
# Pulmonary Embryology

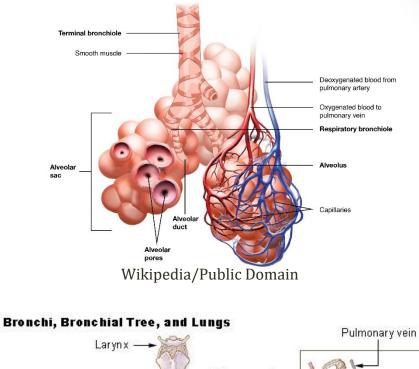
Jason Ryan, MD, MPH

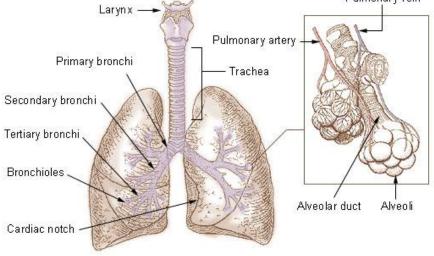


# Lung Embryology

- Lung bud ("respiratory diverticulum")
  - Outgrowth of foregut (future esophagus)
  - Forms during 4<sup>th</sup> week of development

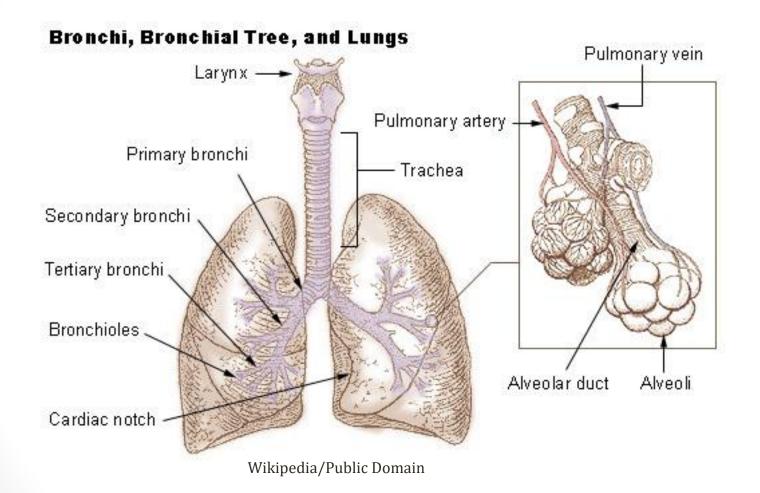



# Lung Maturation

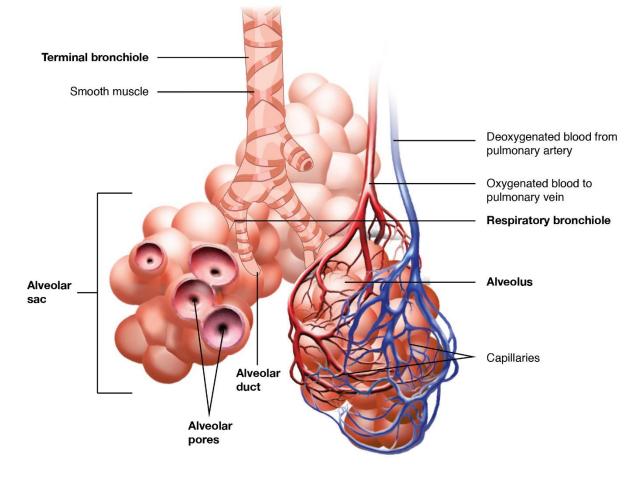

Stages/Periods

- Psuedoglandular (5-16wk)
- Canalicular (16-26wk)
- Saccular (26wk-birth)
- Alveolar (after birth)




- Bronchi
  - Hyaline cartilage
- Bronchioles
  - No cartilage
  - Terminal  $\rightarrow$  respiratory
- Alveoli
  - Capillaries
  - Gas exchange



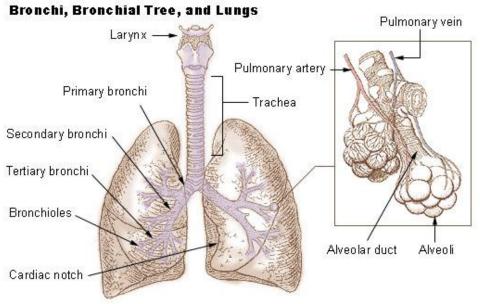



Wikipedia/Public Domain










Wikipedia/Public Domain



### **Pseudoglandular Period** 5-16 weeks

- Lungs resemble a gland
- Branching to level of terminal bronchioles
- No respiratory bronchioles or alveoli present



Wikipedia/Public Domain



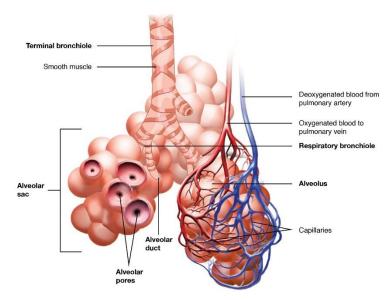
## **Fetal Respiration**

- Fetal breathing movements occur in utero
- Baby aspirates amniotic fluid
- Stimulates lung development
- Growth of respiratory muscles
- Important for growth during pseudoglandular phase



## **Fetal Respiration**

### Oligohydramnios:


- Pulmonary hypoplasia
- Part of Potter's sequence
- Caused by fetal kidney abnormalities

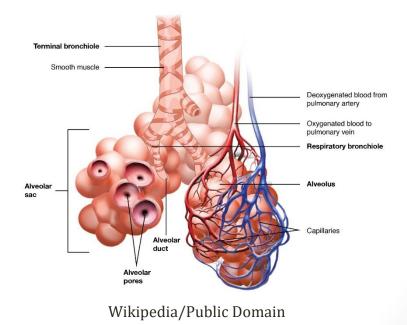


## **Canalicular Period**

### 16-26 weeks

- Terminal bronchioles divide
- Form respiratory bronchioles
- Respiratory bronchioles divide into alveolar ducts
- Survival after birth possible at end of period



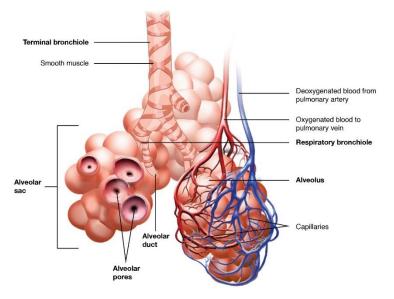

Wikipedia/Public Domain



## **Canalicular Period**

### 16-26 weeks

- Airway lumens become larger
- Type II pneumocytes form
  - Produce surfactant
  - Lowers surface tension
  - Keeps alveoli open






## Saccular Period

### 26 weeks - birth

- Terminal sacs (primitive alveoli) form
- Capillaries multiply in contact with alveoli



Wikipedia/Public Domain



## **Alveolar Period**

After birth

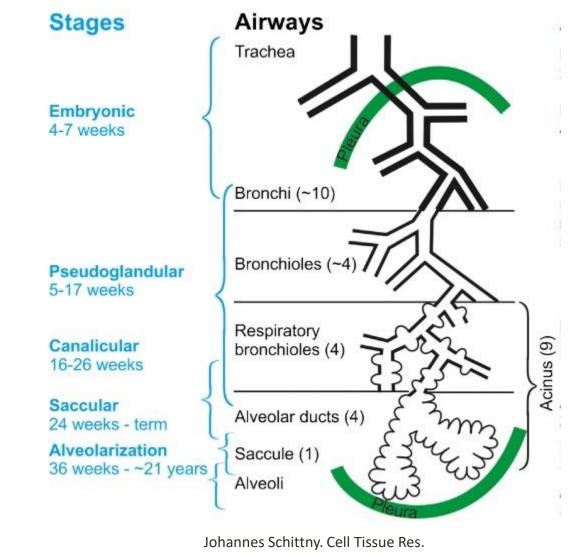
- At birth, only about 1/3 of alveoli present
- Following birth:
  - ↑ number of respiratory bronchioles and alveoli
- **Continued lung development** through age 10



## Alveolarization

- Airspaces subdivided
- New walls formed (septa)






Johannes Schittny. Cell Tissue Res. 2017; 367 (3) 427

# Bronchopulmonary Dysplasia

- Occurs in premature infants
- Treated in NICU
- Surfactant, oxygen, mechanical ventilation
- Oxygen toxicity and lung trauma
- Alveolarization does not progress normally
- Respiratory problems during infancy
- Often improves during childhood





2017; 367 (3) 427



# Pulmonary Hypoplasia

- Oligohydramnios (Potter's sequence)
- Congenital diaphragmatic hernia
  - Defective formation **pleuroperitoneal membrane**
  - Hole in diaphragm
  - Abdominal organs herniate into chest
  - In utero herniation → pulmonary hypoplasia
  - Often fatal



# **Bronchogenic Cysts**

- Abnormal budding of foregut
- Usually found in mediastinum
- Contain clear fluid
  - Air seen when infected



# **Bronchogenic Cysts**

- Do not communicate with lungs
- Lined by respiratory epithelium
  - Columnar, ciliated
- Walls contain **cartilage** (diagnostic criteria)
- Often asymptomatic
- May lead to pneumonia, compression of airway









The Radiology Assistant



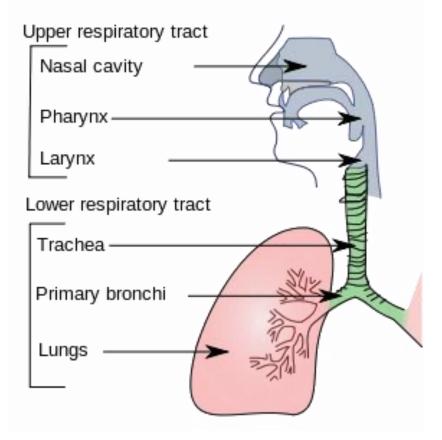
# Pulmonary Vascular Resistance

#### • In utero

- PVR is high
- Canalicular stage: few/no pulmonary capillaries
- Later stages: hypoxemia  $\rightarrow$  vasoconstriction
- Umbilical venous blood: PaO<sub>2</sub> 30mmHg; O<sub>2</sub>sat=80%
- Only about 10% of cardiac output to lungs

### • At birth

- **PVR falls** significantly
- 100% cardiac output through lungs




# Pulmonary Anatomy

Jason Ryan, MD, MPH

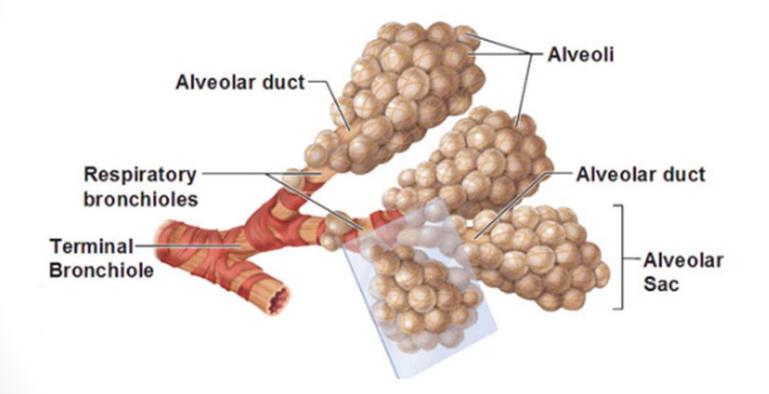


## **Respiratory Tract**



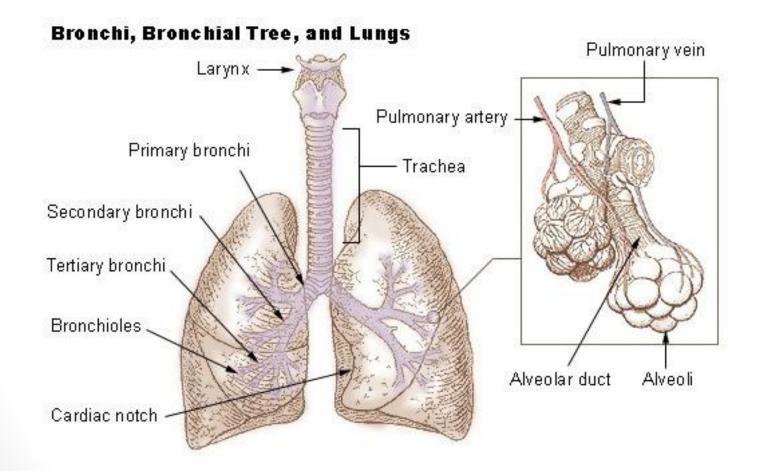


## Zones


#### Conducting Zone

- No gas exchange
- Large airways, nose, pharynx, trachea, bronchi
- Filters, warms, humidifies air
- Anatomic dead space

### Respiratory Zone


- Gas exchange
- Respiratory bronchioles, alveolar ducts, alveoli





Pintrest/Public Domain







## **Bronchi and Bronchioles**

### Bronchi (cartilage)

- Primary (left and right)
- Secondary/lobar
- Tertiary/segmental

### Bronchioles (no cartilage)

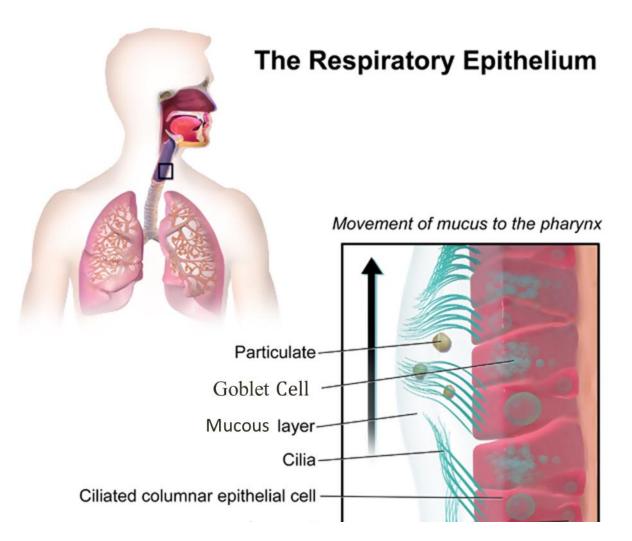
- Lobular/large
- Terminal
- Respiratory (feeds alveoli)



# **Airway Cells**

### Goblet cells

- Secrete mucus
- Mostly glycoproteins and water
- Protects against particulates, infection


### Ciliated epithelial cells

- Beating cilia move mucus to epiglottis
- Mucus swallowed

### Club cells (bronchioles)

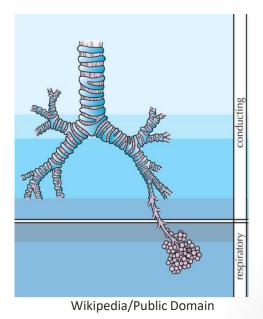
- Non-ciliated epithelial cells
- Secrete protective proteins
- Detoxification (P450 enzymes)





Wikipedia/Public Domain

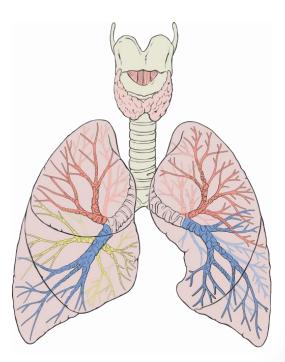



# **Respiratory Epithelium**

### Trachea and bronchi

- Ciliated <u>pseudostratified columnar</u> epithelial cells
- Goblet cells

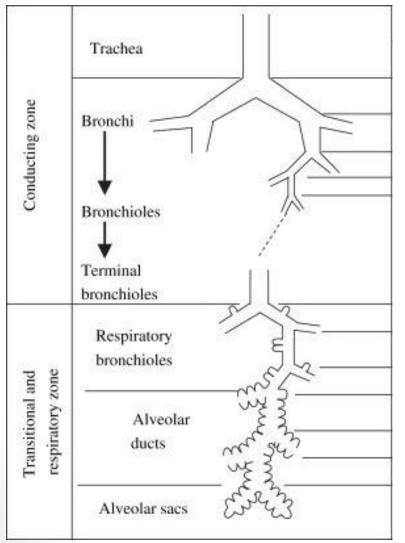
### Bronchioles

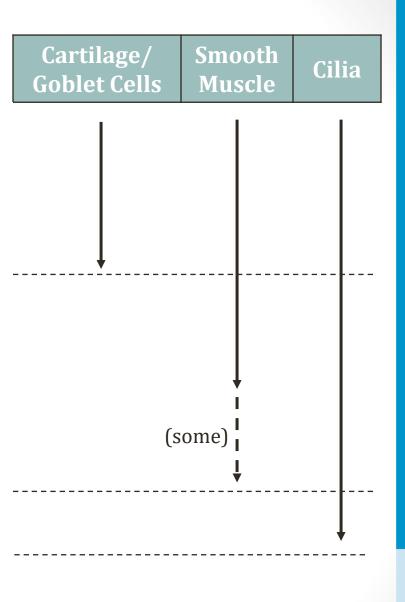

- Epithelium transitions
- Forms ciliated <u>simple cuboidal</u> epithelium
- Club cells (terminal bronchioles)





## Smooth Muscle


- Conducting airway walls contain smooth muscle
- Sympathetic activation (beta-2)
  - Bronchodilation
- Parasympathetic activation (M3)
  - Bronchoconstriction




Patrick Lynch/Wikipedia



### Zones

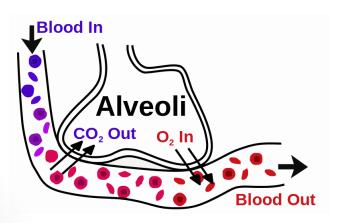


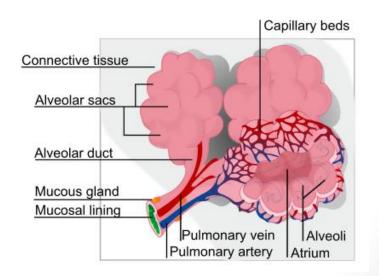




## **Resistance to Air Flow**

- Upper airways about 50% resistance
  - Nose, mouth, pharynx
- Lower airway resistance
  - Highest in medium bronchi (turbulent flow)
  - Lowest in terminal bronchioles slow laminar flow



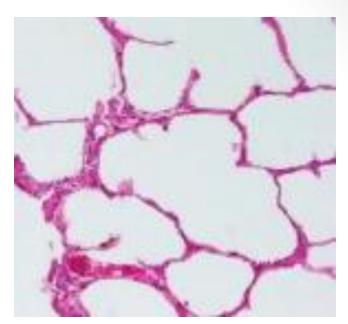


# Alveoli

- Small sacs
- Separated by septa
- Simple squamous epithelium (pneumocytes)
- Gas exchange

