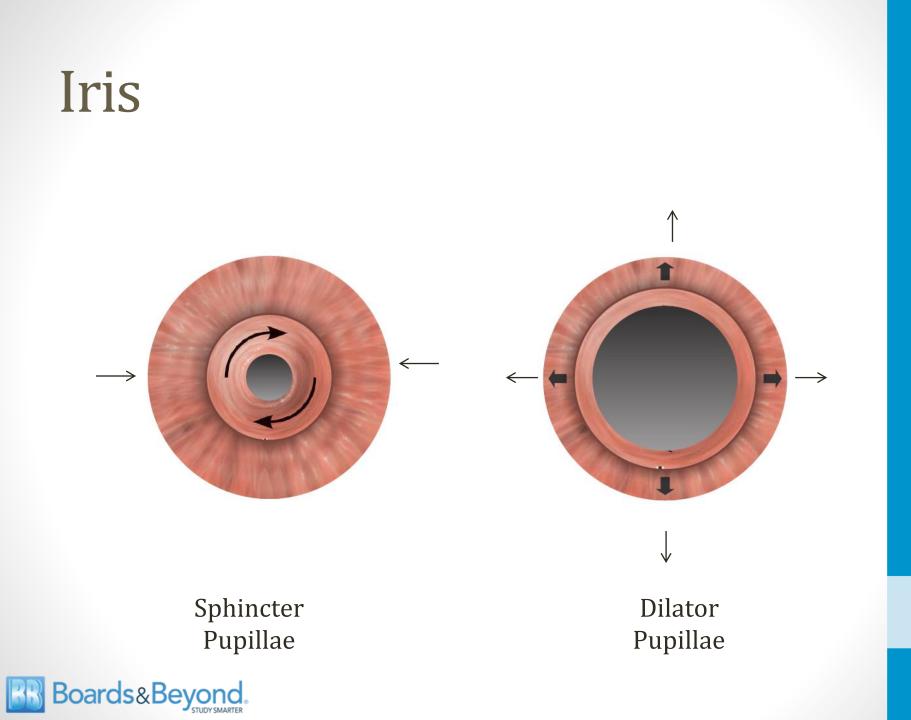
### Pupil

- Controls amount of light entering eye
- Contraction = miosis
- Dilation = mydriasis
- Under autonomic control



Petr Novák, Wikipedia



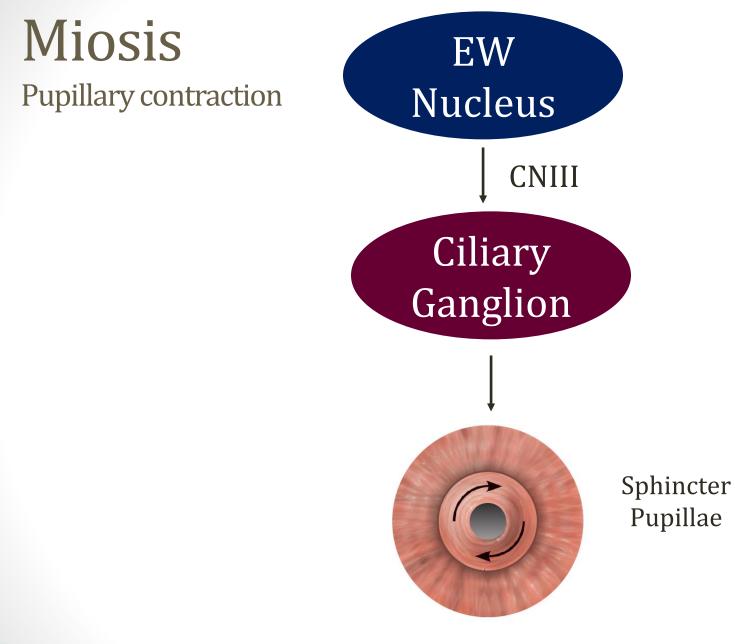

### Iris

- Contractile structure
- Mainly smooth muscle
- Controls size of pupil
- Two muscle groups
- Circular group: sphincter pupillae
- Radial group: dilator pupillae



Petr Novák, Wikipedia






## Miosis

**Pupillary contraction** 

- Parasympathetic control
- Two neuron pathway
- Begins at the Edinger-Westphal nucleus
  - Midbrain: Near oculomotor (CNIII) nucleus
- Nerve fibers enter orbit with cranial nerve III
- Synapse at **ciliary ganglion** (behind the eye)
- Ciliary ganglion signals sphincter pupillae
  - Via the short ciliary nerves
- Muscarinic receptors (ACh)





Boards&Beyond.

## Rule of the Pupil

- Cranial nerve III lesion: eye down and out
- **Pupil dilation**: Parasympathetic nerves impacted
  - Parasympathetic fibers run on outside of nerve
  - Easily compressed by mass (Pcomm aneurysm)
- Absence of pupillary dilation suggests ischemia
  - CNIII ischemic nerve damage common in diabetes
  - Spares superficial fibers to pupil





Wang Y, Wang XH, Tian MM, Xie CJ, Liu Y, Pan QQ, Lu YN

# Adie's Tonic Pupil

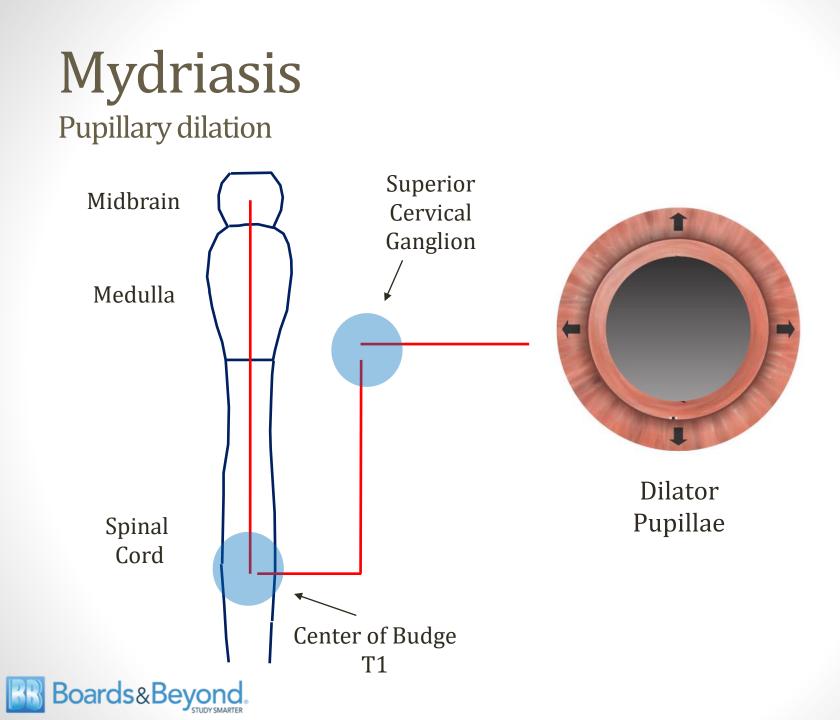
#### Dilated pupil

- Blocked parasympathetic innervation
- Most cases idiopathic
- Can be caused by orbit disorders of ciliary ganglion
- Tumor, inflammation, trauma, surgery, infection



#### Mydriasis Pupillary dilation

#### Sympathetic control


- Activation of dilator pupillae
  - Also inhibition of sphincter pupillae
- Norepinephrine receptors (α1)
- Long, three neuron chain
- Brain to spinal cord back up to eye



#### Mydriasis Pupillary dilation

- #1: Post hypothalamus to spinal cord
  - Ends at ciliospinal centre of Budge (C8-T2)
- #2: Spinal cord to superior cervical ganglion
  - Exit at T1
  - Crosses apical pleura of the lung
  - Travels with cervical sympathetic chain (near subclavian)
- #3: Superior cervical ganglion to dilator pupillae
  - Courses with internal carotid artery
  - Passes through cavernous sinus





## Horner Syndrome

- Disruption of sympathetic chain to face
- Small pupil (miosis)
  - Loss of sympathetic innervation  $\rightarrow$  pupillary contraction
- Eyelid droop (ptosis)
  - Sympathetic system supplies superior tarsal muscle
  - Assists levator palpebrae in raising eyelid
- No sweat (anhidrosis)



## Horner Syndrome

Causes

- Apical lung tumor
- Aortic dissection
- Carotid dissection
- PICA stroke (lateral medullary syndrome)



#### Cocaine

**Diagnostic Test for Horner Syndrome** 

- Blocks reuptake of norepinephrine
- No effect with impaired sympathetic innervation
- Testing: Cocaine applied to eye
- Normal eye: Dilation
- Horner syndrome eye: No dilation



## Anisocoria

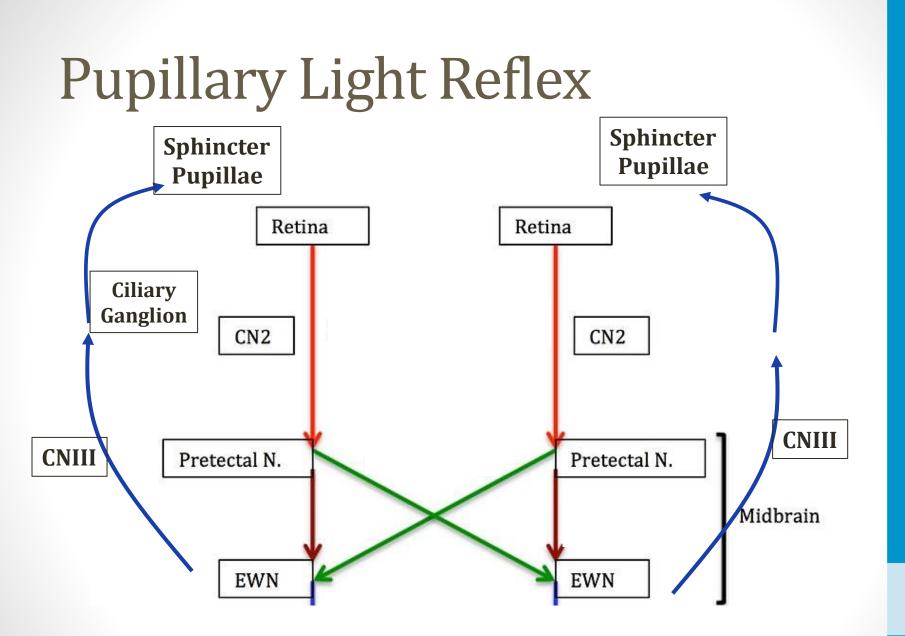
- Difference in pupil sizes
- Seen in Horner syndrome
- CNIII palsy with pupillary involvement
- Adie's pupil





Radomil talk/Wikipedia

## **Pupillary Reflexes**


- 1. Light
- 2. Accommodation



# Pupillary Light Reflex

- Shine light in one eye  $\rightarrow$  both eyes constrict
  - Illuminated eye: direct response
  - Opposite eye: **consensual** response
- Light signals to pretectal nucleus (midbrain)
- Pretectal nucleus to bilateral EW nucleus
- Does not involve cortex purely a reflex of nerves





Boards&Beyond.

Angusng/Wikipedia

## Marcus Gunn Pupil

- Relative afferent pupillary defect (RAPD)
- Light shone in 1 eye produces less constriction
- Diagnosed by the "Swinging Flashlight Test"



# Swinging Flashlight Test

- Shine light in one eye
- Should see bilateral constriction
- Swing light to other eye
- Constriction should remain same
- If constriction less (**dilation**)  $\rightarrow$  APD



Redjar/Flikr



## Marcus Gunn Pupil

- Caused by lesion in "afferent" light reflex limb
  - Problem sensing light appropriately
- Many potential causes: retina, optic nerve
- Classic cause: Optic neuritis
  - Inflammatory, demyelinating disorder
  - Commonly occurs in **multiple sclerosis**



- Changes optical power to focus on near objects
- Ciliary muscle changes shape of lens
- Associated with miosis (pupillary constriction)



## **Accommodation Reflex**

- #1 Convergence:
  - Eyes move medially to track object
- #2 Accommodation
  - Shape of lens changes
  - Focal point maintained on retina
- #3 Miosis
  - Pupil constricts
  - Block entry of divergent light rays from near object
- Complex reflex circuit: involves visual cortex



## Argyll Robertson Pupil

- Strongly associated with neurosyphilis (tertiary)
- Bilateral, small pupils
- No constriction to light
- Constriction to accommodation
- "Light-near dissociation"
- Believed to involve pretectal nucleus
  - Part of light reflex; not part of accommodation reflex

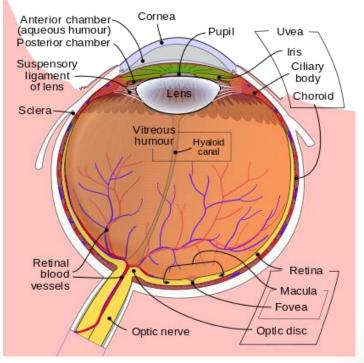


#### PERRLA

- Documentation of normal pupil exam
- Pupils equal, round, reactive to light and accommodation




# The Lens

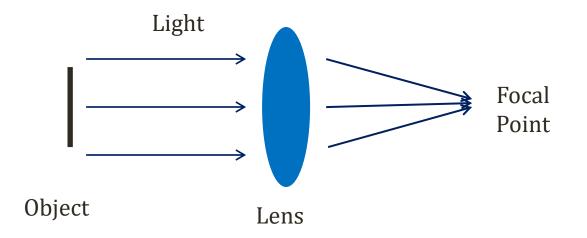

Jason Ryan, MD, MPH



#### The Lens



Petr Novák, Wikipedia




Wikipedia/Public Domain

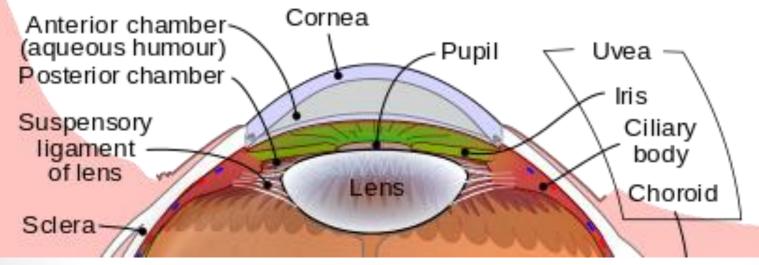


### How Lenses Work

Refraction



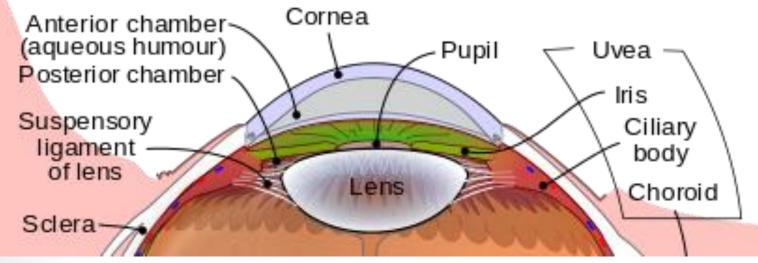
Most refraction performed by **cornea (fixed)** Some performed by **lens (adjustable)** 




## The Lens

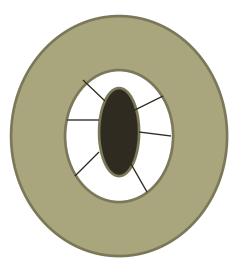
- Surrounded by a capsule with **type IV collagen**
- Avascular
  - Nutrients via diffusion
- Contains elongated fiber cells
- Anaerobic metabolism
  - Principle source of energy production
  - Glucose  $\rightarrow$  lactic acid

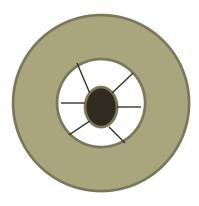



- Lens modifies shape to focus on near objects
- Lens changes optical power of eye



Boards&Beyond.


Jmarchn/Wikipedia

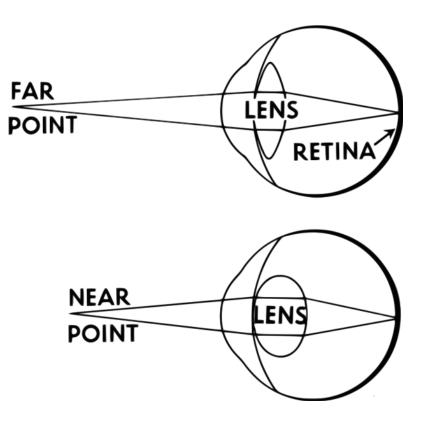

- Ciliary muscle: Smooth muscle within ciliary body
- Changes shape of lens
- Circular muscle surrounds lens
- Connected to lens by ligaments (zonules)



Boards&Beyond

Jmarchn/Wikipedia






Rest State Ciliary muscles **relaxed** Zonules pulled tight **Lens flattens** Focus on far objects Accommodation Ciliary muscles **contract** Zonules relax **Lens rounds** Focus on near objects



## Lens of the Eye

- Far objects
  - Ciliary relax
  - Lens flatter
- Near objects
  - Ciliary contract
  - Lens rounder





## Presbyopia

- Lens stiffens with age
- Can't focus on near objects (reading)





Eric Chan/Flikr

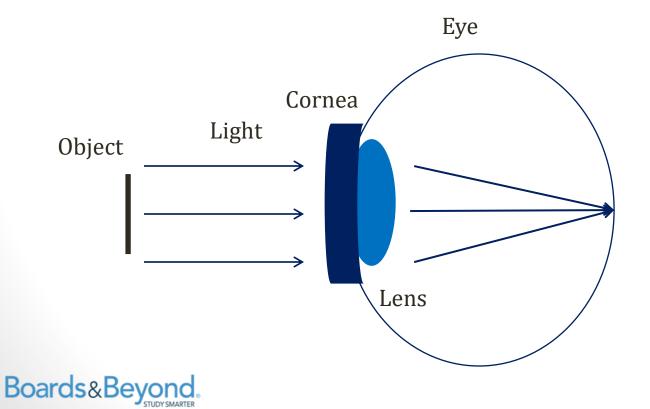
## **Accommodation Reflex**

- 3 reflex responses as object moves closer to eye
- #1 Convergence:
  - Eyes move medially to track object
- #2 Miosis
  - Pupil constricts
  - Block entry of divergent light rays from near object
- #3 Accommodation
  - Shape of lens changes
  - Focal point maintained on retina

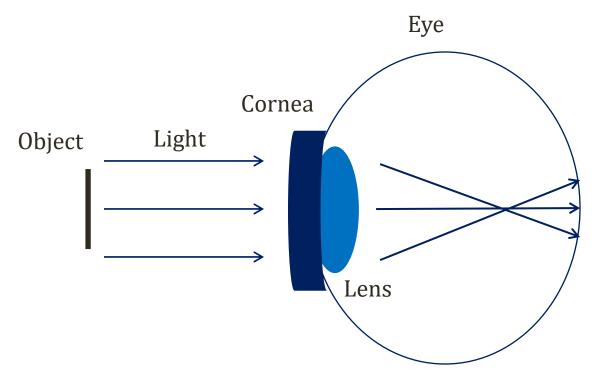


### **Refractive Errors**

- Impaired vision due to abnormal focal point of eye
- Improved with glasses or contact lenses



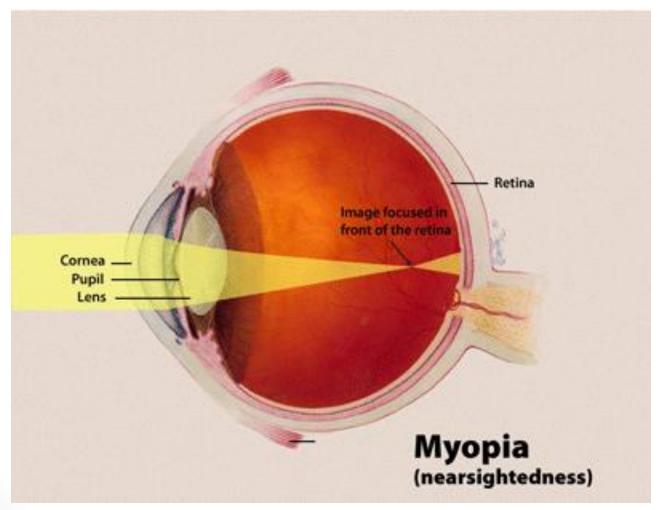

PublicDomainImages




#### **Refractive Errors**

- Corneal curvature must match eye size
- Failure to match = refractive error

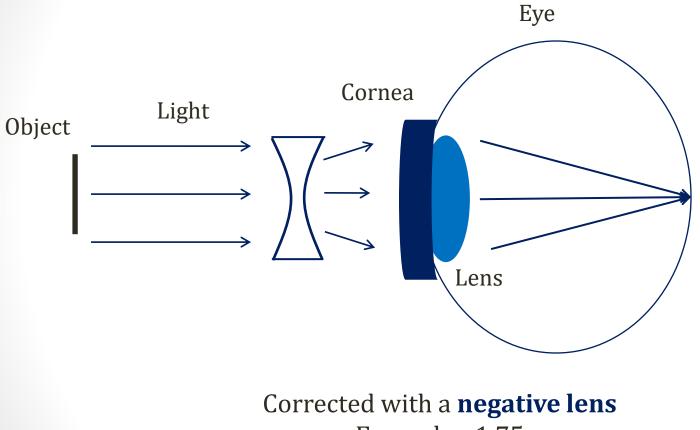



#### Myopia Nearsightedness



Focal point is in front of retina **Eye too long** or **cornea has too much curvature** Can't focus on far objects (nearsighted)

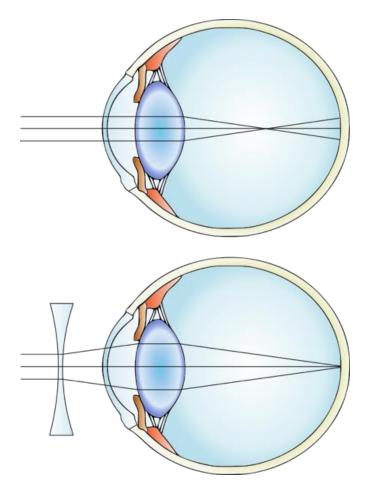



#### Myopia Nearsightedness



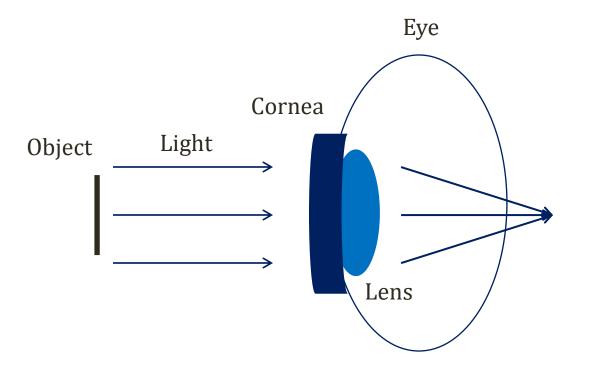


Wikipedia/Public Domain


#### Myopia Nearsightedness

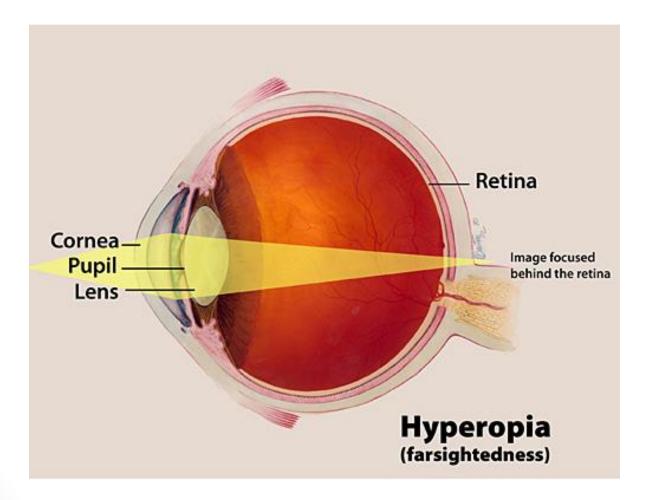


Example: -1.75



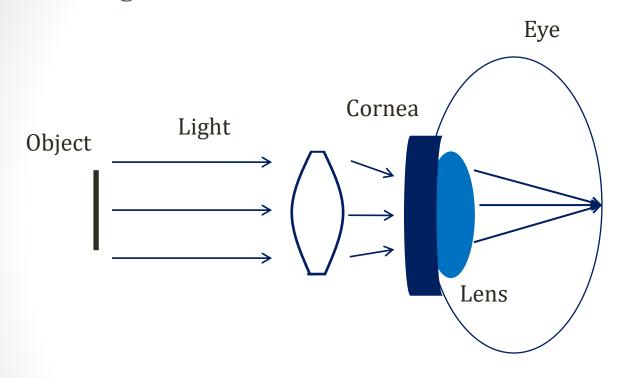

#### Myopia Nearsightedness




Gumenyuk I.S./Wikipedia

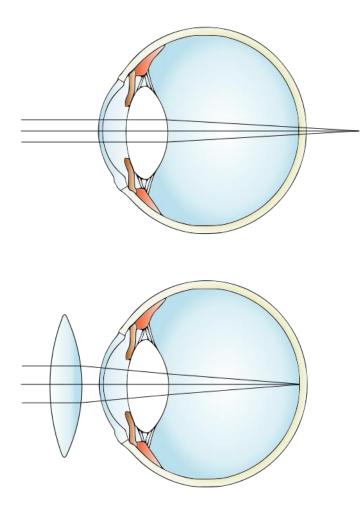





Focal point is behind retina **Eye too short** or **cornea has too little curvature** Can't focus on near objects (farsighted)



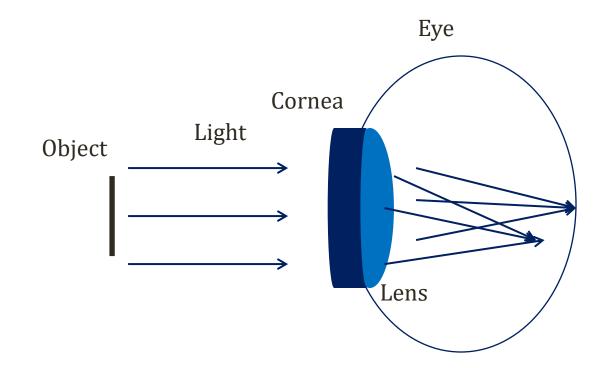





Wikipedia/Public Domain



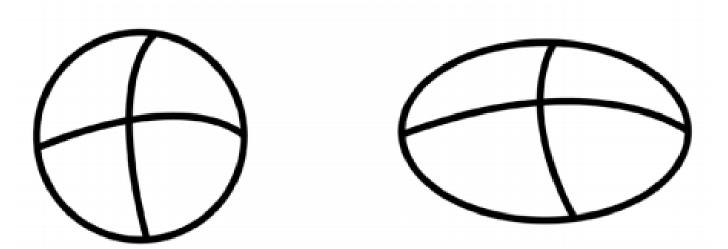
#### Corrected with a **positive lens** Example: +1.50






Boards&Beyond.

