Cellular Adaptations

Jason Ryan, MD, MPH

Cellular Response to Stress

- Stressors
 - Pathologic: ischemia
 - Physiologic: pregnancy
- Adaptation
 - Reversible change in response to stress
- Injury
 - Reversible \rightarrow irreversible
- Cell death

Cellular Adaptations

- Hypertrophy
 - Increase in cell size
- Hyperplasia
 - Increase in cell number
 - Often occurs with hypertrophy
- Atrophy
 - Decrease in cell size
- Metaplasia
 - Change in phenotype

Hypertrophy

- Increase in **cell size**
 - More proteins, filaments
- May occur together with hyperplasia
- **Muscle tissue**: hypertrophy with more workload

Hypertrophy

- Physiologic examples
 - Body builders (muscle hypertrophy for use)
 - Uterus in pregnancy (hormone driven)
- Pathologic example:

Boards&Beyond

- Left ventricular hypertrophy
- Response to hypertension or increased workload

Øyvind Holmstad/Wikipedia

Hyperplasia

- Increase in **cell number**
- Often due to excess hormone stimulation
- Physiologic or pathologic
- Often accompanied by hypertrophy

Physiologic Hyperplasia

- Breast growth at puberty
 - Hyperplasia and hypertrophy of glandular epithelial cells
- Liver regeneration
 - Partial liver donation \rightarrow liver grows back to full size
 - Hyperplasia of remaining hepatocytes
- Bone marrow

Boards&Beyond

- Anemia \rightarrow hyperplasia of red cell precursors
- Red blood cell production may increase by 8x

Pathologic Hyperplasia

Endometrial hyperplasia

- Growth due to **estrogen**
- Prostatic hyperplasia
 - Excessive response to **androgens**
- Human papilloma virus
 - Skin warts (epidermal hyperplasia)
 - Genital warts (mucosal hyperplasia)

Wikipedia/Public Domain

Malignancy

Often develops from hyperplasia

- Increased cell division
- More chances for error in cell cycle control
- Uncontrolled growth

Wikipedia/Public Domain

Benign Prostatic Hyperplasia

- Pathologic hyperplasia
- Does not lead to malignancy

This shows the prostate and nearby organs.

Wikipedia/Public Domain

Hypertrophy vs. Hyperplasia

- Permanent/non-dividing cells
 - Myocytes, skeletal muscle cells, nerves
 - Permanent G₀ state ("terminally differentiated")
 - Hypertrophy
- Cells capable of growth/division
 - Epithelial cells (GI tract, breast ducts, skin)
 - Commonly undergo hyperplasia
 - May lead to dysplasia/cancer

Atrophy

- Reduction in size of organ/tissue
- Decrease in cell size and/or number of cells
- Physiologic examples:
 - Embryonic structures (notochord)
 - Uterus after childbirth (loss of hormone stimulation)
 - Breast/uterus at menopause

Flikr/Public Domain

Pathologic Atrophy

Unused skeletal muscle

- Bed rest
- Immobilization (cast after fracture)
- Cachexia
 - Poor nutrition
- Decreased blood supply
 - Senile atrophy of brain (atherosclerosis)
- Loss of innervation
 - Neuromuscular disorders

CDC/Public Domain

Atrophy Mechanisms

Ubiquitin-proteasome pathway

- Proteins tagged by ubiquitin
- Transported to proteasomes for degradation
- Stressors may activate ligases that attach ubiquitin

Autophagy

- "Self eating"
- Cellular components fused with lysosomes

- Change in cell type to adapt to stress
- New cell type able to withstand stress
- Commonly from one **epithelial cell** type to another
- Potentially reversible
- Can lead to dysplasia/malignancy

Respiratory tract in **smokers**

Normal columnar epithelium in trachea/bronchi

- Changes to squamous epithelium (most common metaplasia)
- Squamous epithelium more durable
- Loss of cilia \rightarrow more vulnerable to infections

Ciliated, PS columnar

Stratified squamous epithelium

OpenStax College/Wikipedia

Pixabay/Public Domain

• Barrett's esophagus

- Gastric acid (stressor) in esophagus
- Normal stratified squamous epithelium
- Changes to columnar epithelium (intestines)

Wikipedia/Public Domain

• Myositis Ossificans (heterotopic ossification)

- *Muscle* metaplasia to bone (<u>not epithelial cells</u>)
- Mesenchymal cells \rightarrow osteoblastic tissue
- Forms lamellar bone in muscles
- Follows trauma (hip arthroplasty)
- Muscles become stiff

Boards&Beyond.

Tdvorak/Wikipedia

Vitamin A Deficiency

- Important for maintaining epithelial cells
- Deficiency: epithelial metaplasia and keratinization
- Upper respiratory tract
 - Epithelial metaplasia
 - Epithelium replaced by keratinizing squamous cells
 - Abnormal epithelium \rightarrow pulmonary infections
- Xerophthalmia (dry eyes)
 - Normal epithelium secretes mucus
 - Replaced by keratinized epithelial cells

Apocrine Metaplasia

- Form of **fibrocystic change** in breast
- Also called "benign epithelial alteration"
- Alterations to lobular epithelial cells
- Take on appearance of apocrine (gland) cells
- *Does not* lead to dysplasia/cancer

Dysplasia

Disordered proliferation

- Non-neoplastic but can be pre-cancerous
 - Mild dysplasia may resolve
 - Severe dysplasia may be irreversible \rightarrow cancer
- Usually occurs in epithelial tissues
- Usually preceded by hyperplasia or metaplasia

Dysplasia

- Pleomorphism
- Abnormal nuclei (hyperchromatic, large)
- Mitotic figures (clumped chromatin)

Wikipedia/Public Domain

Ed Uthman/Wikipedia

Cellular

Injury

Jason Ryan, MD, MPH

Cell Injury

- Four general causes of cell injury
 - Capacity for adaptation exceeded
 - Exposure to toxic/injurious agents
 - Deprived of nutrients
 - Mutation disrupts metabolism
- Reversible to a point
- Severe or persistent injury may be irreversible
- May lead to cell death

Pixabay/Public Domain

Cell Death

- Two ways cells die:
 - Necrosis: inflammatory process
 - Apoptosis: **non-inflammatory**
- Necrosis preceded by classic cellular changes
 - Reversible changes \rightarrow irreversible changes

Reversible Cell Injury

Cellular swelling

- Major feature of most forms of reversible injury
- Hydropic change = water accumulation in cell
- Hard to see under microscope
- ↓ Na/K ATPase pumps

Reversible Cell Injury

• Fatty change

- Seen only in systems that heavily metabolize fatty acids
- Liver, heart, skeletal muscle
- Lipid vacuoles appear in cytoplasm

Public Domain

Reversible Cell Injury

- Mitochondrial swelling
- Membrane blebbing
 - Disruption of cytoskeleton
- Dilation of **endoplasmic reticulum**
 - Ribosomes detach from ER
 - ↓ protein synthesis
 - "Polysomal detachment"
 - Polysome = cluster of ribosomes