Boards&Beyond

Surrounded by capillaries



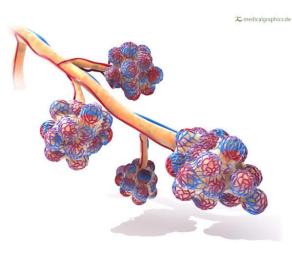



Helix84/Public Domain

# Pneumocytes

Alveolar Epithelial Cells

- Type 1
  - Most common (97% of cells)
  - Thin for gas exchange
- Type 2
  - Produce surfactant
  - Can proliferate to form other cell types
  - Key for **regeneration** after injury
- Alveolar macrophages




Public Domain



# Surfactant

- Exhale  $\rightarrow$  alveoli shrink
- Collapse  $\rightarrow$  atelectasis
- ↓ efficiency gas exchange
- Surfactant prevents collapse of alveoli



Medical Graphics/Public Domain



### Surfactant

- Secreted by type 2 pneumocytes
- Mix of lecithins (lipid substance)
- Especially dipalmitoylphosphatidylcholine





Medical Graphics/Public Domain

### **Surface Tension**

- Alveoli lined with film of liquid
- Liquid-liquid forces shrink surface area into sphere
- **Surface tension** = liquid-liquid forces

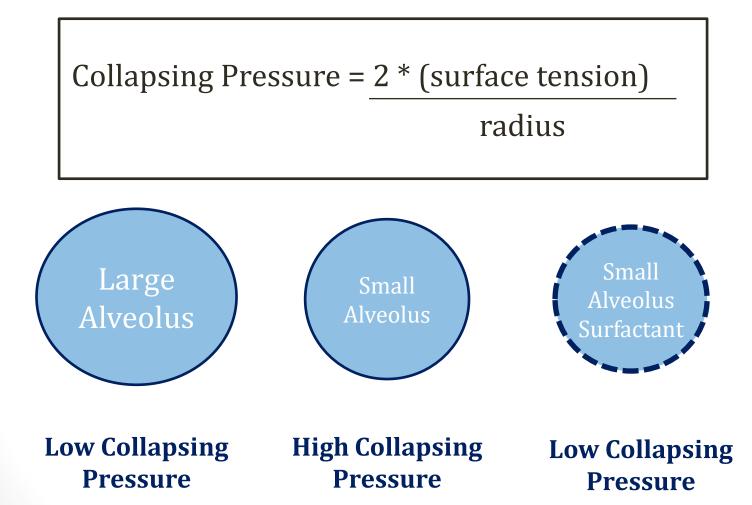


# Law of Laplace

- Determines collapsing pressure
  - Forces tending to collapse alveoli
  - Low collapsing pressure = easy to remain open
  - High collapsing pressure = difficult to remain open

Collapsing Pressure = 2 \* (surface tension) radius




# Law of Laplace

- Lungs contain many small alveoli
- Small radius = high distending pressure
- Need low surface tension to remain open
- Surfactant reduces surface tension
- Increases lung compliance (less stiff, more floppy)

Collapsing Pressure = <u>2</u> \* (surface tension) radius



### Law of Laplace



Boards&Beyond.

# Fetal Lung Maturity

- Lungs "mature" when adequate surfactant present
- Occurs around 35 weeks
- Lecithin–sphingomyelin ratio (L/S ratio)
- Both produced equally until ~35 weeks
- Ratio >2.0 in amniotic fluid suggests lungs mature

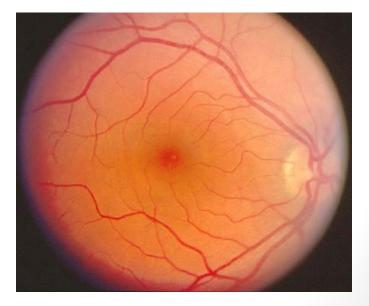




Neonatal Respiratory Distress Syndrome

- Surfactant deficiency
- High surface tension
- Atelectasis
- Decreased lung compliance
- Hypoxemia/1 pCO2 (poor ventilation)
- Poorly responsive to O<sub>2</sub>
  - Lungs collapsed (alveoli)
  - Intrapulmonary shunting




**Risk Factors** 

- Prematurity
- Maternal diabetes
  - High insulin levels decrease surfactant production
- Cesarean delivery
  - Baby spared stress response at delivery
  - Reduced fetal cortisol
  - Reduction in surfactant



#### Complications

- Bronchopulmonary dysplasia
  - Oxygen toxicity
  - Alveolarization does not progress normally
  - Respiratory problems during infancy
- Patent ductus arteriosus
  - Hypoxia keeps shunt open
- Retinopathy of prematurity
  - Oxygen  $\rightarrow$  free radical formation
  - Neovascularization in the retina
  - Retinal detachment  $\rightarrow$  blindness





**Prevention and Treatment** 

- Preterm delivery: betamethasone
  - Corticosteroid
  - Given to mother to stimulate surfactant production
- Treatment: surfactant
  - Administered via endotracheal tube



Wikipedia/Public Domain



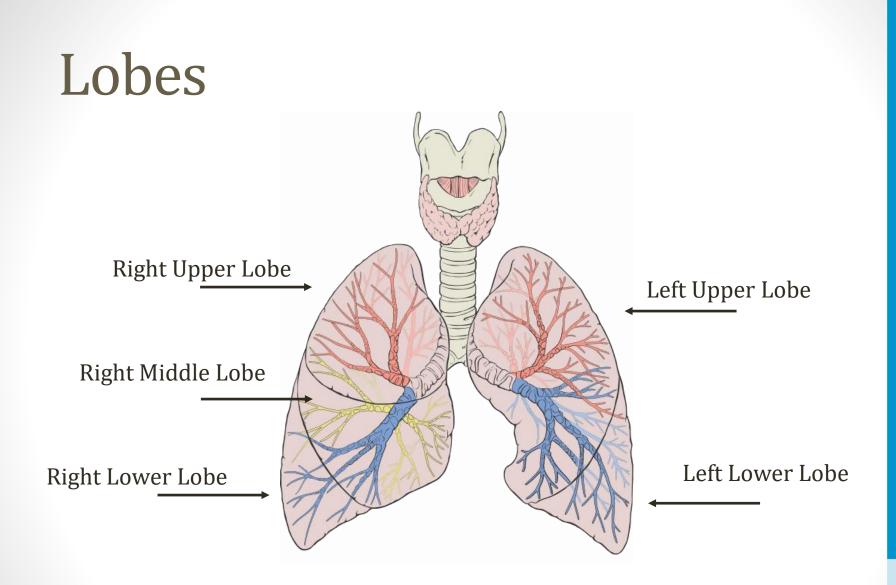



Image courtesy of Patrick J. Lynch, medical illustrator



# Right Upper Lobe





# Right Middle Lobe







### Right Lower Lobe





# Left Upper Lobe

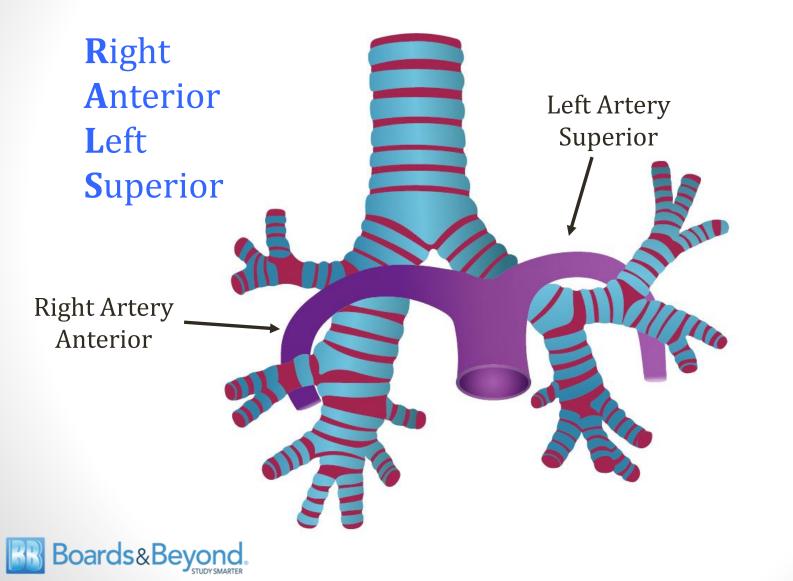




#### Left Lower Lobe






# **Foreign Body Aspiration**

- Commonly occurs in children (peanuts)
- **Right lung** is more common site of aspiration
  - Right bronchus wider with less angle
  - More vertical path to lung
- Right lung: 60% cases
  - Majority in main bronchus
  - Small number in right lower lobe bronchus
- Left lung: 23% cases
  - Majority in main bronchus
  - Small number in left lower lobe bronchus

<u>Source</u>: Eren et al. Foreign body aspiration in children: experience of 1160 cases. Ann Trop Paediatr. 2003;23(1):31.

Boards&Beyond.

#### **Mediastinal Anatomy**



#### **Mediastinal Anatomy**



Boards&Beyond.

### **Mediastinal Structures**

- Mediastinum: space between lungs
- Divided into 3 anatomical compartments
  - Anterior
  - Middle
  - Posterior
- Differential diagnosis of mass varies by compartment



#### **Mediastinal Compartments**



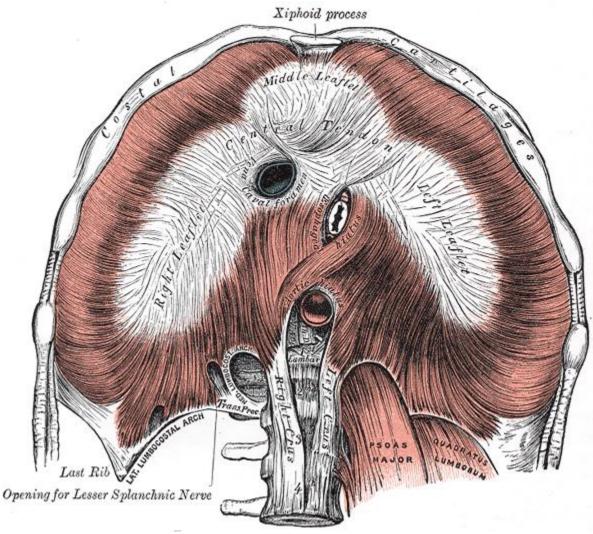


#### **Mediastinal Structures**

| Compartment | Major Structures                                     | Masses                                                              |
|-------------|------------------------------------------------------|---------------------------------------------------------------------|
| Anterior    | Thymus,<br>internal mammary arteries,<br>lymph nodes | Thyroid,<br>Thymic neoplasm,<br>Teratoma, Lymphoma                  |
| Middle      | Pericardium, heart, aorta,<br>airway and esophagus   | Lymphadenopathy:<br>lymphoma, sarcoid, or<br>metastatic lung cancer |
| Posterior   | Spine,<br>nerves and spinal ganglia                  | Neurogenic tumors:<br>schwannoma,<br>neuroblastoma                  |



# **Anterior Mediastinal Masses**


Terrible Ts

#### Thymic masses

- Half of anterior masses derive from thymus
- Thymoma: associated with myasthenia gravis
- Teratoma or **germ cell tumors** in adults
  - Mediastinum: most common location extra nodal GCT
  - Teratomas, seminomas
- Terrible lymphomas
- Thyroid growths
  - Enlarged or ectopic thyroid tissue may present as mass
  - Usually connected to thyroid gland



# Diaphragm

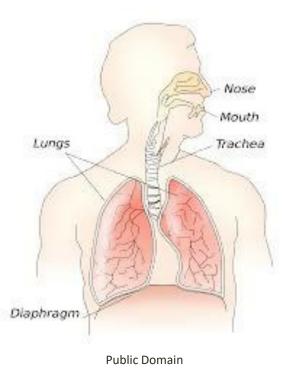




# Diaphragm

- Caval opening
  - T8
  - Inferior vena cava
- Esophageal hiatus
  - T10
  - Esophagus, Vagus nerve
- Aortic hiatus
  - T12
  - Aorta, thoracic duct, azygous vein




# Diaphragm

- Innervated by C3, C4, C5 (phrenic nerve)
- Diaphragm irritation  $\rightarrow$  "referred" shoulder pain
  - Classic example: gallbladder disease
  - Also lower lung masses
  - Irritation can cause dyspnea and hiccups
- Cut nerve  $\rightarrow$  diaphragm <u>elevation</u>, dyspnea
  - "Paradoxical movement"  $\rightarrow$  Moves up with inspiration
  - Can see on fluoroscopy ("sniff test")



# **Muscles of Quiet Respiration**

- Diaphragm  $\rightarrow$  inspiration
- Exhalation is passive with normal ("quiet") breathing





# **Exercise Breathing**

- Inspiration (neck)
  - Scalenes raise ribs
  - Sternocleidomastoids raise sternum
- Exhalation (abdomen)
  - Rectus muscle
  - Internal/external obliques
  - Transverse abdominis
  - Internal intercostals
- Use of accessory muscles in respiratory distress



# Pulmonary Physiology

Jason Ryan, MD, MPH



# Lung Volumes

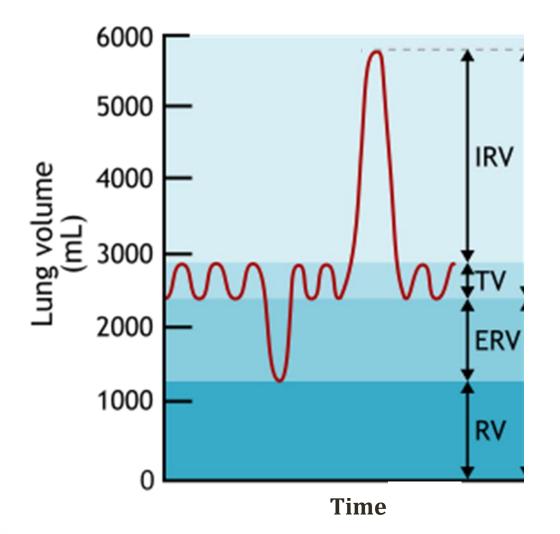
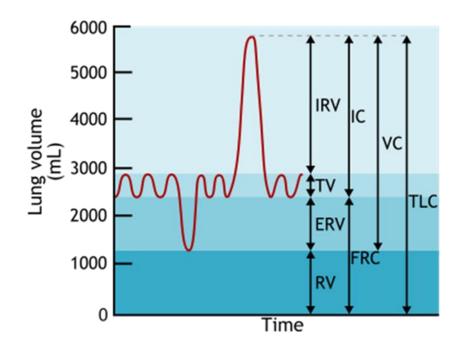





Image courtesy of Michal Komorniczak, Medical Illustrations

# Lung Volumes


- Tidal volume (TV)
  - In/out air with each quiet breath
- Expiratory reserve volume (ERV)
  - Extra air pushed out with force beyond TV
  - RV remains in lungs
- Inspiratory reserve volume (IRV)
  - Extra air can be drawn in with force beyond TV
  - Lungs filled to capacity
- Residual volume (RV)
  - Air that can't be blown out no matter how hard you try

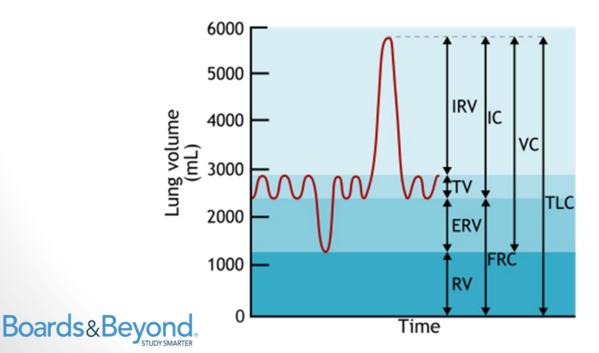


# Lung Capacities

Capacity = sum of two volumes

- Total lung capacity
  - Sum of all volumes
  - RV + ERV+ IRV + TV
- Inspiratory capacity
  - Most air you can inspire
  - TV + IRV
- Vital capacity
  - Most you can exhale
  - TV + IRV + ERV






# Lung Capacities

Capacity = sum of two volumes

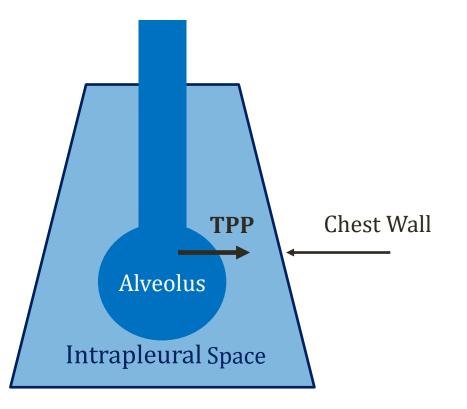
#### Functional Residual Capacity

- Residual volume after quiet expiration
- RV + ERV
- Volume when system is relaxed
- Equilibrium: chest wall pulling out = lungs pulling in



# Lung Pressures

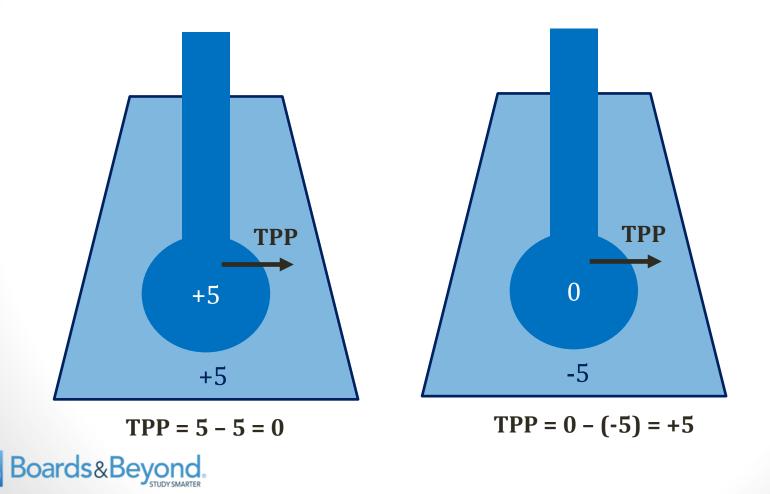
- Atmospheric pressure = 760 mmHg = 0 mmHg
- Alveolar pressure = pressure within alveoli
- Intrapleural pressure = pressure in pleural space


#### Transpulmonary pressure

- Alveolar pressure –intrapleural pressure
- Pressure across walls of alveoli
- Necessary to keep alveoli open