<u>Гуменюк И.С.</u> /Wikipedia


### Astigmatism



#### Uneven curvature of **cornea** Multiple focal points Objects blurry



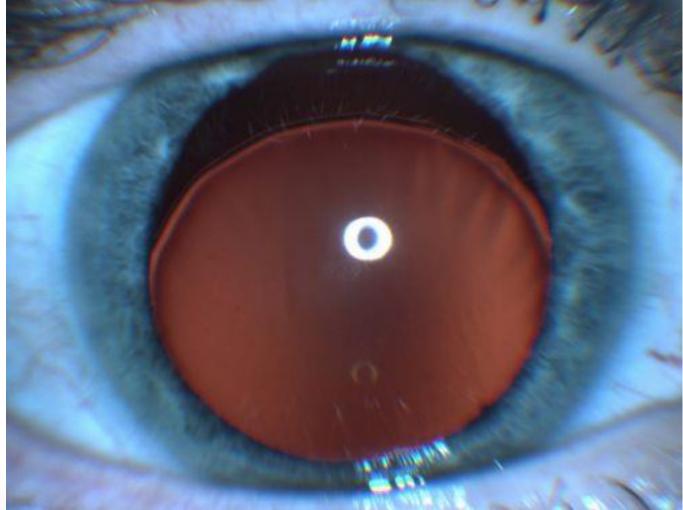
### Astigmatism



Normal Cornea

Astigmatism

Corrected with lenses or surgery




### Ectopia Lentis

- Dislocation of lens
- Commonly due to trauma
- Rarely associated with systemic disease
- Can occur as ocular manifestation of systemic disease



#### Ectopia Lentis





**Retina Gallery** 

### **Ectopia Lentis**

#### Marfan Syndrome

- Most commonly associated systemic condition
- Autosomal dominant disorder; fibrillin defect
- Tall, long wing span
- 50-80% of cases have lens dislocation
- Classically upward/outward lens dislocation

#### Homocystinuria

- **Cystathionine β synthase** deficiency
- Markedly elevated homocysteine levels
- Marfanoid body habitus
- Mental retardation
- Classically downward/inward lens dislocation



#### Cataracts

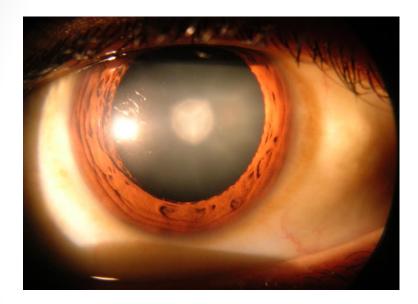
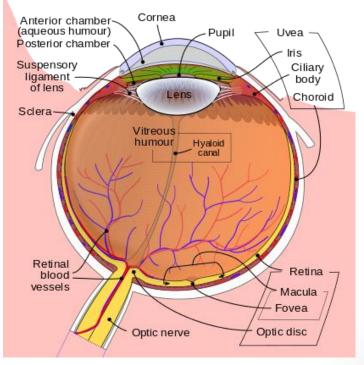




Image courtesy of Rakesh Ahuja, MD



Wikipedia/Public Domain



#### Cataracts

- Opacification of lens
- Painless
- Lead to  $\downarrow$  vision
- Treated with surgery

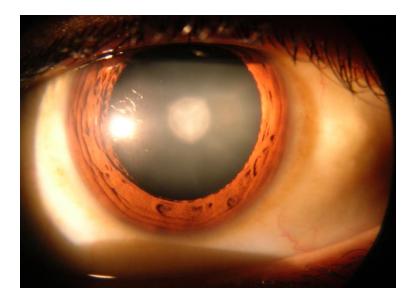
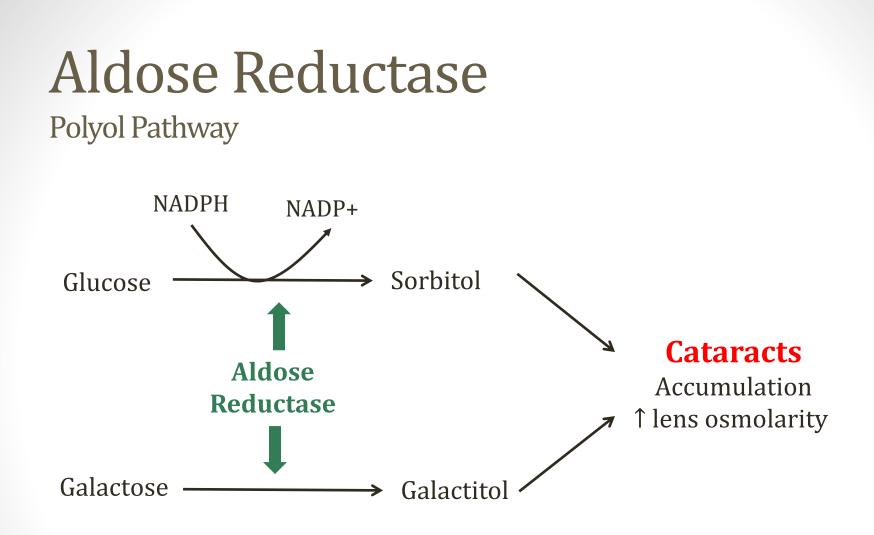



Image courtesy of Rakesh Ahuja, MD

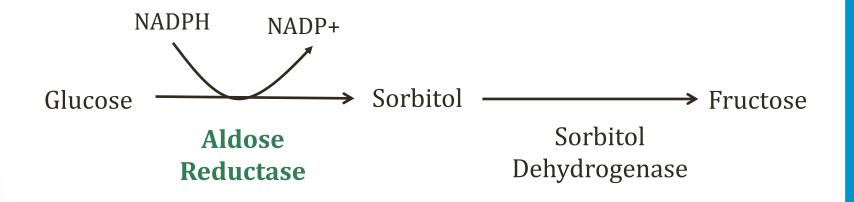



#### Cataracts

**Risk Factors** 

- Older age
- Smoking
- Alcohol
- Excessive sunlight
- Corticosteroids
- Trauma, infection







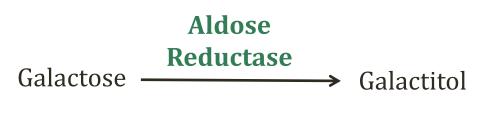



**Cataract Risk Factor** 

• Glucose can be metabolized to **sorbitol** in lens






#### **Galactose** Disorders

- Classic Galactosemia
  - Presents in infancy
  - Live failure
  - Cataracts
- Galactokinase deficiency
  - Milder form of galactosemia



Wikipedia/Public Domain

• Main problem: cataracts as child/young adult





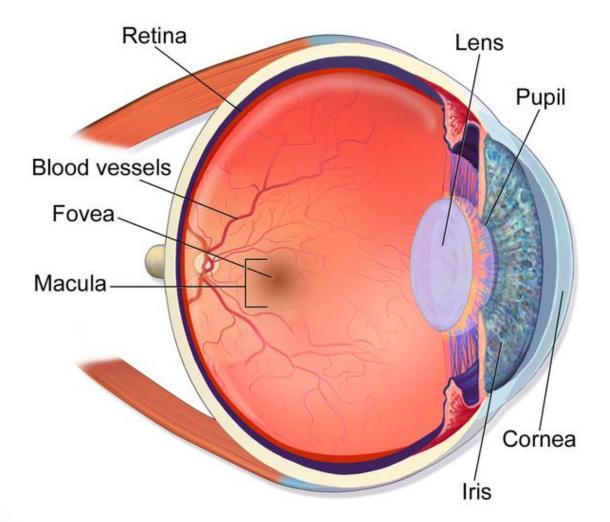
#### **TORCH Infections**

- Can lead to cataracts
- Classically part of congenital rubella syndrome
  - Deafness
  - Cardiac malformations
  - "Blueberry muffin" skin (extramedullary hematopoiesis)



# The Retina

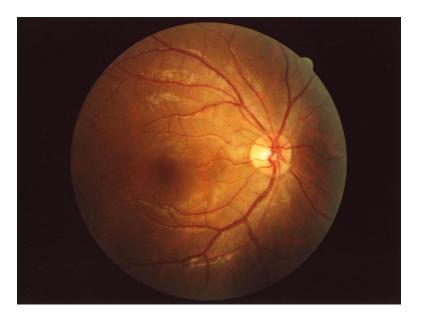
Jason Ryan, MD, MPH




### **Retina and Macula**

- Retina
  - Inner layer of eye
  - Contain photosensitive cells: rods and cones
  - Major blood supply via choroid
- Macula
  - Oval-shaped area near center of retina
  - Contains fovea (largest amount of cone cells)
  - High-resolution, color vision
- Both structures essential for normal vision




#### **Retina and Macula**



Boards & Beyond. Blausen.com staff. "Blausen gallery 2014". Wikiversity Journal of Medicine.

### Fundoscopy

- Fundus = back of eye opposite lens
- Includes retina, optic disc, macula
- "Fundoscopy" = visual examination of fundus



Boards&Beyond.

Ignis/Wikipedia

### **Retinitis Pigmentosa**

- Inherited retinal disorder
- Visual loss usually begins in childhood
- Loss of photoreceptors (rods and cones)
- Night and peripheral vision lost progressively
- Constricted visual field
- No cure most patients legal blind by age 40



## Retinitis Pigmentosa

#### Fundoscopy

- Intraretinal pigmentation in a bone-spicule pattern
- Form in retina where photoreceptors are missing





Christian Hamel

#### Retinitis

- Retinal edema/necrosis
- Floaters,  $\downarrow$  vision
- Classic cause: Cytomegalovirus (CMV)
- Usually in **HIV/AIDS** (low CD4 <50)
- Also in transplant patients on immunosuppression



#### Retinitis

#### Fundoscopy

- Retinal hemorrhages
- Whitish appearance to retina





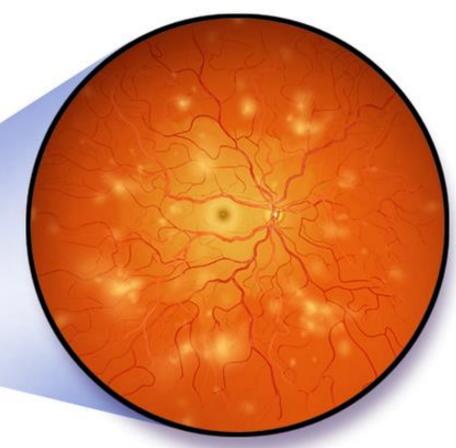
Wikipedia/Public Domain

- Can cause blindness among diabetics
- Pericyte degeneration
  - Cells that wrap capillaries
  - Microaneurysms
  - Rupture → hemorrhage
- Annual screening for prevention



Nonproliferative retinopathy

- Most common form of diabetic retinopathy (95%)
- "Background retinopathy"




Nonproliferative retinopathy

- Microaneurysms (earliest sign)
- "Dot-and-blot hemorrhages"
  - Damaged capillary  $\rightarrow$  leakage of fluid
- Cotton-wool spots
  - Nerve infarctions
  - Occlusion of precapillary arterioles
  - Also seen in hypertension



#### Nonproliferative retinopathy



"Blausen gallery 2014" Wikiversity Journal of Medicine.



Nonproliferative retinopathy

- Hard exudates/macular edema
  - Macular swelling
  - Yellow exudates of fatty lipids
  - Can lead to blindness in diabetics



National Eye Institute, National Institutes of Health Public Domain




Proliferative retinopathy

- Vessel proliferation ("proliferative retinopathy")
  - Retinal **ischemia**  $\rightarrow$  new vessel growth
  - "Neovascularization"
  - Abnormal vessels: friable, grow on surface of retina
  - Can lead to retinal detachment
  - Can cause macular edema  $\rightarrow$  blindness



Proliferative retinopathy





Wikipedia/Public Domain

Proliferative retinopathy

- Treatments:
  - Photocoagulation (laser  $\rightarrow$  stops vessel growth)
  - Vitrectomy (bleeding/debris)
  - Anti-VEGF inhibitors (intravitreal injections; ranibizumab)



#### **Retinal Detachment**

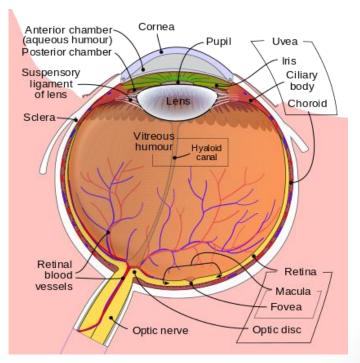
- Retina peels away from underlying layer
- Loss of connection to choroid  $\rightarrow$  ischemia
- Photoreceptors (rods/cones) degenerate
- Vision loss (curtain drawn down)
- Surgical emergency



#### **Retinal Detachment**

#### Fundoscopy




Eyerounds.org; Elliott Sohn, MD Used with Permission

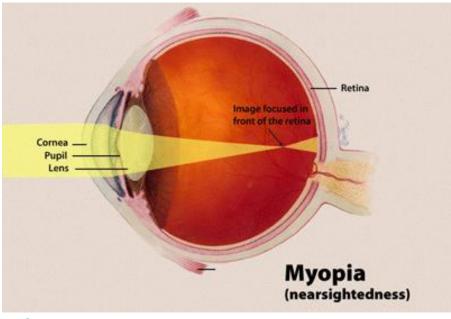


#### **Retinal Detachment**

#### Posterior vitreous membrane detachment

- Often precedes retinal detachment
- Vitreous shrinks with age  $\rightarrow$  can pull on retina
- May cause retinal holes/tears
- Floaters (black spots)
- Flashes of light



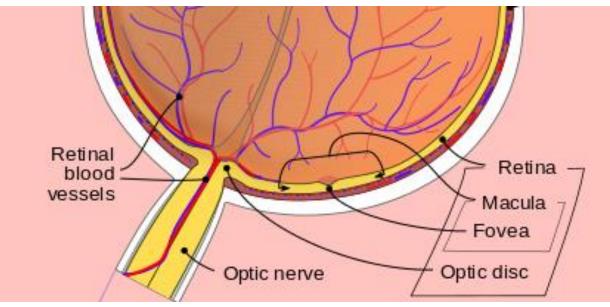



Wikipedia/Public Domain

# **Retinal Detachment**

**Risk Factors** 

- Myopia (near-sightedness)
  - Larger eyes; thinner retinas
- Prior eye surgery or trauma
- Proliferative diabetic retinopathy






Wikipedia/Public Domain

# **Retinal Vein Occlusion**

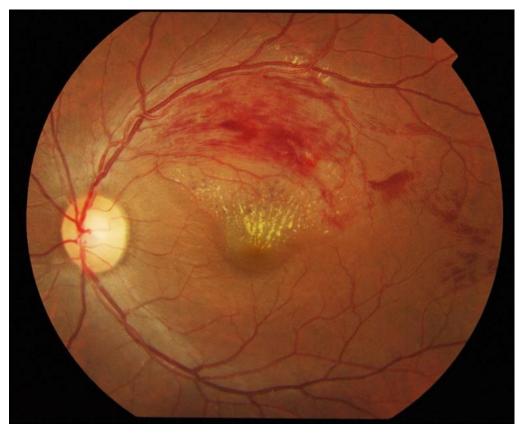
- Central or branch of retinal vein
- Can lead to visual loss



Wikipedia/Public Domain



## **Retinal Vein Occlusion**

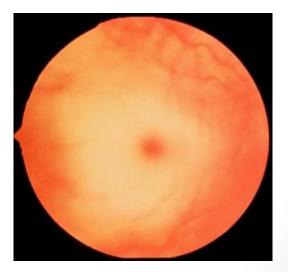

- Branch retinal vein occlusion (BRVO)
  - Compression of the branch vein by retinal arterioles
  - Occurs at arteriovenous crossing points
  - Associated with arteriosclerosis
  - Sclerotic arterioles compress veins in an arteriovenous sheath
- Central retinal vein occlusion (CRVO)
  - Usually a primary thrombus disorder



# **Retinal Vein Occlusion**

#### Fundoscopy

• Engorged retinal veins and hemorrhages

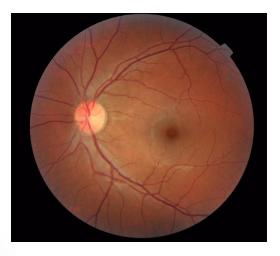



Ku C Yong/Wikipedia



## **Retinal Artery Occlusion**

- Leads to formation of a "cherry red spot"
  - Red circular area of macula surrounded by halo
  - Also seen in Tay Sachs Disease (lysosomal storage disease)
- Commonly caused by carotid artery atherosclerosis
  - Internal carotid  $\rightarrow$  ophthalmic  $\rightarrow$  retinal
- Cardiac source (thrombus)
- Giant cell arteritis




Jonathan Trobe, M.D./Wikipedia



# Papilledema

- Optic disc swelling
- Due to ↑ intracranial pressure
  - i.e. mass effect
- Usually bilateral
- Blurred margins optic disc on fundoscopy



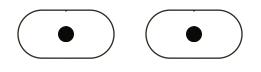





Warfieldian/OptometrusPrime

## Macula




BruceBlaus/Wikipedia



Mikael Häggström/Wikipedia



- Macula = central vision
- Degeneration  $\rightarrow$  visual disruption
  - Distortion (metamorphopsia)
  - Loss of central vision (central scotomas)









National Eye Institute, National Institutes of Health



#### • Dry

- More common (80%)
- Slowly progressive symptoms
- Wet
  - Less common (10-15%)
  - Symptoms may develop rapidly (days/weeks)



#### Bruch's membrane

- Innermost layer of the choroid
- Beneath retina

#### Retinal pigment epithelium

- Retina layer beneath photoreceptors
- Next to choroid (Bruch's membrane)



- Accumulation of drusen
  - Yellow extracellular material
  - Form between Bruch's membrane and RPE
- Gradual ↓ in vision
- No specific treatment
- Vitamins and antioxidant supplements may prevent



#### Drusen



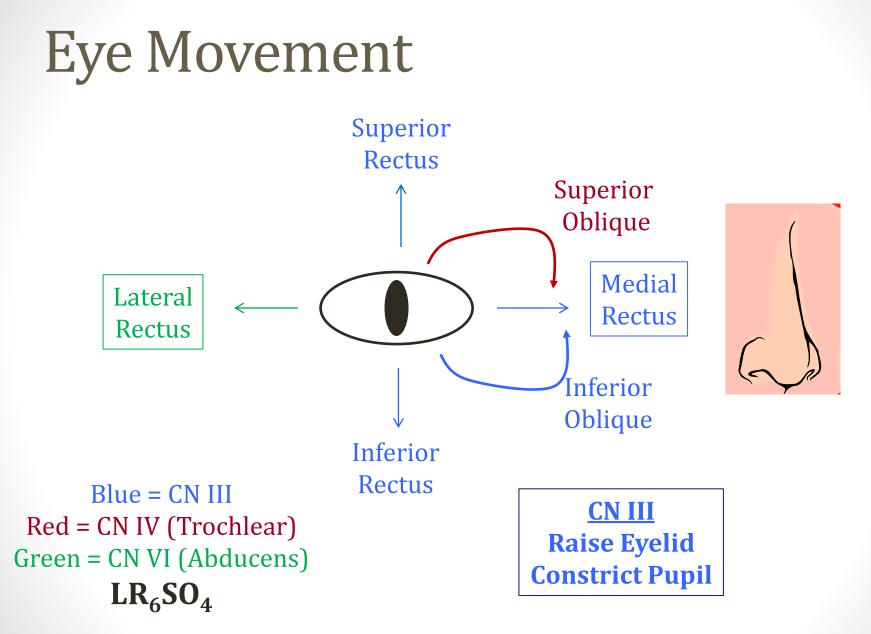


Image courtesy of Ipoliker

- Break in Bruch's membrane
- Blood vessels form beneath retina
- Leakage/hemorrhage
- Can progress rapidly to vision loss
- Treatments:
  - Laser therapy
  - Anti-VEGF (ranibizumab)








National Eye Institute, National Institutes of Health

# Eye Movements

Jason Ryan, MD, MPH







# **Eye Nerve Palsies**

- Oculomotor (III)
- Trochlear (IV)
- Abducens (VI)
- Many causes: strokes, tumors, aneurysms



# Terminology

- Move eye away from nose
  - Lateral
  - Abduction
- Move eye toward nose
  - Medial
  - Adduction



# Diplopia

- Two different images of same object
- Diplopia due to nerve palsies is binocular
  - Resolves when one eye is covered
  - Monocular diplopia: usually lens problem (astigmatism)



Jonathan Trobe, M.D./Wikipedia



# Oculomotor (III)

- Moves eye up and medially
  - Up (superior rectus)
  - Medial (medial rectus)
- Elevates eyelid (levator palpebrae)
- Pupillary constriction (sphincter pupillae)
  - Parasympathetic fibers from Edinger-Westphal nucleus



## **Oculomotor Nerve Palsy**

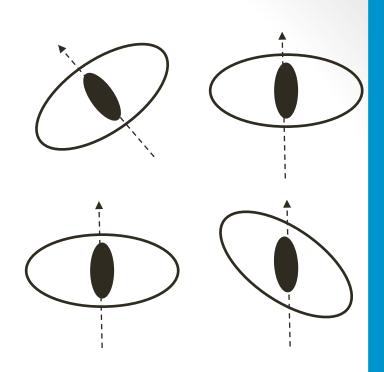
- Effected side
  - Eye down, out
  - Ptosis (eyelid droop)
  - Pupil dilated





# Rule of the Pupil

- Cranial nerve III lesion: eye down and out
- **Pupil dilation**: Parasympathetic nerves impacted
  - Parasympathetic fibers run on outside of nerve
  - Easily compressed by mass (Pcomm aneurysm)
- Absence of pupillary dilation suggests ischemia
  - CNIII ischemic nerve damage common in diabetes
  - Spares superficial fibers to pupil

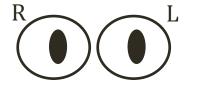





Wang Y, Wang XH, Tian MM, Xie CJ, Liu Y, Pan QQ, Lu YN

# Trochlear (IV)

- Superior oblique
  - Turns eye down; intorsion
  - Reading/stairs
- Palsy symptoms
  - Diplopia
  - Eye tilted outward
  - Unable to look down/in (stairs, reading)
  - Head tilting away from affected side (to compensate)






# Abducens (VI)

- Lateral rectus
- Affected eye may be pulled medially at rest
- Problems worse on horizontal gaze
- Affected eye can't move laterally

Right VI Lesion



Right Gaze

Rest



# Estropia

- Type of strabismus (misalignment of the eyes)
- Inward turning of one or both eyes
- Can be seen in CN VI palsy



Kakawere/Wikipedia



#### Pseudotumor Cerebri

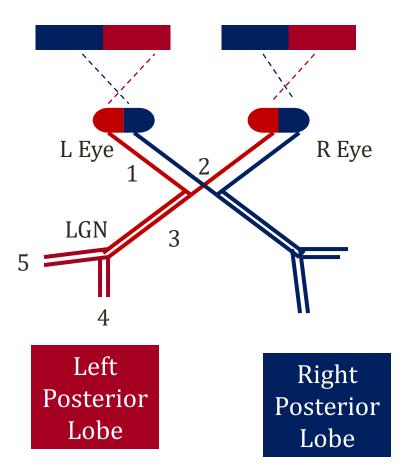
- High intracranial pressure (ICP) can cause CN VI palsy
- Nerve course highly susceptible to pressure forces
- Sometimes bilateral palsy
- May see papilledema on fundoscopy
- Classic patient:
  - Overweight woman
  - Childbearing age
  - Headaches