Irreversible Cell Injury

Necrosis

Membrane damage

- Contents leak
- Causes inflammation
- Serum detection of cell contents (troponin, lipase)
- Calcium-dependent phospholipases
- Rupture of lysosomes
 - Enzymes degrade cellular contents

Irreversible Cell Injury

Classic Nuclear Changes

- Karyolysis (loss of basophilic/dark color)
- Pyknosis (nuclear shrinkage)
- Karyorrhexis (fragmented nucleus)

Mechanisms of Injury

- ATP depletion
- Calcium
- Mitochondrial damage
- Free radicals

ATP Depletion

- Many causes
 - ↓ oxygen supply
 - Mitochondrial damage
 - Direct effect some toxins
- Loss of membrane pumps
- Loss of protein synthesis

Calcium

- Normally very low compared with outside cell
- Calcium influx: hallmark of injury
 - Released from intracellular storage
 - Influx across cell membrane
- Causes cellular injury
- Calcium-dependent phospholipases
 - Activated by increased calcium
 - Breakdown of membrane phospholipids
- Damages mitochondria

Mitochondrial Damage

- Lack of oxygen
- Reactive oxygen species

Mitochondrial permeability transition pore

- Opened by calcium
- Loss of membrane potential
- Failure of oxidative phosphorylation

Blausen gallery 2014". Wikiversity Journal of Medicine

Free Radicals

Jason Ryan, MD, MPH

Mechanisms of Injury

- ATP depletion
- Calcium
- Mitochondrial damage
- Free radicals

Vocabulary

Free radical

- Single, unpaired electron in outer orbit
- Highly reactive
- May damage many cellular components

Reactive oxygen species

- Oxygen free radicals
- Several forms
- Superoxide (O2[.])
- Hydrogen peroxide (H₂O₂)
- Hydroxyl radical (OH⁻)

Free Radicals

- Generated in cells under normal conditions
- Inactivated in cells
- Cell maintain low level under normal conditions
- High level \rightarrow cell injury

Free Radical Generation

- Normal metabolism involving oxygen
- Oxidative phosphorylation
 - Yields small levels of superoxide (O2[.])
 - Converted to H₂O₂ by superoxide dismutase
 - H₂O₂ more stable and can cross membranes
 - Converted to H₂O

 $0_2 \rightarrow 0_2^{-} \rightarrow H_2 0_2 \rightarrow 0 H^- \rightarrow H_2 0$ **Superoxide Dismutase**

Free Radical Generation

- Radiation (UV light, X-rays)
- Mechanism of radiation therapy for cancer
- Metabolism of drugs
- Transition metals
- Respiratory burst

Dina Wakulchik/Wikipedia

Drug Metabolism

- Phase 1: drug modification
- Phase 2: conjugation
- Phase 3: additional modification and excretion
- Cytochrome P450 enzymes
 - Smooth ER in liver
 - Part of phase 1 metabolism
 - Generate "bioactive intermediates" (free radicals)

Drug
$$\xrightarrow{P450}$$
 Drug-Free-Radical

Liver Lobules

Reytan /Wikipedia

Acetaminophen

Tylenol

- Metabolized in liver to NAPQI
 - N-acetyl-p-benzoquinone imine
- NAPQI is a reactive oxygen species (ROS)
- Causes free radical liver damage

Transition Metals

- Superoxide (O_2^-) converted to H_2O_2 for inactivation
- Fenton Reaction forms hydroxyl radical (OH·)
 - $H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + OH \cdot$
 - $H_2O_2 + Cu^+ \rightarrow Cu^{2+} + OH \cdot$
- Hemochromatosis/Wilson's
 - Iron and copper toxicity

Transition Metals

- Metal storage and transport proteins:
 - Transferrin/Ferritin/Lactoferrin (Fe)
 - Ceruloplasmin (Cu)

Tomihahndorf

Public Domain

Respiratory Burst

- Phagocytes engulf bacteria in phagosome
- Generate H₂O₂ in phagosome to kill bacteria
- Uses three key enzymes:
 - NADPH oxidase
 - Superoxide dismutase
 - Myeloperoxidase

Graham Colm/Wikipedia

Respiratory Burst

Free Radical Inactivation

Spontaneous decay

Antioxidants

- Free radical scavengers
- Vitamin E, A, C, glutathione

Free Radical Inactivation

• Enzymes

- Catalase (peroxisomes)
- Superoxide dismutase (mitochondria)
- Glutathione peroxidase (cytoplasm of cells)
 - Requires glutathione: GSH + $H_2O_2 \rightarrow H_2O$

CGD

Chronic Granulomatous Disease

- Loss of function of NADPH oxidase
- Phagocytes cannot generate H₂O₂
- Catalase (+) bacteria breakdown H₂O₂
 - Host cells have no H_2O_2 to use \rightarrow recurrent infections
- Catalase (-) bacteria generate their own H₂O₂
 - Phagocytes use despite enzyme deficiency
- Five organisms cause almost all CGD infections:
 - Staph aureus, Pseudomonas, Serratia, Nocardia, Aspergillus

G6PD Deficiency

- Limited supply of **glutathione**
- RBC damage by free radicals \rightarrow hemolysis
- Classic trigger: fava beans
 - Contain vicine
 - Converted to divicine \rightarrow ROS
 - Depletes glutathione

Free Radical Cell Damage

Peroxidation of lipids

- Peroxide: 0-0
- Damages membranes
- Oxidation of proteins
 - Damage enzymes
- **Disruption of DNA**
 - Breaks, crosslinking

Lipid Peroxidation

Reperfusion Injury

- Myocardial infarction $\rightarrow \downarrow$ blood flow (ischemia)
- Reperfusion \rightarrow \uparrow blood flow
 - Some reversibly injured cells recover (good)
 - Some cells damaged by reperfusion (bad paradoxical)
- Several mechanisms
- ↑ oxygen supply → generation of free radicals
 - Antioxidants lost from injury
 - Damaged mitochondria incompletely reduce oxygen

Carbon Tetrachloride

 CCL_4

- Industrial solvent
- Historically used for dry cleaning
- Liver highly sensitive to damage
- Converted to CCL₃ free radical (CYP450 enzymes)
 - Lipid peroxidation
 - Inhibition of lipoprotein synthesis/secretion
 - Accumulation of lipids
- Result: fatty liver

Lipofuscin

- Insoluble cellular pigment
- Yellow-brown color
- Contain oxidized lipids
- Thought to be derived from lipid peroxidation
- Accumulates over time in lysosomes
- Not pathological
- Seen with aging

Lipofuscin

Wikipedia/Public Domain

Jason Ryan, MD, MPH

• Programmed cell death

- Cell activates its own enzymes to destroy cell
- Membrane remains intact
- No inflammation
- Cell ultimately consumed by phagocytes