#### **Transpulmonary Pressure**


• Alveolar Pressure – Intrapleural Pressure





#### **Transpulmonary Pressure**

• Alveolar Pressure – Intrapleural Pressure

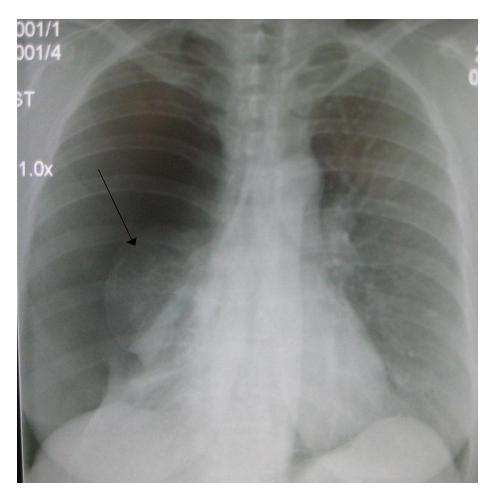


### **Intrapleural Pressure**

- Negative during normal quiet breathing
- Alveoli and lungs tend to collapse
  - Pull inward/recoil
  - Need outward force to keep walls open
- Chest wall tends to expand
  - Spring outward
  - Creates negative pressure in pleural space
- Negative pressure "sucks" alveoli open

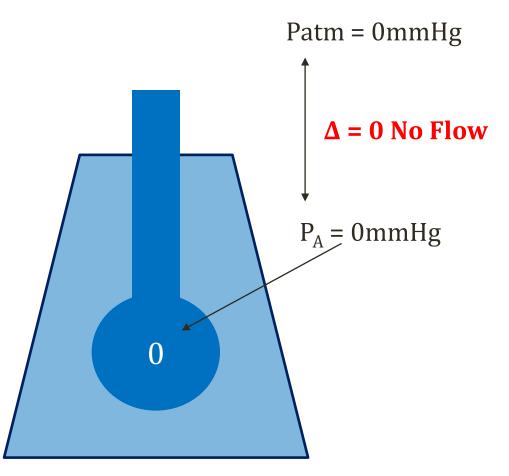


#### Pneumothorax

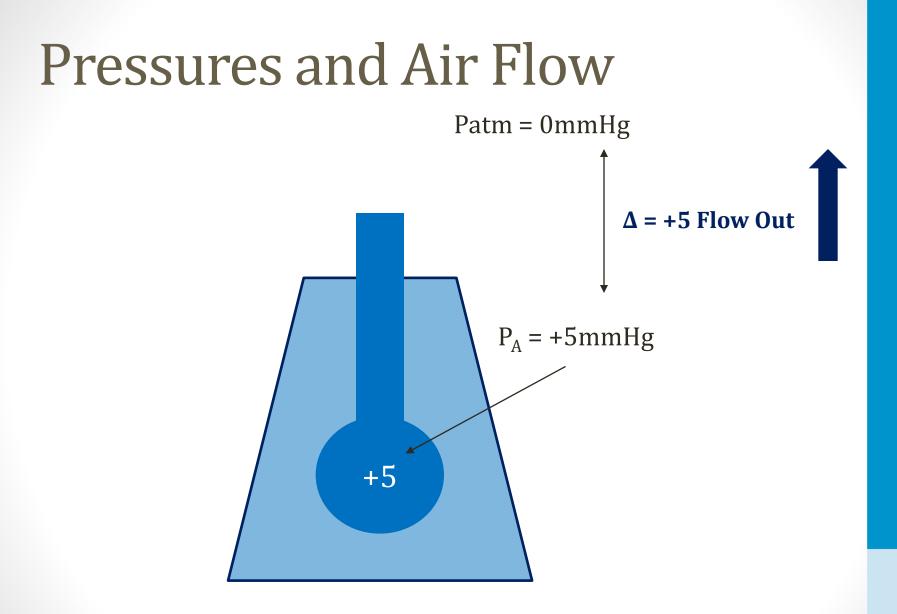

Normal **Pneumothorax** TPP=0 Lung collapses +5 0 0 -5 0

$$TPP = 0 - (-5) = +5$$

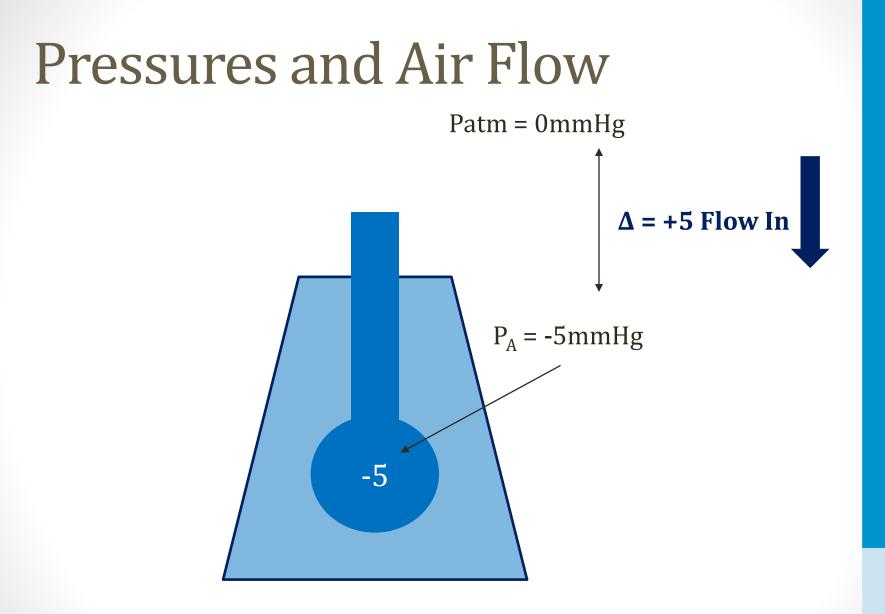
TPP = 0 - 0 = 0



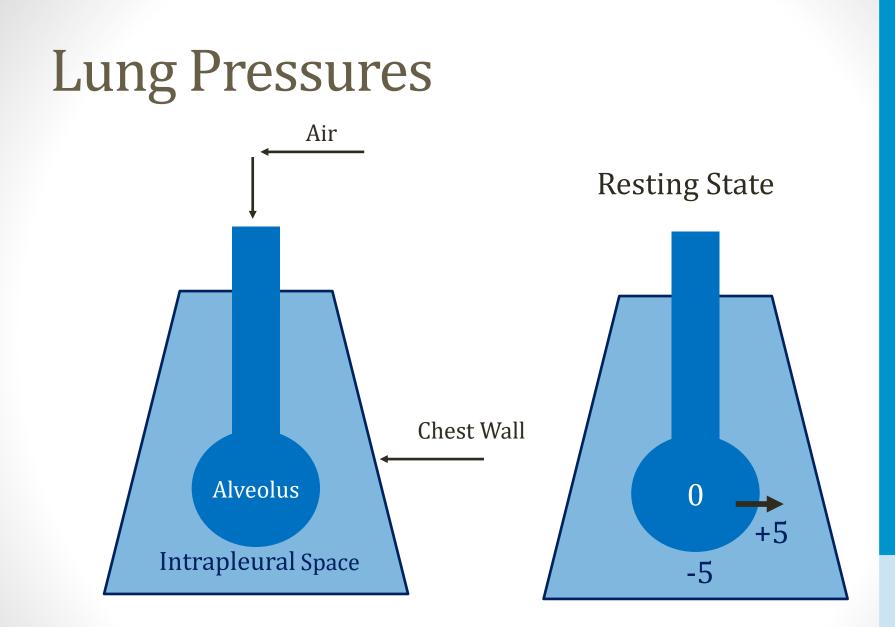

#### Pneumothorax







#### **Pressures and Air Flow**





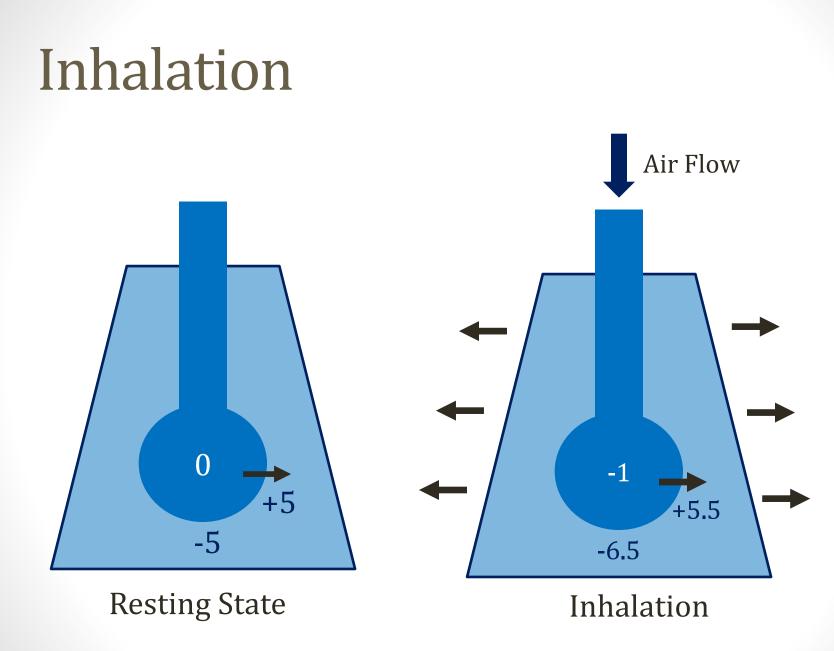






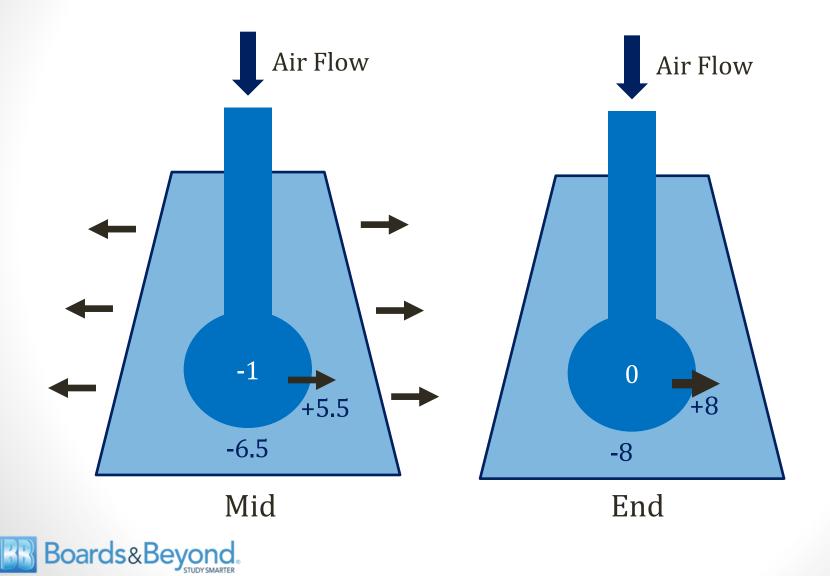





# Air Flow and Pressure Changes

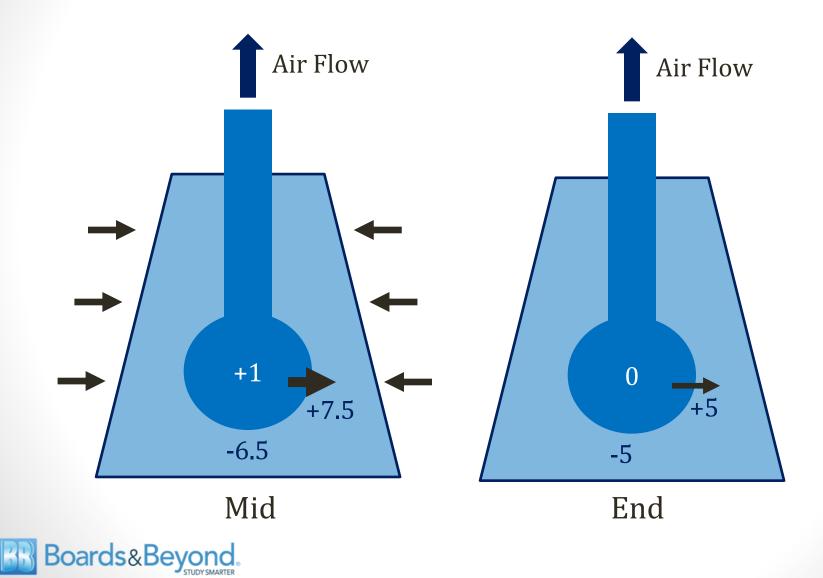
**Quiet Breathing** 


- Inhalation
  - Intrapleural pressure becomes more negative
  - Alveolar pressure becomes negative
  - Air flow into lungs
- Exhalation
  - Intrapleural pressure becomes less negative
  - Alveolar pressure becomes positive
  - Air flow out of lungs



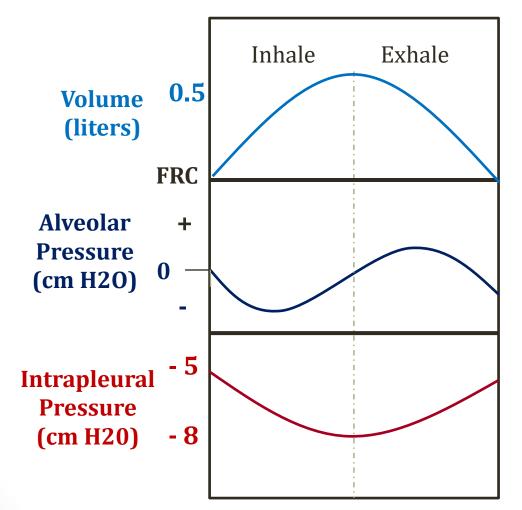





# Inhalation

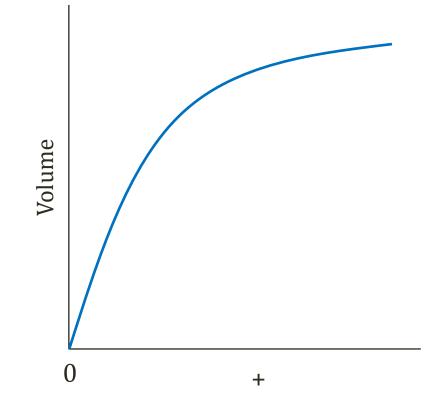


### Exhalation



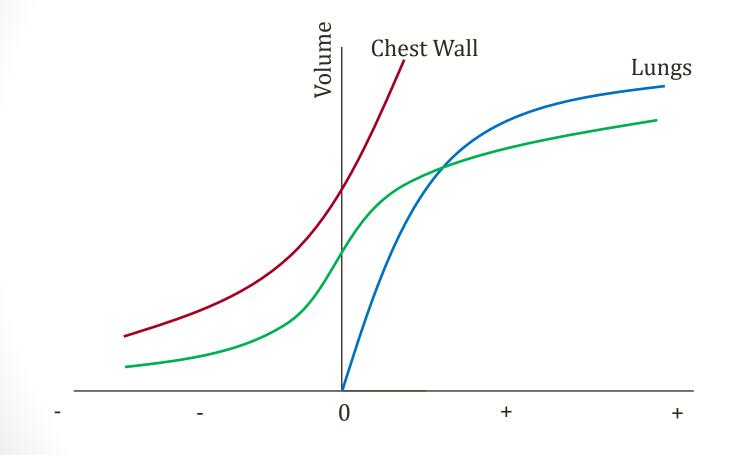

### Exhalation




### **Alveoli and Pleural Pressures**

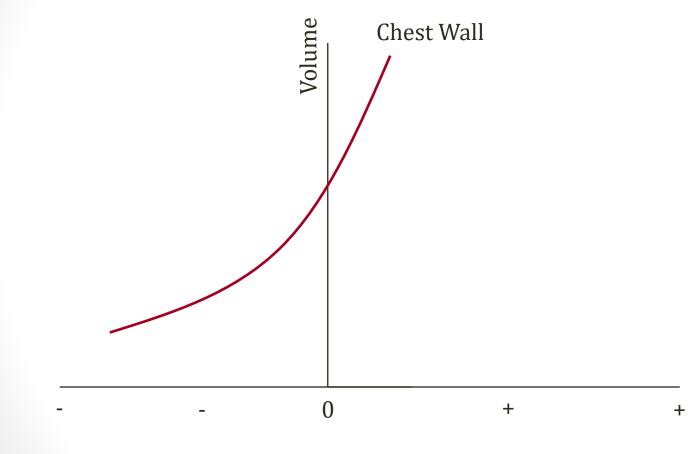
Quiet (tidal) breathing




Boards&Beyond

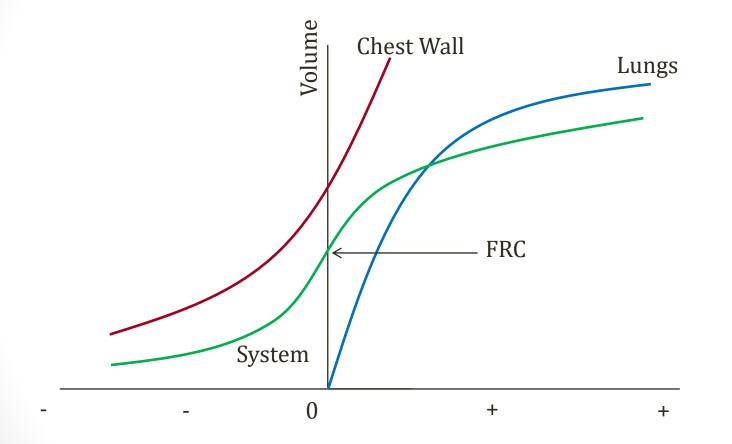
#### Lung Volumes and Pressures




Airway Pressure






Airway Pressure

Boards&Beyond.