# Visual Fields

Jason Ryan, MD, MPH



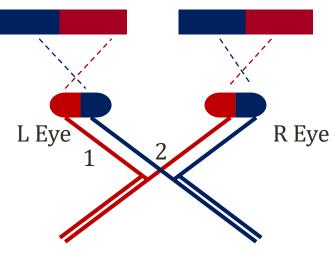

### Visual Fields

- Divided into four quadrants for each eye
- Quadrants tested individually



### Visual System

- 1. Optic Nerve
- 2. Optic Chiasm
- 3. Optic Track
- 4. Baum's Loop
- 5. Meyer's Loop

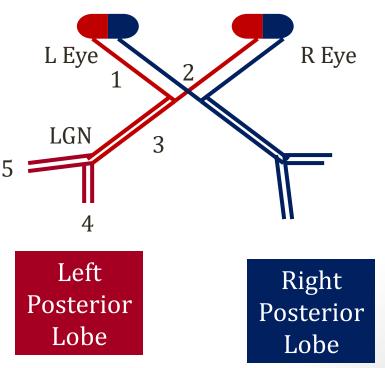





# Visual System

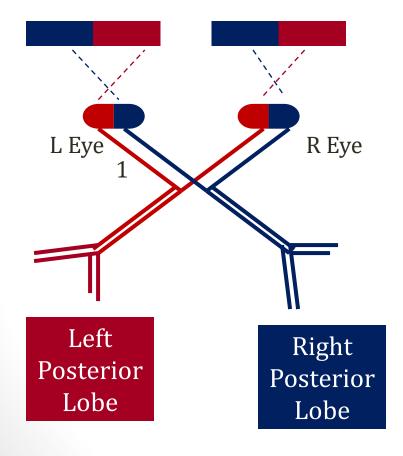
**Key Points** 

- Left side of world  $\rightarrow$  right cortex
- Right side of world  $\rightarrow$  left cortex
- Optic nerve carries signals from right/left retina
- Optic chiasm
  - Crossing of fibers from middle of both retina
  - Carrying signals from lateral (temporal) images






# Visual System


**Key Points** 

- Lateral geniculate nucleus
  - Found in thalamus
  - Major termination site of retinal projections
- Two projections LGN  $\rightarrow$  visual cortex
  - Meyer's loop (temporal lobe)
  - Baum's loop (parietal lobe)





# Anopia





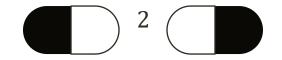
Left Optic Nerve Compression Left Retinal Lesion



# **Optic Neuritis**

- Inflammatory, demyelinating disease
- Acute monocular visual loss
- Highly associated with MS
  - Presenting feature 15 to 20%
  - Occurs 50% during course of illness




# Amaurosis Fugax

- Painless, transient vision loss in one eye
- Classic description: curtain shade over vision
- Damage to optic nerve or retina
- Symptom of TIA
- Often embolism to retinal artery
- Common source is carotid artery



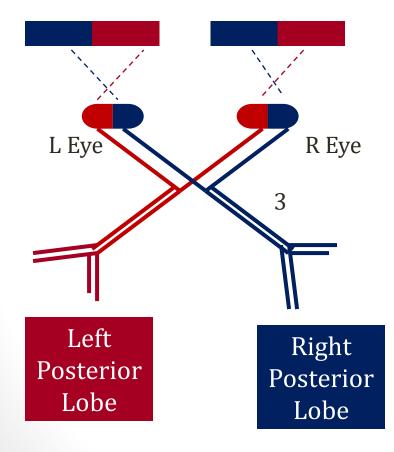
#### **Bitemporal Hemianopsia**





#### **Optic Chiasm Compression Pituitary Tumor/Aneurysm**




#### **Bitemporal Hemianopsia**





Nunh-huh /Wikipedia

#### Homonymous Hemianopsia



Boards&Beyond



Left PCA Stroke Left **Optic Tract** Lesion Right visual loss

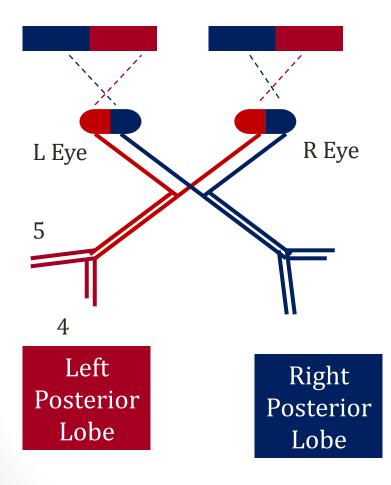


Right PCA Stroke Right **Optic Tract** Lesion Left visual loss

#### Homonymous Hemianopsia



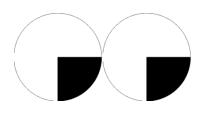
Nunh-huh /Wikipedia




#### **Macular Sparing**

- Macula: central, high-resolution vision
- Often a **dual blood supply**: MCA and PCA
- PCA strokes often spare the macula




#### Quadrantic Anopia



Boards&Beyond

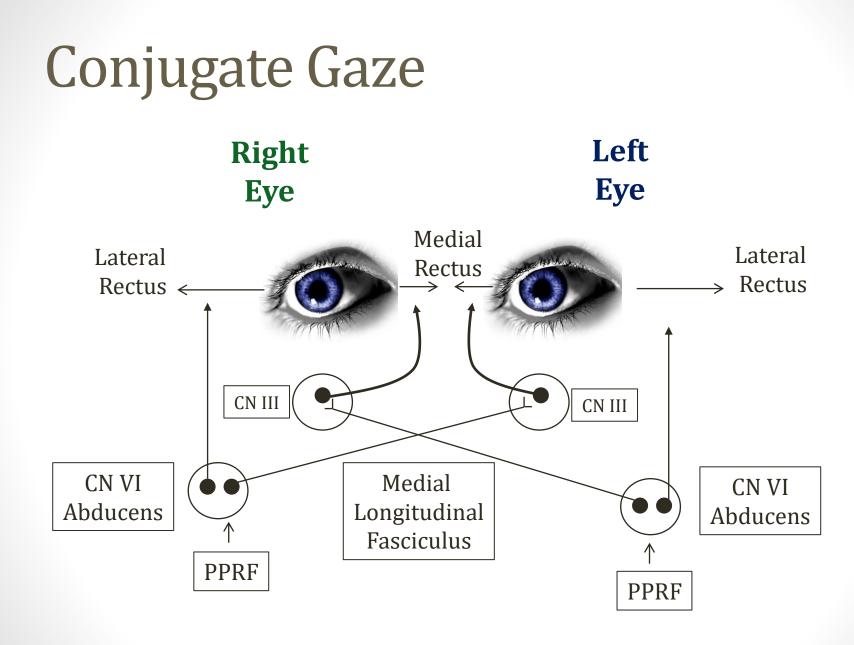


5 Meyer's Loop Temporal Lobe "Pie in the sky" Temporal lobe damage

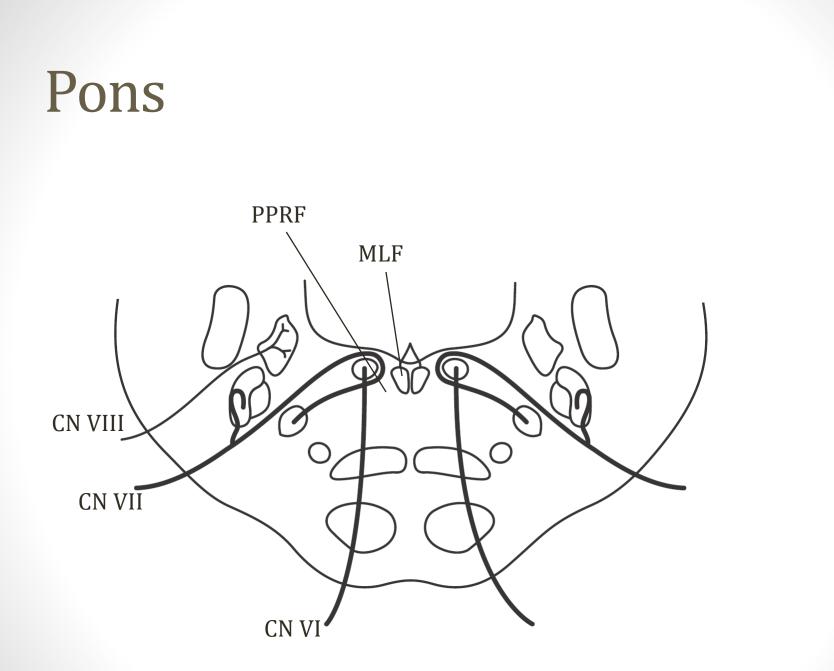


4 Baum's Loop Parietal Lobe "Pie in the floor" Parietal lobe damage

## **Gaze Palsies**


Jason Ryan, MD, MPH




#### **Conjugate Gaze**

- Movement of both eyes at same time
- Looking right or left with both eyes
- Tracking objects
- Conjugate gaze palsy
  - Eyes cannot move in same direction
  - Results in diplopia







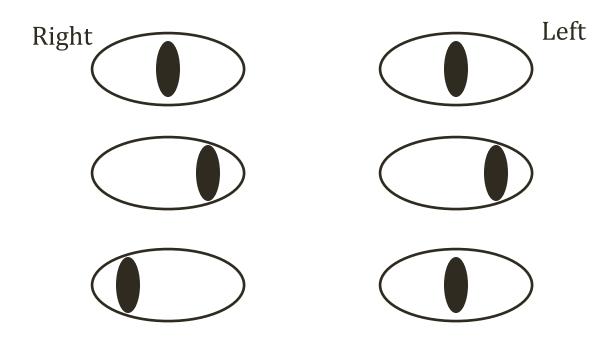




### **Conjugate Gaze**

#### Summary

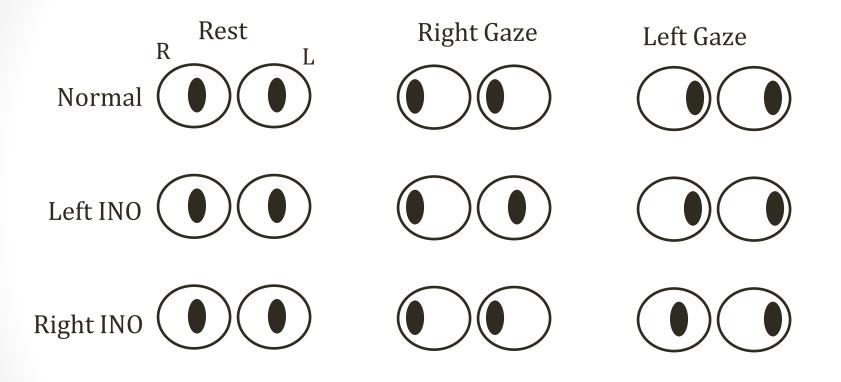
- Paramedian pontine reticular formation
  - Initiates lateral gaze from brainstem
  - Located in pons
- Medial longitudinal fasciculus
  - Signal transmission to opposite side
- Requires functioning CN III and CN VI




### Internuclear Ophthalmoplegia

- Horizontal gaze disorder
- Weak adduction (medial movement) of one eye
- Affected eye cannot move toward nose
- Unaffected eye develops nystagmus
- Caused by lesions of the MLF
- Convergence is usually spared
  - Different neural pathway
  - CN III working normally

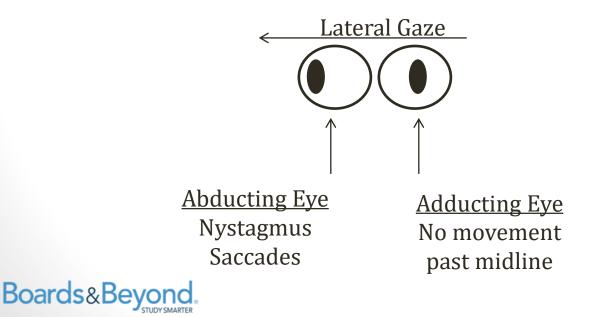



#### Internuclear Ophthalmoplegia Example: Left INO



Need MLF to move eye medially when other eye goes lateral Side that cannot go medial is side with MLF lesion Problem looking right = left MLF lesion



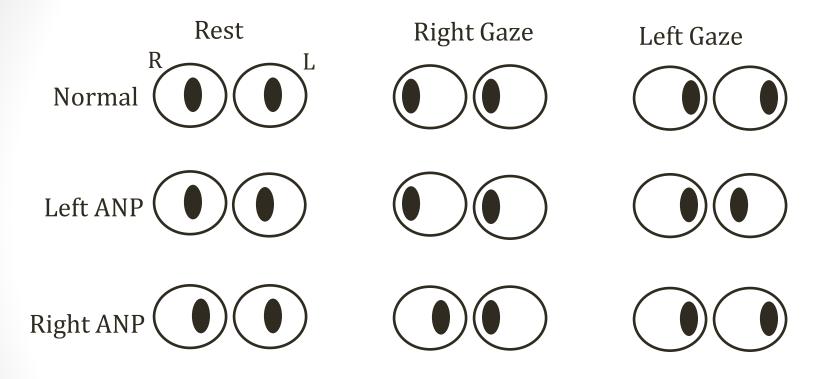

#### Internuclear Ophthalmoplegia





#### MLF Syndrome

- Lost MLF input to oculomotor nucleus on lateral gaze
- Adducting eye unable to move medially past midline
- Abducting eye: Monocular horizontal nystagmus
  - Abducting eye moves smoothly laterally
  - Followed by rapid movement back to midline (saccade)

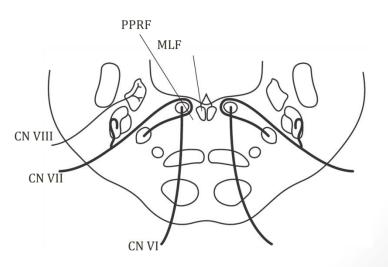



#### **MLF Syndrome**

- Commonly occurs in **multiple sclerosis**
- MLF is highly myelinated



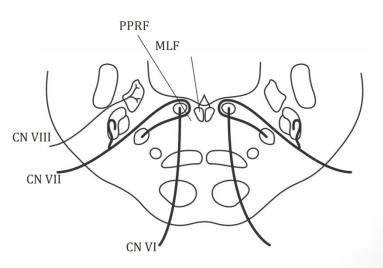
#### Abducens (VI) Nerve Palsy




Look at the eye that is stuck Trying to move medial or lateral? If medial  $\rightarrow$  INO If lateral  $\rightarrow$  CNVI Palsy



#### **PPRF** Lesions


- Ipsilateral Gaze Palsy
- Paralysis of conjugate gaze to side of lesion
  - Can't look to side of lesion
  - Left PPRF coordinates leftward gaze
- Preservation of convergence
- Medial pons lesions



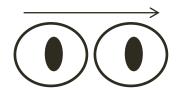


#### Abducens (VI) Nucleus Lesion

- Same as PPRF lesion
- Loss of lateral gaze



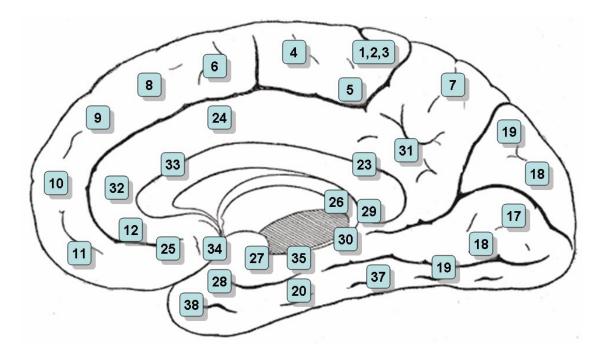



#### One and a Half Syndrome

- Damage to PPRF and MLF
- INO plus loss of lateral gaze to affected side
- Convergence spared
- Side with frozen eye has lesion

Look Right INO Damage Left MLF

Left One-and-a-Half Syndrome

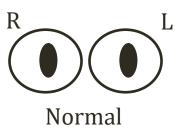

Look Left Conj Gaze Palsy Damage Left PPRF





#### Frontal Eye Fields

- Region of **frontal cortex** (Brodmann area 8)
- Projections to contralateral PPRF




Wikipedia/Public Domain



#### Frontal Eye Fields

- Normal gaze central due to equal FEF activation
- Lesion: Both eyes deviate to side of lesion
- Stimulation: Both eyes deviate to opposite side
  - Can be seen in frontal lobe seizures







#### Gaze Palsy Summary

| Syndrome                | Effects                                        |
|-------------------------|------------------------------------------------|
| MLF/INO                 | Affected side can't move medially (adduction)  |
| Abducens Palsy          | Affected side can't move laterally (abduction) |
| PPRF Lesion             | Can't gaze to side of lesion                   |
| One and a half syndrome | INO and gaze palsy on side of lesion           |
| FEF Lesion              | Eyes deviated toward side of lesion            |

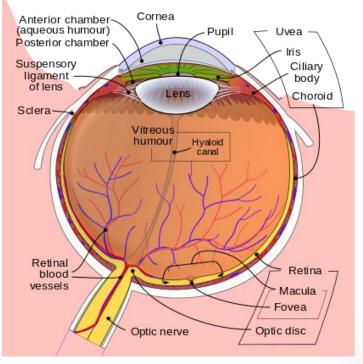


# Structural Eye Disorders

Jason Ryan, MD, MPH



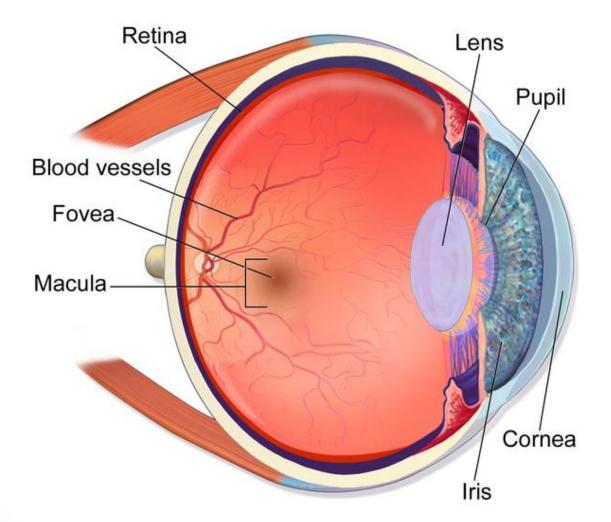

#### **Eye Structures**


- Pupil/Iris
- Lens
- Sclera
- Conjunctiva
- Cornea
- Uvea
- Retina/Macula



#### **Sclera and Cornea**

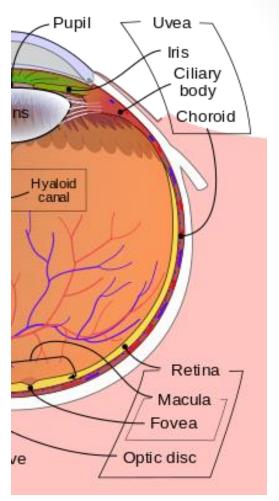



Petr Novák, Wikipedia



Wikipedia/Public Domain



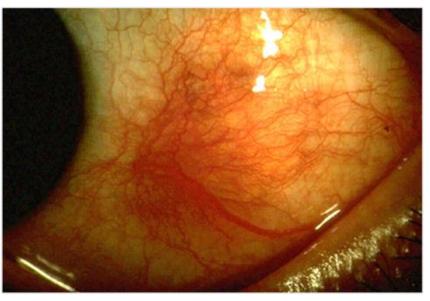

#### **Sclera and Cornea**



Boards & Beyond. Blausen.com staff. "Blausen gallery 2014". Wikiversity Journal of Medicine.

#### Sclera

- Composed of collagen
- Rigid structure stabilizes eyeball
- Extraocular muscles insertion site
- Avascular
- Nutrients from episclera and choroid




Wikipedia/Public Domain



#### Scleritis

- Inflammation of sclera
- Dark red eyes
- Severe "boring" pain with eye movement
- Potentially blinding





Kribz/Wikipedia

#### Scleritis

- 50% cases associated with systemic disease
- Rheumatoid arthritis is most common

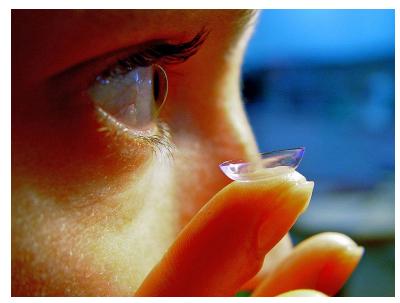


Phoenix119/Wikipedia



## Episcleritis

- Acute inflammation
- Episclera layer only
- Usually idiopathic
- Tearing
- Localized redness
- Mild or no pain
- Usually self-limited
- Also associated with rheumatoid arthritis

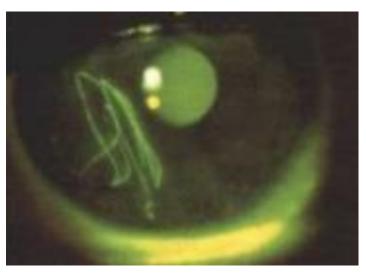



Asagan/Wikipedia



#### Keratitis

- Corneal inflammation
- Bacterial/viral/fungal
- Contact lens wearers
- Pain/Photophobia
- Red eye
- Foreign body sensation
- Sight threatening disorder




איתן טל

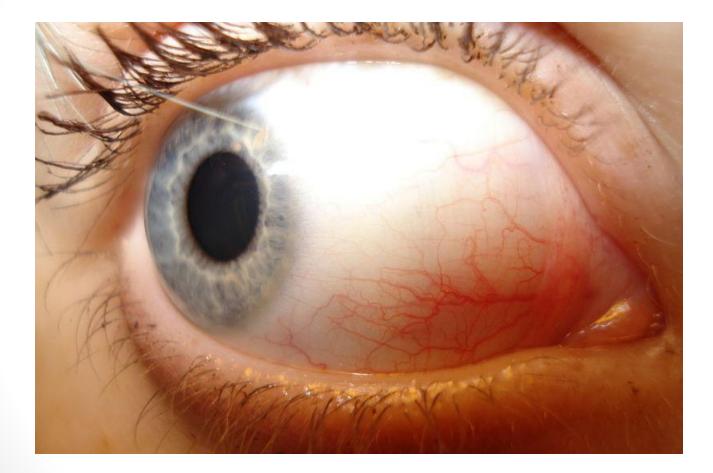


#### **Corneal Abrasion**

- Common among contact lens wearers
- Painful (due to superficial cornea nerve endings)
- Visualized with fluorescein dye and blue light
- Can become infected with pseudomonas
- Often treated with **ciprofloxacin** eye drops






Chricres/Slideshare

#### HSV-1

- Causes herpes labialis
- Can also cause keratoconjunctivitis
  - Infection of cornea/conjunctiva
  - Pain, redness, discharge
- Most ocular disease is recurrent HSV
  - Reactivation after establishment of viral latency



#### Conjunctiva





Lady Weaxzezz/Wikipedia

#### Conjunctivitis

- Viral, bacterial, allergic
- Conjunctival injection
- Discharge
- Commonest "red eye"



Joyhill09/Wikipedia



#### Conjunctivitis

- Viral causes (80%)
  - Adenovirus
  - Measles
  - HSV-1
- Bacterial causes
  - S. Aureus
  - H. influenza
  - Neisseria
  - Chlamydia



Image courtesy of Joyhill09



#### Adenovirus

- 65% to 90% viral conjunctivitis
- Watery discharge
- Non-enveloped, DNA virus
- Also causes pharyngitis, pneumonia



### Adenovirus

- Very stable survive on surfaces
- Transmission:
  - Aerosol droplets
  - Fecal-oral
  - Contact with contaminated surfaces



# **Measles Virus**

Rubeola

- Paramyxovirus
- Enveloped, RNA virus
- Cough, Coryza, Conjunctivitis
- Maculopapular rash
- Koplik spots in mouth



Wikipedia/Public Domain



### **Bacterial Conjunctivitis**

- Copious purulent discharge
- Adults:
  - Staph aureus, S pneumonia, H influenzae
- Children
  - H influenzae, S pneumoniae, and Moraxella catarrhalis



### Neonatal Conjunctivitis

- Ophthalmia neonatorum
- Neisseria gonorrhea or Chlamydia
- Infection from passage through birth canal
- Untreated can lead to visual impairment
- Prophylaxis: Erythromycin ophthalmic ointment

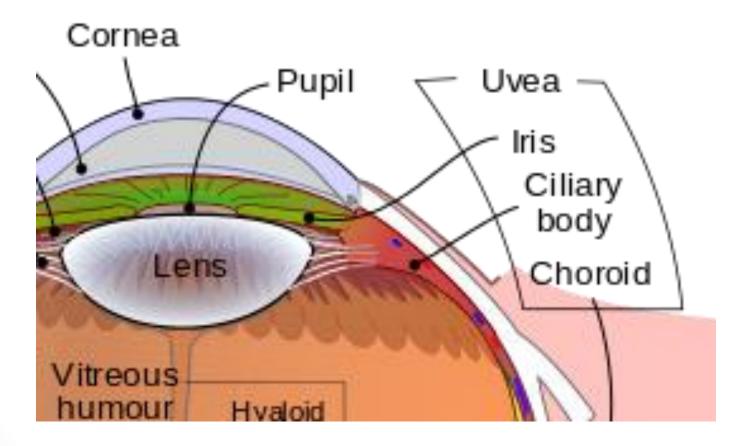


#### **Reactive Arthritis**

- Autoimmune arthritis triggered by infection
- Intestinal infections
  - Salmonella, Shigella, Campylobacter, Yersinia, C. Difficile
- Chlamydia trachomatis
- Classic triad (Reiter's syndrome)
  - Arthritis
  - **Conjunctivitis** (red eye, discharge)
  - Urethritis (dysuria, frequency)



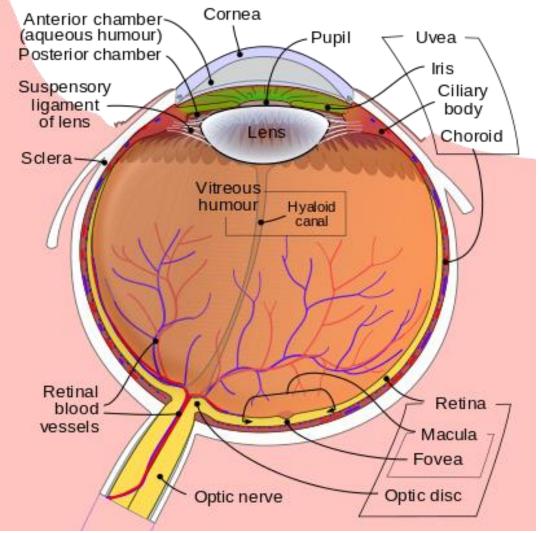
# Allergic Conjunctivitis


- Bilateral, itchy, watery eyes
- Type I hypersensitivity reaction
- Histamine release
- Treatment: antihistamines





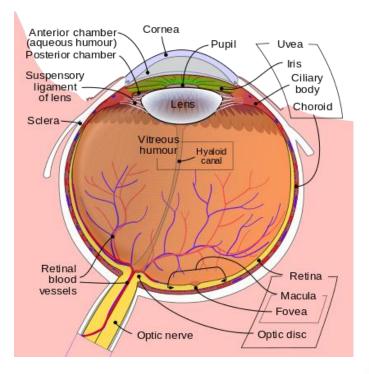
Eddie314/Wikipedia


#### Uvea





Wikipedia/Public Domain


#### Uvea



Boards&Beyond.