- Active process
 - ATP-dependent
 - Contrast with necrosis
- Some stimuli cause apoptosis and necrosis
 - Example: myocardial ischemia
 - Evidence for both forms of cell death
 - Initial cellular response: apoptosis (avoids inflammation)
 - Later response: necrosis (ATP depleted)

Causes

- Embryogenesis
- Hormone withdrawal
 - Occurs in hormone-dependent tissues
 - Endometrium with progesterone withdrawal
- Immune cells
 - T-cells in thymus
 - B-cells in germinal centers
 - Death of self-reactive immune cells
 - Immune cells after inflammation resolves

Flikr/luncar caustic

Causes

- DNA damaged cells
- Abnormal cells
- Infected cells (especially viral)

Apoptotic Mechanisms

- Caused by caspase enzymes
 - Inactive enzymes in cytosol
 - When activated \rightarrow apoptosis
- Two "pathways" for caspase activation
- Intrinsic (mitochondrial) pathway
 - Initiated by mitochondria
- Extrinsic (death-receptor) pathway
 - Membrane death receptors activated

Intrinsic Pathway

- Opening of mitochondrial membranes
- Release of **cytochrome c**
 - Binds to APAF-1 (apoptosis-activating factor)
 - Activation of caspases
- Controlled by BCL2 family of proteins
 - Some pro-apoptotic; some anti-apoptotic
 - Balance determines if cell undergoes apoptosis

Intrinsic Pathway

- Many, many BCL2 family proteins
- Anti-apoptosis: BCL-2, BCL-XL, MCL1 proteins
 - Found in mitochondrial membranes
 - Prevent cytochrome c from entering cytosol
- Pro-apoptosis: BAX and BAK proteins
 - Bind to anti-apoptotic proteins
 - Open pores in mitochondrial membranes
 - Promote apoptosis
- As are for Apoptosis

Boards&Beyond.

Follicular Lymphoma

- Subtype of non-Hodgkin lymphoma
- B-cell malignancy
- Overexpression of BCL-2
- Mitochondrial pores will not open
- Caspases cannot activate
- Cell will not undergo apoptosis
- Result: Uncontrolled cell growth

Intrinsic Pathway

Triggers

• Withdrawal of growth factor

- Hormones for hormone-sensitive tissue (uterus)
- Cytokines for immune cells
- Embryogenesis

DNA damage

- DNA damage (radiation, chemotherapy)
- P53 can active BAK and BAX

Abnormal proteins

• Caused by heat, hypoxia, low glucose

Extrinsic Pathway

• Death receptors

- All part of TNF family of receptors
- Span plasma membrane into cytoplasm
- FAS (CD95)
 - Well-described death receptor found on many cells
 - Binds FAS-ligand
 - Triggers sequence that leads to activation of caspases

CD8 T-cells

Killing of virus infected cells

- Activated by presentation of foreign antigens (MHC1)
- Release perforin and granzymes
 - Lead to activated caspases
- Produce Fas ligand
 - Binds to Fas (CD95) on surface of cells

Extrinsic Pathway

• Thymic medulla

- T-cells that bind to self-antigens die (negative selection)
- Death occurs via extrinsic pathway
- FAS-FAS-ligand interactions

Public Domain/Wikipedia

Extrinsic Pathway

Autoimmune lymphoproliferative syndrome

- Defective FAS-FAS-ligand pathway for apoptosis
- Poor negative selection (more T-cell survival)
- Overproduction of lymphocytes
- Lymphadenopathy, hepatomegaly, splenomegaly
- High risk of lymphoma
- Autoimmune diseases

Apoptosis

Cellular Changes

- Cell shrinkage
 - Contrast with necrosis/swelling
- Chromatin condensation
 - Pyknosis
 - Hallmark of apoptosis

Apoptosis

Cellular Changes

- Membrane blebbing
- Formation apoptotic bodies
 - Membrane fragments
 - Cell organelles
 - Ligands for phagocyte receptors
 - Consumed by phagocytosis

DNA Laddering

- Apoptotic caspases cleave DNA at specific regions
- Forms pieces in multiples of 180-185 kbp
- Forms a "ladder" of sizes on gel electrophoresis
- Necrosis: random fragments

Apoptosis and Necrosis

Apoptosis	Necrosis
Non-inflammatory	Inflammatory
Cell shrinkage	Cell Swelling
Membrane blebs	Membrane blebs
Intact Membrane	Membrane damage
Single cell effected	Many cells affected
DNA laddering	No laddering
Can be physiologic	Always pathological
Single cell effected DNA laddering Can be physiologic	Many cells affected No laddering Always pathological

Necrosis

Jason Ryan, MD, MPH

Necrosis

- Form of cell death
- Cell membrane loss
- Leakage of cellular contents
- Elicits inflammatory response
- Affects tissue beds
- Results in gross and microscopic changes

Necrosis

- Two major types
 - Coagulative
 - Liquefactive
- Other types
 - Caseous
 - Fibrinoid
 - Fat
 - Gangrenous

- Preservation of tissue architecture for days
- Injury damages cells and enzymes
 - Major difference from liquefactive necrosis
 - Loss of enzymes limits proteolysis
 - Tissue architecture remains intact for days
- Phagocytosis of cell remnants (takes time)

- Gross: tissue becomes firm
- Microscopic:
 - Architecture preserved
 - Cell nuclei lost
 - Red/pink color on H&E stain (cell takes up more stain)
 - Inflammatory cells

Ryan Johnson/Flikr

Normal Heart

Post myocardial infarction

Ryan Johnson/Flikr

Seen with infarctions and ischemia

- Myocardium
- Kidney
- Spleen

Key exception: brain (liquefactive necrosis)

- Abscesses (bacterial/fungal) and brain infarctions
 - Cause in brain infarctions poorly understood
- Infection draws inflammatory cells
- Tissue is "liquefied" into thick, liquid mass
- Enzymes from microbes
- Enzymes from lysosomes of dying cells

- Gross: liquid/pus or abscess cavity
- Microscopic: numerous neutrophils

Brain after stroke

Brain after stroke

R. Geetha/Slideshare

- "Cheese like"
- Rarely occurs outside of tuberculosis infection
- Mycobacteria resist digestion
- Macrophages form giant cells
- Slow breakdown of infection
- **Mycolic acid** and lipids give cheese-like appearance

- Gross: Cheesy-like (caseating) substance
- Microscopic: granulomatous inflammation
 - Necrotic center
 - Ring of lymphocytes and macrophages
 - Epithelioid cells
 - Giant cells (fused activated macrophages)

Public Domain

- Necrosis of fat
- Classic example: acute pancreatitis
 - Cause: **lipases** released from pancreatic cells
 - Breakdown of peritoneal fat
 - Fatty acids combine with calcium (saponification)
 - "Chalky-white" tissue

- Fat necrosis of breast
 - Results from trauma
 - Often biopsy, surgery
 - Sports injury, seatbelt injury
 - Can mimic breast cancer

Gangrenous Necrosis

- Subtype of coagulative necrosis
- Caused by ischemia
- Lost blood supply to limbs or bowel
- Multiple tissue layers involved
- Dry gangrene: dry, black, shrunken tissue
- Wet gangrene:
 - Superimposed bacterial infection
 - Coagulative and liquefactive necrosis
 - Moist, soft, swollen
 - Pus, foul smelling

Dry Gangrene

James Heilman, MD/Wikipedia

Wet Gangrene

S Anand/Slideshare

Fibrinoid Necrosis

- Occurs in **blood vessels**
- Only visible under microscope (no gross findings)
- Occurs in autoimmune disorders
 - Antibody-antigen complexes deposit in vessel walls
 - Type III hypersensitivity reaction
- Fibrin leaks into vessel wall (pink on microscopy)

Fibrinoid Necrosis

Boards&Beyond.