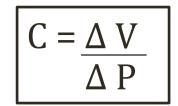
Airway Pressure





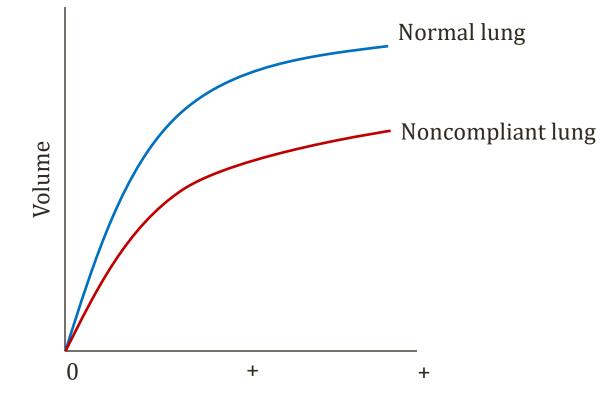
**Airway Pressure** 




## Functional residual capacity

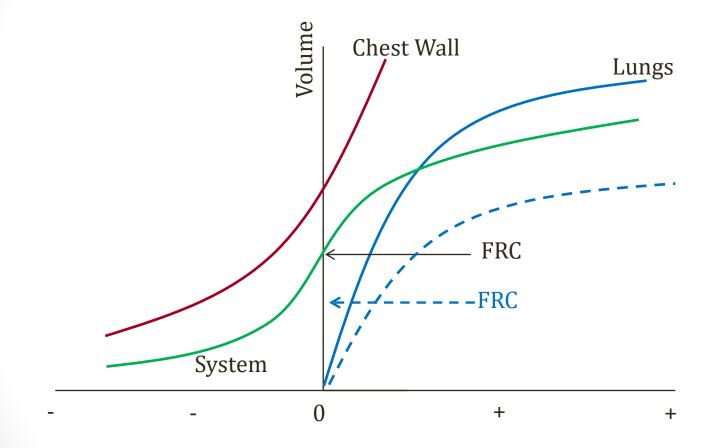
- Lung in = chest out
- Volume where lungs rest after quiet exhalation
- Pressure inside system is zero
  - No ↑/↓ pressure from push/pull of lungs or chest wall
  - Pressure = atmospheric pressure




# Lung Compliance

- For given pressure how much volume changes
- Compliant lung
  - Small amount of diaphragm effort
  - Generates small pressure change across lungs
  - Large volume change
  - Easy to move air in/out
- Non-compliant lung
  - Large amount diaphragm effort
  - Big pressure change across lung
  - Small volume change (lungs stiff)
  - Hard to move air in/out






### Lung Compliance



Airway Pressure





**Airway Pressure** 



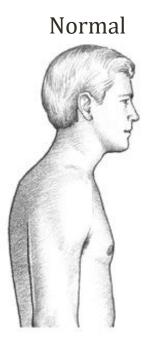
# Lung Compliance

#### Decreased (↓ FRC)

- Pneumonia
- Pulmonary edema
- Pulmonary fibrosis

#### Increased (↑ FRC)

- Emphysema (floppy lungs)
- Aging
- Surfactant



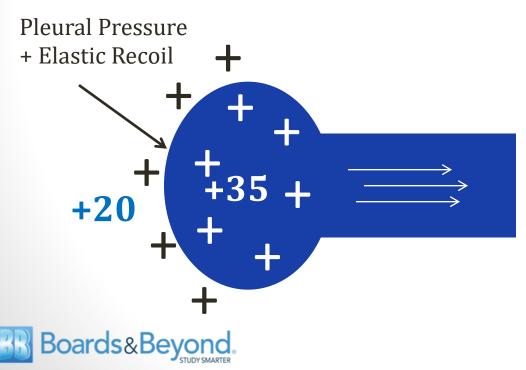

Patrick Lynch/Wikipedia



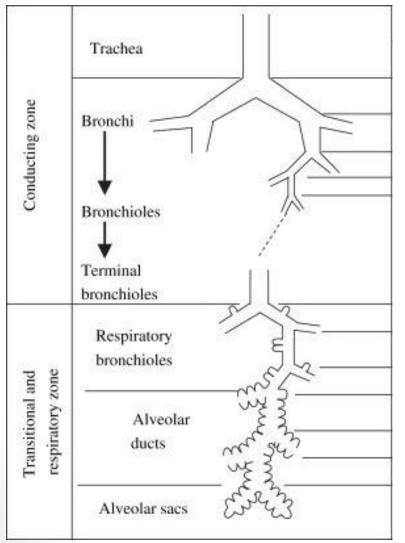
#### **Barrel Chest**

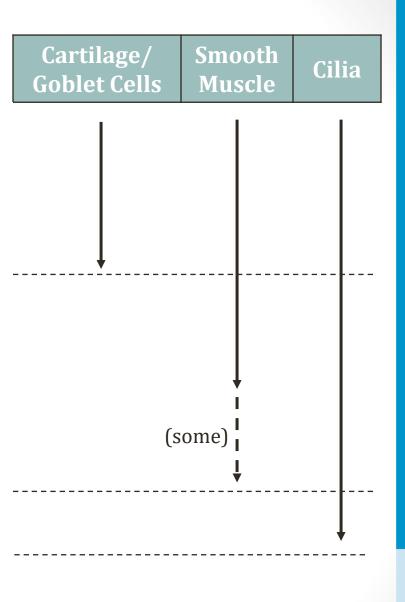
- Seen in patients with emphysema
- Increased lung compliance
- Increased FRC  $\rightarrow$  larger volumes in chest







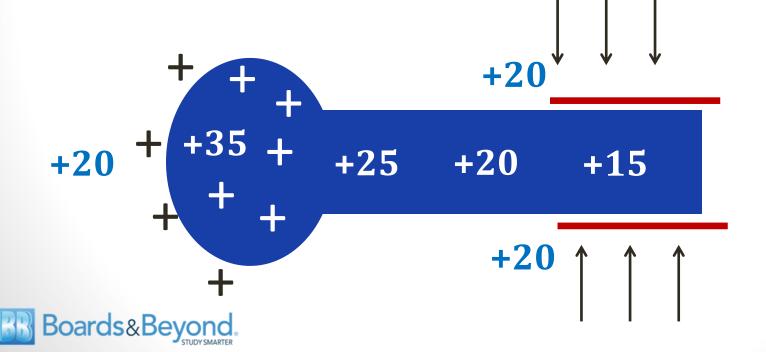


Quora/Public Domain


### **Forced Exhalation**

- Pleural pressure becomes **positive**
- Compresses airway
- Pressure on alveoli  $\rightarrow$  positive pressure in airway
- Pushes air out  $\rightarrow$  air flows from airways

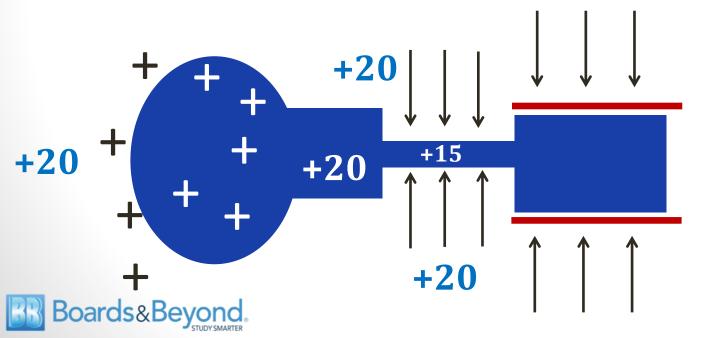


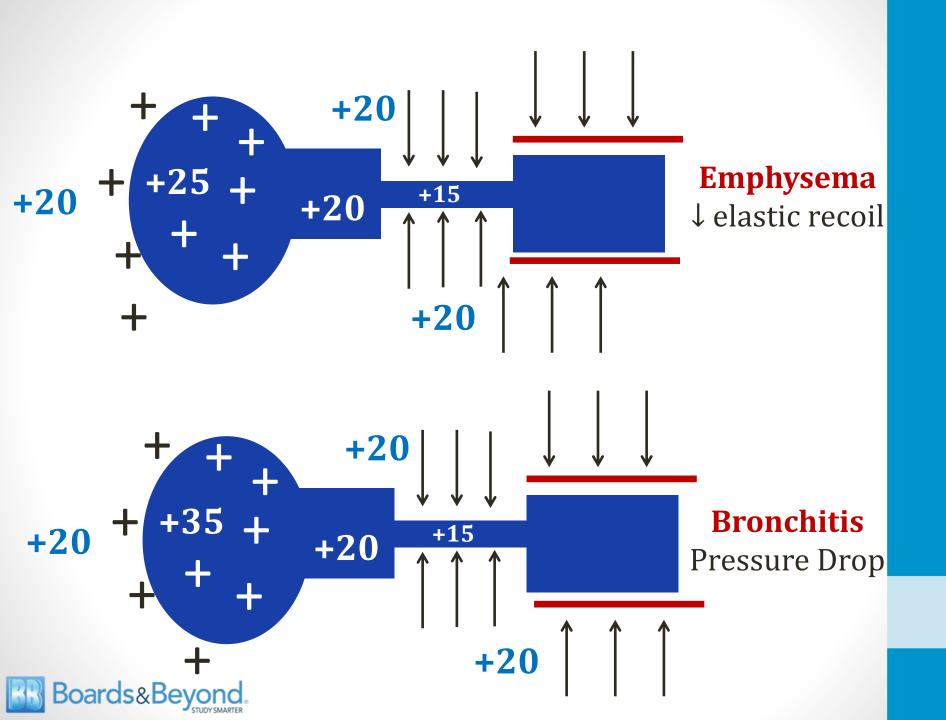
#### Zones









### **Equal Pressure Point**


- Pleural pressure = airway pressure
- Beyond this point airway collapses
- In healthy lungs: EPP occurs in cartilaginous airways
- Prevents airway collapse



### **Equal Pressure Point**

- In disease: EPP moves toward alveoli
  - Obstruction (bronchitis): more pressure drop
  - Emphysema: loss of elastic recoil
- Can be reached in thin-walled bronchioles
- Result: Collapse, obstruction to airflow, air trapping



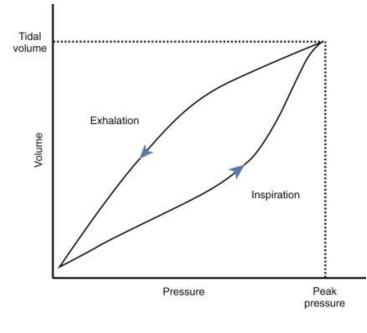


# COPD

Chronic Obstructive Pulmonary Disease

#### Slow exhalation

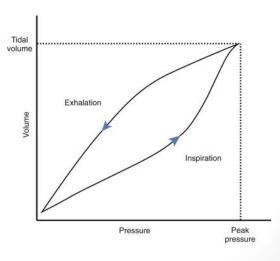
- Prevents large rise in pleural pressure
- Forceful exhalation would 11 intrapleural pressure


#### Pursed lips

- Increases airway (alveolar) pressure
- Prevents collapse



### Hysteresis


- Hysteresis = dependence of property on its history
- Different PV curves for inhalation and exhalation
- Slope PV curve = compliance
- Different compliance despite same lung structures





# Hysteresis

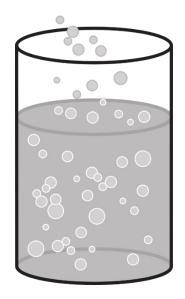
- PV hysteresis caused by surface tension
- Inspiration begins with smallest volume
  - Molecules close together
  - Strongest surface tension
- Expiration begins at high lung volumes
  - Intermolecular forces low





# Hemoglobin

Jason Ryan, MD, MPH

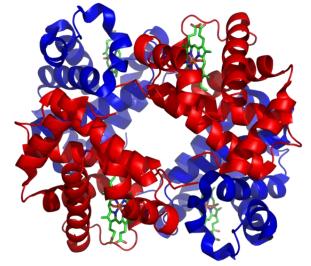



# **Oxygen Transport**

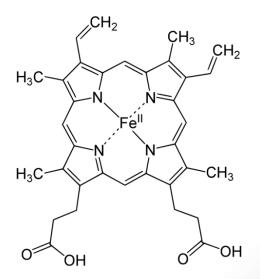
#### • Dissolved O<sub>2</sub>

- Determined by Henry's law
- $Pa_{02}$  x solubility = dissolved  $O_2$
- Very small amount (2%) total blood O<sub>2</sub>

#### Bound to hemoglobin (98%)







Public Domain

# Hemoglobin

- Globin chains
  - Proteins
  - Alpha (α)
  - Beta (β)
  - Gamma (γ)
  - Delta (δ)
  - 4 chains in 2 pairs
- Heme
  - Molecule (non-peptide)
  - Contains iron (Fe)
  - Porphyrin ring
  - Oxygen binds iron



Richard Wheeler and Zephyris





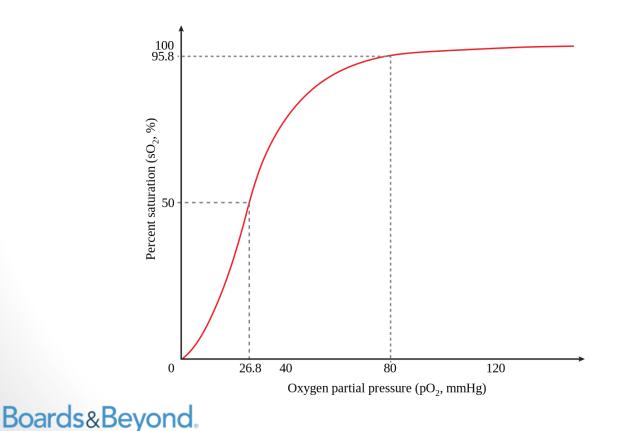
# Hemoglobin Types

#### • Hemoglobin A

- Adult type
- Most common type found (95%)
- α2 β2

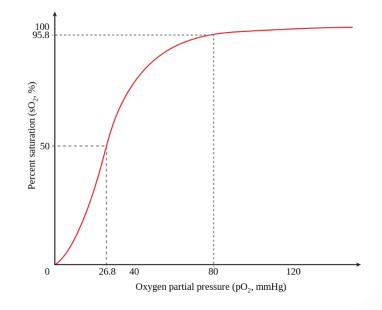
#### Hemoglobin A2

- Adult type
- Less common type (2-3%)
- α2 δ2


#### • Hemoglobin F

- Fetal type
- α2 γ2




#### **O2-Hgb Dissociation Curves**

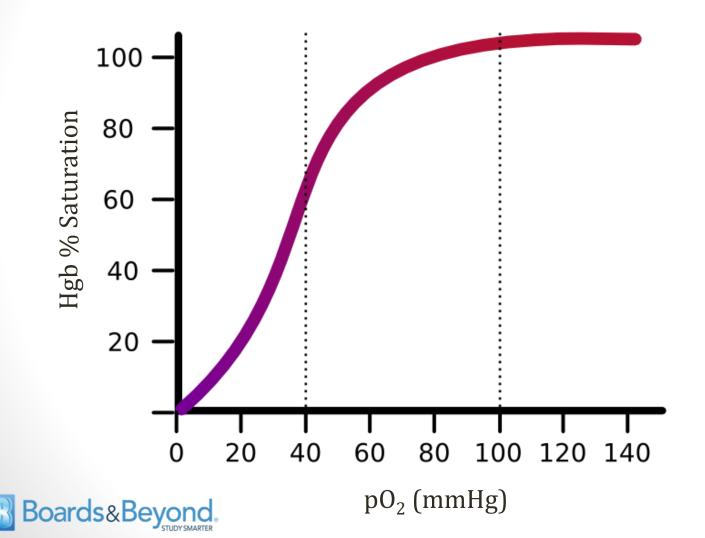
- Y axis: percentage of hemoglobin bound to oxygen
- X-axis: partial pressure of oxygen (Pa<sub>02</sub>)



## **Oxygen-Hgb** Binding

- Four heme groups do not simultaneous oxygenate
- First O<sub>2</sub> molecule INCREASES affinity for 2<sup>nd</sup> molecule
  - Second O<sub>2</sub> molecule INCREASES affinity for 3<sup>rd</sup> molecule
  - Third O<sub>2</sub> molecule INCREASES affinity for 4<sup>th</sup> molecule
  - Affinity last O<sub>2</sub> = <u>300 times</u> affinity for first O<sub>2</sub>
- Positive cooperativity
- Makes curve S shaped






#### **Allosteric Proteins**

- Allosteric = "other site"
- Binding at one site influenced by other sites
- Usually multi-subunit proteins
- Hemoglobin is an allosteric structure
- O<sub>2</sub> cooperativity is a **positive** allosteric effect



#### **O2-Hgb** Dissociation Curves

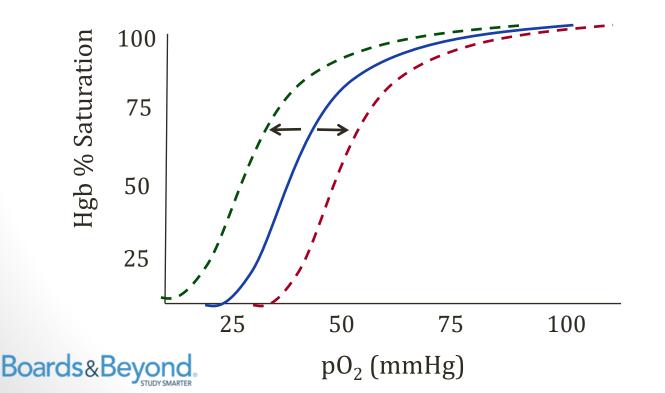


### Hemoglobin Forms

Globin chains can assume two formations

#### Taut form (T)

- Tends to release O<sub>2</sub>
- Favored form in tissues
- Allows more release of O<sub>2</sub>


#### • Relaxed form (R)

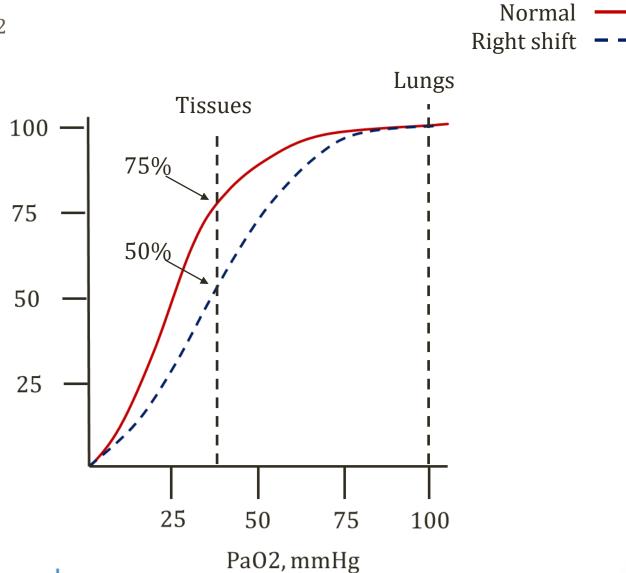
- Holds on to O<sub>2</sub>
- Favored form in lungs
- Allows more binding of O<sub>2</sub>



## Shifts in O<sub>2</sub>-Hgb Curves

- Affinity of Hgb for O<sub>2</sub> can change not fixed
- Hgb modified by environment within RBCs
- Dissociation curve shifts may occur to right or left



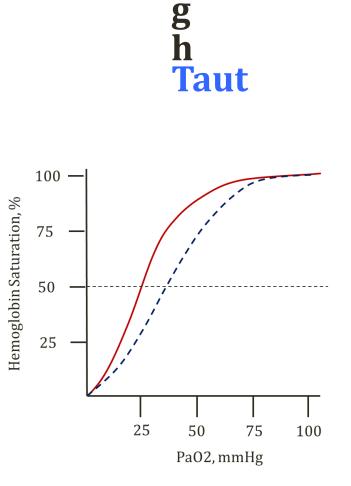

#### **Rightward Shift**

|             | Lungs<br>PaO2 | Lungs<br>%Sat | Tissues<br>PaO2 | Tissues<br>%Sat |
|-------------|---------------|---------------|-----------------|-----------------|
| Normal      | 100           | 100           | 40              | 75%             |
| Right Shift | 100           | 100           | 40              | 50%             |

#### Normal: $100\% \rightarrow 75\% \quad \Delta 25\%$ Right shift: $100\% \rightarrow 50\% \quad \Delta 50\%$



#### **Right Curve Shifts** Release O<sub>2</sub>

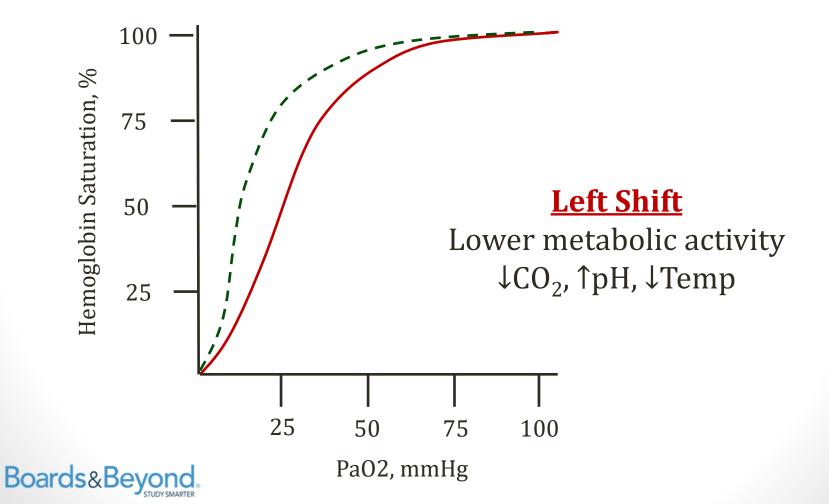



Boards&Beyond.