Wikipedia/Public Domain

- Uveal coat inflammation
  - Iris, ciliary body, choroid
  - White cells in uvea





#### Terminology

- Anterior uveitis
  - Iritis; Iridocyclitis
- Intermediate uveitis
  - Vitreous humor inflammation
- Posterior uveitis
  - Chorioretinal inflammation





Wikipedia/Public Domain

#### Symptoms

- Anterior uveitis: pain, redness
- Posterior uveitis: painless, floaters,  $\downarrow$  vision



#### Causes

- Can be infectious
  - Often agents that infect CNS
  - HSV, CMV, Toxoplasmosis, Syphilis
- Often associated with systemic inflammatory disease



#### Associations

- Ankylosing spondylitis
- Reactive arthritis
- Juvenile idiopathic arthritis
- Rheumatoid arthritis
- Sarcoid
- Psoriatic arthritis
- Inflammatory bowel disease

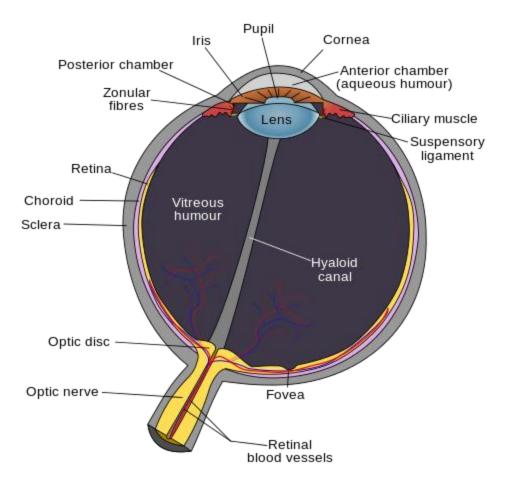


# Hypopyon

- Inflammatory infiltrate in anterior chamber
- Seen in endophthalmitis
  - Inflammation of aqueous and/or vitreous humor
- Can be seen in keratitis, uveitis
- Bacterial or sterile



EyeMD (Rakesh Ahuja, M.D.).




# Glaucoma

Jason Ryan, MD, MPH



#### Aqueous Humor





### Aqueous Humor

- Ciliary muscle (accommodation) epithelium
  - Produces aqueous humor
  - Sympathetic stim (β receptors)
- Trabecular meshwork
  - Drains aqueous humor from anterior chamber
- Canal of Schlemm
  - Drains aqueous humor from trabecular meshwork



### Aqueous Humor

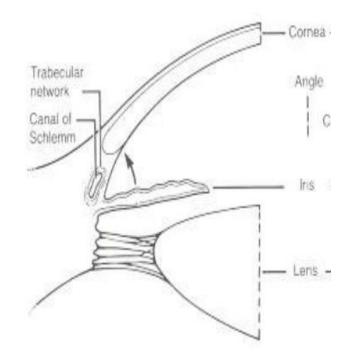





Image courtesy of Amar Thumma

#### Intraocular Pressure

- Measured by tonometry
- Determined by amount of aqueous humor



#### Intraocular Pressure

- Parasympathetic system (M)
  - Constricts ciliary muscle
  - Allows fluid to drain
  - ↓pressure
- Sympathetic (β2)
  - Produces fluid
  - Allows the eye to focus during fight/flight
  - More fluid = 1 pressure



#### Glaucoma

- High intraocular pressure
- Results in optic neuropathy
- Visual loss: peripheral first, then central
- Two types:
  - Open angle
  - Closed angle



# The Angle

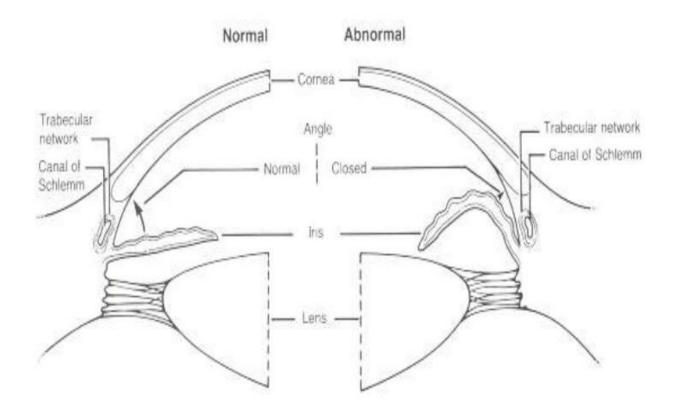





Image courtesy of Amar Thumma



- Angle for drainage suddenly closes
- Abrupt onset
- Painful, red eye
- Blurred vision with halos
- Eye is firm ("rock hard")



- Symptoms can be triggered when pupil dilates
  - Entering dark room
  - Drug with dilating side effect (scopolamine, atropine)
- Ophthalmologic emergency



- Medical treatment:
  - Acetazolamide (carbonic anhydrase inhibitor)
  - Mannitol (osmotic diuretic)
  - Timolol (BB)
  - Pilocarpine (M agonist)
- Eye surgery



- Chronic angle closure
  - Portion of angle blocked
  - Develops scarring
  - Over time angle progressively more closed
  - Intraocular pressure not as high
  - Fewer symptoms (pain, etc.)
  - Delayed presentation
  - More damage to the optic nerve
  - Diagnosis made when peripheral vision loss occurs



# **Open Angle Glaucoma**

- Chronic  $\rightarrow$  most patients have this form
- No symptoms until loss of eyesight occurs
  - Peripheral then central
- Overproduction fluid or decreased drainage
- Angle for drainage of fluid is "open"
- Too much fluid or too little drainage
- Chronic drug therapy



# **Open Angle Glaucoma**

- Associations
  - Age
  - Family history
  - African-American race



# **Open Angle Glaucoma**

- Primary
  - Cause unclear
- Secondary
  - Uveitis
  - Trauma
  - Steroids
  - Retinopathy



# **Disc Cupping**

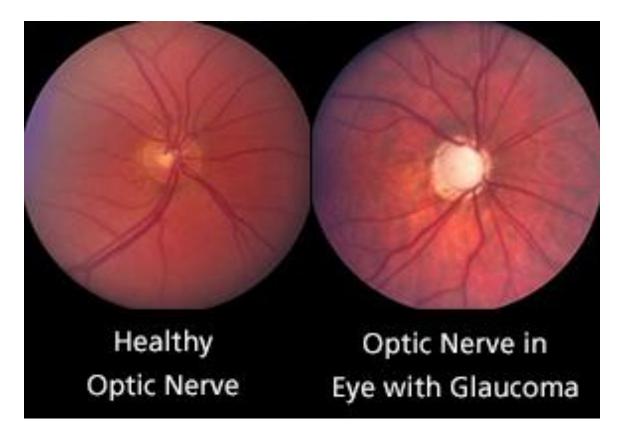





Image courtesy of GLAUCOMA RESEARCH FOUNDATION

# **Chronic Glaucoma Drugs**

- M3 agonists
  - Contract ciliary muscle
- α2 agonists
  - Block ciliary epithelium from releasing aqueous
- β blockers
  - Block ciliary epithelium from releasing aqueous
- Prostaglandin analogues
  - Vasodilate the Canals of Schlemm: increase outflow
- Carbonic anhydrase inhibitors
  - Decrease synthesis of aqueous



#### Parasympathomimetics

- Carbachol, pilocarpine
- Muscarinic agonists
- Contract ciliary muscle
- Opens trabecular meshwork
- More drainage



# Alpha Agonists

- Apraclonidine, Brimonidine
- Decrease aqueous production
- Can have (<15%) ocular side effects
  - Blurry vision
  - Ocular hyperemia
  - Foreign body sensation
  - Itchy eyes



#### **Beta Blockers**

- Timolol, betaxolol, carteolol
- ↓ aqueous humor production by ciliary epithelium



### **Prostaglandin analogues**

- Bimatoprost, latanoprost, tafluprost, travoprost
- More drainage/outflow
- Will darken iris



#### Carbonic anhydrase inhibitors

- Acetazolamide (oral)
- Diuretic
- Less fluid production by ciliary epithelium



## Epinephrine

- Mixed alpha-beta agonist
- Early effect: 1aqueous humor (beta effect)
- Later effect: Vasoconstriction ciliary body
  - ↓production aqueous humor
- Never give in closed angle glaucoma
  - Dilates pupil
  - Worsens angle closure



# General Anesthetics

Jason Ryan, MD, MPH

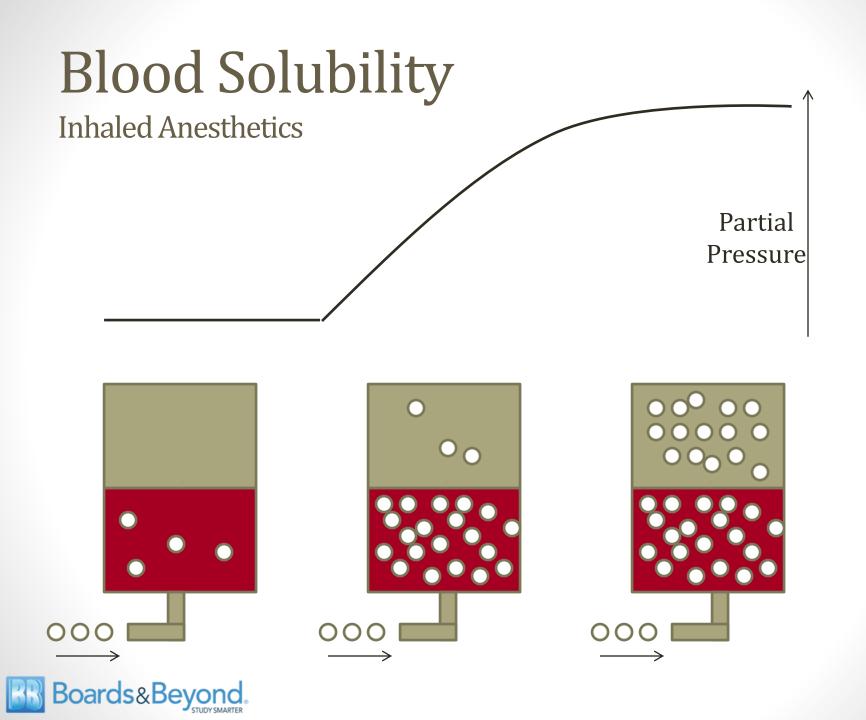


## Anesthetic

- Drugs that produce:
  - Analgesia
  - Loss of consciousness
  - Amnesia
  - Muscle relaxation



## **Types of Anesthesia Drugs**


- Inhaled anesthetics
- Intravenous anesthetics
- Local anesthetics
- Neuromuscular blocking agents



## **Inhaled Anesthetic Principles**

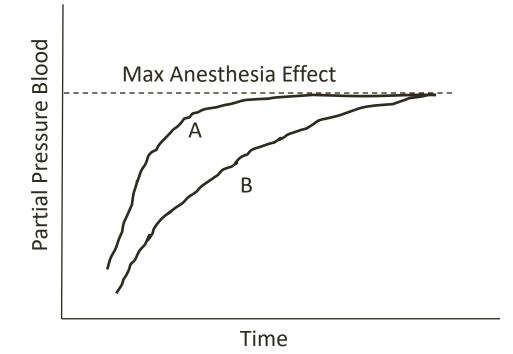
- Special properties determine effectiveness
- Solubility of gas for blood determines onset/offset
- Solubility of gas for lipids determines potency





- Molecules dissolved in blood: No anesthetic effect
- Molecules NOT dissolved: Anesthetic effect
- Need to saturate blood to generate partial pressure
- So MORE solubility in blood = LONGER to take effect








- Higher solubility
  - Higher tendency to stay in blood
  - Less likely to leave blood for brain
  - Longer time to saturate blood
  - SLOWER induction time (also washout time)
- Low solubility
  - Quickly saturate blood
  - Quickly exert effects on brain
  - SHORTER induction time (also washout time)



**Inhaled Anesthetics** 



Drug A: Less soluble in blood, faster rise in pressure, fast anesthetic effect Drug B: More soluble in blood, slower rise in pressure, slower effect



- Blood/gas partition coefficient
  - Isoflurane: 1.4
  - [blood]1.4 > [alveoli]



**Inhaled Anesthetics** 

| Gas           | PC   |
|---------------|------|
| Halothane     | 2.3  |
| Isoflurane    | 1.4  |
| Sevoflurane   | 0.69 |
| Nitrous Oxide | 0.47 |
| Desflurane    | 0.42 |

Halothane  $\rightarrow$  SLOW induction (like to stay in blood) Nitric Oxide  $\rightarrow$  FAST induction (quickly leaves blood)

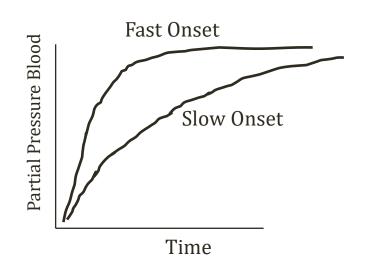


## Lipid Solubility

- Affinity of gas for lipids
- Oil/gas partition coefficient

| Gas           | PC  |
|---------------|-----|
| Halothane     | 224 |
| Enflurane     | 99  |
| Isoflurane    | 98  |
| Sevoflurane   | 47  |
| Desflurane    | 28  |
| Nitrous Oxide | <10 |




## **Inhaled Anesthetic Principles**

- Minimum alveolar concentration
  - Concentration of anesthetic that prevents movement in 50 percent of subjects in response to pain
- Low MAC = High potency
- MAC changes with age
  - Lower in elderly
- MAC related to lipid solubility (not blood!!)



## **Inhaled Anesthetics Summary**

- Onset of action
  - Blood:gas partition coefficient (1higher = slower)
  - Solubility in blood (1 higher = slower)
- Potency
  - Oil/gas partition coefficient (1 higher = more potent)
  - MAC (\lower = more potent)





- Desflurane
- Sevoflurane
- Halothane
- Enflurane
- Isoflurane
- Methoxyflurane
- Nitrous oxide



## **Common Effects**

- Myocardial depression
  ↓CO
- Respiratory depression
- Nausea and vomiting
- ↑ cerebral blood flow
  - Cerebral vasodilation
  - Blood flow goes up
  - ICP goes up
- Decreased GFR



### **Special Side Effects**

- Halothane Hepatotoxicity & malignant hyperthermia
  - Liver tox: Rare, life-threatening
  - Massive necrosis, increased AST/ALT
- Methoxyflurane Nephrotoxicity
  - Renal-toxic metabolite
- Enflurane Seizures
  - Lowers seizure threshold



## Malignant Hyperthermia

- Rare, dangerous reaction: halothane, succinylcholine
- Fever, muscle rigidity after surgery
- Tachycardia, hypertension
- Muscle damage: 1K, CK
- Cause: ryanodine receptor sarcoplasmic reticulum
  - Ca channel in SR of muscle cells
  - Abnormal in patients who get MH (autosomal dominant)
  - Dumps calcium
  - Ca  $\rightarrow$  consumption of ATP for SR reuptake
  - ATP consumption  $\rightarrow$  heat  $\rightarrow$  tissue damage
- Treat with dantrolene (muscle relaxant)



#### Nitrous Oxide

- Diffuses rapidly into air spaces
- Will increase volume
- Cannot use:
  - Pneumothorax
  - Abdominal distention
- 50% NO  $\rightarrow$  doubling of cavity size



#### **Intravenous Anesthetics**

- Barbiturates
- Benzodiazepines
- Opioids
- Etomidate
- Ketamine
- Propofol



#### Barbiturates

- Thiopental (Pentothal)
- Binding to GABA-receptor
  - Different mechanism from benzodiazepines
- High potency from high lipid solubility
- Rapid onset
  - Rapid entry into brain
- Ultra short acting
  - Rapid distribution to muscle and fat
- Myocardial/respiratory depression
- ↓ cerebral blood flow



## Benzodiazepines

Midazolam, Lorazepam, Diazepam, Alprazolam

- Bind to GABA receptors
- ↑ frequency of GABA ion channel opening
- Low dose: anti-anxiety (anxiolytic)
- High dose: sedation, amnesia, anticonvulsant
- Cause cardio-respiratory depression
  - ↓BP
- Overdose: Flumazenil
- Midazolam (Versed): Short procedures (endoscopy)



## Opioids

Morphine, Fentanyl, Hydromorphone

- Sedatives, analgesics
- No amnesia
- Act on opioid (mu) receptors in brain
- Side effects:
  - ↓respiratory drive
  - ↓BP
  - Nausea/vomiting
  - Ileus
  - Urinary retention
- Tolerance: Decreased effectiveness chronic use



## **Opioids Mechanism**

Morphine, Fentanyl, Hydromorphone

- Mu receptors
- G-protein linked
- 2<sup>nd</sup> messengers not clearly understood
- Increase K efflux from cells
- This HYPERpolarizes  $\rightarrow$  less pain transmission



## Naloxone

- Opioid antidote
- Used for overdose
- Mu antagonist
- Competes with opioids, displaces from binding site
- Reverses effects within minutes
- Must be given IV/nasal  $\rightarrow$  inactivated by liver if PO



## **Opioid Tolerance**

- Effect wanes with chronic use
- Major problem with cancer pain
- Decreased effect on
  - Pain
  - Sedation
  - Nausea, vomiting
  - Respiratory depression
  - Cough suppression
  - Urinary retention
- No tolerance to constipation or miosis
  - These effects persist



## Ketamine

- PCP derivative
- Antagonist of NMDA receptor (glutamate)
- "Dissociative" drug
  - Patient enters trancelike state
  - Analgesia and amnesia
  - Few respiratory or CV effects
- Can cause *TBP*



#### Ketamine

- "Emergence Reactions"
  - Disorientation
  - Dreams, hallucinations
  - Can be frightening to patients
  - Co-administer midazolam to help



#### Etomidate

- Modulates GABA receptors
  - Blocks neuroexcitation
- Anesthesia but not analgesia
- Relatively hemodynamically neutral
  - Good for hypotensive patients
- Blocks cortisol synthesis
- Rapid sequence intubation



## Propofol

- GABA modulator
- Sedation, amnesia
- Myocardial depression, hypotension



#### **GABA Receptor Anesthetics**

- Etomidate
- Propofol
- Benzodiazepines
- Barbiturates
- GABA is largely inhibitory
- These drugs activate receptor  $\rightarrow$  sedation



#### **Induction & Maintenance**

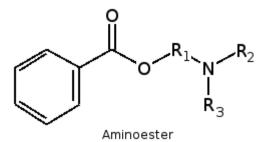
- Induction Put patient to sleep
  - Propofol, Etomidate, Ketamine
- Maintenance Keep patient asleep
  - Propofol, sevoflurane, desflurane

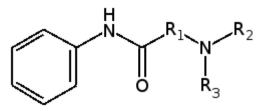


## **Typical Open Heart Case**

- Induction
  - Propofol, Midazolam
- Paralysis
  - Rocuronium
- Maintenance
  - Sevoflurane, fentanyl




# Local Anesthetics

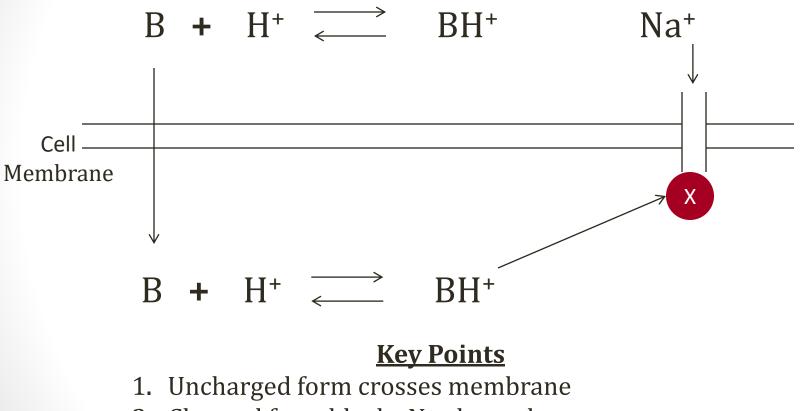

Jason Ryan, MD, MPH



#### **Local Anesthetics**

- Amides
  - Lidocaine
  - Mepivacaine
  - Bupivacaine
- Esters
  - Procaine
  - Cocaine
  - Benzocaine
  - Tetracaine






Aminoamide



Image courtesy of Arcadian

#### Local Anesthetic



- 2. Charged form blocks Na channel
- 3. Drugs work on inside of cell membrane

4. Acidic environments = more drug needed for effect Boards&Beyond.

# **Adding Epinephrine**

- LA can be given with epinephrine
  - Causes vasoconstriction
  - Less bleeding
  - Less washout  $\rightarrow$  more local effect



#### **Differential Blockade**

- Small fibers > large fibers
- Myelinated > unmyelinated

| Order of Block | Fiber Type          |  |
|----------------|---------------------|--|
| 1              | Small, myelinated   |  |
| 2              | Small, unmyelinated |  |
| 3              | Large, myelinated   |  |
| 4              | Large, unmyelinated |  |



#### **Differential Blockade**

- Different effects different senses
- Pain blocked first, pressure last

| Order of Block | Fiber Type |  |
|----------------|------------|--|
| 1              | Pain       |  |
| 2              | Temp       |  |
| 3              | Touch      |  |
| 4              | Pressure   |  |



#### Local Anesthetics Uses

- Minor surgical procedures
- Epidural/spinal anesthesia



#### Local Anesthetics Side Effects

- CNS Stimulation
  - Initial (excitation):Talkativeness, anxiety, confusion, stuttering speech
  - Later: Drowsiness, coma
- Cardiovascular
  - Hypotension, arrhythmia, bradycardia, heart block
  - Cocaine is exception: hypertension, vasoconstriction
- Bupivacaine most cardiotoxic



#### Methemoglobinemia

- Iron in hemoglobin normally reduced (Fe2+)
- Certain drug oxidize iron to Fe3+
- When Fe3+ is present  $\rightarrow$  methemoglobin
- Fe3+ cannot bind oxygen
- Remaining Fe 2+ cannot release to tissues
- Acquired methemoglobinemia from drugs
  - Local anesthetics (benzocaine)
  - Nitric oxide
  - Dapsone
- Treatment: methylene blue



#### **Clinical Scenario**

- Endoscopy patient
- Benzocaine spray used for throat analgesia
- Post procedure shortness of breath
- "Chocolate brown blood"
- O2 sat (pulse oximetry) = variable (80s-90s)
- PaO2 (blood gas) = normal
- Also premature babies given NO for pulmonary vasodilation



# Neuromuscular Blockers

Jason Ryan, MD, MPH



# **Types of Anesthesia Drugs**

- Inhaled anesthetics
- Intravenous anesthetics
- Local anesthetics
- Neuromuscular blocking agents



# Paralytics

- Succinylcholine
- Tubocurarine
- Atracurium
- Mivacurium
- Pancuronium
- Vecuronium
- Rocuronium



#### Succinylcholine

- Different from all other paralytics
- DEPOLARIZING neuromuscular blocker
- Basically two ACh molecules joined together
- Strong ACh (nicotinic) receptor agonist
- Sustained depolarization
- Prevent muscle contraction



### Succinylcholine

- Two phases to depolarizing block
- Phase 1
  - Depolarizing phase
  - Muscle fasciculations occur
- Phase 2
  - Desensitizing phase
  - Depolarization has occurred
  - Muscle no longer reacts to ACh



