

Structural organization of skeletal muscles

- Composed of multiple muscle fibers extending across the length of muscle
- Each fiber is composed of smaller subunits called myofibrils
- Each myofibril is composed of actin and myosin filaments

Sarcolemma

- Analogous to plasma membrane of a cell
- ♦Thin membrane enclosing each skeletal muscle fiber
- ♦ Has two main parts:
- 1. True cell membrane aka plasma membrane; inner part
- 2. an outer coat of polysaccharide and numerous thin collagen fibrils; continued with the tendon fibers at the end of each muscle fiber

Myofibrils

- Composed of about 1500 adjacent Myosin filaments and 3000 Actin filaments
- ♦ These are polymerized proteins
- ♦ Responsible for the muscle contraction.
- Myosin are thick filaments
- ♦ Actin are thin filaments
- Myosin and actin filaments partially interdigitate and thus cause the
 myofibrils to have alternate light and dark bands

Myofibrils

- ♦ The light bands contain only <u>Actin</u> filaments and are called <u>I bands</u>. Isotropic to light
- * The dark bands contain Myosin filaments, as well as the ends of the Actin filaments, where they overlap the myosin, and are called A bands; Anisotropic to light
- ♦ Ends of the actin filaments are attached to a Z disk.
- ♦ From this disk, these filaments extend in both directions to interdigitate with the myosin filaments.
- ♦ Z disk: composed of filamentous proteins different from the actin and myosin filaments
- ♦ These bands give skeletal and cardiac muscle their striated appearance.

Sarcomere

♦ The portion of the myofibril (or of the whole muscle fiber) that lies between two successive Z disks is called a sarcomere

When the muscle fiber is contracted, the actin filaments completely overlap the myosin filaments, and the tips of the actin filaments are just beginning to overlap one another

Titin Filamentous Molecules

- Titin Filamentous Molecules Keep the Myosin and Actin Filaments in Place
- ♦ The side-by-side relationship between the myosin and actin filaments is maintained by a large number of filamentous molecules of a protein called titin
- ♦ Titin is filamentous hence it is very springy → act as a framework that holds the myosin and actin filaments in place.
- ♦ One end of the titin molecule is elastic; attached to the Z disk; acts as a spring and changing length as the sarcomere contracts and relaxes.
- ♦ The other part of the titin molecule tethers it to the myosin thick filament.

Sarcoplasm

- ♦ Intracellular Fluid Between Myofibrils
- ♦ Many myofibrils are suspended side by side in each muscle fiber. The spaces between the myofibrils are filled with intracellular fluid called sarcoplasm
- Contains large quantities of potassium, magnesium, and phosphate, and enzymes.
- ♦ Large numbers of mitochondria in sarcoplasm; lie parallel to the myofibrils; ATP

Sarcoplasmic Reticulum

- ♦ Sarcoplasmic Reticulum Is a Specialized Endoplasmic Reticulum of Skeletal Muscle
- Located in the sarcoplasm surrounding the myofibrils
- Very extensive; surrounds the myofibrils
- Important in regulating calcium storage and release and reuptake during muscle contraction

Figure 6-4 Sarcoplasmic reticulum in the spaces between the myofibrils, showing a longitudinal system paralleling the myofibrils. Also shown in cross section are T tubules (*arrows*) that lead to the exterior of the fiber membrane and are important for conducting the electrical signal into the center of the muscle fiber. (*From Fawcett DW: The*

ICEBERG MOTIVATION

Iceberg Illusion of Success

Meeting Targets