Hemoglobin Saturation, %

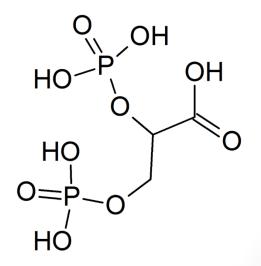
## Release 0<sub>2</sub>

- Favors taut form
- Causes of right shifts
  - **R**ising Metabolic Activity
  - **↑**CO<sub>2</sub>
  - ↓pH
  - ↑Temp
- Increases P50




**Release O**<sub>2</sub>




#### Left Curve Shifts

Latch on to  $O_2$ 



## **2,3 BPG**

- Found in RBCs
- Promotes O<sub>2</sub> release from hemoglobin
- Negative allosteric effector
- Increasing levels:
  - Decrease oxygen affinity of hemoglobin
  - Increase delivery oxygen to tissues



2,3-Bisphosphoglycerate



### 2,3 Bisphosphoglycerate

- Created from diverted 1,3 BPG (glycolysis)
- Sacrifices ATP from glycolysis

```
Glyceraldehyde-3-phosphate

↓↑

2,3 BPG ← 1,3-bisphosphoglycerate

BPG

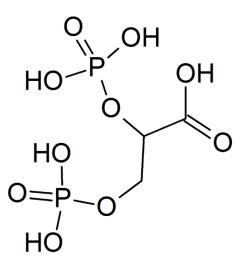
Mutase

3-phosphoglycerate

↓↑

2-phosphoglycerate

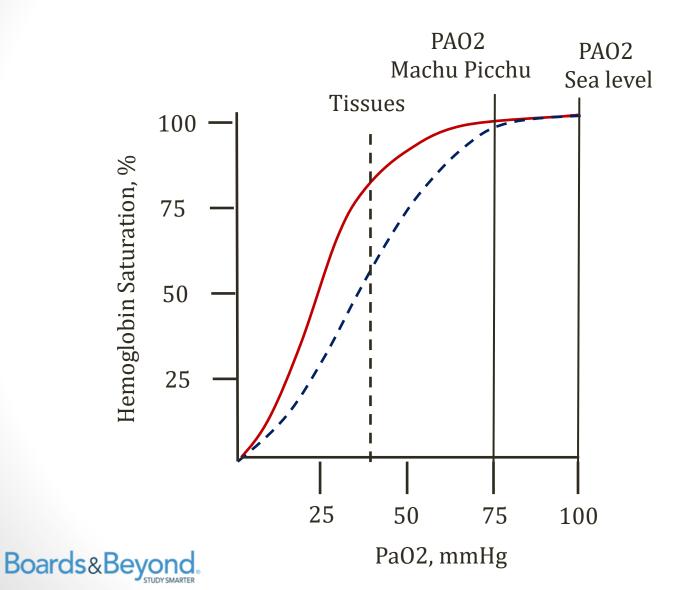
↓↑


Phosphoenolpyruvate
```



## **2,3** BPG

#### ↑ BPG with chronic hypoxia


- COPD
- High altitude
- Chronic anemia



2,3-Bisphosphoglycerate

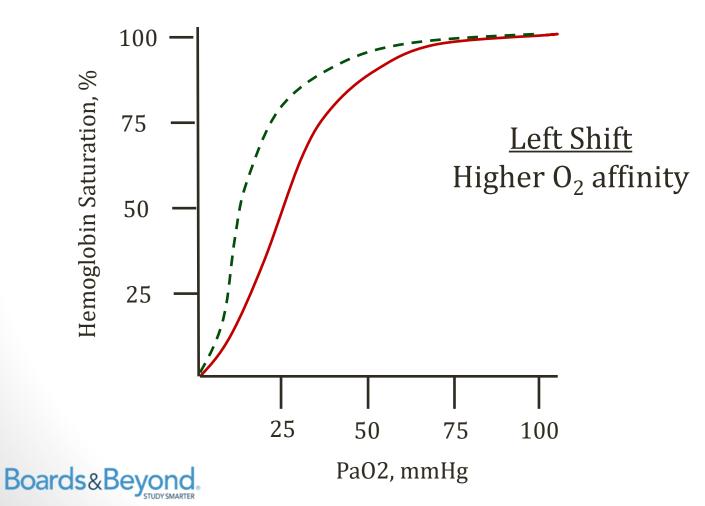


#### High Altitude



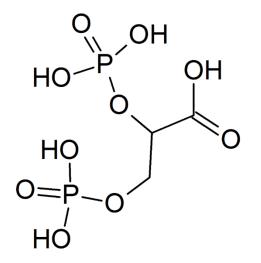
## Fetal Hemoglobin

HgbF ( $\alpha 2\gamma 2$ )


- After 8 weeks HgbF is predominant Hgb
  - Up to 90% fetal hemoglobin
  - Levels fall in weeks/months after birth
  - In adult HgbF <1% total hemoglobin</li>
- Higher O<sub>2</sub> affinity than HgbA
  - Necessary because fetal pO2 = 40mmHg





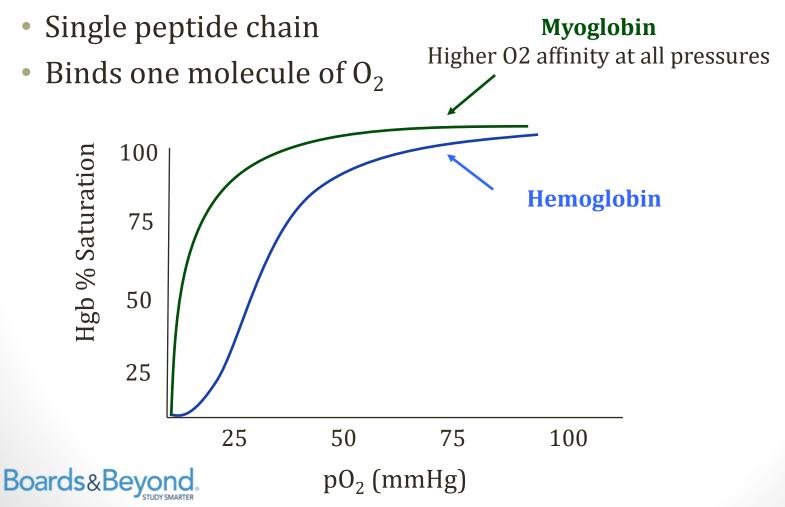

Wikipedia/Public Domain

#### **Fetal Hemoglobin** HgbF (α2γ2)



#### **Fetal Hemoglobin** HgbF (α2γ2)

- Left shift caused by altered **2,3 BPG binding** 
  - 2,3-BPG binds γ chains poorly (binds β chains avidly)
  - Less 2,3-BPG binding  $\rightarrow$  O<sub>2</sub> affinity increases (left shift)



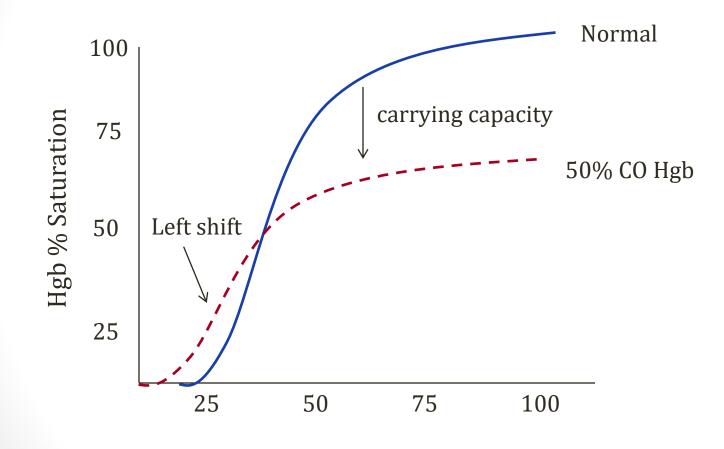

2,3-Bisphosphoglycerate



## Myoglobin

Found in skeletal muscle and heart




#### Carbon Monoxide

- Binds to iron in heme 240x the affinity of O<sub>2</sub>
- Forms carboxyhemoglobin (HbCO)
- Blocks O<sub>2</sub> binding sites (less O<sub>2</sub> can be absorbed)
- "Functional anemia"
- Other binding sites cannot offload O<sub>2</sub>
  - Allosteric modification of hemoglobin
  - Shifts dissociation curve left

# $:C \equiv O:$



#### **Carbon Monoxide**



pO<sub>2</sub> (mmHg)



#### **Carbon Monoxide Poisoning**

- Nonspecific symptoms
- Headache most common
- Malaise, nausea, dizziness
- Classic (but rare) sign: cherry red lips
  - Carboxyhemoglobin is red
  - Do not see blue lips (cyanosis)

# $:C \equiv O:$



### **Carbon Monoxide Poisoning**

- Standard pulse oximetry normal
  - Cannot differentiate carboxyhemoglobin/oxyhemoglobin
- Diagnosis: carboxyhemoglobin level
  - Normal <3%
  - Smokers 10-15%
  - >15% suggest poisoning
- Treatment: oxygen

# $:C \equiv O:$



#### Methemoglobinemia

- Most iron in hemoglobin normally reduced (Fe<sup>2+</sup>)
- Small amount oxidizes iron: Fe<sup>3+</sup>
  - Called methemoglobin
  - Cannot bind O<sub>2</sub>
- Excess methemoglobin: hypoxia

## **Fe**<sup>3+</sup>



### Methemoglobinemia

- Acquired methemoglobinemia from drugs
  - Local anesthetics (benzocaine)
  - Nitric oxide
  - Dapsone

#### Treatment: methylene blue

- Reducing agent
- $Fe^{3+} \rightarrow Fe^{2+}$



#### **Clinical Scenario**

- Endoscopy patient
- Benzocaine spray used for throat analgesia
- Post procedure shortness of breath
- "Chocolate brown blood"
- O<sub>2</sub> sat (pulse oximetry) = variable (80s-90s)
- Oxygen does not improve shortness of breath
- P<sub>a02</sub> (blood gas) = normal
- Diagnosis: 1 methemoglobin level
- Other example:
  - Premature babies given NO for pulmonary vasodilation



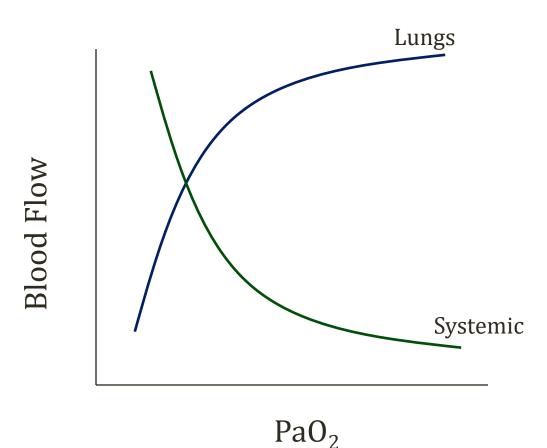
## Pulmonary Circulation

Jason Ryan, MD, MPH



### **Pulmonary Circulation**

- Low pressure system
  - Systemic: 120/80
  - Pulmonary artery: 24/12
- Walls of pulmonary artery very thin
  - Little smooth muscle
  - Low resistance to flow
  - Very distensible (compliant)




### **Blood Oxygen Content**

- Systemic circulation
  - $\downarrow O_2$  level (PaO<sub>2</sub>) leads to vasodilation ( $\uparrow$ blood flow)
- Pulmonary circulation
  - $\downarrow O_2$  level (PaO<sub>2</sub>) leads to **vasoconstriction** ( $\downarrow$ blood flow)
  - "Hypoxic vasoconstriction"
  - Shunts blood away from poorly ventilated areas
  - More blood to well ventilated areas
- Key for fetal circulation
  - Low O<sub>2</sub> constricts pulmonary arteries in womb
  - At birth, arteries receive O<sub>2</sub> and dilate



#### Blood O<sub>2</sub> Content





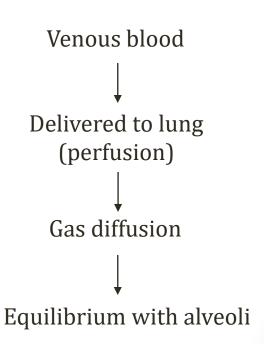
#### Gas Exchange

<u>Inspired Air</u> (humidified, tracheal) P<sub>02</sub> 150mmHg P<sub>C02</sub> 0 mmHg

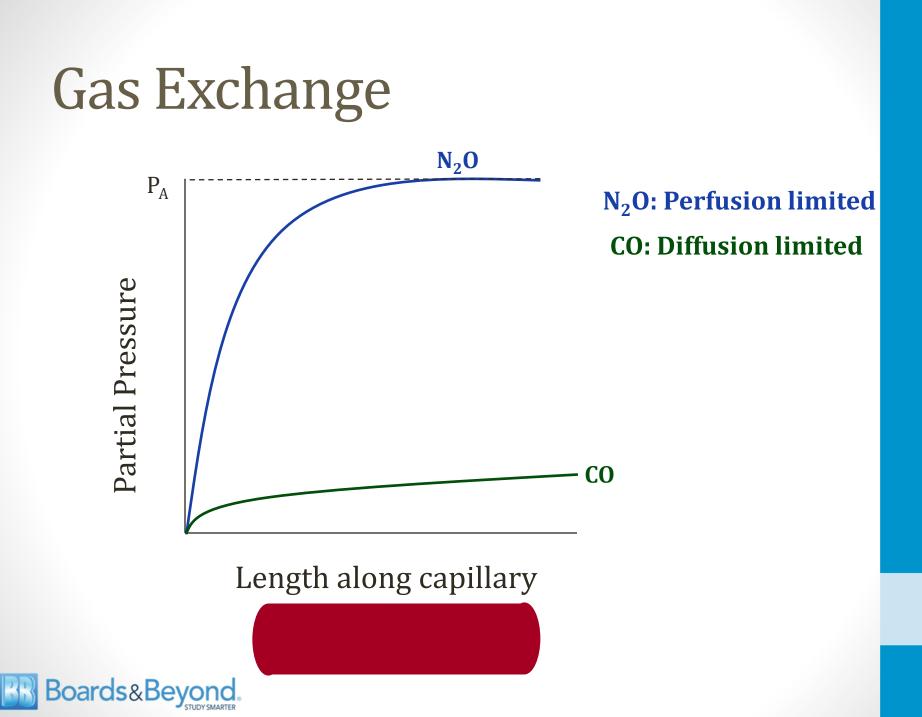
<u>Alveoli</u> P<sub>AO2</sub> 100 mmHg P<sub>ACO2</sub> 40 mmHg

 $\mathbf{0}_2 \mathbf{C} \mathbf{0}_2$ 

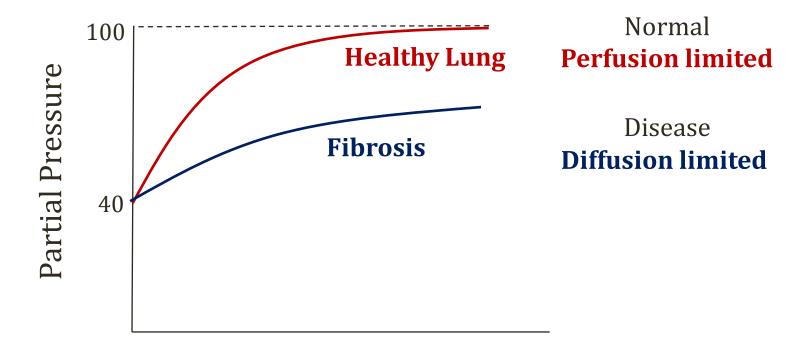
<u>Venous Blood</u> P<sub>v02</sub> 40mmHg P<sub>vC02</sub> 46mmHg <u>Arterial Blood</u> P<sub>a02</sub> 90mmHg P<sub>aC02</sub> 40mmHg




### Gas Exchange


- Gasses classified by limiting factor for gas transfer
- Perfusion limited
  - Gas transport limited by perfusion (blood flow)
  - More blood flow  $\rightarrow$  more uptake of gas