#### Succinylcholine – Phase 1

- Na channels open and then close become inactivated
- Membrane potential must reset
- Normally rapid as Ach hydrolysed by AChE
- Succinylcholine NOT metabolized by AChE
- Prolonged activation of ACh receptors occurs



#### Succinylcholine – Phase 2

- Desensitizing phase
- Normally ACh washed out quickly no desensitization
- Longer depolarization (succ)  $\rightarrow$  desensitization



## Succinylcholine

- Fast acting
- Rapid washout
- No reversal
- Main side effect is ↑K
  - Caution in burn patients, dialysis patients
- Malignant Hyperthermia



# Malignant Hyperthermia

- Rare, dangerous reaction: halothane, succinylcholine
- High fever, muscle rigidity after surgery
- Tachycardia, hypertension
- Muscle damage: 1K, CK
- Cause: ryanodine receptor sarcoplasmic reticulum
  - Ca channel in SR of muscle cells
  - Abnormal in patients who get MH (autosomal dominant)
  - Dumps calcium
  - Ca  $\rightarrow$  consumption of ATP for SR reuptake
  - ATP consumption  $\rightarrow$  heat  $\rightarrow$  tissue damage
- Treat with dantrolene (muscle relaxant)



# **Non-depolarizing NMBA**

Tubocurarine, Atracurium, Mivacurium, Pancuronium, Vecuronium, Rocuronium

- Competitive antagonists
- Compete with ACh for nicotinic receptors
- Produce paralysis
- Many cause marked histamine release
  - Hypotension  $\rightarrow$  compensatory tachycardia
- Can be reversed by flooding synapse with ACh
- This is done by inhibiting AChE



### **AChE Inhibitors**

Reversal of non-depolarizing neuromuscular blockers

- Physostigmine
- Neostigmine
- Pyridostigmine
- Edrophonium



#### ICU Weakness

- Common after prolonged ICU treatment
- May be associated with NMBA



# Assessing Neuromuscular Blockade

- Peripheral nerve stimulator
- Train of 4 impulses



#### Train of 4

- Used to assess neuromuscular blockade in patients under anesthesia
- 4 electrical stimulations to nerve (i.e. ulnar)
- Goal usually 1/4 or 2/4

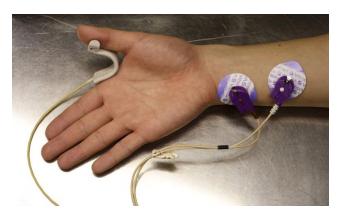
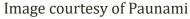




Image courtesy of Ignis

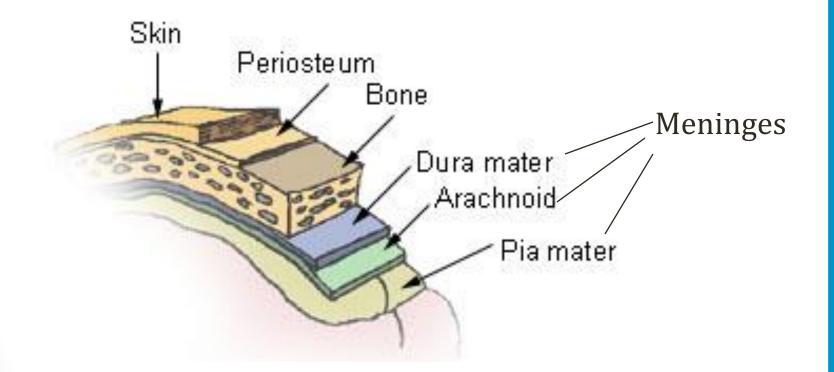






#### **Rapid Sequence Intubation**

- Standard practice for emergent intubation
- Renders patient sedated and flaccid
- Induction: Etomidate
  - Sometimes ketamine, benzos
- Paralysis: Succinylcholine




# Meningitis

Jason Ryan, MD, MPH



# The Meninges





# Meningitis

- Inflammation of the leptomeninges
- Usually infectious: viral, bacterial, fungal
- Rarely: cancer, sarcoid, inflammatory diseases



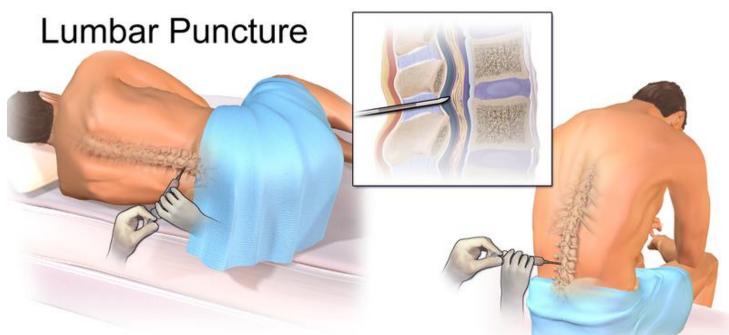
# Symptoms

- Fever, headache, photophobia
- Nuchal rigidity
  - Nape = back of neck
  - Nuchal = related to nape
  - Nuchal rigidity = hurts to move back of neck



# Symptoms

- Kernig sign
  - Thigh bent at hip with knee at 90 degrees
  - Subsequent extension of knee is painful (resistance)
- Brudzinski sign
  - Lye patient flat
  - Lift head off table
  - Involuntary lifting of legs
- Both signs of meningismus
  - Usually meningitis
  - Also subarachnoid hemorrhage




#### **Diagnosis of Meningitis**

- Suggestive signs & symptoms
- Spinal tap



### **Spinal Tap**



#### Lying Position

#### Sitting Position

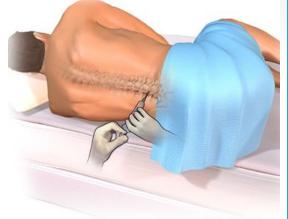

Line between iliac crests = fourth lumbar vertebral body L4/5 interspace used → well below termination of cord. Needle crosses skin, ligaments, dura, arachnoid. Enter subarachnoid space. Does not pierce pia Boards&Beyond.

Image courtesy of BruceBlaus

# **Opening Pressure**

- Patient must lie on their side
- Normal pressure up to 250mm H20
- Elevated pressure (>250):
  - Bacterial
  - Fungal/TB
  - Rarely viral
- Elevated pressure in hydrocephalus
- Therapeutic for *ICP*

#### Lumbar Puncture



Lying Position



# **Complications of Meningitis**

- Death
- Hydrocephalus
- Hearing loss
- Seizures
- Most from bacterial meningitis



# **Selecting Treatment**

- Antibiotics
- Culture takes days
- Cannot wait for culture to drive choice of drug
- Choose drugs based on:
  - Patient age, co-morbidities
  - Spinal fluid cell types, protein, glucose



# **Spinal Fluid Testing**

- Cells
- Protein
- Glucose
- Culture



#### **CSF** Meningitis Findings

|           | Cells        | Protein     | Glucose      |
|-----------|--------------|-------------|--------------|
| Bacterial | ↑PMNs        | 1           | $\downarrow$ |
| Viral     | ↑lymphocytes | Normal or ↑ | Normal       |
| Fungal/TB | ↑lymphocytes | 1           | $\downarrow$ |



### Normal CSF

- Clear
- 0-5 lymphocytes
- <45mg/dl protein</li>
- >45mg/dl glucose
  - About 2/3 of blood glucose (80-120)



### **Meningitis Antibiotics**

- Ceftriaxone
- Vancomycin
- Ampicillin
- Gentamycin
- All have good CSF penetration



# **Causes of Meningitis**

| Newborn<br>0-6months                 | Children<br>6mo-6yrs                                      | Young adults<br>6-60yr                               | Elderly<br>60yr+                     |
|--------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------|
| Group B Strep<br>E. Coli<br>Listeria | S. Pneumo<br>N. Meningitidis<br>H. Flu B<br>Enteroviruses | S. Pneumo<br>N. Meningitidis<br>Enteroviruses<br>HSV | S. Pneumo<br>Gram – rods<br>Listeria |
| $\uparrow$                           |                                                           | 1                                                    | $\bigwedge$                          |
|                                      | Ceftriaxone p                                             | olus Vancomycin                                      |                                      |
| Ampicillin plus Ge                   | entamycin                                                 | Ceftriaxon                                           | e plus Vancomycin                    |

r y Г

n ·y r plus Ampicillin



### Streptococcus Pneumoniae

- Most common cause meningitis all ages
- Lancet-shaped, gram positive cocci in pairs
- Can follow strep respiratory infection
- Increased risk
  - Asplenic patients
  - Sickle cell
  - Alcoholics
- Also causes otitis media (kids), pneumonia, sinusitis



### Neisseria Meningitidis

- Gram negative cocci in pairs (diplococci)
- Transmitted by respiratory droplets
- Enters pharynx then bloodstream then CSF
- Many asymptomatic carriers
- Polysaccharide capsule prevents phagocytosis
- Lipooligosaccharide (LOS) outer membrane
  - Like LPS on gram negative rods
  - Endotoxin  $\rightarrow$  many toxic effects on body
  - Activates severe inflammatory response



## Neisseria Meningitidis

- Bacteremia can complicate meningitis
- Meningococcemia
- Sepsis: fevers, chills, tachycardia
- Purpuric rash
- DIC
- Waterhouse-Friderichsen syndrome
  - Adrenal destruction from meningococcemia
- Life-threatening



### Neisseria Meningitidis

- Can cause outbreaks
  - Dorms, barracks
- Can infect young, healthy people
  - College students in dorms
- Infected patients need droplet precautions
- Close contracts receive prophylaxis
  - Rifampin
  - Also Ceftriaxone or Ciprofloxacin
- Vaccine available
  - Contains capsular polysaccharides  $\rightarrow$  anti-capsule antibodies
  - Only used in high risk groups



### Haemophilus Influenzae

- Small, gram negative rod (coccobacillus)
- Enters pharynx then lymphatics then CSF



### H. Influenza Vaccine

- HIB once most common cause bacterial meningitis
- Hib conjugate vaccines given in infancy
- H. Flu meningitis almost always occurs in unimmunized children
  - May immigrate from other countries without vaccination



### Listeria

- Gram positive rod
- Facultative intracellular organism
- "Tumbling motility"
- Multiplies in cells with poor cell-mediated immunity
  - Neonates, HIV, organ transplant
- In adults, often from contaminated food
  - Undercooked meat, unwashed vegetables
  - Unpasteurized cheese/milk
  - Likes cold temperatures
- In neonates, transplacental or vaginal transmission



# Group B Strep

- Strep Agalactiae
- Gram positive cocci in chains
  - Catalase negative
  - Beta hemolytic bacteria
  - CAMP test positive
- Most common cause meningitis in newborns
  - Transmitted when baby passes through birth canal
  - Ampicillin during labor can prevent
- May not have classic symptoms
  - Hypotonia, weak sucking reflex
  - Bulging fontanels, sunken eyes
  - Poor feeding



# E. Coli

- 2<sup>nd</sup> most common meningitis cause neonates
- Motile, gram-negative bacillus (rod)
- Some strains have K-1 capsular antigen
  - Inhibits complements, other immune responses
  - Allows bacteria to evade host immunity
- Grows on:
  - Blood agar
  - MacConkey agar
  - Eosin methylene blue agar



# Viral Meningitis

- Old name: "aseptic"
  - Evidence of meningitis without bacteria
- Usually enteroviruses
  - Coxsackievirus, echovirus, poliovirus
- Self-limited
- Supportive care no specific treatment
- All single stranded RNA viruses
- Fecal-oral transmission



# Viral Meningitis

- Rare causes
  - HSV
  - HIV
  - West Nile virus
  - Varicella Zoster virus



### Herpes Virus

- HSV-1
  - Oral herpes
  - Eye infections (keratoconjunctivitis)
  - Encephalitis Loves to infect the TEMPORAL lobe
- HSV-2
  - Genital herpes
  - 13 to 36% primary genital herpes pts have clinical findings of meningitis (headache, photophobia and meningismus)
  - Genital lesions in 85% patients with HSV-2 meningitis
- Treatment: acyclovir, valacyclovir, famciclovir



# Viral Meningitis

- Usually no specific virus testing
- If HIV suspected
  - Blood testing for HIV RNA and HIV antibody
- If HSV suspected anti-virals can be given
- Other viruses tested only special circumstances



### **TB** Meningitis

- M. tuberculosis infection of the meninges
- CSF lymphocytes
- High protein, low glucose
- Need multiple CSF samples for culture
- Acid-fast bacilli (AFB) sometimes seen in CSF
- Nucleic acid amplification tests (NAATs) used
  - Use polymerase chain reaction (PCR) techniques



### Encephalitis

- Encephalitis = brain inflammation
- Must make sure meningitis patients don't have:
  - Altered mental status
  - Motor or sensory deficits
  - Altered behavior and personality changes
  - Speech/movement disorders
- If these are present, HSV-1 is common cause



# Encephalitis

Other (rare) causes

- Varicella-zoster (chickenpox, shingles)
- Mosquito viruses
  - St. Louis encephalitis virus
  - Eastern/western equine
  - West Nile
  - California encephalitis



# Encephalitis

Other (rare) causes

- Lassa fever encephalitis
  - Spread by mice
  - Hemorrhagic virus like Ebola (many other symptoms)
- Measles
- Naegleria fowleri (protozoa)
- HIV Encephalitis



# Seizures

Jason Ryan, MD, MPH



### What is a seizure

- Sudden alteration in behavior
- Due to transient brain pathology



### Seizure symptoms

- Loss of consciousness
- Abnormal motor activity
- Abnormal sensation
- Range
  - Mild: Loss of awareness (absence)
  - Severe: Tonic-clonic



### Seizure Causes

- Many people have 1 seizure
- Often "provoked"
  - Fever (children)
  - Lack of sleep
  - Drugs, alcohol
  - Hypoglycemia
- Other causes more serious: tumors, strokes
- Multiple, unprovoked seizures is epilepsy



### Seizure Causes by Age Group

| Children                | Adults           | Elderly                |
|-------------------------|------------------|------------------------|
| Genetic<br>Fever        | Tumors<br>Trauma | Stroke<br>Tumor        |
| Trauma                  | Stroke           | Trauma                 |
| Congenital<br>Metabolic | Infection        | Metabolic<br>Infection |

<u>Genetic</u>: Juvenile myoclonic epilepsy <u>Metabolic</u>: Hyponatremia, hypernatremia, hypoMg, hypoCa <u>Infection</u>: Meningoencephalitis



# Seizure Workup

- Blood work
- EKG (cardiac syncope)
- EEG
- Brain imaging (CT or MRI)
- Sometimes lumbar puncture (LP)



### EEG

#### Electroencephalogram

- Records voltage changes in brain
- Different leads
  - Frontal, parietal, occipital
- Characteristic patterns

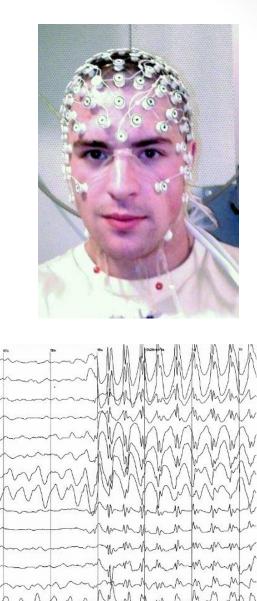





Image courtesy of Der Lange

# Seizure Types

- Partial One discrete part of brain
  - Simple partial No alteration consciousness
  - Complex partial Alteration consciousness
- Generalized Entire brain effected
  - Absence "Petit mal"
  - Tonic-clonic "Grand mal"
  - Atonic "Drop seizure"
  - Myclonic
- Secondary generalized



# **Psychic Symptoms**

- Can occur with partial seizures
- Higher cortical areas affected
- Dysphasia
- Feelings of familiarity ("deja-vu")
- Distortions of time
- Fear
- Hallucinations



### **Autonomic Symptoms**

- Epigastric "rising" sensation
  - Common aura with medial temporal lobe epilepsy
- Sweating
- Piloerection
- Pupillary changes



### Auras

- Warning before major seizure
- Auras = simple, partial seizures
- Seizure affects enough brain to cause symptoms
- Not enough to interfere with consciousness
- Symptoms depend on area of brain
  - Occipital lobe: flashing lights
  - Motor cortex: muscle jerking (Jacksonian Seizure)




### **Post-ictal State**

- Transition period seizure  $\rightarrow$  normal state
- Period of brain recovery
- Confusion, lack of alertness
- Focal neurologic deficits may present
- Variable time, minutes to hours



### **Partial Seizures**

- Most common site: temporal lobe
- Mesial temporal sclerosis
  - Also called hippocampal sclerosis
  - Neuronal loss in hippocampus
- Often bilateral but one side>other
- Can diagnose by MRI





# Juvenile Myoclonic Epilepsy

- Absence, myoclonic, and grand mal
- Common in children
- Absence seizures first (~5 years of age)
- Myoclonic seizures later (~15 years)
- Grand mal seizures soon after
- Hallmark:
  - Myoclonic jerks on awakening from sleep
  - Shock-like, irregular movements of both arms



## **Childhood Absence Epilepsy**

- Sudden impairment of consciousness
- No change in body/motor tone
- Last few seconds
- Usually remits by puberty
- Classic EEG finding: 2.5 5 Hertz spike wave activity superimposed on normal background EEG
- No post-ictal confusion
- Ethosuximide is first line treatment
  - Blocks thalamic T-type Ca++ channels



### Febrile Seizures

- Common: 2-4% children <5 years old</li>
- Child loses consciousness, shakes
- Children at risk for more febrile seizures
- Overall prognosis generally good
- This is NOT considered epilepsy



# Eclampsia

- Pregnancy related condition
- 20weeks to 6weeks post-partum
- Hypertension, proteinuria, edema = Preeclampsia
- Eclampsia = preeclampsia + seizures
- Treatment: MgSO4



### Seizure Treatment Principles

#### Breaking seizures

- Status epilepticus
- Continuous seizure >30min
- Or seizure that recurs <30min
- Medical emergency
- Arrhythmias, lactic acidosis, hypertension
- Preventing seizures



# **Breaking Seizures**

- First line treatment is benzodiazepines
  - Rapid acting
- Lorazepam drug of choice
- Also often administer:
  - Phenytoin (PO) or fosphenytoin (IV)
  - Prevent recurrent seizures
- If still seizing after benzo/phenytoin  $\rightarrow$  phenobarbital
- Often will then give general anesthesia and intubuate



# **Preventing Seizures**

#### <u>Na Inactivators</u>

- Phenytoin
- Carbamazepine
- Lamotrigine
- Valproic Acid

#### **Other Mechanisms**

- Gabapentin
- Topiramate
- Ethosuximide
- Levetiracetam
- Primidone

#### Boards&Beyond.

#### **GABA Activators**

- Phenobarbital
- Tiagabine
- Vigabatrin
- Valproic Acid

# Niche Drugs

- Status Epilepticus
  - Benzodiazepines
- Absence seizures
  - Ethosuximide



### Teratogenicity

- All AEDs carry risk if taken during pregnancy
- Valproic Acid carries the greatest risk
  - Most teratogenic
  - 1-3% chance of neural tube defects



# Carbamazepine

- Inactivates Na channels
- Useful for partial and generalized seizures
- Also: bipolar disorder, trigeminal neuralgia
- Many, many side effects
- Diplopia, ataxia
- Low blood counts
  - Agranulocytosis
  - Aplastic anemia



# Carbamazepine

- Bone marrow suppression
  - Anemia, low WBC, low platelets
  - Monitor CBC
- Liver toxicity
  - Monitor LFTs
- SIADH (low Na level)
- Stevens-Johnson syndrome
- Drug blood levels monitored



# Stevens Johnson Syndrome

- Rare, life-threatening skin condition
- Malaise and fever (URI Sx)
- Extensive skin lesions
- Skin necrosis and sloughing
- Can be triggered by meds, often AEDs
  - Carbamazepine
  - Ethosuximide
  - Phenytoin
  - Lamotrigine



#### Ethosuximide

- Blocks thalamic T-type Ca++ channels
- Drug of choice: childhood absence seizures
- Can cause SJS
- Other side effects
  - Nausea/vomiting
  - Sleep disruption
  - Fatigue, Hyperactivity



# Phenobarbital

- Barbiturate
- Binding to GABA-receptor
  - Different mechanism from benzodiazepines
  - Increase duration channel is open
  - More Cl- flux
  - Less firing
- Myocardial/respiratory depression
- CNS depression, worse with EtoH
- Contraindicated in porphyria
- Induces P450 enzyme system



# Cytochrome P450

- Intracellular enzymes
- Metabolize many drugs
- If inhibited  $\rightarrow$  drug levels rise
- If induced  $\rightarrow$  drug levels fall
- AEDs that induce CYP450
  - Carbamazepine
  - Phenobarbital
  - Phenytoin



# Cytochrome P450

- Inhibitors are more dangerous
  - Can cause drug levels to rise
  - Cyclosporine, some macrolides, azole antifungals
- Luckily, many P450 metabolized drugs rarely used
  - Theophylline, Cisapride, Terfenadine
- Some clinically relevant possibilities
  - Some statins + Inhibitor  $\rightarrow$  Rhabdo
  - Warfarin



# P450 Drugs

Some Examples

#### Inducers

- Chronic EtOH
- Rifampin
- Phenobarbital
- Carbamazepine
- Griseofulvin
- Phenytoin

#### Inhibitors

- Isoniazid
- Erythromycin
- Cimetidine
- Azoles
- Grapefruit juice
- Ritonavir (HIV)



# Phenytoin

- Inactivates Na channels
- Very useful tonic-clonic seizures
- Gingival hyperplasia, hair growth
- Rash
- Folic acid depletion (supplement)
- Decreased bone density
- Long term use: nystagmus, diplopia, ataxia
- Teratogenic
- Monitor blood levels



Gingival Hyperplasia



Image courtesy of Lesion

# Phenytoin

- Dose-dependent hepatic metabolism
- Low dose  $\rightarrow$  small  $\uparrow$  blood levels
- High dose  $\rightarrow$  enzymes saturated  $\rightarrow$  rapid  $\uparrow$  levels
- Induces and is metabolized by P450
- Co-admin with P450 drugs alters levels



# Valproic Acid

- Na and GABA effects
  - ↑synthesis, ↓breakdown GABA
- Also a mood stabilizer (bipolar disorder, acute mania)
- BAD for pregnancy
  - Associated with spina bifida
- Nausea / vomiting
- Hepatotoxic Check LFTs
- Tremor, weight gain



#### Levetiracetam

- Exact mechanism unknown
- Useful for many types of seizures
- Blood levels can be monitored
- Drug titrated to clinical effect
- Well tolerated: few important/serious side effects



### **Other AEDs**

- Lamotrigine
  - Na channel drug
  - SJS Discontinue if rash develops, especially kids
- Gabapentin
  - Affects Ca channels
  - Sedation, ataxia



# **Other AEDs**

- Topiramate
  - Na and GABA effects
  - Mental dulling, sedation
  - Weight loss
  - Kidney stones
- Primidone
  - Exact mechanism not clear
  - Metabolized to phenobarbital
  - Also can be used for essential tremor



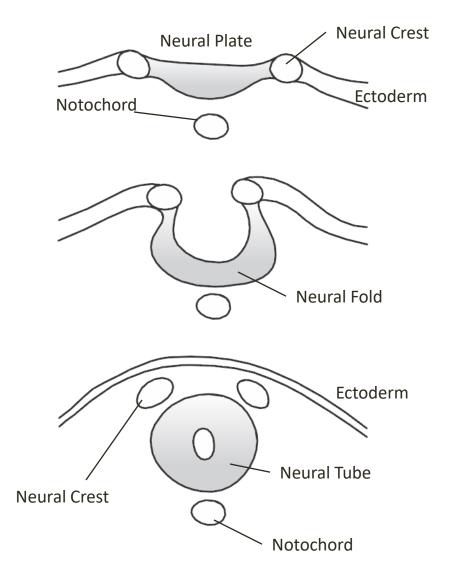
# Neuroembryology

Jason Ryan, MD, MPH



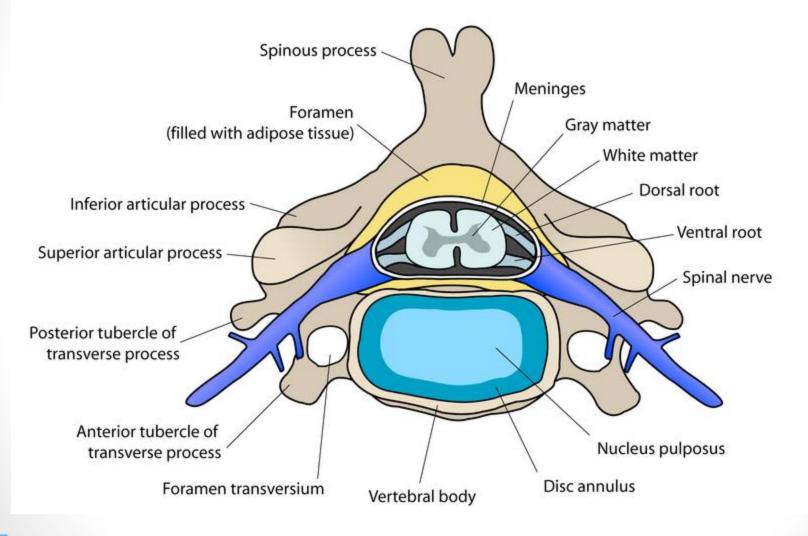
# **Germ Layers**

- Mesoderm
  - CV system, muscles, bone
- Endoderm
  - Liver, lungs, GI tract
- Ectoderm (Most CNS)
  - Surface ectoderm: ant pituitary, lens, cornea
  - Neural tube: brain, spinal cord, post pituitary, retina
  - Neural crest: Autonomic, sensory nerves, skull




# Neural Tube Development

- Developmental process starts with notochord
- Secretes signal molecules (Sonic Hedgehog protein)
- Induces overlying ectoderm  $\rightarrow$  neuroectoderm
- Neuroectoderm becomes neural plate
- Neural plate becomes neural tube
  - Also neural crest cells
- All occurs days 17-21 in embryo
- Notochord in adult: nucleus pulposus (IV discs)

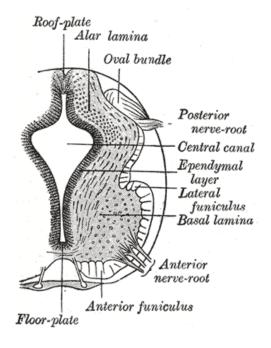



#### Neural Tube Development





# Nucleus Pulposus




Boards&Beyond.