Nephron/Wikipedia

Fibrinoid Necrosis

- Classic disorder: polyarteritis nodosa
 - Purpura
 - Renal failure
 - Neuropathy
- Severe hypertension/preeclampsia
 - Not autoimmune
 - Damage to vessel wall \rightarrow fibrin leak

Inflammation Principles

Jason Ryan, MD, MPH

Inflammation

- Process for eliminating:
 - Pathogens
 - Damaged tissue
- Commonly seen with infections, trauma, surgery
- May cause damage to host:
 - Excessive inflammation (sepsis)
 - Prolonged (infection fails to resolve)
 - Inappropriate (autoimmune disease)

Inflammation

- Acute inflammation
 - Rapid onset (minutes to hours)
 - Quick resolution (usually days)
- Chronic inflammation
 - May last weeks, months, or years

Cardinal Signs

- Described by the ancient Romans
- Rubor (redness) and calor (warmth)
 - Caused by vasodilation and increased blood flow
- Tumor (swelling)
 - Increased vascular permeability
 - Brings cells/proteins (complement) to site of inflammation
- Dolor (pain)
- Loss of function
 - Caused by other cardinal features

James Heilman, MD/Wikipedia

Vasodilation

Rubor and Calor

• Arteriolar vasodilation \rightarrow increased blood flow

Wikipedia/Public Domain

Vasodilation

Rubor and Calor

Histamine

- Mast cells, basophils, platelets
- Preformed → released quickly
- Prostaglandins
 - Mast cells, leukocytes
 - Synthesized via arachidonic acid

Wikipedia/Public Domain

Histamine

Boards&Beyond

PGE2

Factor XII

Hageman Factor

- Component of clotting cascade (minor role)
- Also produces bradykinin via the kinin system

Bradykinin

- Vasodilator
- Increases vascular permeability
- Pain (B is for boo-boo)
- Degraded by angiotensin converting enzyme (ACE)
 - ACE inhibitors can raise bradykinin levels
 - Dangerous side effect: angioedema
- Also degraded by C1 inhibitor (complement system)
 - C1 inhibitor deficiency → hereditary angioedema

Vascular Permeability

Tumor

- May be caused by direct injury
- Also many mediators
 - Leukotrienes: LTC4, LTD4, LTE4
 - Histamine, bradykinin
- Contraction of endothelial cells creates gaps
- Occurs in post-capillary venules

Boards&Beyond.

Wikipedia/Public Domain

Oncotic Pressure

Tumor

- **Oncotic pressure** (∏) changes drive fluid into tissue
- Rises in interstitial space (protein influx)

Tissue Edema

• Exudate

- Inflammatory edema from high vascular permeability
- Seen in infection, malignancy (leaky vessels)
- High protein content (similar to plasma)
- High specific gravity (concentrated)

Tissue Edema

Transudate

- Cause: \uparrow hydrostatic pressure or \downarrow oncotic pressure
- Fluid leak NOT due to inflammation
- Low protein content (albumin remains in plasma)
- Low specific gravity (dilute, not concentrated)

Pleural Effusion

- Causes:
 - Exudate (infection, malignancy)
 - Transudate (heart failure, low albumin)
- Thoracentesis
- Fluid tested for protein, LDH
- Light's Criteria Exudate if:
 - Pleural protein/serum protein greater than 0.5
 - Pleural LDH/serum LDH greater than 0.6
 - Pleural LDH greater than 2/3 upper limits normal LDH

James Heilman, MD

Pain

Dolor

- Key mediator: PGE2
- Increases skin sensitivity to **pain**
- Also causes fever

F PGE2 A V I E N R

Systemic Inflammation

- Fever
- Leukocytosis
- Acute phase reactants

Fever

- Pyrogens
 - ↑ cyclooxygenase activity in hypothalamus
 - ↑ prostaglandins in hypothalamus
 - Lipopolysaccharide: exogenous pyrogen
 - IL-1 and TNF: endogenous pyrogens
- Prostaglandins alter temperature set point
 - Especially PGE2

PGE2

F

E

R

P(HZ)

Α

Ν

Leukocytosis

- Normal WBC: <11.000/mm3
- Infection: 15,000-20,000/mm3
- Raging infection: 40,000-100,000/mm3
 - "Leukemoid reaction"
 - Resembles leukemia
- Cytokines (TNF and IL-1) \rightarrow cells from bone marrow
- Bacterial infections: neutrophils (neutrophilia)
- Viral infections: lymphocytes (lymphocytosis)

BruceBlaus/Wikipedia

Left Shift

- Normal response to infection
- More bands and neutrophils

	Normal	Infection
WBC	10,000/µL	17,000 /µL
Neutrophils	55%	80%
Bands	5%	12%

Acute Phase Reactants

- Serum **proteins**
- Levels rise with inflammation (acute or chronic)
- Mostly produced by liver
- Synthesis increased by **cytokines** often **IL-6**
- C-reactive protein
- Serum amyloid A
- Ferritin
- Hepcidin
- Fibrinogen

Pixabay/Public Domain

C Reactive Protein (CRP)

- Liver synthesis in response to **IL-6** (macrophages)
- Binds bacterial polysaccharides
- Activates complement system
- Chronic increased levels associated with CAD

Serum Amyloid A Proteins

SAA Proteins

- Apolipoproteins
- Many roles in inflammatory response
- Causes AA (secondary) amyloidosis
 - Occurs in chronic inflammatory conditions
 - Rheumatoid arthritis, ankylosing spondylitis, IBD

Ed Uthman, MD

Ferritin

- Binds iron
- Iron storage protein
- Stored intracellularly as ferritin
- Stored in macrophages of liver and bone
- Clinical significance:
 - Diagnosis of iron deficiency during infection

Tomihahndorf

Hepcidin

- Anti-bacterial properties
- Inhibits iron transport
 - Binds to ferroportin in enterocytes, macrophages
- Iron trapped in cells as ferritin
- Contributes to anemia of chronic disease

Public Domain

Fibrinogen

- Factor I of the clotting cascade
- Promotes cellular adhesions
- Platelets, endothelial cells

Erythrocyte Sedimentation Rate

- Rate of RBC sedimentation in test tube
 - Normal 0-22 mm/hr for men; 0-29 mm/hr for women
- Increased by acute phase reactants in inflammation