#### Diffusion limited

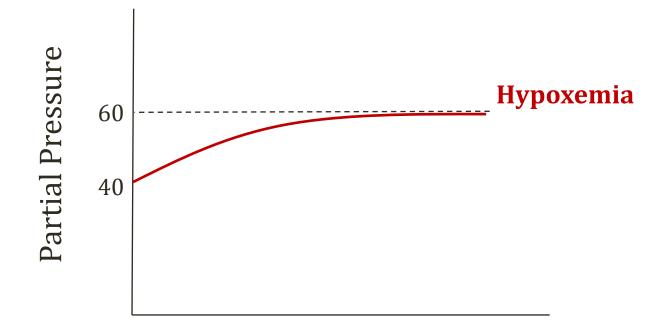

• Gas transport limited by *diffusion* 







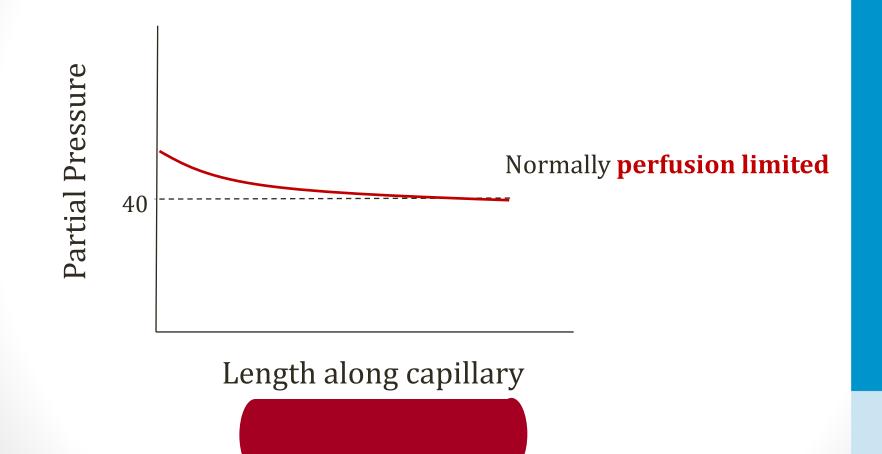
#### Gas Exchange: Oxygen




#### Length along capillary



### Gas Exchange: Oxygen


High Altitude



#### Length along capillary



#### Gas Exchange: Carbon Dioxide



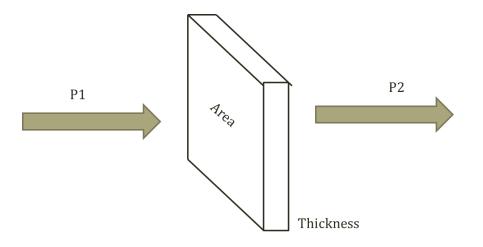


#### DLCO

Diffusing capacity of carbon monoxide

- Measures ability of lungs to transfer gas
- Patient inhales small amount (not dangerous) CO
- CO uptake is diffusion limited
  - Amount taken up  $\approx$  diffusion capacity of lungs
- Machine measures CO exhaled
- Normal = 75 140 % predicted
- Severe disease <40% predicted</li>




## Low DLCO Disorders

#### Emphysema

- Destruction of alveoli
- Decreased surface area

#### • Fibrosis or pulmonary edema

• Diffusion distance (thickness) increases



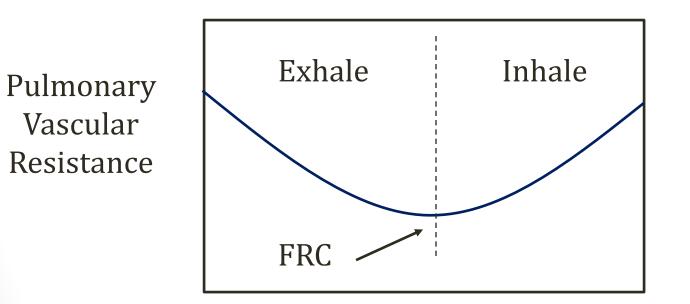
 $= \frac{\text{Area } * D * (P1-P2)}{\text{Thickness}}$ 

Vgas =



# **Resistance to Blood Flow**

Pulmonary Vascular Resistance


- Two vessels types:
  - Alveolar: capillaries
  - Extra-alveolar: arteries and veins
- Increased lung volumes:
  - Crushes alveolar vessels  $\rightarrow$  high resistance
  - Pulls extra-alveolar vessels open

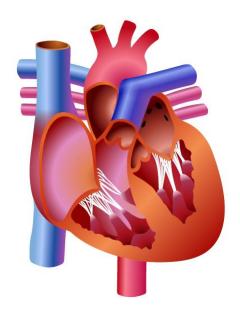




# Pulmonary Vascular Resistance

Resistance to blood flow






- Normal PA pressure
  - 24/12
  - Mean 10-14mmHg
- Pulmonary hypertension
  - Mean pressure >25mmHg
- Loud P2 = pulmonary hypertension
  - "Accentuated" or "loud" second heart sound
  - Left upper sternal border

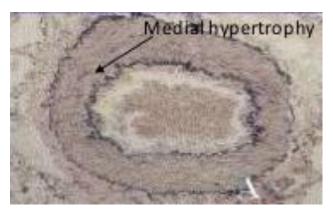




- Main symptom is dyspnea
- Untreated can lead to "cor pulmonale"
  - Chronic high pressure in right ventricle
  - Right ventricle hypertrophies
  - Eventually dilates and fails
  - Jugular venous distension
  - Lower extremity edema
  - Hepatomegaly
- Death from heart failure or arrhythmia






- Gold standard diagnosis: right heart catheterization
- Non-invasive diagnosis by echocardiography
  - Estimate PA pressure
  - Visualize right heart structures






#### Arteriosclerosis

- Thickening of arterial walls
- Proliferation smooth muscle cells
  - Thickening media
  - Narrowing of the lumen



Medial Hypertrophy

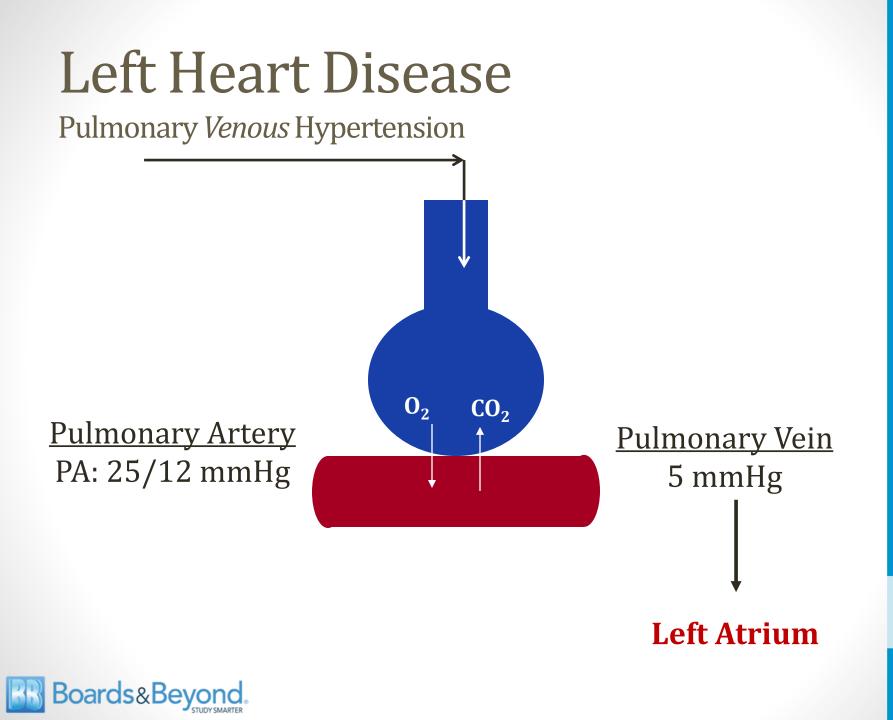


Normal



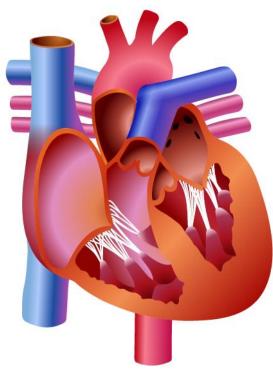
Slideshare/Public Domain

#### <u>High PVR</u>


"Pulmonary Arterial HTN" Primary or Secondary

# $\mathbf{P}_{\mathbf{P}\mathbf{A}} = \mathbf{C}\mathbf{O} * \mathbf{P}\mathbf{V}\mathbf{R} + \mathbf{P}_{\mathbf{L}\mathbf{A}}$

#### High LA Pressure


Most common cause PHTN "Pulmonary Venous HTN" Heart Failure Valve Disease





### Left Heart Disease

- Most common cause of pulmonary hypertension
- "Pulmonary venous hypertension"
- Any cause of high left atrial pressure
  - Heart failure
  - Mitral stenosis
  - Mitral regurgitation





# High PVR

Pulmonary Arterial Hypertension

#### Hypoxemia → vasoconstriction

- COPD, other chronic lung diseases
- Sleep apnea or high altitude (chronic hypoxia)

#### Chronic pulmonary emboli

Decreased area for blood flow



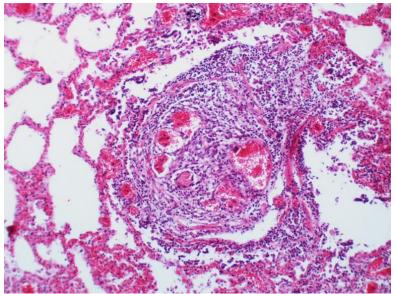


## PAH

**Pulmonary Arterial Hypertension** 

- High pulmonary vascular resistance
- No chronic lung disease or thrombosis
- Key associations:
  - Connective tissue disease (scleroderma)
  - Human immunodeficiency virus
  - Congenital heart disease (shunts)
  - Schistosomiasis
  - Drugs (amphetamines, cocaine)




# **Idiopathic PAH**

- Rare disease
- Classically affects young women
- High pulmonary vascular resistance
- Increased activity vasoconstrictors
  - Endothelin
- Decreased activity vasodilators
  - Nitric oxide



## **Plexiform Lesions**

- Unique to idiopathic PAH
- Endothelial proliferation forms multiple lumens
- Small arteries branch points from medium arteries



Yale Rosen/Flikr



## **BMPR2** gene mutations

- Bone morphogenetic protein receptor type II
  - Inhibits smooth muscle proliferation
  - Mutations → abnormal growth (endothelium, smooth muscle)
- Up to 25% of idiopathic cases
- Up to 80% familial cases



### **PAH Treatments**

- All lower PVR
- Epoprostenol: Prostacyclin (IV)
  - PGI<sub>2</sub>
  - Potent vasodilator
- Bosentan:
  - Antagonist endothelin-1 receptors (PO)
- Sildenafil:
  - Inhibits PDE-5 in smooth muscle of lungs (PO)



# Ventilation & Perfusion

Jason Ryan, MD, MPH



## Ventilation

- Ventilation = volume x frequency (respiratory rate)
  - 500cc per breath x 20 breaths per minute
  - 10,000cc/min
- **Alveolar ventilation** = useful for gas exchange
- Dead space ventilation = wasted ventilation



Pixabay/Public Domain



## **Dead Space**

- Filled with air but no gas exchange
- Anatomic dead space
  - Volume of conducting portions of respiratory tract
  - Nose, trachea

#### Physiologic dead space

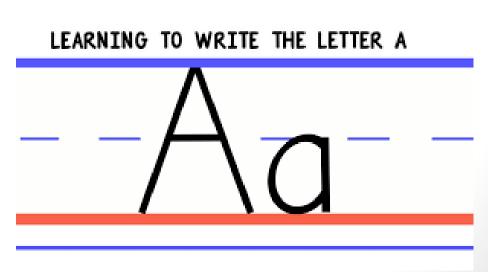
- Anatomic PLUS volume of alveoli that don't exchange gas
- Includes functional dead space
- Insufficient perfusion
- Apex is largest contributor
- Physiologic dead space increases many diseases



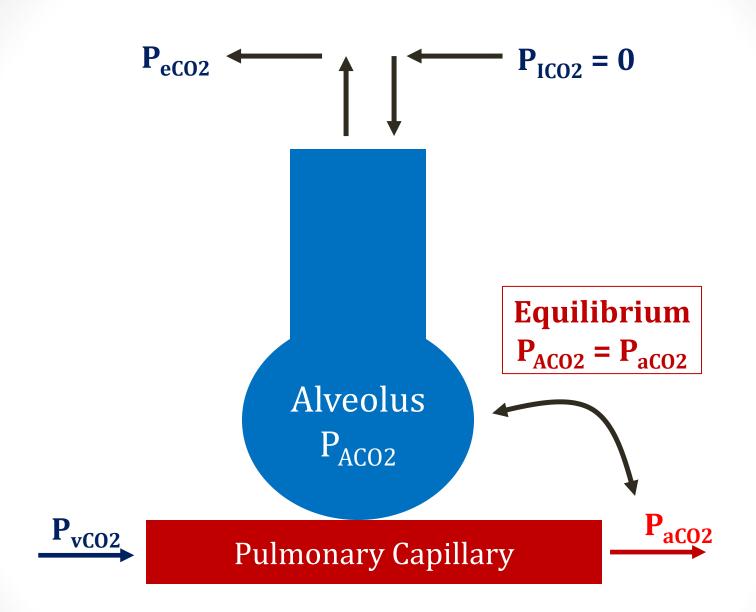
## **Measuring Dead Space**

#### Bohr's method

- Physiologic dead space (V<sub>d</sub>) from:
  - Tidal volume (V<sub>t</sub>)
  - PeCO<sub>2</sub> (exhaled air)
  - PaCO<sub>2</sub> (blood gas)


$$\frac{V_{d}}{V_{t}} = \frac{P_{a}CO2 - P_{e}CO2}{P_{a}CO2}$$




#### Nomenclature

- P<sub>A</sub> = alveolar pressure
  - $P_{AO2}$  = alveolar  $O_2$
  - $P_{ACO2}$  = alveolar  $CO_2$
- P<sub>a</sub> = arterial pressure
  - $P_{a02}$  = arterial  $O_2$
  - $P_{aCO2}$  = arterial  $CO_2$
- P<sub>v</sub> = venous pressure
- P<sub>e</sub> = expired pressure

A = alveolar a = arterial









### **Bohr Equation**

 $\frac{V_d}{V_t} = \frac{P_a CO2 - P_e CO2}{P_a CO2}$ 



#### **Zero Dead Space**

$$\frac{V_{d}}{V_{t}} = \frac{P_{a}CO2 - P_{e}CO2}{P_{a}CO2}$$

$$0 = P_{a}CO2 - P_{e}CO2$$

$$P_{a}CO2$$

$$0 = P_{a}CO2 - P_{e}CO2$$

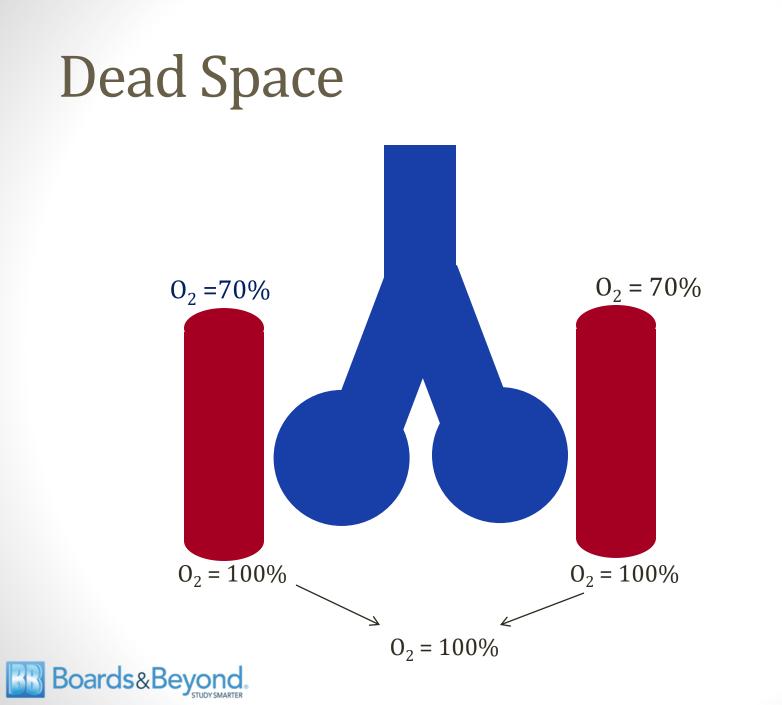
$$P_{e}CO2 = P_{a}CO2$$

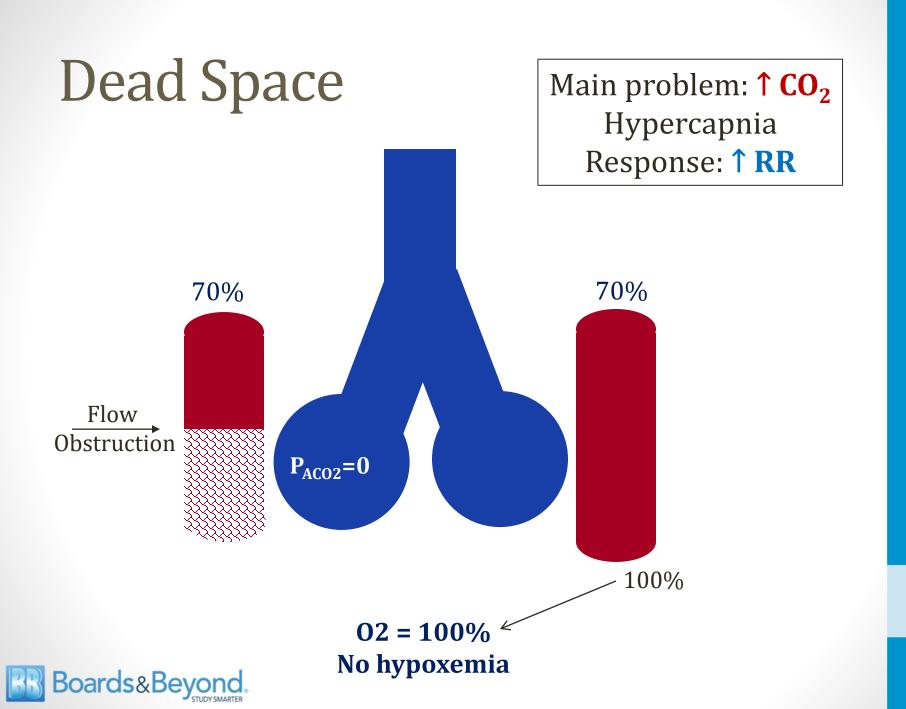
↓ dead space →  $P_eCO2$  approaches  $P_aCO2$ More gas exchange Less retained CO2