Image courtesy of debivort

#### **Alar and Basal Plates**

- Alar is doral (posterior)  $\rightarrow$  Sensory
- Basal is ventral (anterior)  $\rightarrow$  Motor





# **Regional Brain Development**

- Neural tube has bulges/swellings
- 3 primary vesicles (bulges)
  - Forebrain (prosencephalon)
  - Midbrain (mesencephalon)
  - Hindbrain (rhombencephalon)
- 5 secondary vesicles
  - Telencephalon
  - Diencephalon
  - Mesencephalon
  - Metencephalon
  - Myelencephalon



# **Regional Brain Development**

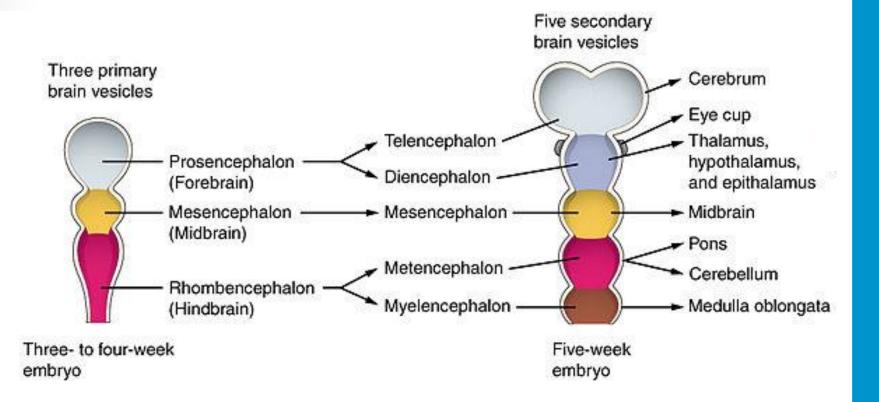





Image courtesy of OpenStax College

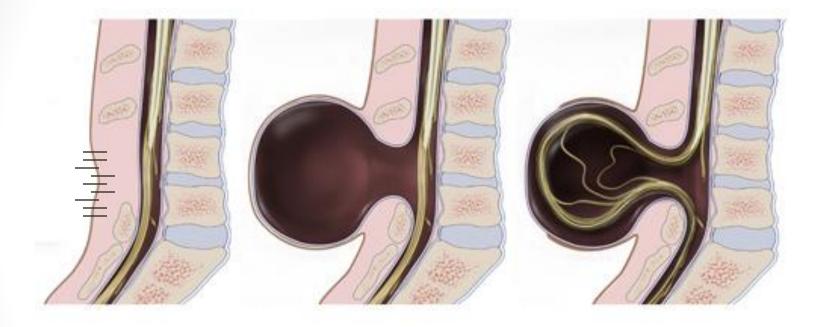
# Neuro Congenital Defects

- Neural Tube Defects
  - Spina Bifida (caudal end of tube)
  - Anencephaly (rostral end)
  - Encephalocele
- Cephalic disorders
  - Holoprosencephaly
- Posterior Fossa Defects
  - Chiari malformations
  - Dandy Walker



# Neural Tube Defects

- Neuropores fail to fuse in 4th week
  - Neuropore = opening of neural tube
  - Rostral neuropore at head, Caudal at tail
- Spina Bifida
  - Caudal neuropore fails to close posteriorly
  - Bones do not close around spinal cord/meninges
- Anencephaly ("without head")
  - Rostral neuropore fails to close anteriorly
  - Absence of major portions brain/skull



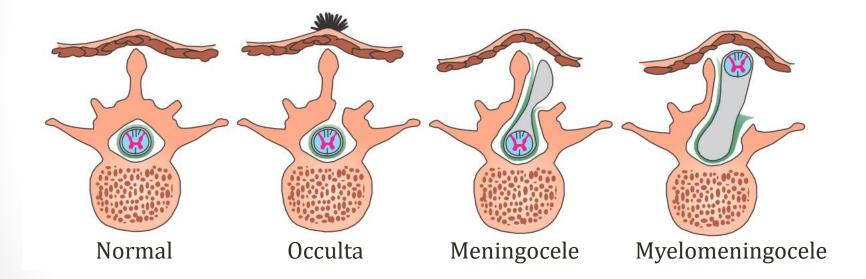

#### Neural Tube Defect Risks

- ↓folic acid intake
- Type I diabetes
- Obesity
- Valproic acid and/or carbamazepine



### Spina Bifida




Spina bifida occulta

Meningocele

Myelomeningocele









# Spina Bifida

- Defects can be detected in utero
- Surgery can repair the defect
  - Sometimes in utero, often after birth
- Permanent neuro deficits often result
  - Leg weakness or paralysis (wheelchair)
  - Bowel/bladder problems





Image courtesy of Wolfgang Moroder

# Anencephaly

- Forebrain/brainstem exposed in utero
- Fail to develop
- Not compatible with life
- Stillbirth or death shortly after birth
- Ultrasound:
  - Open calvaria
  - Frog-like appearance of fetus
- Mother will have polyhydramnios
  - Baby can't swallow amniotic fluid normally



# Encephalocele

- Brain or meninges herniate through skull defect
- Least common NTD
- Most common site: occipital bone



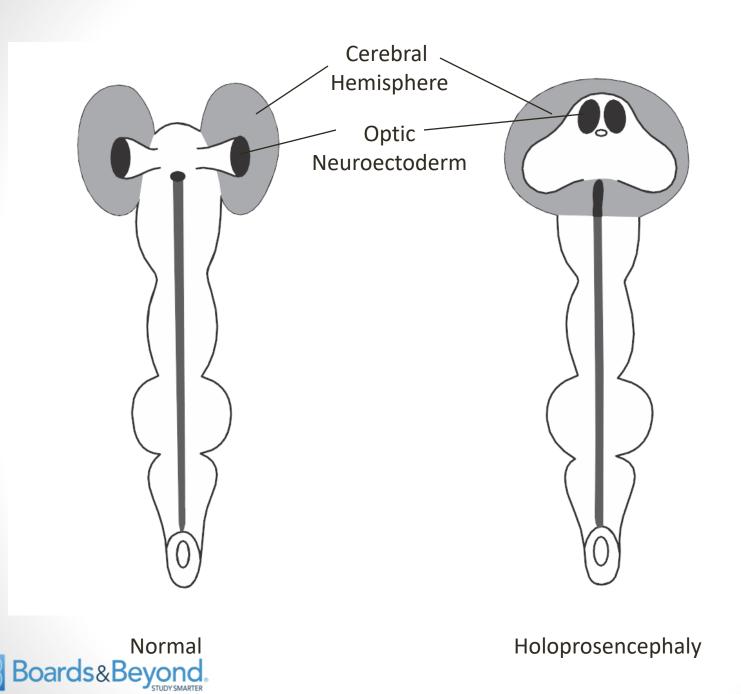


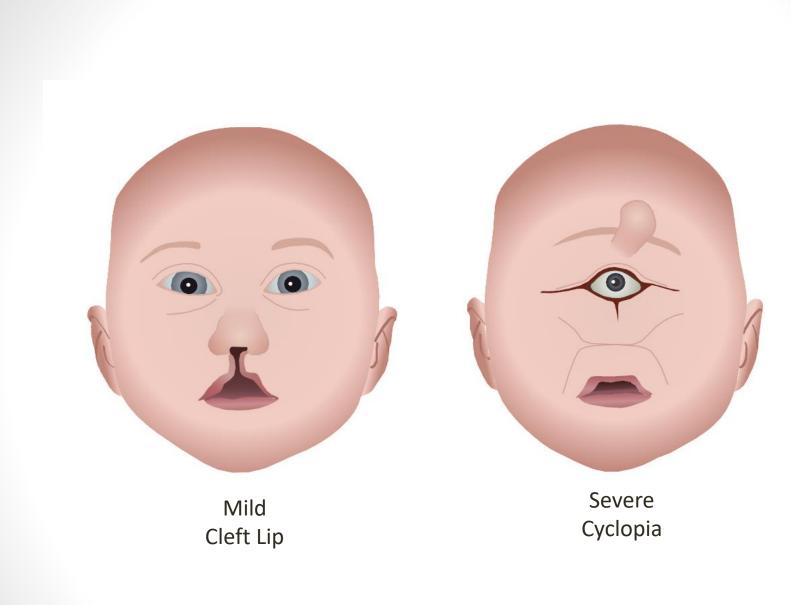
# Alpha Fetal Protein

- Fetal specific globulin
- Made by fetal yolk sac, fetal organs
- Function unknown
- Excreted by fetal kidneys
- 16 to 18 weeks  $\rightarrow$  measure maternal serum level
- If high, MAY indicated NTD
  - Interpretation complex
- Follow-up tests
  - Amniotic fluid AFP (requires amniocentesis)
  - Amniotic fluid acetylcholinesterase (AChE)
  - If both elevated, strongly suggests NTD



# **Prenatal Screening**


- Neural tube defect screening
  - Ultrasound
  - Maternal blood level Alpha Fetal Protein (AFP)
- Screening also done for Down Syndrome
  - Nuchal translucency by ultrasound
  - Serum markers
- "Triple screen"
  - AFP
  - Estradiol
  - HCG



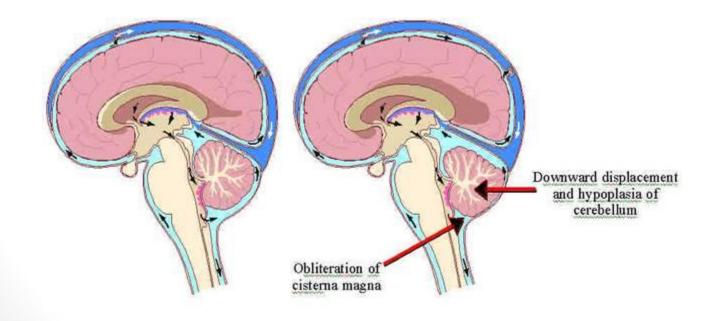

# Holoprosencephaly

- Cephalic malformation
- Failure of cleavage of prosencephalon
- Left/right hemispheres fail to separate
- Usually happens during weeks 5-6
- Failure of signaling molecules
  - Sonic hedgehog implicated
- Key findings are facial abnormalities:
  - Cleft lip/palate
  - Cyclopia
- Associations: trisomy 13 (Patau syndrome), trisomy 18 (Edward's syndrome), Fetal alcohol syndrome





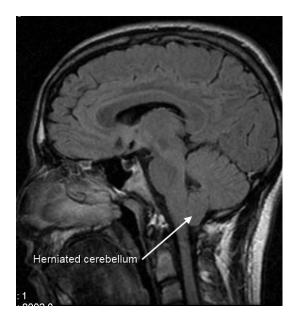





# **Chiari Malformations**

- Anatomic anomalies of cerebellum
- Group of congenital disorders
  - Chiari I through IV

Boards&Beyond


Downward displacement of the cerebellum



# **Chiari I Malformation**

- Abnormal shape of cerebellar tonsils
  - Tonsils = small rounded structure bottom of cerebellum
- Tonsils displaced below foramen magnum
- Associated with Syringomyelia





# **Chiari I Malformation**

- Usually no symptoms until adolescence/adulthood
  - Mean age 18 years
- Headaches
  - Due to meningeal irritation
  - Worse with cough: "cough headache"
- Other symptoms
  - Cerebellar dysfunction (ataxia)
  - Cranial nerve dysfunction (brainstem compression)



# **Chiari II Malformation**

Arnold-Chiari Malformation

- Downward displacement cerebellar vermis & tonsils
- Brainstem malformation
  - Beaked midbrain on neuroimaging
- Spinal myelomeningocele
  - Usually detected prenatal/birth



# **Chiari II Malformation**

Arnold-Chiari Malformation

- Blockage of aqueduct
- Hydrocephalus
- Myelomeningocele  $\rightarrow$  paralysis below defect
- Hydrocephalus in infants
  - Large head circumference on growth curves
  - Anterior fontanelle distended
  - Sutures widely split
  - Abnormal percussion: "cracked pot" sound or Macewen's sign



# **Dandy Walker Malformation**

- Developmental anomaly of the fourth ventricle
- Often detected by ultrasound in utero
- Hypoplasia or agenesis of cerebellar vermis
- Cerebellar hemispheres often flattened
  - Separated by "Dandy-Walker cyst"
- Cysts of  $4^{\text{th}}$  ventricle  $\rightarrow$  hydrocephalus
- Many, many associated symptoms/conditions
- Affected children
  - Hydrocephalus
  - Delayed development
  - Motor dysfunction (crawling, walking)



#### **Dandy Walker Malformation**





# Delirium & Dementia

Jason Ryan, MD, MPH



# Dementia vs. Delirium

- Dementia
  - Chronic, progressive cognitive decline
  - Usually irreversible
- Delirium
  - Acute
  - Waxing/waning
  - Usually reversible



# Delirium

- Loss of focus/attention
- Disorganized thinking
- Hallucinations (often visual)
- Sleep-wake disturbance
  - Up at night
  - Sleeping during day



# **Delirium Causes**

- Usually secondary to another cause
- Infection
- Alcohol
- Withdrawal
- Dementia patient in unknown setting
  - Classic scenario: demented patient with PNA
- Most common reason AMS in hospital



# EEG

#### Electroencephalogram

- Records voltage changes in brain
- Different leads
  - Frontal, parietal, occipital
- Characteristic patterns
- NORMAL in dementia
- ABNORMAL in delirium

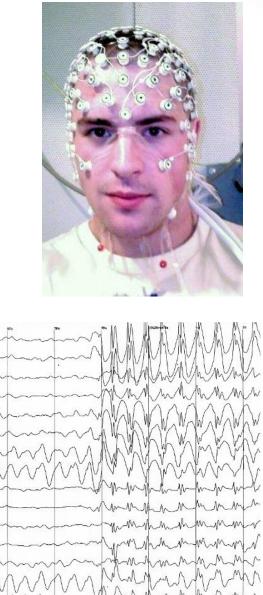





Image courtesy of Der Lange

# Delirium Treatment

- Fix underlying cause
  - Treat infection, withdrawal, etc.
  - Maintain O2 levels
  - Treat pain
  - Hydrate
- Calm, quiet environment
- Drugs
  - Haloperidol (vitamin H)



# Haloperidol

Trifluoperazine, fluphenazine, thioridazine, chlorpromazine

- Neuroleptics
  - Main effect is to block CNS dopamine (D2) receptors
  - Also block Ach (M), α1, histamine
- Uses
  - Schizophrenia
  - Psychosis
  - Mania



# Haloperidol

Trifluoperazine, fluphenazine, thioridazine, chlorpromazine

- High potency agents
  - Haloperidol, trifluoperazine, fluphenazine
  - More neurologic side effects
  - Extrapyramidal side effects
- Low potency agents
  - Thioridazine, chlorpromazine
  - More non-neurologic side effects



# Pyramidal vs. Extrapyramidal

- Pyramidal system
  - Corticospinal tract
  - Run in pyramids of medulla
  - Damage → weakness
- Extrapyramidal system
  - Basal ganglia nuclei and associated tracts
  - Rubrospinal, tectospinal, others
  - Modulation of movement
  - Damage  $\rightarrow$  movement disorders



- Exact mechanism unknown
- Response to dopamine receptor blockade
- Four movement side effects
  - Dystonia
  - Akathisia
  - Bradykinesia
  - Tardive dyskinesia



- Dystonia acute, within hours/days
  - Involuntary contraction of muscles
  - Spasms, stiffness
  - Treatment: benztropine
- Akathisia days
  - Restlessness, urge to move
  - Sometimes misdiagnosed as worsening agitation
  - Treatment: Lower dose, benzos, propranolol



- Bradykinesia weeks
  - "Drug-induced Parkinsonism"
  - Slow movements, like Parkinson's
  - Treatment: benztropine
- Tardive dyskinesia months/years
  - Chorea
  - Smacking lips
  - Grimacing
  - Often irreversible! (stopping drug doesn't help!)



- Common with high potency drugs
  - Haloperidol
  - Trifluoperazine
  - Fluphenazine
- Less common with low potency drugs
  - Thioridazine
  - Chlorpromazine



# **Other Haloperidol Side Effects**

- Blocks dopamine
  - Hyperprolactinemia
  - Galactorrhea
- Blocks ACh muscarinic receptors
  - Dry mouth
  - Constipation
- Blocks α1 receptors
  - Hypotension
- Blocks H receptors
  - Sedation

Boards&Beyond.

• Qt prolongation

- More common with low potency agents
  - Thioridazine
  - Chlorpromazine

# NMS

Neuroleptic Malignant Syndrome

- Rare, dangerous reaction to neuroleptics
- Very similar to malignant hyperthermia
  - Reaction to halothane, succinylcholine
  - Same treatment: dantrolene (muscle relaxant)
- Usually 7-10 days after treatment with haldol



# NMS

Neuroleptic Malignant Syndrome

- Fever, rigid muscles
- Mental status changes (encephalopathy)
- Hypertension, tachycardia
  - Autonomic instability
- Elevated CK
- Myoglobinuria acute renal failure from rhabdo
- Watch for fever, rigidity, confusion after Haldol
- Treatment:
  - Dantrolene (muscle relaxant)
  - Bromocriptine (dopamine agonist)



# Dementia

- Gradual decline in cognition
- No change LOC
- Usually irreversible (unlike delirium)
- Memory deficits
- Impaired judgment
- Personality changes



# Dementia

- Aphasia
  - Inability to communicate effectively
  - Forget words
  - Can't understand (may nod to pretend)
- Apraxia
  - Inability to do pre-programmed motor tasks
  - Can't do their job
  - Later: chewing, swallowing, walking
- Agnosia
  - Inability to correctly interpret senses
  - Can't recognize people
  - Can't interpret full bladder, pain



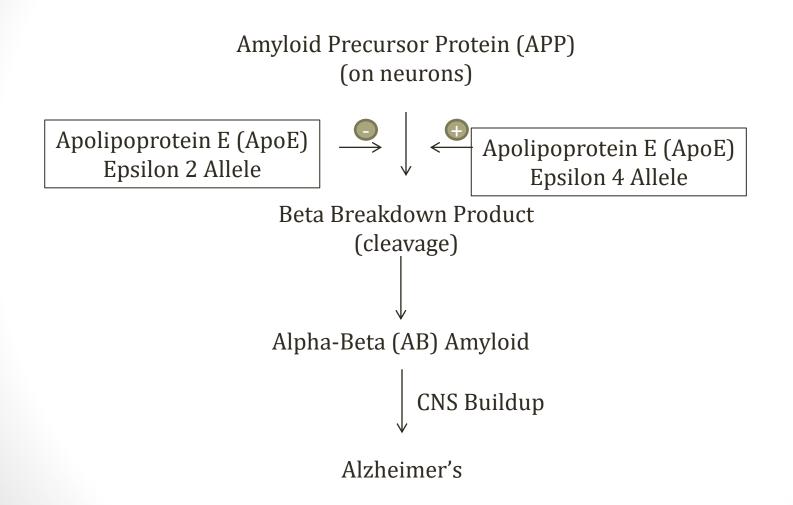
#### Mini Mental Status Exam

- Point system
- >=27 (out of 30) is normal
- Oriented to time, place
- Repeat three objects, remember them
- Serial 7s or spell WORLD backwards
- Name an object pointed out (agnosia)
- Repeat a phrase
- Draw an object shown



#### Dementia Causes

- Alzheimer's disease 60% of cases
- Multi-infarct dementia (stroke) ~20% of cases
- Lewy body dementia
- Rare stuff
  - Pick's disease
  - NPH
  - Creutzfeldt-Jakob
  - HIV
  - Vitamin deficiencies
  - Wilson's disease




#### Alzheimer's Disease

- Most common cause dementia
- Degeneration of cortex
  - Contrast with basal ganglia in movement disorders
  - Generalized  $\rightarrow$  no focal deficits
- Characterized by <u>loss of ACh</u> cortical activity
  - Deficiency of choline acetyltransferase
  - Prominent in basal nucleus of Meynert and hippocampus



### Alzheimer's BioChem





# Amyloid

- Proteins in many diseases
- Extracellular deposits
- All stain with Congo red
- All have apple-green birefringence (polarized light)
- Disease process depends on where they are found
- Alzheimer's: Brain



### Alzheimer's Disease

- Major risk factor is age
  - Disease of elderly
  - Sporadic
- Early disease
  - Down syndrome APP on Chromosome 21
  - Familial Form: Presenilin 1 & 2 gene mutations

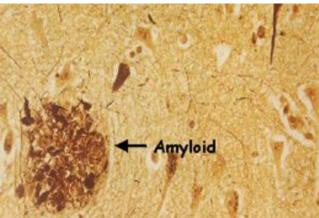


#### Alzheimer's Disease

- Other risk factors:
  - African American race
  - Family history
  - Obesity
  - Type II diabetes (insulin resistance)
  - HTN, Hyperlipidemia
  - Traumatic brain injury



#### Alzheimer's Brain


- Cortical atrophy
- Gyri narrow
- Sulci widen
- Hydrocephalus ex vacuo
  - Ventricles appear larger due to atrophy

#### Healthy Severe Brain AD



#### **Alzheimer's Path**

#### **Beta Amyloid Plaques**



#### **Neurofibrillary Tangles**

Hyperphosphorylated Tau protein in Neuron

Image courtesy of Neurofractal

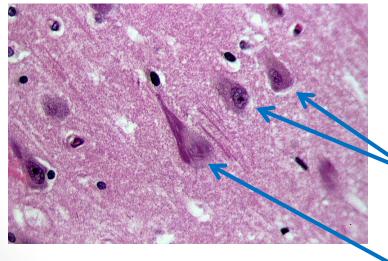



Image courtesy of Patho Boards&Beyond Normal neuronal cell bodies with nuclei

Neuronal cell body (with nucleus) Containing neurofibrillary tangle in Cytoplasm (dark purple stuff)

#### Alzheimer's Symptoms

- Patient may not notice cognitive decline
- Often brought in by family member
- Diagnosis: clinical
- Confirmed at autopsy



#### **Alzheimer's Drugs**

- Memantine
  - NMDA receptor blocker
  - N-methyl-D-aspartate receptor (glutamate receptor)
  - Side Fx: Dizziness, confusion, hallucinations
- Donepezil, galantamine, rivastigmine
  - Inhibit acetylcholinesterase
  - Side Fx: Nausea, dizziness, insomnia
- Vitamin E
  - Believes to protect against oxidation



#### Multi-infarct Dementia

- Second most common cause
- Dementia after multiple strokes
- Vascular risk factors: HTN, 1chol, smoking
- Stepwise progression of symptoms
- Treat risk factors



#### Lewy Body Dementia

- Lewy body: protein alpha-synuclein
- Found in basal ganglia in Parkinson's
- If found in cortex: LB dementia
- Triad
  - Dementia
  - Parkinson's symptoms
  - Hallucinations

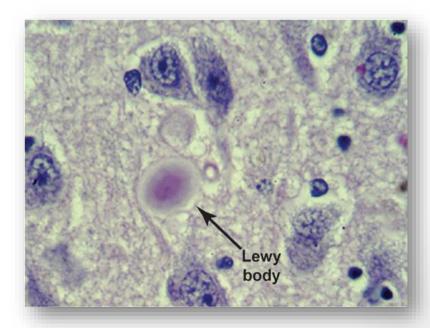
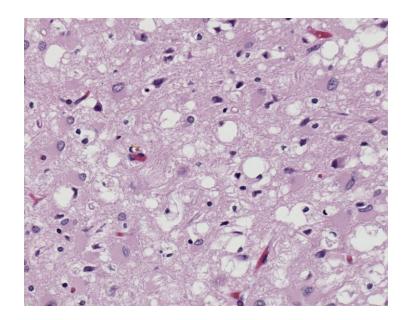
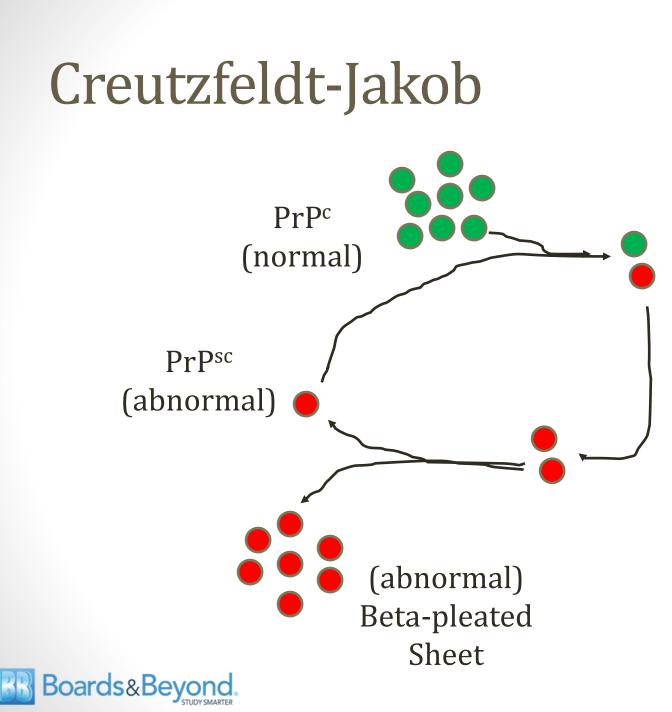