MechESR/Wikipedia

Erythrocyte Sedimentation Rate

- Determined by balance of factors
 - Pro-sedimentation: APRs, especially fibrinogen (sticky)
 - Anti-sedimentation: negative charge of RBC
- High levels APRs \rightarrow red cells stick together
- Faster sedimentation \rightarrow increased ESR

Erythrocyte Sedimentation Rate

- ESR > 100 (normal <30) seen in:
 - Endocarditis
 - Temporal arteritis
 - Polymyalgia rheumatica
 - Trauma/surgery
 - Malignancy
- Anemia: Increased ESR
 - Sedimentation of red cells slower with more red cells
 - Red cells impeded one another's sedimentation
- Renal disease (some due to anemia)

Erythrocyte Sedimentation Rate

- Reduced ESR (<5)
 - Hypofibrinogenemia
 - Heart failure (controversial; mechanism unclear)
- Abnormal red cell shapes
 - Sickle cell anemia
 - Spherocytosis
 - Microcytosis
- Polycythemia (opposite of anemia)
- Result: ESR may be normal despite inflammation

Negative APRs

- Levels fall in inflammation
- Synthesis inhibited by cytokines
- Albumin
- Transferrin
- Transthyretin

Acute & Chronic Inflammation

Jason Ryan, MD, MPH

Inflammation

- Acute inflammation
 - Rapid onset (minutes to hours)
 - Quick resolution (usually days)
- Chronic inflammation
 - May last weeks, months, or years

Acute Inflammation

- Part of innate immunity
- Three hallmark features
 - Increased blood flow (vessel dilation)
 - Increased vascular permeability
 - Emigration of neutrophils into tissues
- Rapid onset/short duration
 - Occurs within minutes of trigger
 - Resolves in minutes/hours/days

Innate Immune System

- Phagocytes (debris clearing)
 - Macrophages
 - Neutrophils
- Complement
- Natural Killer Cells
- Eosinophils
- Mast cells and Basophils

Macrophages

- Macrophages: guardians of innate immunity
- Found in tissues; capable of phagocytosis
- Recognize cellular damage, microbes, foreign bodies
- Initiate acute inflammatory response
- Similar role played by mast cells, dendritic cells

Dr Graham Beards/Wikipedia

Macrophages

- Recognize molecules that are "foreign"
- "Damage-associated molecular patterns" (DAMPs)
 - Present only when tissue damage occurs
 - Example: mitochondrial proteins, DNA
- "Pathogen-associated molecular patterns" (PAMPs)
 - Present on many microbes
 - Not present on human cells

Macrophages

- Key receptors: "Toll-like receptors" (TLRs)
 - Macrophages, dendritic cells, others
 - Found on cell membrane and endosomes
 - Pattern recognition receptors
 - Recognize PAMPs/DAMPs \rightarrow secrete cytokines
 - Activation \rightarrow cytokines, inflammatory signals
- Other activators:
 - Fc portion of antibodies
 - Complement proteins

Inflammasome

- **Cytosolic protein complex** found in many cells
- Key for recognition of cell damage
- Activated by components of damaged cells:
 - Uric acid
 - Extracellular ATP
 - Free DNA
- Leads to production of **IL-1**
- Leads to release of inflammatory mediators

Inflammatory Mediators

- "Vasoactive amines"
 - Histamine
 - Serotonin
- Lipid products (arachidonic acid derived)
 - Prostaglandins
 - Leukotrienes
- Complement

Neutrophil

- Derived from bone marrow
- Circulate ~5 days and die unless activated
- Drawn from blood stream to sites of inflammation
- Enter tissues: phagocytosis
- Provide extra support to macrophages

Dr Graham Beards/Wikipedia

Neutrophil

Blood stream exit

- Exit vascular system at post-capillary venules
- Four steps to extravasation (exit vessels to tissues)
 - Rolling, crawling, transmigration, migration

Typical Timeline

- Neutrophils dominate early (<2 days)
 - Many in blood stream
 - Attach firmly to adhesion molecules
 - Apoptosis after 24-48hrs
- Monocytes/macrophages dominate late (>2 days)
 - Live longer
 - Replicate in tissues

Typical Timeline

Typical Timeline: Exceptions

- Pseudomonas infection
 - Neutrophils dominate for days
- Viral infections
 - Lymphocytes often appear first
- Hypersensitivity reactions
 - Eosinophils dominate

Resolution

- Three potential outcomes
- #1: Resolution of inflammation
 - Removal of microbes/debris
 - Tissue returns to normal
- #2: Healing/scar
 - Tissue damage too extensive for regeneration
 - Connective tissue growth
- #3: Chronic inflammation

- Prolonged inflammation (weeks/months)
- May follow acute inflammation
- May begin slowly ("smoldering") on its own
- Tissue destruction and repair occur **at same time**

Causes

- Persistent infections
 - Difficult to clear microbes
 - Mycobacteria
 - Parasites
 - Prolonged infection \rightarrow type IV hypersensitivity reaction
- Autoimmune diseases
- Prolonged exposure
 - Silica
 - Cholesterol (atherosclerosis)

Cells

• Mononuclear cells

- Macrophages
- Lymphocytes (T and B cells)
- Plasma cells

Macrophages are dominant cell type

- Secrete cytokines
- Active T-cell response
- Two forms activated macrophages
 - M1: Activated via classical pathway to destroy microbes
 - M2: Activated via alternative pathway for tissue repair

Macrophage Activation

- "Classical" activation (M1)
- Microbes activate macrophages
 - Example: endotoxin \rightarrow TLRs on macrophages
- T-cell release IFN-γ
- Activated macrophage response
 - Reactive oxygen species
 - More lysosomal enzymes
 - Secrete cytokines \rightarrow drive inflammation
- Tissue destruction may occur

Μ A R Ρ Η IFN-γ E

Macrophage Activation

- "Alternative" activation (M2)
- Cytokines other than IFN-γ
 - Produced by T cells
 - IL-4, IL-13
- Activated macrophage (M2) response
 - Inhibit classical activation
 - Main role is tissue repair
 - Growth factors \rightarrow angiogenesis

Outcomes

- Scarring
 - Chronic HBV \rightarrow liver cirrhosis
- Secondary amyloidosis
- Malignancy
 - Lots of cell stimulation/growth
 - Similar to hyperplasia \rightarrow dysplasia/neoplasia
 - Chronic hepatitis \rightarrow liver cancer
 - H. pylori → gastric cancer

Acute Inflammation Neutrophils Multi-lobed nuclei <u>Chronic Inflammation</u> Mononuclear cells Single, round nuclei

Granulomatous Inflammation

Jason Ryan, MD, MPH

Inflammation

- Acute inflammation
 - Rapid onset (minutes to hours)
 - Quick resolution (usually days)
- Chronic inflammation
 - May last weeks, months, or years

Granulomatous Inflammation

- Subtype of **chronic** inflammation
- Macrophages transform to :
 - Epithelioid cells
 - Langhans giant cells
- **T-cell mediated** hypersensitivity reaction
 - Type IV (delayed-type) hypersensitivity reaction
 - Cell mediated immune process

Granulomas

- "Epithelioid" macrophages
 - Large, pink, activated macrophages (look like epithelial cells)
- Surrounded by lymphocytes (sometimes plasma cells)
- Some epithelioid macrophages fuse \rightarrow giant cells
 - May contain 20 or more nuclei

Public Domain

Boards&Beyond.

