Pulmonary Volumes \& Capacities

Dr. Farhan Ullah Afridi
Department of Physiology, KGMC

Relationship b/W Pleural, Alveolar, and Transpulmonary Pressure

- Pleural Pressure:
pressure of the fluid in the thin space between the lung pleura and chest wall pleura.
- The normal pleural pressure at the beginning of inspiration is about -5 centimeters of water (cm H 2 O)
- During normal inspiration, expansion of the chest cage pulls outward on the lungs \rightarrow creates more negative pressure of about -7.5 cm H 2 O .
- This increasingly negative pressure from -5 to - 7.5 \rightarrow an increases of 500 ml in lung volume (Tidal volume)
- During, expiration, this is essentially reversed

Alveolar Pressure—Air Pressure Inside the Lung Alveoli

- When there is no air is flowing into or out of the lungs \rightarrow pressures in all parts of the respiratory tree, all the way to the alveoli, are equal to atmospheric pressure, which is considered to be zero reference pressure in the airways-that is, 0 cm H 2 O pressure.

To cause inward flow of air into the alveoli during inspiration, alveolar pressure falls from 0 cm H 20 to $-1 \mathrm{~cm} \mathrm{H} 2 \mathrm{O} \rightarrow$ pulls 500 ml of air into alveoli during inspiration.

- During expiration, alveolar pressure rises to about +1 cm H2O, which forces the 0.5 liter of inspired air out of the lungs

Transpulmonary Pressure—Difference between Alveolar and Pleural Pressures

- Pressure difference between that in the alveoli and that on the outer surfaces of the lungs (pleural pressure);
- It is a measure of the elastic forces in the lungs that tend to collapse the lungs at each instant of respiration, called the recoil pressure

Lung Compliance

Change in lung volume for a change in pressure $(\Delta V / \Delta P)$. i,.e. Transpulmonary pressure

- Increased compliance = lung easier to fill (eg, emphysema, aging)
- Decreased compliance = lung harder to fill (eg, pulmonary fibrosis, pneumonia, ARDS, pulmonary edema)
- The total compliance of both lungs together in the normal adult averages about 200 ml of air/cm H2O transpulmonary pressure.

That is, every time the transpulmonary pressure increases by 1 cm H 2 O , the lung volume will expand 200 ml .

Lung compliance diagram

- Fig. showing relating lung volume changes to changes in pleural pressure, which, in turn, alters transpulmonary pressure.
- Note that the relationship is different for inspiration and expiration.
- Lung inflation follows a different pressure-volume curve than lung deflation due to need to overcome surface tension forces in inflation. This phenomenon is called hysteresis.

Combined lung and chest wall compliance

Changes in Chest Wall Compliance

Functional Residual Capacity = Volume of air in lungs after tidal expiration ($R V+E R V$). At this volume, the pulmonary system is in equilibrium because the collapsing force of the lungs is equal to the expanding force of the chest wall.

- Physiologically, there is a Tendency for lungs to collapse inward and chest wall to spring outward (expand outward).
- At FRC, airway and alveolar pressures equal atmospheric pressure (called zero), and intrapleural pressure (pleural pressure) is negative.
- The inward pull of the lung is balanced by the outward pull of the chest wall

Spirometry

- Method of assessing lung function by measuring the volume of air that can be expelled from the lungs after a maximal inspiration
- 4 volumes and 4 capacities
- A capacity is a sum of two or more volumes
- Tidal volume: that volume of air moved into or out of the lungs during quiet breathing
- Inspiratory reserve volume: the maximal volume that can be inhaled after normal inspiration
- Inspiratory capacity: the sum of IRV and TV
- Expiratory reserve volume: the maximal volume of air that can be exhaled after normal exhalation
- Vital capacity: the volume of air breathed out after the deepest inhalation.
- Total lung capacity: the volume in the lungs at maximal inflation, the sum of VC and RV.
- Residual volume: the volume of air remaining in the lungs after a maximal exhalation

Table 38-1 Average Pulmonary Volumes and		
Capacities for Healthy, Young Adult Men and Women		
Pulmonary Volumes and Capacities Men Women Volume (ml) Tidal volume 500 400 Inspiratory reserve volume 3000 1900 Expiratory volume 1100 700 Residual volume 1200 1100 Capacities (ml) Inspiratory capacity Functional residual capacity 3500 2400 Vital capacity 2300 1800 Total lung capacity 4600 3100	5800	4200

Thank You