Image courtesy of Charles E. Driscoll, MD


#### Pick's Disease

- Rare cause of dementia
- Affects frontal and temporal lobes
  - Frontal: Change in personality, behavior
  - Temporal: Aphasia
- Path: Pick bodies
  - SPHERICAL tau proteins
  - Not tangles like AD




#### Creutzfeldt-Jakob

- "Spongiform encephalopathy"
- Intracellular vacuoles
- Caused by PrPSC prion
  - Sporadic mutation
  - Familial
  - Transmitted
- Mad Cow Disease







#### Creutzfeldt-Jakob

- Rapidly progressive dementia
- Death within a year
- Classic features
  - Ataxia
  - "Startle myoclonus"
  - Spike-wave complexes on EEG
- Diagnosis
  - Brain biopsy (gold standard)
  - Clinical criteria



# Demyelinating Diseases

Jason Ryan, MD, MPH



#### **Demyelinating Diseases**

- Multiple Sclerosis
- Guillain-Barre syndrome
- Progressive multifocal leukoencephalopathy (PML)
- Postinfectious encephalomyelitis
- Charcot-Marie-Tooth disease
- Metachromatic leukodystrophy
- Krabbe's disease



#### **Multiple Sclerosis**

- Autoimmune demyelination CNS
- Brain and spinal cord
- White women in 20s & 30s is classic demographic
- Relapsing, remitting course (most commonly)
- Diverse neuro symptoms that come/go over time
- Fatigue is extremely common

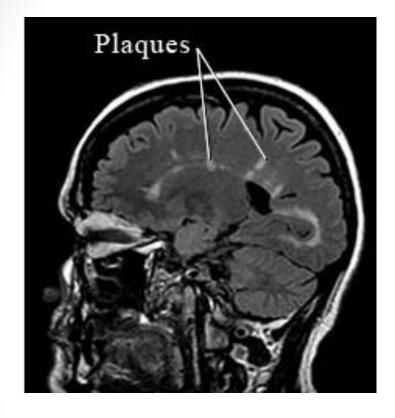


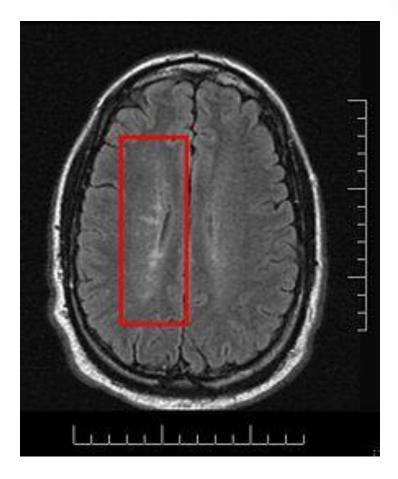
#### **Multiple Sclerosis**

- Lymphocytes (T-cells) react to myelin antigens
- Myelin basic protein
- Interferon-gamma
- Recruit macrophages
- Type IV hypersensitivity reaction



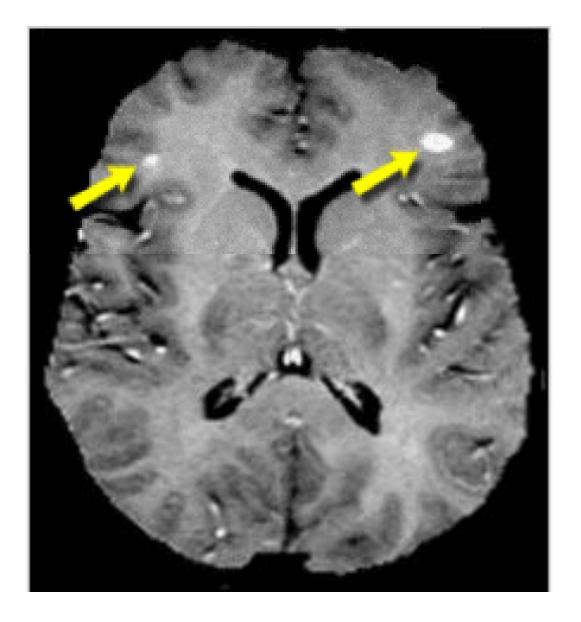
### Symptoms


- Any neuro symptom possible
- Few classic ones important to know
- Optic neuritis
  - Demyelination of optic nerve
  - Pain and loss of vision
- MLF syndrome (INO)
  - One eye cannot move medially on lateral gaze
- Bladder dysfunction
  - Spastic bladder
  - Overflow incontinence




#### **MS** Diagnosis

- MRI is gold standard
- Path: Periventricular plaques
  - Oligodendrocyte loss
  - Reactive gliosis
- CSF
  - High protein
  - Oligoclonal bands







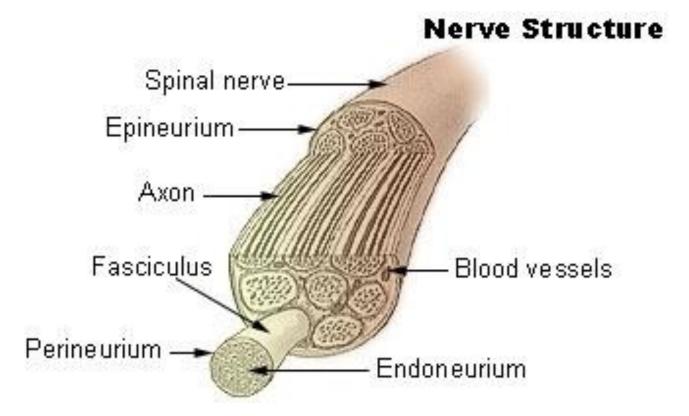



Images courtesy of DrKrupe





#### **MS** Treatment


- Rare patients do not require treatment
  - 1 or 2 lesions, no flairs
- Interferon (avonex, rebif, betaseron)
- Newer agents:
  - Natalizumab (Tysabri)
  - Dimethyl fumarate (Tecfidera)



- Acute inflammatory demyelinating radiculopathy
- Schwann cells destroyed by immune system
- <u>Ascending</u> muscle weakness over days  $\rightarrow$  weeks
  - Starts in legs
  - Spreads to other areas
  - Respiratory failure 10-30%
  - Facial muscle weakness >50%
- Sensory deficits occur (paresthesias) but mild
- Symptoms usually resolve over weeks to months



#### **Peripheral Nerves**





- Autonomic dysfunction >70%
  - Tachycardia
  - Urinary retention
  - Hypertension/hypotension
  - Arrhythmias
  - Ileus
  - Loss of sweating
- Severe autonomic dysfunction can cause SCD



- Often triggered by infection
- Classic agent: Campylobacter jejuni
  - Bloody diarrhea
- Classic agent: CMV
  - Usually asymptomatic infection
  - Detected by rise in CMV antibodies
  - Immunosuppressed patient (1-6months after xplant)
  - Febrile illness



- CSF shows elevated protein level
- Normal CSF cell count



- Treatment: Respiratory support
- Plasmapheresis
- IV immune globulins

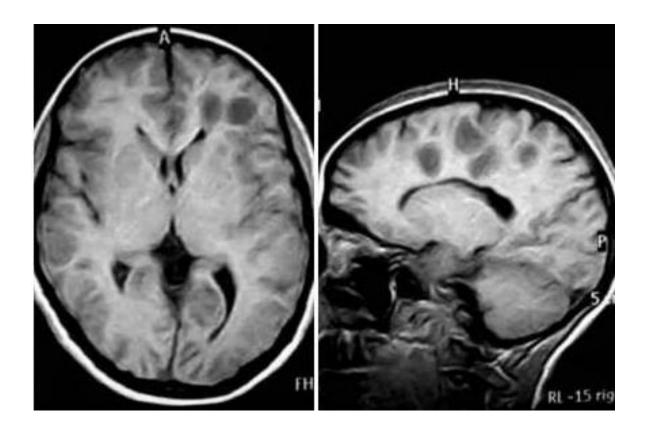




Image courtesy of Mr Vacchi

## Progressive multifocal leukoencephalopathy (PML)

- Severe demyelinating disease of CNS
- Reactivation of a latent JC virus
- Demyelination: multiple white matter lesions imaging
- Destroys oligodendrocytes
- CD4 < 200 cells/mm3
- Causes slow onset encephalopathy
  - Altered mental status
  - Focal neuro defects (motor, gait, etc)
- Dx: JC Virus DNA in CSF or brain biopsy




## Postinfectious encephalomyelitis

- Acute onset multifocal neurologic symptoms
- Often rapid deterioration  $\rightarrow$  hospitalization
- Rare sequelae of infection or vaccinations
  - Mean 26 days after
  - Infections: Varicella or measles
  - Vaccines: Rabies, small pox
- Most common histopathology: perivenous infiltration
  - Lymphocytes, neutrophils, other cells
  - Inflammation/demyelination



### Postinfectious encephalomyelitis





Images courtesy of Professor Yasser Metwally

#### **Charcot-Marie-Tooth**

Hereditary motor and sensory neuropathy (HMSN)

- Progressive hereditary peripheral nerve disorders
- Onset usually late childhood/adolescence
- Defective production nerve proteins or myelin
- Leg muscles (bilateral) become wasted
- Legs have characteristic stork-like contour
- Footdrop
- Foot deformities usually develop
- Upper extremities also affected (<lower)</li>
- Falls, clumsiness



#### **Charcot-Marie-Tooth**

Hereditary motor and sensory neuropathy (HMSN)

- Progressive hereditary peripheral nerve disorders
- Onset usually late childhood/adolescence
- Defective production nerve proteins or myelin
- Leg muscles (bilateral) become wasted
- Legs have characteristic stork-like contour
- Footdrop
- Foot deformities usually develop
- Upper extremities also affected (<lower)</li>
- Falls, clumsiness



#### Charcot-Marie-Tooth

Hereditary motor and sensory neuropathy (HMSN)



Pes cavus deformities



#### **Claw Hands**



Images courtesy of Dr. Sajida Khalid

#### Metachromatic leukodystrophy

- Lysosomal storage disease
- Rare, autosomal-recessive
  - Both parents must have mutation to pass on
- Progressive demyelination CNS, PNS
- Arylsulfatase A deficiency
- Buildup of sulfatides  $\rightarrow$  impaired production myelin



#### Metachromatic leukodystrophy

- Three forms
  - Late infantile (6 months to 2 ys)
  - Juvenile (3 to 16 yrs)
  - Adult (age >16)
- Infants/children can present with failure to reach milestones
- Children/adults can have ataxia/dementia



#### Krabbe's disease

- Lysosomal storage disease
- Autosomal recessive
- Deficiency of galactocerebrosidase
- Buildup of galactocerebroside
- Destroys myelin sheath



#### Krabbe's disease

- Most patients present <6mo of age</li>
- Progressive motor/sensory problems
- Irritability
- Developmental delay
- Limb spasticity
- Hypotonia
- Absent reflexes
- Microcephaly



# Headaches

Jason Ryan, MD, MPH



#### Headache Causes

- CNS Tumors
- CNS Bleeds (SAH)
- Hydrocephalus
- Inflammation (temporal arteritis)
- In clinical practice, must rule all these things out
- History, exam are key
- Lack of papilledema very important



#### **Primary Headache Disorders**

- Tension
- Migraine
- Cluster



#### **Tension Headache**

- Very common
- Etiology not clear, probably multifactorial
- Bilateral, constant pain
- Pain is pressing, tightening around head
- 30min to several hours
- Lack of photophobia, phonophobia, or aura
- Diagnosis: clinical
- Treatment: NSAIDs



## Migraine Headache

- Unilateral pain
- Pulsating
- Photophobia, phonophobia
- Often nausea, vomiting
- Often has aura
- Clinical diagnosis



#### Aura

- Gradual development of non-headache symptom
  - Patients will recognize their aura
- About 25% of migraine patients
- Classically precedes HA (but may be same time)
- Often visual
  - Bright, dark spots
  - "Scintillating scotoma"
- Sensory: tingling in limb or face
- Rare auras: speech, motor



# Triggers

- Menstruation
- Stress
- Not eating



# Migraine Etiology

- Still incompletely understood
- Irritation of CNS structures is important
  - Trigeminal nerve (CNV), meninges, blood vessels
- Activation of trigeminal nerve is important
  - Leads to release of vasoactive neuropeptides
  - Substance P, calcitonin gene-related peptide, neurokinin A
- Sensitization is important
  - Neurons increasingly responsive to stimuli



#### Migraine Treatment

- Abortive therapy
- Prophylactic Therapy



# **Abortive Therapy**

- Triptans (sumatriptan)
  - 5-HT agonists
  - Inhibit trigeminal nerve
  - ↓vasoactive peptide release
- Also causes vasoconstriction: May raise BP
- Contraindicated:
  - CAD
  - Coronary vasospasm (Prinzmetal's angina)



# **Abortive Therapy**

- Ergotamine
  - Vasoconstrictor
  - Before triptans, major migraine drug
  - Limited by overuse headache, gangrene
- NSAIDs



### **Preventive Therapy**

- Topiramate, Valproate
  - Anticonvulsants
- Propranolol
  - Beta blocker



### Topiramate

- Very effective for migraine
- Mental dulling/sedation
- Paresthesias
- Weight LOSS
- Kidney stones
  - Weak carbonic anhydrase inhibitor
  - Leads to more Ca in urine
  - May *risk* kidney stones
  - Patients need to hydrate



# Valproic Acid (Valproate)

- Anti-convulsant
- GI distress, tremor
- Hepatotoxicity (measure LFT's),
- Neural tube defects (spina bifida)
- Weight gain



# Propranolol

- Non-selective beta blocker
- Caution:
  - COPD
  - Diabetes
- Fatigue
- Erectile dysfunction



## **Pregnancy and Migraines**

- Usually less headaches while pregnant
- Triptans are okay for abortive
- Avoid: Anti-convulsants, ergotamine, NSAIDs



#### **Cluster Headache**

- Very rare
- Poorly understood mechanism
- Mostly men (classic presentation)
- More common in smokers
- Excruciating, <u>unilateral</u> headache behind eye
- Lacrimation, rhinorrhea
- Autonomic dysfunction
  - Horner's syndrome: ptosis, miosis
- Unlike migraine: no aura, no nausea/vomiting



#### **Cluster Headache**

- Come in clusters: attacks daily for few weeks
- Circadian rhythm:
  - Daily attacks (same time of day)
- Attacks last 15min to several hours
  - Contrast with trigeminal neuralgia: <1min
- Treatment: Oxygen, triptans
  - Mechanism for oxygen unclear
  - May be related to O2 induced vasoconstriction
  - O2 also inhibits neuronal activation in the trigeminal nucleus



# **Brain Tumors**

Jason Ryan, MD, MPH



#### **Brain Tumors**

#### <u>Adult</u>

- Glioblastoma
- Meningioma
- Schwannoma
- Oligodendroma
- Hemangioblastoma
- Pituitary Adenoma

Most adult tumors above tentorium: Supratentorial

Boards&Beyond.

Most child tumors below tentorium: Infratentorial

#### <u>Children</u>

- Astrocytoma
- Medulloblastoma
- Ependymoma
- Craniopharyngioma

#### **Brain Tumors**

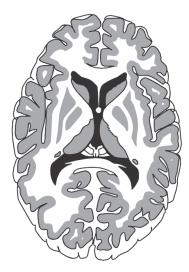
- Primary 50%
- Secondary 50%
  - Multiple lesions
  - Most common: Lung, breast, renal



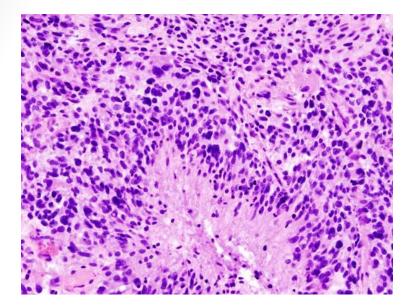
# Symptoms

- Headache
- Seizures
- Motor/sensory symptoms

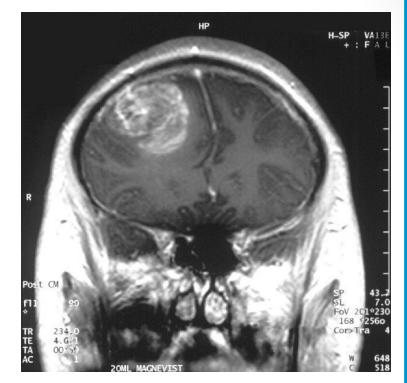



#### Treatment

- Surgery
- Radiation
- Chemotherapy
- Different depending on type of tumor



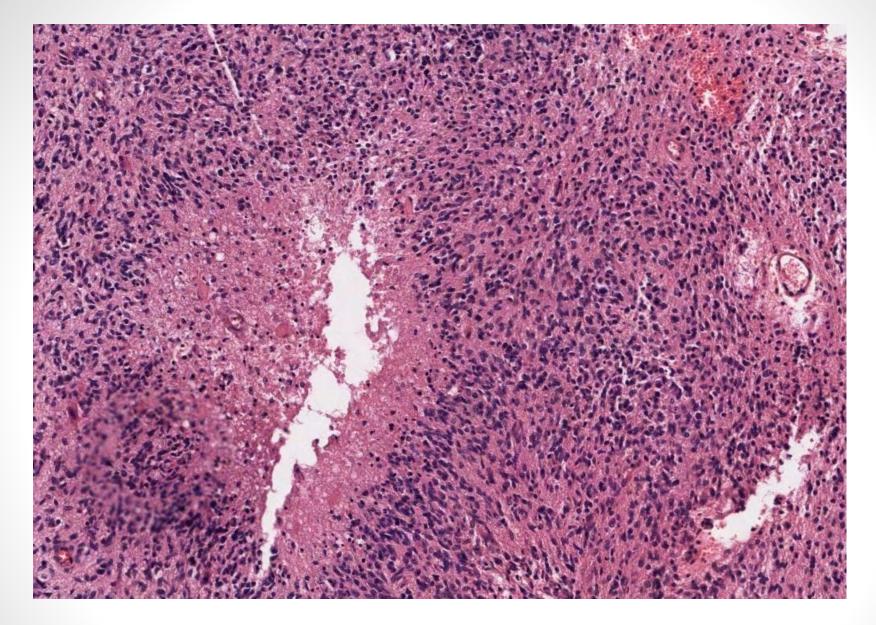

#### Glioblastoma


- Most common primary brain tumor adults
- Occurs in cerebral cortex
- Rapidly progressive, malignant
- Usually fatal <1year</li>
- Half of patients >65
- Older age = worse prognosis
- Often crosses corpus callosum
  - Butterfly glioma
- Express GFAP








Pseudopallisading Cells line up along edge of necrosis



#### MRI



Image courtesy of Christaras A



Pseudopallisading in glioblastoma multiforme Image courtesy of Michael Blechner, MD Boards&Beyond.

- 2nd most common brain tumor
- Convexities of hemispheres near surfaces of brain
- Arise from arachnoid cells
- "Extra-axial" external to brain
- Can have dural attachment ("tail")



- Usually benign (no mets) and resectable
- Often asymptomatic
- Sometimes seizures
- Classically affects female more than males
  - Expresses estrogen receptors
- Prior radiation to head is risk factor
  - Childhood malignancies
  - Latency period ~20years



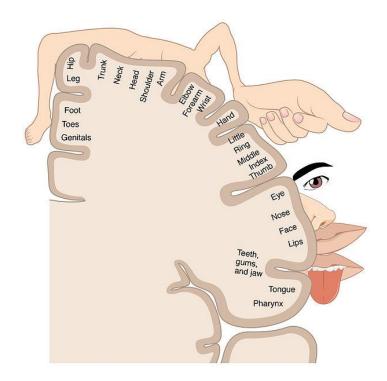





Image courtesy of Nephron

#### Parasagittal Meningioma

- Will compress the leg area similar to ACA stroke
- Classic presentation





Psammoma body

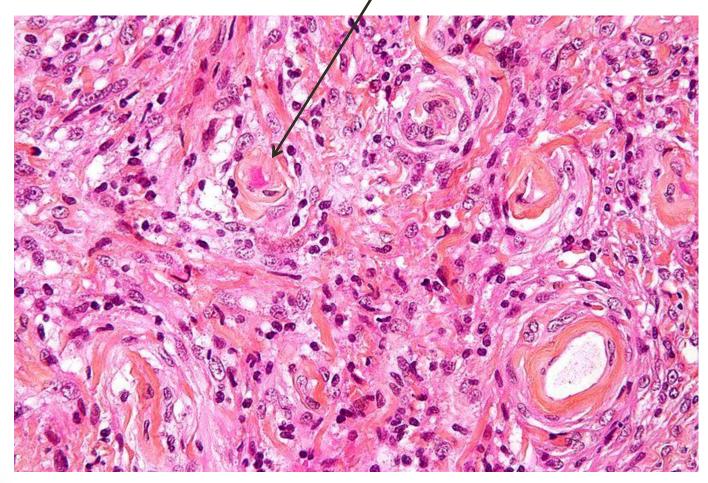
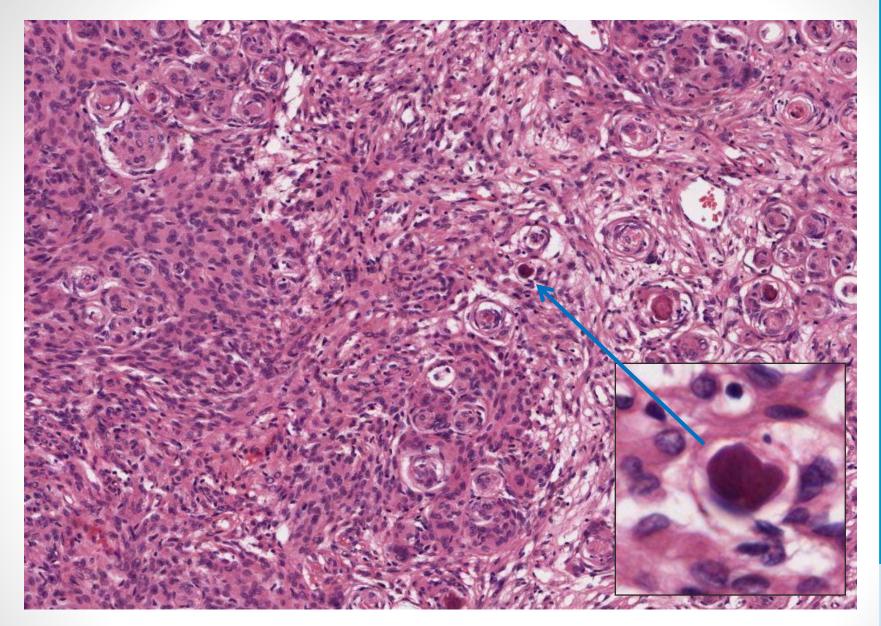






Image courtesy of Nephron



Meningioma Boards&Beyond, Images courtesy of Michael Blechner, MD



#### Schwannoma

- 3<sup>rd</sup> most common adult primary brain tumor
- Schwann cells are glial (non neurons) of PNS
- Classically located to CN VIII
- Hearing loss, tinnitus, ataxia
- Cerebellopontine angle symptoms
  - Facial nerve and vestibulocochlear nerve emerge here
- Treatable with surgery, radiation
- Stain positive for protein S-100



#### Schwannoma

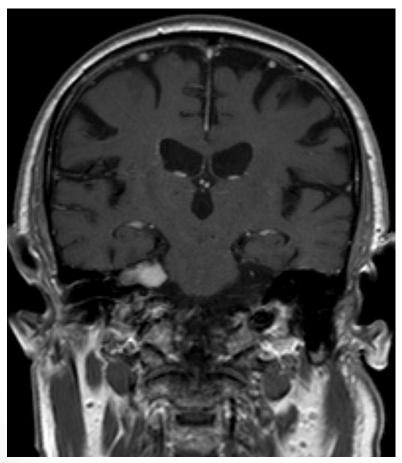
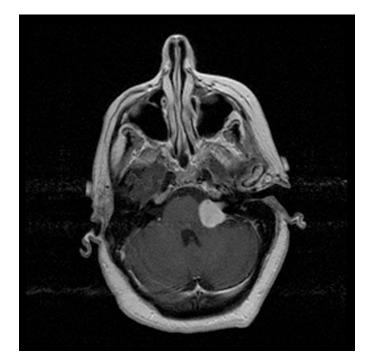