Public Domain

Granulomatous Inflammation

- Accumulation of TH1 CD4+ T cells
 - High CD4:CD8 ratio
- Secrete IL-2 and interferon-γ
 - IL-2 stimulates TH1 proliferation
 - IFN-γ activates macrophages
- Ultimately leads to granuloma formation

Granulomatous Disease

- Tuberculosis
- Sarcoidosis (granulomas = diagnostic criteria)
- Crohn's disease
- Leprosy (mycobacterium leprae)
- Cat-scratch disease (bartonella henselae)
- Schistosomiasis
- Syphilis
- Temporal arteritis
- Many others

CGD

Chronic Granulomatous Disease

- Loss of function of NADPH oxidase
- Phagocytes cannot generate H₂O₂
- Recurrent catalase (+) bacteria infections
- Five organisms cause almost all CGD infections:
 - Bacteria: Staph aureus, Pseudomonas, Serratia, Nocardia
 - Fungi: Aspergillus
- Granuloma formation

Caseating Granuloma

- Gross pathology : cheesy-like (caseating) necrosis
- Microscopy: Granulomas with necrotic core
- Classically seen in tuberculosis infection
- Most granulomas: non-caseating (e.g., sarcoid)

Public Domain

Public Domain

Tumor Necrosis Factor Alpha TNF-α

- Maintains granulomatous inflammation
- Released by macrophages and T-cells
- Attracts and stimulates macrophages
- TNF-blocking drugs
 - Used in rheumatoid arthritis, Crohn's disease
 - Infliximab: anti-TNF antibody
 - Etanercept : decoy receptor TNF-α
- PPD testing done prior to starting therapy

Hypercalcemia

- Seen in many granulomatous diseases
- Best described in sarcoidosis
- Activated vitamin D produced only in kidney
 - Responds to PTH
- Macrophages: high 1- α hydroxylase activity
- Leads to increased vitamin D levels (calcitriol)

25-OH Vitamin D 1α - hydroxylase 1

1,25-OH₂ Vitamin D

Pathologic Calcification

Jason Ryan, MD, MPH

Pathologic Calcification

- Abnormal deposition of calcium in tissues
- Dystrophic calcification
 - Local process
- Metastatic calcification
 - Systemic process

Dystrophic Calcification

- Result of **necrosis**
- Occurs in diseased tissues
- Examples:
 - Atherosclerotic vessel lesions
 - Damaged heart valves
 - Lung nodules
- May indicate prior necrosis
- May also cause disease
 - Aortic stenosis

Carotid Artery

Ed Uthman

Dystrophic Calcification

• Purple deposits on H&E staining

Wikipedia/Public Domain

Chronic Pancreatitis

• CT scan: classic finding is **calcified** pancreas

Hellerhoff/Wikipedia

Psammoma Bodies

- Calcifications with an layered pattern
- Seen in some neoplasms (e.g., thyroid cancer)

Wikipedia/Public Domain

Dystrophic Calcification

Dystrophic Calcification

- Serum calcium levels normal
- Damage to phospholipid membranes in cells
- Calcium binds phospholipids
- Enzymes add phosphate
 - Similar to calcium-phosphate of hydroxyapatite in bone
- Generates microcrystals
- Crystals propagate \rightarrow calcification

Metastatic Calcification

- Seen in hypercalcemia and/or hyperphosphatemia
- Occurs in normal tissues
- Mostly tissues that secrete acid
 - Create high pH internally
 - Favors calcium phosphate precipitation

Metastatic Calcification

- Classic locations:
 - GI mucosa
 - Kidneys
 - Lungs
 - Arteries
 - Pulmonary veins

Metastatic Calcification

Alveolar Walls

Yale Rosen/Flikr
Calciphylaxis

- Seen in chronic hyperphosphatemia in CKD
- Excess phosphate taken up by vascular smooth muscle
- Smooth muscle osteogenesis
- Vascular wall calcification
- Increased systolic blood pressure
- Small vessel thrombosis
- Painful nodules, skin necrosis

Niels Olsen/Wikipedia

Nephrocalcinosis

- Calcium deposition in kidney tubules
- Cause: 1 urinary excretion of calcium and phosphate
- Seen in hypercalcemia and hyperphosphatemia
 - e.g., hyperparathyroidism, sarcoidosis
- Common in patients with kidney stones

Nephrocalcinosis

Wikipedia/Public Domain

Nephrocalcinosis

- Often asymptomatic
- May cause polyuria/polydipsia
 - Nephrogenic diabetes insipidus
 - Impaired urinary **concentrating** ability
 - Collecting duct cannot resorb water normally
 - More urine \rightarrow polyuria \rightarrow volume depletion \rightarrow polydipsia

Wound Healing and Scar

Jason Ryan, MD, MPH

Wound Healing

- Necessary after inflammation/cell death
- Regeneration
 - Occurs in tissues capable of replacing damaged cells
 - Must have surviving cells capable of division

• Scar formation

- Tissues not capable of regeneration
- Or if severe damage that destroys regenerative capacity
- Lost cells replaced by connective tissue
- "Fibrosis": scar tissue left at sites of inflammation

Tissue Types

• Labile tissues

- Continuously dividing to replace lost cells
- Hematopoietic stem cells
- Most epithelial cells
- Easily regenerate

• Stable tissues

- Inactive ("quiescent") cells
- Normally replicate minimally
- Can proliferate in response to injury
- Many solid organs: liver, kidney, pancreas

Tissue Types

Permanent tissues

- "Terminally differentiated"
- Generally do not proliferate (very limited ability)
- Cannot significantly regenerate
- Neurons, cardiac myocytes
- Damage leads to scar

Stem Cells

- Mature cells of many tissues have short lifespan
- Stem cells replace lost cells

Self-renewal and asymmetric division

- Two daughter cells
- One becomes mature cell
- Other becomes stem cell

Stem Cells

• Embryonic stem cells

- Found in blastocyst
- Undifferentiated
- Can form many different cells types
- Important for embryogenesis

• Adult stem cells

- Found in tissue beds
- More differentiated
- Produce cells for one tissue (e.g., skin, epithelial lining)
- Important for homeostasis (replacing lost cells)

Scar Formation

- Sequence of three processes
- #1: Angiogenesis (new blood vessel growth)
- #2: Fibroblast activation
 - Migrate to injure site
 - Proliferate
 - Lay down fibrous tissue
- #3: Scar maturation
 - Changes to scar composition/structure
 - Produces stable, stronger scar tissue