#### 100% Dead Space

$$\frac{V_{d}}{V_{t}} = \frac{P_{a}CO2 - P_{e}CO2}{P_{a}CO2}$$

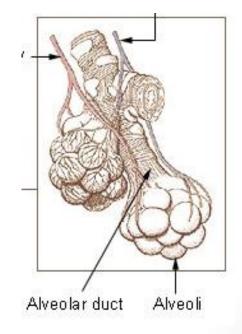

$$1 = P_{a}CO2 - P_{e}CO2$$


$$P_{a}CO2$$

$$P_{a}CO2 = P_{a}CO2 - P_{e}CO2$$

$$P_{e}CO2 = 0$$

#### ↑ dead space → $P_eCO2$ approaches zero Less gas exchange More retained CO2 Boards&Beyond.






# **Alveolar Ventilation Equation**

#### Predicts Alveolar CO2

- Total ventilation (TV) = volume/min
  - \*\*Volume in slightly > volume out due to O<sub>2</sub> uptake
  - Sometimes called minute ventilation
- Alveolar ventilation
  - TV minus "dead space"
- Example: 500cc per minute
  - 150cc fills dead space
  - Only 350cc available for gas exchange





## **Elevated Carbon Dioxide**

- Hypercapnia
- Hypercarbia
- Causes acidosis
- Physiologic response: 1 respiratory rate
  - Increased alveolar ventilation



# **Alveolar Ventilation Equation**

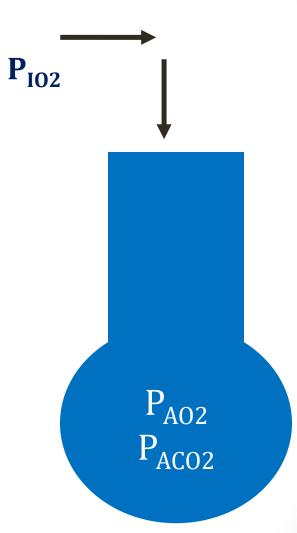
Predicts Alveolar CO2

- V<sub>A</sub> = <u>alveolar</u> ventilation
- V<sub>CO2</sub> = rate of CO2 production
- P<sub>ACO2</sub> = alveolar PCO2
- Vt = total ventilation
- V<sub>ds</sub> = dead space ventilation
- K = constant

Three Major Causes of  $\uparrow$  CO<sub>2</sub>

↑ CO2 production
↓V<sub>A</sub> (hypoventilation)
↑V<sub>ds</sub> (dead space)

$$P_{ACO2} = \frac{V_{CO2} * K}{V_A} \qquad P_{ACO2} = \frac{V_{CO2} * K}{V_T - V_{ds}}$$




## **Alveolar Gas Equation**

#### Predicts Alveolar O2

- P<sub>A02</sub> = alveolar O2
- P<sub>IO2</sub> = inspired O2
- P<sub>ACO2</sub> alveolar CO2
- R = respiratory exchange ratio
  - CO<sub>2</sub> production/O<sub>2</sub> consumption
  - Varies with diet, metabolic state

$$P_{AO2} = P_{IO2} - \frac{P_{ACO2}}{R}$$



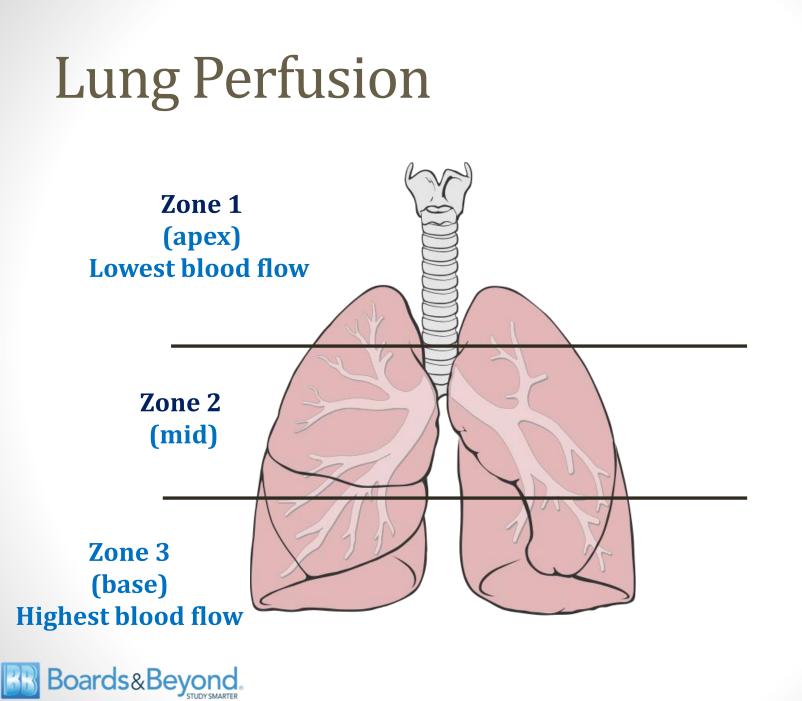


## **Alveolar Gas Equation**

Predicts Alveolar O2

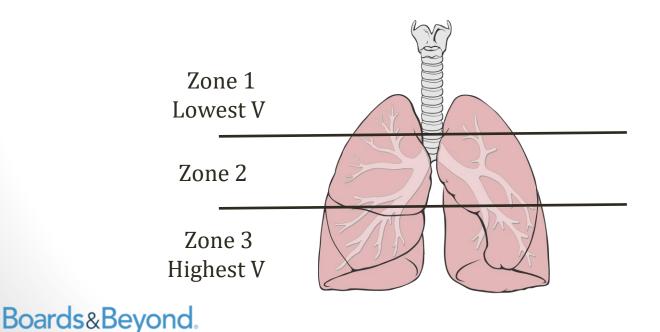
| P <sub>ACO2</sub> | P <sub>IO2</sub> | P <sub>A02</sub> |
|-------------------|------------------|------------------|
| 40                | 150              | 100              |
| 50                | 150              | 88               |
| 60                | 150              | 75               |
| 70                | 150              | 63               |
| 80                | 150              | 50               |

$$P_{AO2} = P_{IO2} - \frac{P_{ACO2}}{R}$$




# Lung Perfusion

- Upright position: Blood flow distribution is uneven
  - Caused by gravity
  - Apex: Lowest blood flow
  - Base: Highest blood flow
- Lung divided into 3 zones to describe perfusion

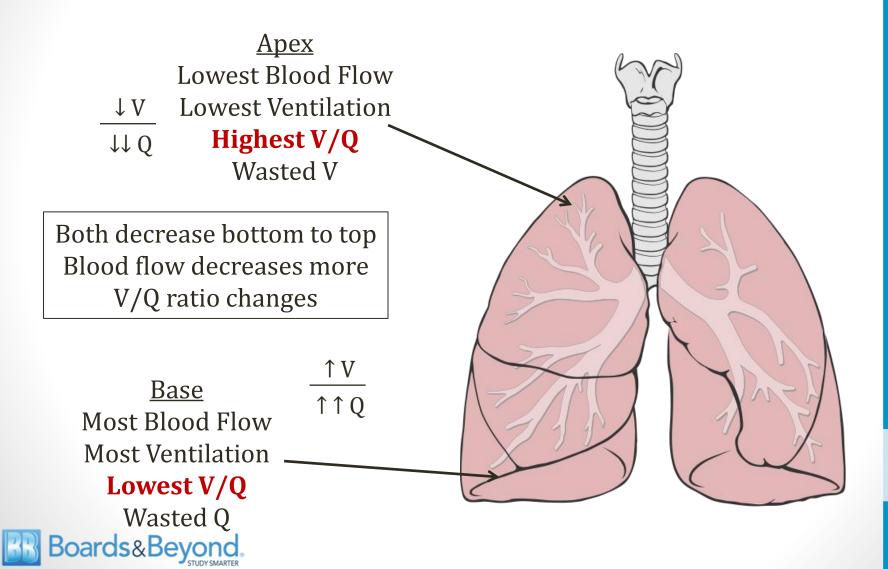


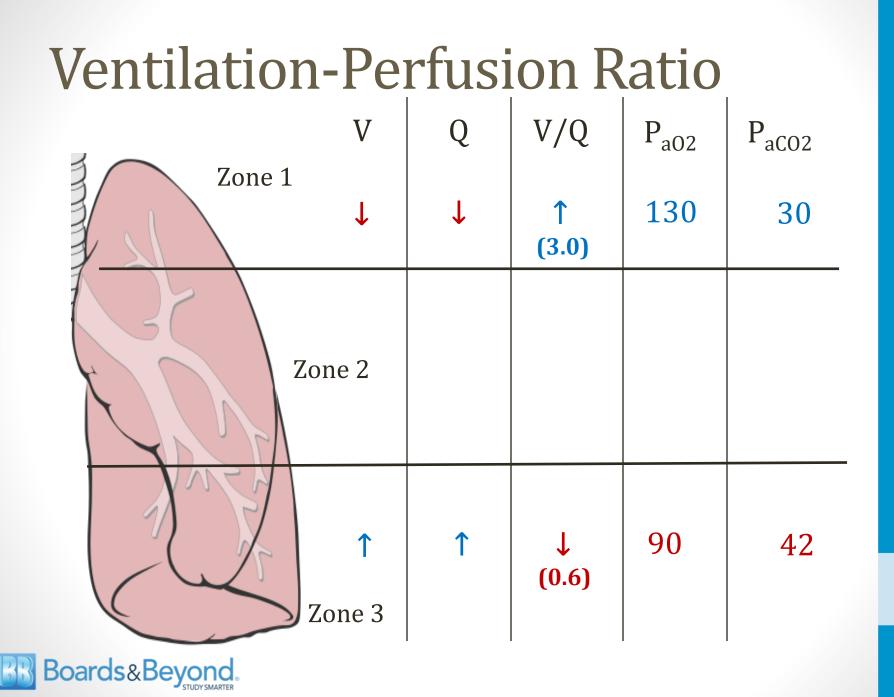





# Lung Ventilation

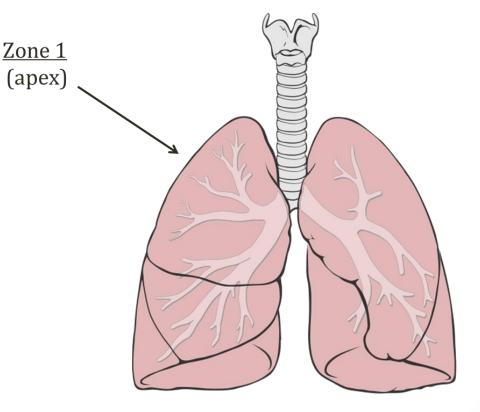
- Ventilation highest zone 3, lowest zone 1
  - Also caused by gravity
  - Upper lung compresses base  $\rightarrow$  pushes air out
  - More room for filling of base with next breath
  - Variations smaller (L/min) than blood flow





### **Ventilation-Perfusion Ratio**

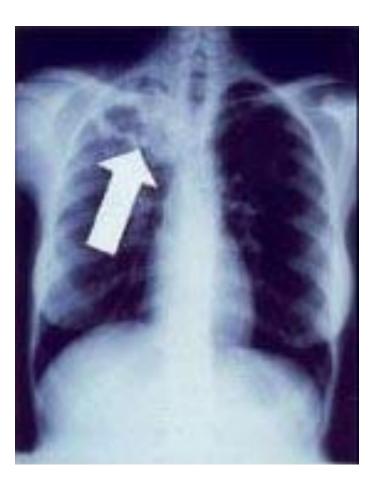
- V/Q ratio: alveolar ventilation/pulmonary blood flow
  - Matching critical for gas exchange
  - Under-ventilated or under-perfused alveoli inefficient
- Normal V/Q ratio = 0.8
  - Alveolar ventilation (L/min)/pulmonary blood flow (L/min)
  - Yields normal  $P_{a02}$  (90 mmHg) and  $P_{aC02}$  (40 mmHg)




#### **Ventilation-Perfusion Ratio**



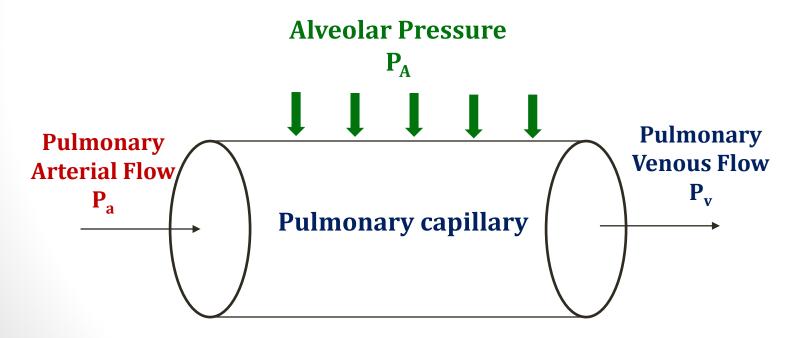



## Zone 1

- Lowest blood flow
- Lowest ventilation
- Highest V/Q ratio
- Highest P<sub>a02</sub>
- Lowest P<sub>aCO2</sub>





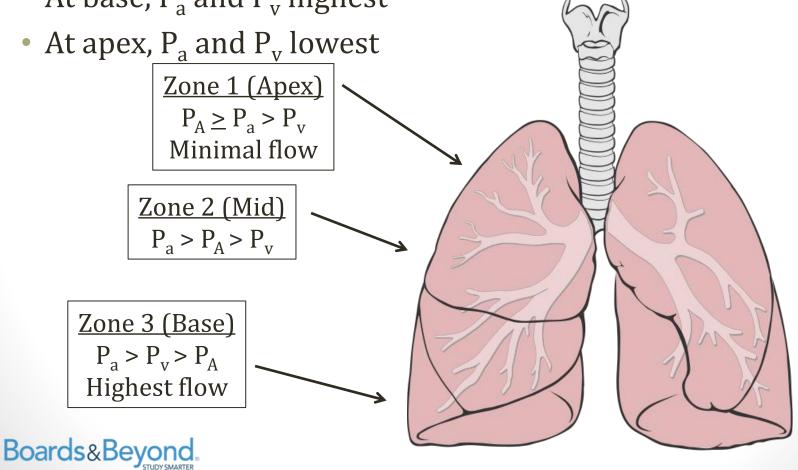

#### Tuberculosis





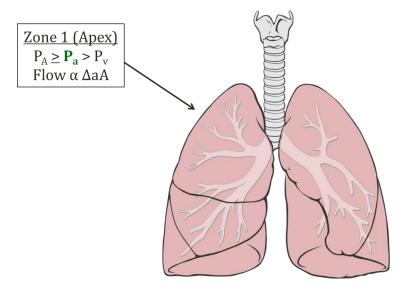
# **Pulmonary Blood Flow**

- Normally, A-V pressure difference drives blood flow
- In lungs, alveolar pressure may determine blood flow
- High alveolar pressure  $\rightarrow$  no blood flow  $\rightarrow$  dead space






# **Pulmonary Blood Flow**


- P<sub>A</sub> constant
- At base,  $P_a$  and  $P_v$  highest

Pressures P<sub>A</sub> Alveolar P<sub>a</sub> Arterial P<sub>v</sub> Venous



### Zone 1

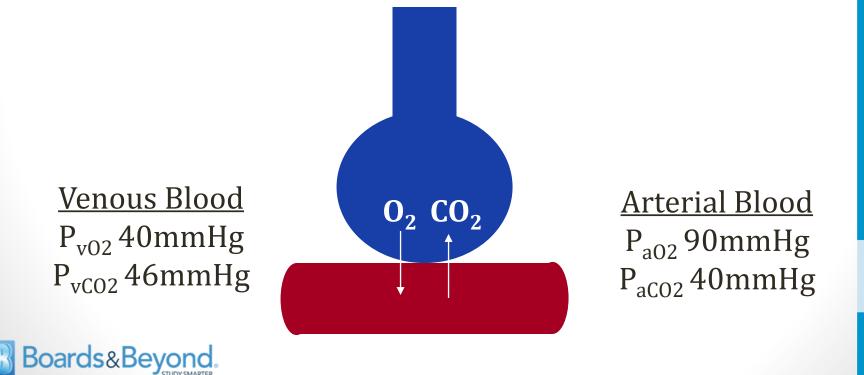
- Lung apex:  $P_A \ge P_a > P_v$
- Slight fall in  $P_a \rightarrow$  capillary compression
  - Hemorrhage/shock
- Zone 1 becomes dead space
  - Ventilation without perfusion





#### Exercise

- Increased O<sub>2</sub> demand
- Ventilation rate increases
- Increased cardiac output
- V/Q ratio approaches 1
  - More blood flow
  - More ventilation
  - ↑ ventilation > ↑blood flow
  - Becomes more even in zones








#### Exercise

- No change in mean P<sub>aO2</sub> and P<sub>aCO2</sub>
- Increased venous CO<sub>2</sub> (P<sub>VCO2</sub>)
- Decreased venous O<sub>2</sub> (P<sub>VO2</sub>)



# Hypoxia

Jason Ryan, MD, MPH



# Oxygen delivery to tissues

- Oxygen delivery to tissues depends on:
  - Cardiac output
  - O<sub>2</sub> content of blood
- For proper O<sub>2</sub> delivery need:
  - Normal cardiac output
  - Normal O<sub>2</sub> content



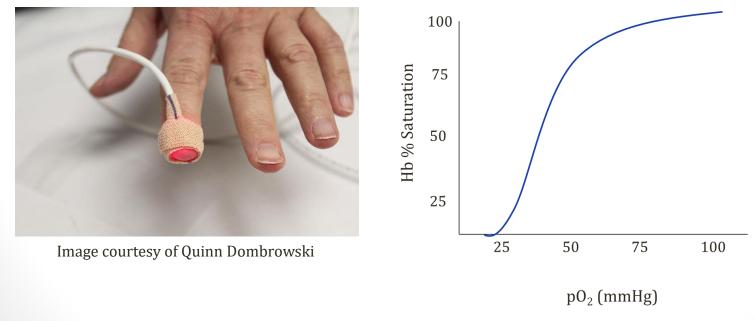
# What determines O<sub>2</sub> content?