Image courtesy of Hellerhoff





#### Neurofibromatosis

- Autosomal dominant disease
- Mutation NF1 /NF2 genes
- Neurofibromas
- Lisch nodules
- Café-au-lait spots

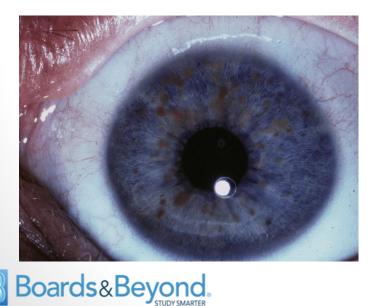







Image courtesy of File Upload Bot

#### Neurofibromatosis

- Type 1:
  - Most common
  - Café-au-lait spots, Neurofibromas
- Type 2:
  - Bilateral schwannomas (almost all patients)
  - Meningiomas
  - Multiple tumors
  - MISME: Multiple inherited schwannomas, meningiomas, and ependymomas



# Oligodendroglioma

- Rare tumors
- Slow growing
- Usually in frontal lobe
- Often presents with seizures
- Tumor of white matter

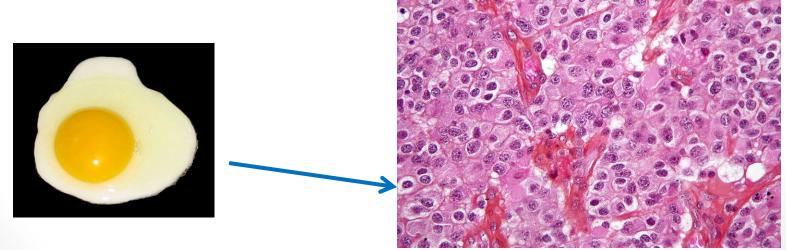
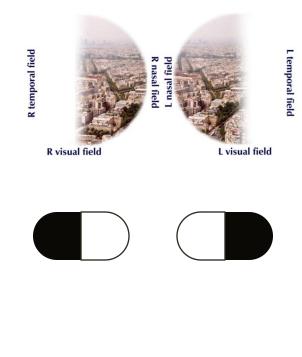






Image courtesy of Nephron

#### Pituitary adenoma

- Benign (usually) growths of pituitary gland
- Often cause endocrine symptoms
  - Hypo/hyper secretion of hormones
- Most commonly secrete prolactin
  - Amenorrhea, galactorrhea, impotence
- Headache
- Bitemporal hemianopsia
- <10mm = microadenoma</p>
- >10mm = macroadenoma





#### Pituitary adenoma

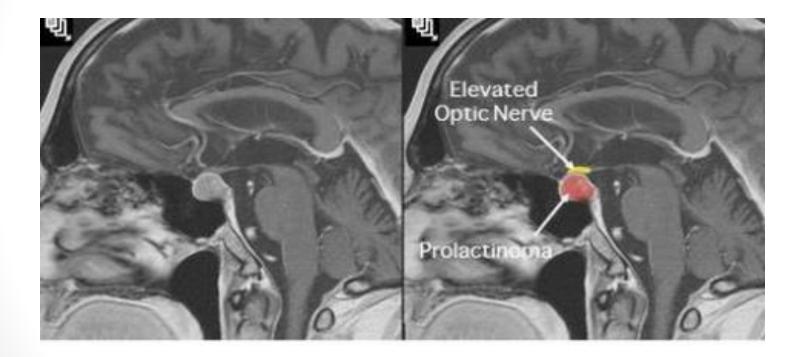
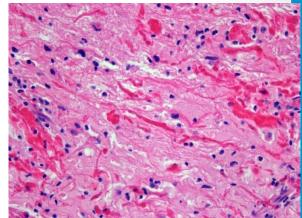





Image courtesy of Magdi Sasi

#### **Childhood CNS Tumors**


Cerebellar

- Pilocytic astrocytoma
- Medulloblastoma
- Ependymoma
- Craniopharyngioma



#### Pilocytic astrocytoma

- Most common brain tumor children
- Low grade astrocytoma
- Usually in posterior fossa (cerebellum)
- Usually benign without mets
- Well-circumscribed, cystic or solid
- Often successfully treated with surgery
- Contain Rosenthal fibers
- GFAP positive

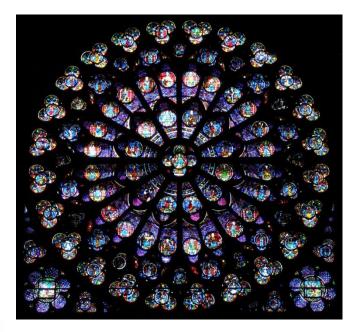




#### Medulloblastoma

- Highly malignant primary brain tumor
- Usually occurs in children
- Usually occurs in cerebellum
  - Often in midline (truncal ataxia)
- Type of primitive neuroectodermal tumor (PNET)




#### Medulloblastoma

- Treatment: Surgery, radiation, chemo
- 75% children survive to adulthood
  - Many with complications of treatment
- Can compress  $4^{\text{th}}$  ventricle  $\rightarrow$  hydrocephalus
- Can spread to CSF
  - Nodules in dura of spinal cord: "Drop metastasis"
  - Tend to occur in lower spinal cord, cauda equina
  - Back pain, focal neuro lesions can occur



#### Medulloblastoma

• Homer-Wrights Rosettes



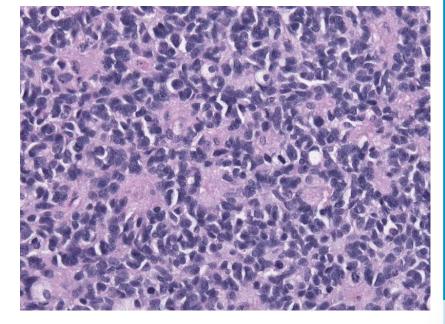



Image courtesy of Eusebius

Image courtesy of Jensflorian



#### Ependymoma

- Ependyma: epithelium-like lining of ventricles
- Found in brain and the spinal cord
- Often found in 4th ventricle
- Can cause hydrocephalus

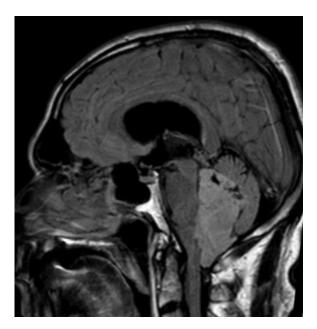
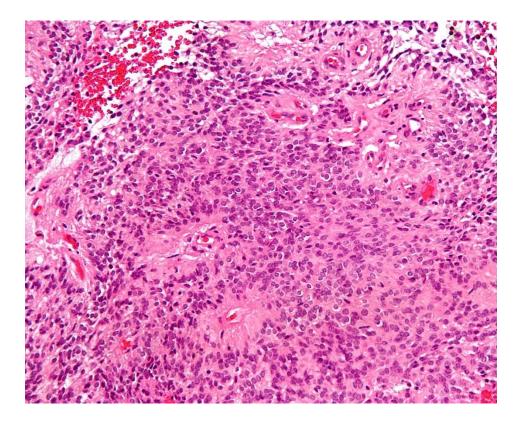
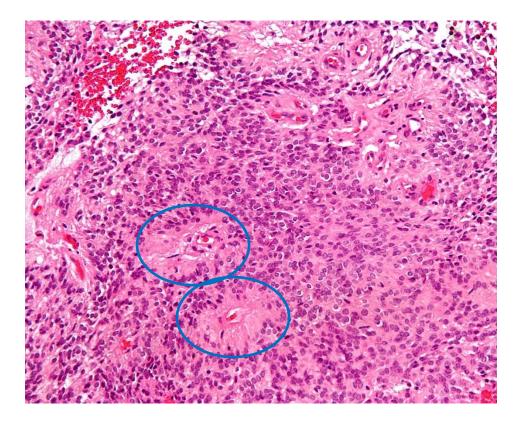






Image courtesy of Hellerhoff

#### Pseudorosette




Cells surrounding central core but core is blood vessel



Image courtesy of Nephron

#### Pseudorosette



Cells surrounding central core but core is blood vessel



Image courtesy of Nephron

### Hemangioblastoma

- Very rare, slow growing CNS tumors
- Often cerebellar, also brainstem & spinal cord
- Well-circumscribed, highly vascular



### Hemangioblastoma

- Two key facts to know
- #1: Can produce EPO → polycythemia (↑Hct)
- #2: Occur in von Hippel-Lindau syndrome
  - Autosomal dominant disease
  - Tumor suppressor gene mutation
  - LOTS of tumors
  - Hemangioblastomas of the brain (cerebellum) and spine
  - Retinal angiomas
  - Renal cell carcinomas (RCCs)
  - Pheochromocytomas



# Craniopharyngioma

- Mostly children 10-14 years old
  - Rarely younger adults
- Suprasellar
  - Anywhere pituitary gland  $\rightarrow$  base 3<sup>rd</sup> ventricle
- Benign
- Symptoms from compression
  - Visual field defects
  - Hormonal imbalance
  - Behavioral change (frontal lobe dysfunction)



# Craniopharyngioma

- Derived from remnants of Rathke's pouch
  - Invagination of the ectoderm
  - Protrudes from roof of mouth
  - Also forms anterior pituitary
- Often calcified and cystic
- Contain epithelial cells
  - Appearances similar to pulp of developing teeth
- Can compress optic chiasm
  - Bitemporal hemianopsia



#### Craniopharyngioma




Image courtesy of Dr.Roopchand.PS

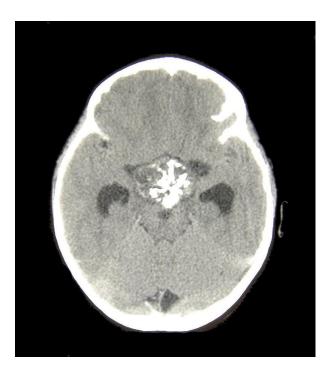
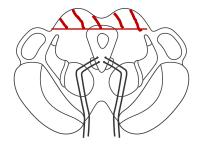




Image courtesy of Matthew R Garnett



#### **Pineal Tumors**

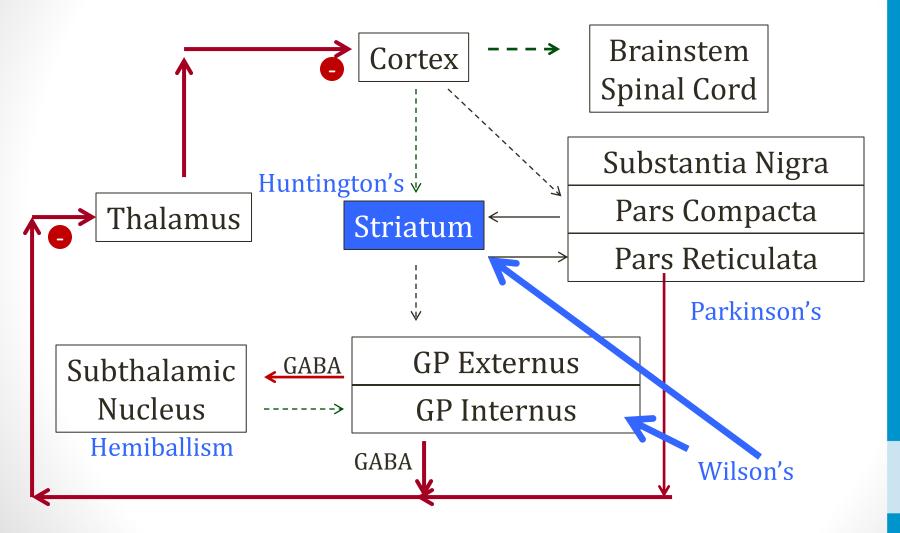
- Rare germ cell tumors or parenchymal tumors
- Compression pretectal area of midbrain
- Parinaud syndrome
  - Paralysis of upward gaze
  - Pseudo-Argyll-Robertson pupils
  - React to accommodation but not light
- Can compress cerebral aqueduct
  - Hydrocephalus, papilledema





# Parkinson's, Huntington's, and Movement Disorders

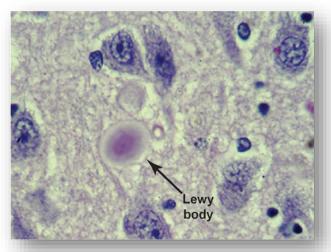
Jason Ryan, MD, MPH

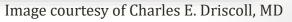



#### **Movement Disorders**

- Parkinson's disease
- Huntington's Disease
- Hemiballism
- Wilson's Disease
- All result from damage to part of basal ganglia




#### **Basal Ganglia Connections**






#### Parkinson's Disease

- Degenerative disease of substantia nigra
- Depletion of dopamine in SN Pars Compacta
- Loss of melanin-containing dopaminergic neurons SN
  - Depigmentation
- Pathologic hallmark: Lewy bodies in SN
  - Inclusion in neurons of α-synuclein







#### MPTP

- Methyl-phenyl-tetrahydropyridine
- Destroys dopamine neurons
- Causes Parkinson's
- May be contaminant of opioid drugs



#### Parkinson's Disease

- Classic case: older, male patient
  - Average age onset in 60s
- Rest tremor (pill-rolling tremor)
- Bradykinesia can't initiate movements
- Movement gets better with exercise
- Shuffling gate
- Stooped posture
- Cogwheel rigidity



#### Parkinson's Treatments

| Drug                         | Mechanism                                                 |
|------------------------------|-----------------------------------------------------------|
| L-dopa/carbidopa             | Converted to dopamine in CNS                              |
| Entacapone, Tolcapone        | COMT inhibitors; prevent L-dopa breakdown                 |
| Selegiline                   | Prevents dopamine breakdown                               |
| Bromocriptine                | Dopamine agonist (ergot)                                  |
| Pramipexole, Ropinirole      | Dopamine agonists (non-ergot)                             |
| Benztropine, Trihexyphenidyl | Antimuscarinic                                            |
| Propranolol                  | Beta blocker                                              |
| Amantadine                   | Dopamine agonists, anticholinergic<br>(also an antiviral) |



# L-dopa/carbidopa

Sinemet

- L-dopa crosses blood-brain barrier
- Converted to dopamine in CNS
  - Dopa decarboxylase
- Peripheral decarboxylase can breakdown L-dopa
  - This limits its benefit
  - Also creates peripheral dopa
  - Can cause heart side effects
  - Can cause nausea/vomiting (vomiting center outside BBB)



# L-dopa/carbidopa

Sinemet

- Carbidopa inhibits peripheral decarboxylase
- Given together: L-dopa/Carbidopa
- Still get CNS side effects of L-dopa
  - L-dopa becomes dopa in CNS
  - Anxiety, agitation, insomnia
- Use lowest dose possible
- Avoid vitamin B6



# L-dopa/carbidopa

Sinemet

- Long-term use  $\rightarrow$  Motor side effects
- Drug reduces natural L-dopa production
- "On-off " phenomenon
- Akinesia occurs between doses
- Involuntary movements
- Use lowest dose possible to avoid



### **Entacapone and Tolcapone**

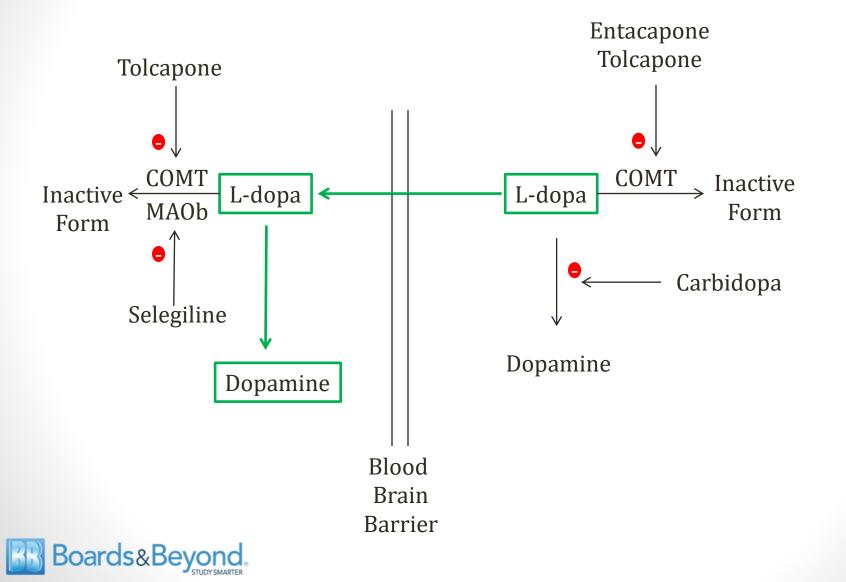
- Inhibit catechol-O-methyltransferase (COMT)
- Enzyme that breaks down L-dopa
  - Even with carbidopa, COMT limits L-dopa benefit
- Only work in combination with L-dopa
- Entacapone: peripheral COMT inhibition
- Tolcapone: peripheral and central COMT inhibition
- Tolcapone associated with hepatotoxicity



# Selegiline

- Inhibits MAO-b
  - Central dopamine breakdown enzyme
  - Breaks down dopamine more than 5HT
- Increases central dopamine levels
- Can be added to L-dopa/carbidopa
- Side effects:
  - Nausea, vomiting
  - Hypotension
  - Excessive daytime sleepiness




# Selegiline

Side Effects

- Serotonin syndrome
  - When given with SSRI
  - Confusion, fever, myoclonus
- "Cheese effect"
  - Hypertensive crisis
  - Tyramine foods: Red wine, aged cheese, or aged meat
  - MAO inhibitors (a or b) block breakdown of tyramine
  - Tyramine  $\rightarrow$  HTN



#### Parkinson's Drugs



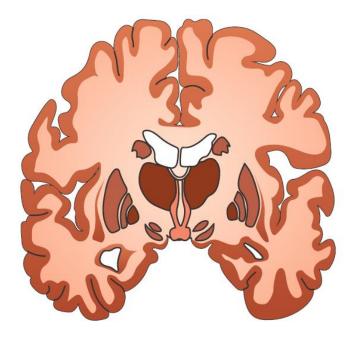
### Parkinson Drugs in Practice

- Tremor predominant symptoms
  - Trihexyphenidyl (anti-muscarinic)
  - Side effects: sedation, dry mouth
- Bradykinesia, rigidity
  - Ropinirole, pramipexole (dopamine agonists)
  - Levodopa/carbidopa



# Surgical Therapy Parkinson's

- Young patients often develop toxicity from long term use of L-dopa/carbidopa
- Prior surgeries used:
  - Pallidotomy (partial ablation of globus pallidus)
  - Thalamotomy (partial ablation of thalamus)
- Modern option: Deep brain stimulation
  - High frequency DBS suppresses neural activation




# Huntington's Disease

- Inherited autosomal dominant disorder
- Degeneration in striatum
  - Striatum = caudate + putamen
  - Loss of GABA neurons (also ACh)
- Brain imaging

Boards&Beyond

- Lateral ventricles may appear larg
- Marked caudate degeneration
- Also has atrophy of frontal/temporal lobes



### Huntington's Disease

- Mutation in the HTT gene
- CAG repeat in gene
- Normal 10-35 repeats
- Huntington's 36 to 120 repeats
- Worse/earlier symptoms each generation
  - "Anticipation"
- Neuronal death from glutamate toxicity
  - Glutamate binds NMDA receptor
  - Excessive influx calcium
  - Cell death



## Huntington's Disease

- Onset of symptoms 30s-40s
- Death after 10-20 years
- Chorea
- Aggression
- Depression
- Dementia
- Can be mistaken for substance abuse



## Huntington's Treatment

- Dopamine associated with chorea
- Blocking dopamine can reduce chorea
- Tetrabenazine and reserpine
  - Inhibit VMAT
  - Limit dopamine vesicle packaging /release
- Haloperidol
  - Dopamine receptor antagonist



#### Hemibalism

- Wild, flinging movements of extremities (ballistic)
- Damage to subthalamic nuclues
- Seen in rare subtypes of lacunar strokes



#### Wilson's Disease

- Disorder of Copper metabolism
- Leads to accumulation of copper in tissues
- Lesions occur in basal ganglia
  - Lentiform nucleus (putamen/globus pallidus)
- Movement symptoms
  - Can be parkinsonian
  - Wing-beating tremor
  - Dysarthria



#### Other movement disorders

| Disorder  | Appearance                                 | Lesion                           |
|-----------|--------------------------------------------|----------------------------------|
| Chorea    | Random, purposeless<br>movements           | Basal ganglia                    |
| Athetosis | Slow, writhing movements of fingers        | Basal ganglia                    |
| Myoclonus | Sudden muscle<br>contraction, jerk, twitch | Can occur renal/liver<br>failure |
| Dystonia  | Sudden contractions;<br>twitching          | Writer's cramp;<br>blepharospasm |



#### Chorea

- Two important causes:
  - Huntington's disease
  - Acute rheumatic fever
- History is key



#### Tremors

| Туре                | Appearance                                                                        | Comments                                         |
|---------------------|-----------------------------------------------------------------------------------|--------------------------------------------------|
| Essential Tremor    | Occurs with intentional movement                                                  |                                                  |
| Resting Tremor      | At rest; usually hands;<br>better with intentional<br>movements<br>"pill rolling" | Classic for Parkinson's                          |
| Intention Tremor    | Zig-zag motion when<br>trying to move finger<br>toward target                     | Cerebellar dysfunction;<br>"Finger to nose" test |
| Wing-beating Tremor | Hands clasped together,<br>elbows out, flapping                                   | Wilson's disease                                 |



#### **Essential Tremor**

- Old name: "Benign familial tremor"
  - Distinguish from Parkinson's
- Genetic predisposition
- EtOH helps patients self-medicate
- Drug treatment
  - Propranolol (beta blocker)
  - Primidone



# **HIV CNS Infections**

Jason Ryan, MD, MPH



#### **CNS Infections in HIV Patients**

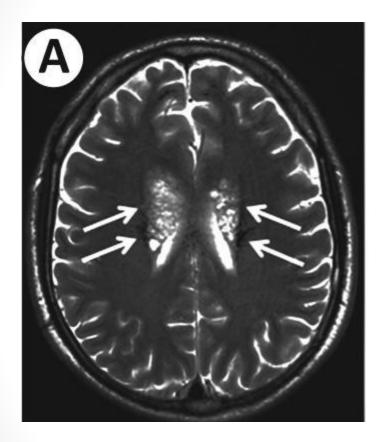
- Cryptococcus
- Cytomegalovirus (CMV)
- Toxoplasmosis
- JC virus
  - Progressive multifocal leukoencephalopathy (PML)

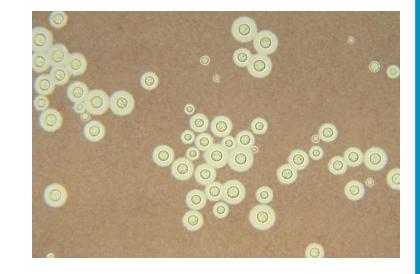


- Invasive fungus
- Thick polysaccharide capsule
- Present in soil and pigeon droppings



- Inhaled  $\rightarrow$  lungs  $\rightarrow$  blood stream  $\rightarrow$  meninges
- Can also occur immunocompromised
  - Chemo, post-transplant





- Indolent symptoms over weeks
  - Fever, headache
- Can cause ↑ICP
- Risk of herniation with LP
- Must do CT or MRI
- Treatment: Amphotericin B or Fluconazole



- Sabouraud's agar
- Latex agglutination test
  - Detects polysaccharide capsular antigen
- Soap bubble lesions on MRI







India Ink stain shows yeast with "halos"

MRI shows "soap bubble" lesions in periventricular white matter

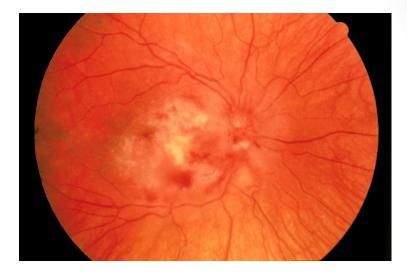

Image courtesy of Marcelo Adriano da Cunha e Silva Vieira



Image courtesy of Crisco 1492

### **CMV** Retinitis

- Retinal edema/necrosis
- Floaters, ↓vision
- CMV in HIV/AIDS:
  - Low CD4 (50-100)





# Toxoplasma gondii

- Multiple "ring-enhancing" lesions on imaging
- CD4 <100cells/mm3
- Treatment: Sulfadiazine/pyrimethamine

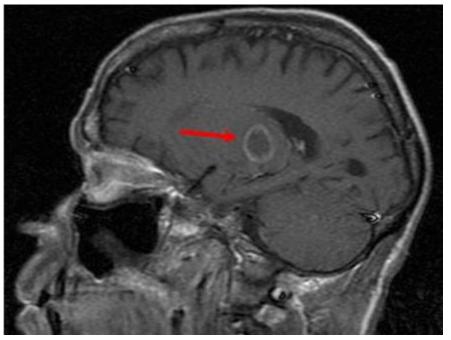





Image courtesy of LearningRadiology.com

# Progressive multifocal leukoencephalopathy (PML)

- Severe demyelinating disease of CNS
- Reactivation of a latent JC virus  $\rightarrow$  demyelination
- CD4 < 200 cells/mm3
- Causes slow onset encephalopathy
  - Altered mental status
  - Focal neuro defects (motor, gait, etc)
- Dx: JC Virus DNA in CSF or brain biopsy