Growth Factors

- Drive scar formation
- Many, many factors described
 - FGF
 - TGF-B
 - VEGF
 - PDGF
 - Metalloproteinases
 - EGF
- Most trigger chemotaxis, angiogenesis, fibrosis

Angiogenesis

- First process in healing/scar formation
- New vessel growth from existing vessels
- Usually new vessels grow from **venules**
- Key growth factors:
 - VEGF
 - FGF

VEGF

Vascular endothelial growth factor

- Family of signal proteins
- Several forms (VEGF-A/B/C/D)
- VEGF-A: Stimulates **angiogenesis**
- Secreted by tumors \rightarrow vascular growth
- VEGF Inhibitors
 - Bevacizumab (cancer)
 - Ranibizumab (retinopathy)

FGFs

Fibroblast Growth Factors

- Sources: macrophages, mast cells, endothelial cells
- Attract fibroblasts ("chemotactic")
- Stimulates **angiogenesis**
- Also stimulates extracellular matrix protein synthesis

Fibroblasts

- Fibroblasts migrate to injury site
- Extracellular matrix proteins synthesized/secreted
- Initially secrete type III collagen and fibronectin
- Later collagen type III broken down
- Followed by secretion of type I collagen occurs
- Key growth factors:
 - TGF- β
 - PDGF

Vitamin C

Ascorbic Acid

- Found in fruits and vegetables
- Necessary for collagen synthesis
- Poor wound healing in deficiency state

Jina Lee/Wikipedia

TGF-β

Transforming Growth Factor Beta

- Released by many cell types:
 - Platelets, T cells, macrophages, endothelial cells, others
- Promotes healing/scar
 - Stimulates collagen production
 - Inhibits collagen breakdown
- Anti-inflammatory
 - Inhibits lymphocyte proliferation/activity
 - Knock-out mice (no TGF- β): widespread inflammation

PDGF

Platelet-derived growth factor

- Sources: platelets, macrophages, endothelial cells
- Stimulates fibroblasts and smooth muscle cells
 - Growth, migration of fibroblasts
 - Synthesis of collagen
- Implicated in myelofibrosis, scleroderma

P D G Fibroblast

Granulation Tissue

- Develops 3 to 5 days after injury
- Early stages healing/scar formation
- Made of collagen and new blood vessels
- Histology:
 - Proliferating fibroblasts
 - Small, new capillaries from angiogenesis
 - Extracellular matrix
 - Some inflammatory cells especially macrophages
- Eventually becomes scar

Granulation Tissue

Public Domain

Myofibroblasts

- Fibroblasts with **contractile proteins**
- Share similarities with smooth muscle cells
- Contract wound (pull edges together)
 - Wound size shrinks
- Develops around day 5 after injury
- Lost by apoptosis as scar matures

Remodeling

- Modification of connective tissue
- Occurs after initial synthesis/deposition
- Key features:
 - Breakdown of type III collagens
 - Cross-linking of collagen
- Key enzymes:
 - Metalloproteinase (zinc)
 - Lysyl oxidase (copper)

Metalloproteinases

- Zinc containing enzymes
- Degrade proteins in extracellular matrix
- Important for maturation phase of wound healing
- Breakdown type III collagen
 - "Collagenase" activity
- Zinc deficiency: poor wound healing (maturation)

Public Domain

Wound Healing

Boards&Beyond.

Lysyl Oxidase

- Copper-dependent enzyme
- Cross-links collagen
- **Cu deficiency**: poor wound healing (maturation)

Public Domain

Surgical Wound

Carsten Niehaus/Wikipedia

Pressure Ulcer

Wikipedia/Public Domain

Skin Wound Healing

- First intention
 - Tissue surfaces "approximated" (i.e., closed together)
 - Common method of healing for surgical incision sites
 - Sutures, staples, skin glue, tape
 - Requires relatively small amounts of tissue loss
 - Main mechanism of healing: epithelial regeneration
 - Minimal scar
 - Minimal wound contraction

Skin Wound Healing

- Second intention
 - Large wounds
 - Cannot approximate edges
 - Classic example: pressure ulcer
 - Significant scar formation

Healing by 1st Intention

- Injury site:
 - Tissue loss
 - Blood loss (damaged vessels)
- 1st 24 hours
 - Inflammation and hemostasis
 - Clot formation (platelets)
 - Neutrophil invasion (via increased vascular permeability)

Healing by 1st Intention

- 3-7 days
 - Neutrophils replaced by macrophages
 - Angiogenesis
 - Fibroblast infiltration
 - Granulation tissue formation
 - Type III collagen
 - Wound contraction via myofibroblasts
- Weeks
 - Remodeling
 - Type III collagen → type I collagen
 - Lysyl oxidase

Cells in Healing

Healing by 2nd Intention

- More inflammation
- More granulation tissue
- More tissue contraction
- More scar tissue

Long Term Outcomes

- Scar remodeling may continue for 6-12 months
- Eventually a "mature" scar forms
 - Avascular
 - Acellular

Mechanical strength grows

- Type 1 collagen content grows
- Collagen synthesis stops after a few weeks
- Collagen cross-linking persists long after
- Scar gets stronger over time
- Tensile strength never equal that of normal tissue

Keloid

- Raised scars
- Extend beyond borders of original wound
- Caused by excessive healing/scar
 - More fibroblasts, more growth factors, more collagen
- 15 times more common with dark skin
 - African-American, Spanish, Asian

Wikipedia/Public Domain

Keloid

- Contain type I and III collagen
- Disorganized collagen
 - Contrast with normal skin: collagen <u>parallel</u> to epithelium
- More common in certain locations
 - Common in earlobe, deltoid, upper back
 - Rare on eyelids, palms, soles
- High recurrence rate if surgically removed
- Treatment: corticosteroid, 5-FU injections

Hypertrophic Scars

- Also excessive scar formation
- Usually develop about 4 weeks after injury
- Remains within wound borders
- Mostly type III collagen
 - Parallel (not disorganized) fibers
- Common in all demographics
- May occur anywhere
- Often regress spontaneously

Cgomez447 /Wikipedia

Wound Infections

- Disrupt healing process
- Prolonged inflammation phase
- **Pus** = bacteria plus dead neutrophils
- Inflammatory cytokine release continues
- Poor formation of growth factors

Public Domain

Wound Infections

- Staph Auerus
- Clostridium tetani (vaccination after injury)
- Pseudomonas (burns)
- Rabies virus (vaccination after animal bites)
- Vibrio vulnificus (contaminated water)

Public Domain

Neoplasia

Jason Ryan, MD, MPH

Neoplasia

- "New growth"
- Cancer, malignancy
- Genetic disorder
- Cell cycle normally tightly controlled
 - Signals \rightarrow growth/cell divisions
 - Signals \rightarrow prevention of growth/cell division
- Mutations \rightarrow uncontrolled growth

Pixabay/Public Domain

Clonality

- Single cell develops mutation
- Gives rise to daughter cells (clones)
- All clones carry same mutation

Tumor Locations

- Rapidly dividing cells
 - Stop/start for cell division
 - Lots of DNA replication
 - Many chances for mutation
 - Increased likelihood of cancer
- GI epithelium: common site of cancer
- Myocardium: very rare sight of cancer

Tumor Progression

- Change in tumor over time
- Become more aggressive
- Accumulate more mutations
- Less responsive to chemotherapy
- Large tumors often **heterogenous**

Boards&Beyond

Warburg Effect

- Glucose metabolized to lactate for ATP
 - "Aerobic glycolysis"
- Less ATP than oxidative phosphorylation
- Occurs even in presence of oxygen
- Result: High glucose uptake
- Basis for PET scanning
 - Radiolabeled glucose scan

PET Scan

Dysplasia

- Description of tissue morphology
- Disordered but non-neoplastic growth
- Precedes neoplasia
- Progresses to cancer
- Described in epithelial tissues
- Carcinoma in situ
 - Dysplasia of entire epithelial layer
 - No invasion of basement membrane (contained)

Anaplasia

- Undifferentiated cell growth
- Cells do not look like cells of origin
- Metabolic activity to growth
- Little/no other functions
- Seen in malignant, aggressive tumors
- Usually poor prognosis
- Well-differentiated tumors: resemble tissue or origin
- Anaplastic tumors: lack of distinguishing features

Cancer Progression

Danielah67/Wikipedia

Hallmarks of Malignant Cells

Autonomous growth

- Not sensitive to growth factors/inhibitors
- Evasion of cell death
 - Do not undergo apoptosis
 - Evade the immune system
- Unlimited ability to replicate ("immortal")
 - Normal cells become "senescent" after XX replications
- Angiogenesis
 - New blood vessels to fuel growth
- Ability to invade tissues and spread

Telomerase

- Normal cells capable of 60-70 divisions only
 - Thereafter become senescent
- Caused by shortening of telomeres
- Telomeres: nucleotides at end of chromosomes
- Telomerase: avoids loss of genes with duplication
 - Active in stem cells
 - Little activity in other cells
- Telomerase upregulation in almost all cancers

Wikipedia/Public Domain

Grade

- Degree of differentiation
- Determined by pathologist
- Requires biopsy for microscopic tissue analysis
- Grades I, II, III, IV
- Well-differentiated: low grade
- Anaplastic/undifferentiated: high grade

Stage

- Degree of tumor extension/spread
- Local, lymph nodes, metastasis
- Usually done by radiology/imaging
- Early stage: localized growth
- Advanced stage: spread, metastasis

TNM Staging System

- T: primary tumor size
 - T1, T2, T3, T4
- N: degree of regional lymph node spread
 - N0, N1, N2, N3
- M: metastases
 - M0=no mets; M1 = mets

TNM

Nomenclature

• Benign

- Likely to remain localized without spread
- Amenable to surgical removal
- May still cause problems (e.g., compression)
- Well-differentiated
- Low mitotic activity

Malignant

- Invades and spreads
- May cause death

Non-neoplastic Growths

Hamartoma

- Mass of mature but disorganized cells
- Example: lung hamartoma contains disorganized lung tissue
- Developmental anomalies

Choristoma

- Mature, well-differentiated tissue in the wrong place
- Example: Meckel's diverticulum (gastric tissue in ileum)
- Both are benign (i.e., do not invade/metastasize)

Tumor Naming

Benign Tumors

- Naming: cell/tissue type of origin plus –oma
 - Fibroma: benign fibrous tumor
 - Chondroma: benign cartilage tumor
- Adenoma
 - Benign epithelial tumors
 - Often forming gland structures
- Papilloma
 - Benign epithelial tumors on surfaces with "finger-like" projections

Tumor Naming

Malignant Tumors

- Mesenchymal tissues
 - Connective tissue, bones, blood, lymph
 - Solid tumor: sarcoma (e.g., osteosarcoma)
 - Blood/lymph: leukemia or lymphoma
- Epithelial cells: carcinoma
 - Glandular tumors: adenocarcinoma
 - Colon adenocarcinoma, lung adenocarcinoma
 - Skin: squamous cell carcinoma

Tumor Spread

- Sarcoma: spread via blood (hematogenous)
 - Arteries (thick walls) difficult to penetrate
 - Veins (thin walls): easily penetrated
 - Liver and lungs most common sites of hematogenous spread

Tumor Spread

- Carcinoma: usually spread via lymphatics
- Key exceptions:
 - Four carcinomas spread via bloodstream
 - Choriocarcinoma ("Early hematogenous spread")
 - Renal cell carcinoma (renal vein)
 - Hepatocellular carcinoma (portal vein)
 - Follicular thyroid carcinoma

Teratoma

- Cells from multiple germ layers
 - Ectoderm (skin, hair follicles)
 - Endoderm (lung, GI)
 - Mesoderm (muscle, cartilage)
- Arise from **germ cells** in ovaries and testes
 - Cells of origin capable of forming multiple germ layers

Epidemiology

- Cancer is 2nd leading cause of death
 - Heart disease #1
 - Respiratory disease #3 (e.g., COPD)
 - Accidents/trauma #4
- New cases (incidence)
 - Breast/prostate \rightarrow lung \rightarrow colorectal
- Mortality (death rate)
 - Lung \rightarrow breast/prostate \rightarrow colorectal

Epidemiology

Children

- Causes of death
 - Accidents \rightarrow cancer \rightarrow congenital disorders
- Incidence/mortality
 - Leukemia \rightarrow CNS tumors \rightarrow neuroblastoma

Carcinogenesis

- Nonlethal DNA damage \rightarrow cancer
- Mutations in two types of genes lead to cancer
 - Tumor suppressor genes
 - Oncogenes

Tumor Suppressor Genes

- Limit cell growth
- Classic examples:
 - P53 gene: blocks progression through cell cycle
 - Retinoblastoma gene: inhibits transcription factors
- Need mutations in **both alleles** to shut down activity

Germline Mutations

- One gene mutated in **all cells** at birth
- Occurs in some tumor suppressor genes
- Leads to increased cancer risk at early age
 - BRCA1/BRCA2 (breast cancer)
 - Hereditary retinoblastoma
 - HNPCC (Lynch syndrome)
 - Familial Adenomatous Polyposis (FAP)
 - Li-Fraumeni syndrome

Oncogenes

- Promote uncontrolled cell growth
- Proto-oncogenes: normal cellular genes
 - Growth factors, growth factor receptors, signal transducers
 - Proto-oncogene mutation \rightarrow oncogene \rightarrow cancer
- Single gene mutation → malignancy

Carcinogens

- Substances that cause cancer
- Chemicals
 - Asbestos \rightarrow mesothelioma
- Viruses
 - HPV \rightarrow cervical cancer
- Radiation
 - Sunlight \rightarrow skin cancer