- O<sub>2</sub> binding capacity
  - How much O<sub>2</sub> blood can hold
  - Determined by hemoglobin
- Hemoglobin saturation
  - % Hemoglobin molecules saturated
- Dissolved O<sub>2</sub>
  - O<sub>2</sub> directly dissolved in blood



# PaO<sub>2</sub>

- Partial pressure oxygen in blood
- Obtained from an arterial blood gas
- Reflects amount of O<sub>2</sub> dissolved in blood
- Normal: >80mmHg




Twitter/Public Domain



### **Pulse Oximetry**

- Measures Hgb-O<sub>2</sub> saturation of blood
- Related to PaO<sub>2</sub>
- Uses light and a photodetector



Boards&Beyond

# **Oxygen Content**

#### O<sub>2</sub> Content = (O<sub>2</sub> Binding Capacity) \* (% Sat) + (Dissolved O<sub>2</sub>) (ml O<sub>2</sub>/dl) $\uparrow$ $\uparrow$ (1.39 \* Hgb) 0.003 P<sub>aO2</sub>

#### Normal O2 content requires:

- Presence of hemoglobin
- Sufficient saturation of hemoglobin
- Normal P<sub>a02</sub>



# Hypoxemia, Hypoxia, Ischemia

- Hypoxemia: low oxygen content of blood
- Hypoxia: low O<sub>2</sub> delivery to tissues
- Ischemia: loss of blood flow

| , ONI                              | abbreviate la la                                                                                                                         |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| ound)                              | shorten, esp. repres                                                                                                                     |
| on. 2<br>craft.<br>vith a<br>eding | n. [Latin: related to<br>ABC / eIbi:'si:/ n. 1<br>ments of a subject.<br>abdicate /'æbdi,ko<br>absol.) give up or r<br>2 renounce (2 day |

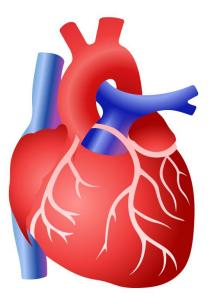
Pixabay/Public Domain



# Hypoxemia, Hypoxia, Ischemia

- Low Hgb-O<sub>2</sub> sat or low PaO<sub>2</sub> = hypoxemia
- Hypoxemia  $\rightarrow$  hypoxia
- Can have hypoxia without hypoxemia

#### Common Hypoxia Causes


Hypoxemia Heart Failure Anemia Carbon Monoxide



### Heart Failure

#### ↓ cardiac output

- $\downarrow$  blood flow to tissues  $\rightarrow$  hypoxia
- O<sub>2</sub> content of blood may be normal
- PaO<sub>2</sub> and Hgb-O<sub>2</sub> sat may be normal





### Anemia

- Oxygenation of blood by lungs is normal
- Oxygen carrying capacity of blood reduced
- Low O<sub>2</sub> content of blood
- PaO<sub>2</sub> and Hgb-O<sub>2</sub> sat normal



Databese Center for Life Science (DBCLS)



### Carbon Monoxide

- Binds to iron in heme 240x the affinity of oxygen
- Blocks O<sub>2</sub> binding sites: "functional anemia"
- Alveolar O<sub>2</sub> (P<sub>AO2</sub>) usually normal
  - Amount of CO gas required for poisoning usually small
- Normal  $P_{AO2} \rightarrow Normal P_{aO2}$ 
  - $\downarrow O_2$  binding to Hb despite normal  $P_aO_2$



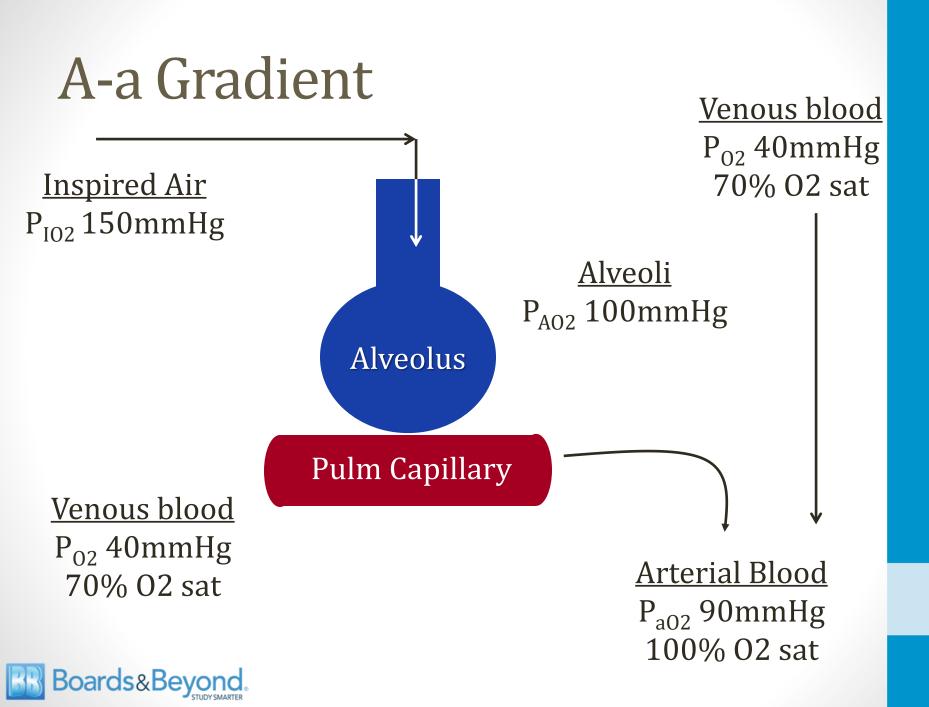
### Carbon Monoxide

- Low Hgb-O<sub>2</sub> sat (CO blocking O<sub>2</sub> binding sites)
- Pulse oximeter shows normal (100%) O<sub>2</sub> sat
  - Can't distinguish Hb bound to CO from that bound to O<sub>2</sub>
- O<sub>2</sub> content of blood reduced

Normal PaO2 Low O<sub>2</sub> % sat (reality) Normal O<sub>2</sub> % sat (detector) Hypoxia



# **Causes of Hypoxia**


|                 | O2 Content    | PaO2          | % Sat        |
|-----------------|---------------|---------------|--------------|
| Hypoxemia       | $\rightarrow$ | $\rightarrow$ | $\downarrow$ |
| Heart Failure   | Normal        | Normal        | Normal       |
| Anemia          | $\downarrow$  | Normal        | Normal       |
| Carbon Monoxide | $\downarrow$  | Normal        | ↓*           |



# Hypoxemia

- Indicates defect oxygenating blood
- Causes categorized by A-a gradient
  - Alveolar  $O_2$  ( $P_{AO2}$ ) Arterial  $O_2$  ( $P_{aO2}$ )
  - P<sub>A02</sub> from alveolar gas equation
  - P<sub>a02</sub> from blood gas





#### **Alveolar Gas Equation**

$$P_{AO2} = P_{IO2} - \frac{P_{aCO2}}{R} = 150 - \frac{P_{aCO2}}{0.8}$$



### A-a Gradient

- Difference between alveolar (A) and arterial (a) O<sub>2</sub>
- Helpful for evaluating hypoxemia
- Step 1: Measure P<sub>a02</sub>, P<sub>aC02</sub>
- Step 2: Determine P<sub>AO2</sub> from gas equation
- Step 3: A-a gradient =  $P_{A02} P_{a02}$
- Normal 10-15mmHg
  - Shunting from **thebesian** and **bronchial veins**



### Normal A-a Gradient

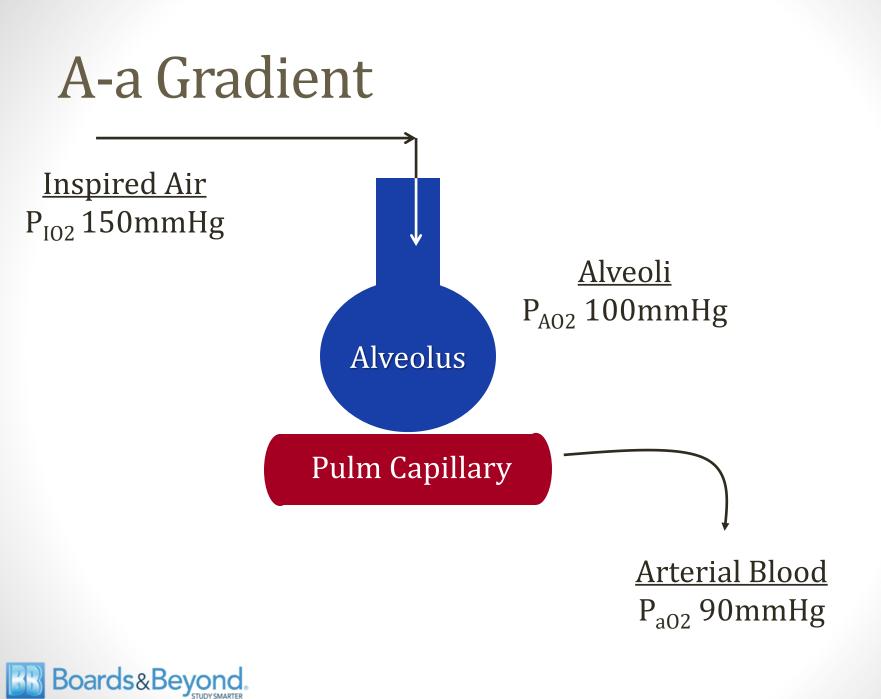
- Low alveolar oxygen content (P<sub>A02</sub>)
- Decreased oxygen content of air
  - High altitude
  - $P_{I02}$  sea level = 150 mmHg
  - P<sub>I02</sub> high altitude ~ 100 mmHg

#### Hypoventilation

- Reduced respiratory rate
- Reduced tidal volume
- Causes increase  $P_{ACO2} \rightarrow decreased P_{AO2}$
- Narcotics, neuromuscular weakness, obesity

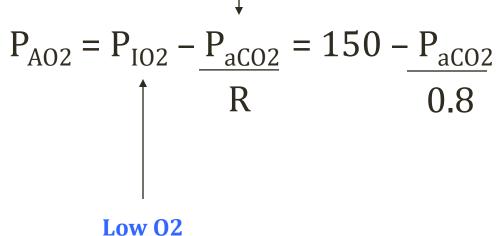
$$P_{AO2} = P_{IO2} - \underline{P_{aCO2}}_{R} = 150 - \underline{P_{aCO2}}_{0.8}$$




#### Normal A-a Gradient

Improves with oxygen

$$P_{AO2} = P_{IO2} - \frac{P_{aCO2}}{R} = 150 - \frac{P_{aCO2}}{0.8}$$



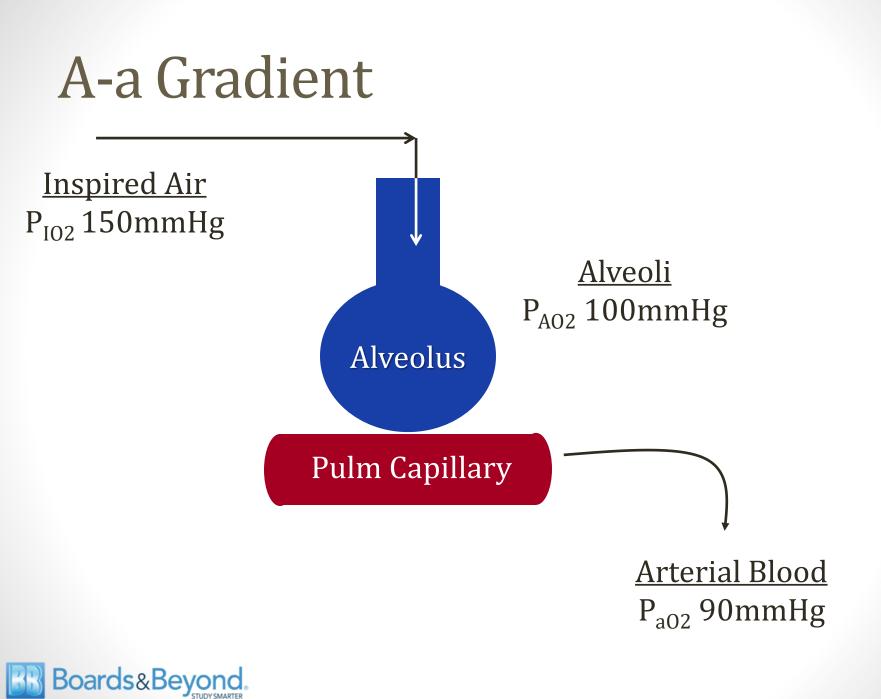





#### **Alveolar Gas Equation**

Hypoventilation High CO2

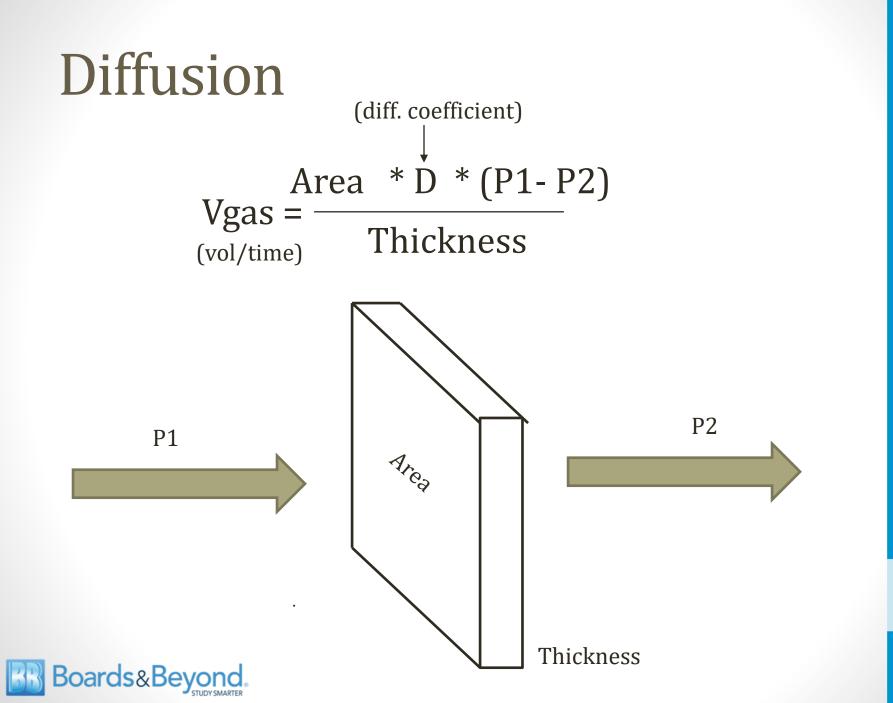



Inspired Air



#### **Increased A-a Gradient**

- No problem with alveolar oxygen content (P<sub>AO2</sub>)
- Low arterial oxygen content (P<sub>a02</sub>)
- Most primary lung diseases: high A-a gradient
  - Pneumonia, pulmonary edema, etc.
- Three basic mechanisms create the high A-a gradient
  - Diffusion defects
  - Shunt
  - V/Q Mismatch





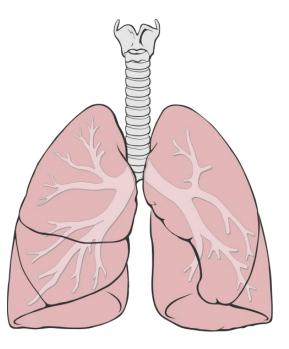

### Diffusion

- Gases must diffuse from air to blood
- Rate of diffusion depends on:
  - Pressure difference (air-blood)
  - Area of alveoli for diffusion
  - Thickness of alveolar tissue





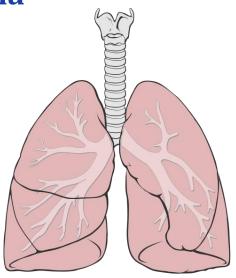
#### **Diffusion Limitation**


$$Vgas = \frac{Area * D * (P1-P2)}{Vgas}$$

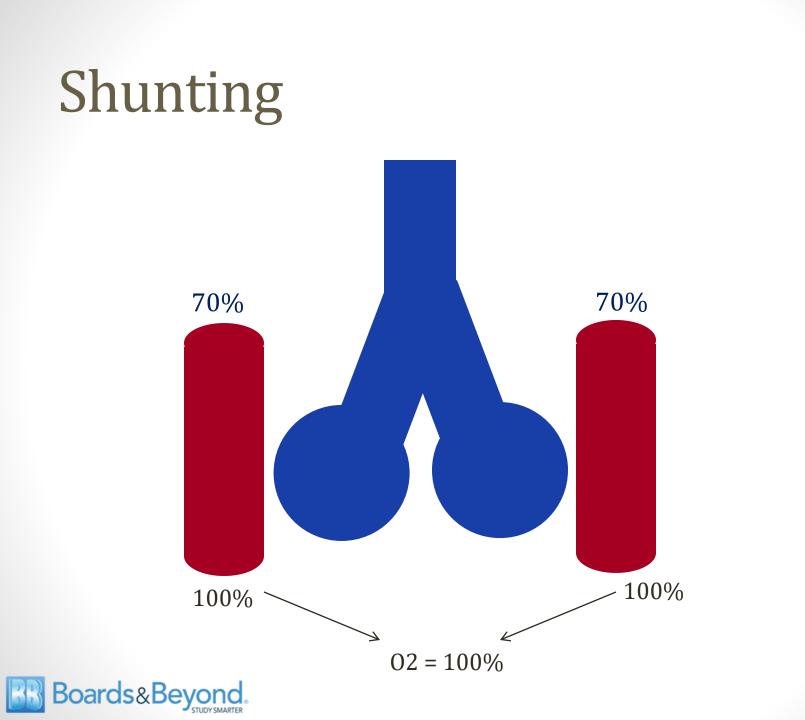
- Surface area of alveoli falls in emphysema
- Diffusion distance (thickness) rises in:
  - Pulmonary fibrosis
  - Pulmonary edema
- Both lead to decreased diffusion  $\rightarrow$  hypoxemia



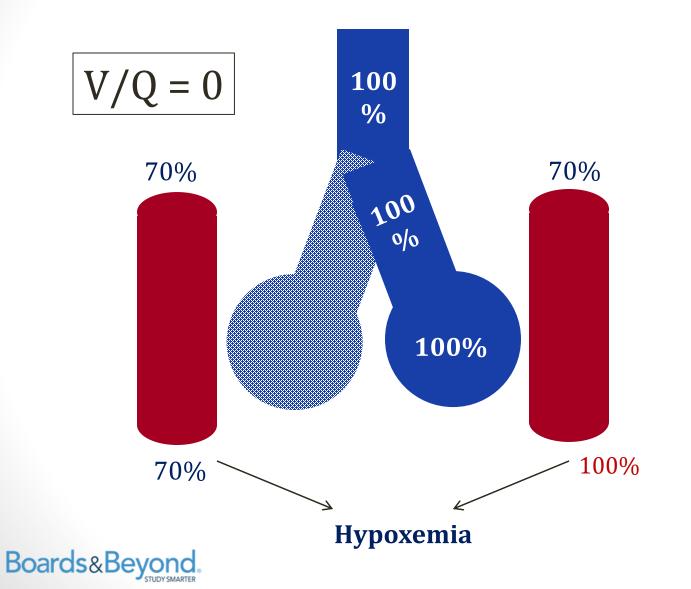
#### **Ventilation-Perfusion Ratio**


- V/Q ratio: alveolar ventilation/pulmonary blood flow
  - Matching critical for gas exchange
  - Unventilated or unperfused alveoli inefficient






# Shunting

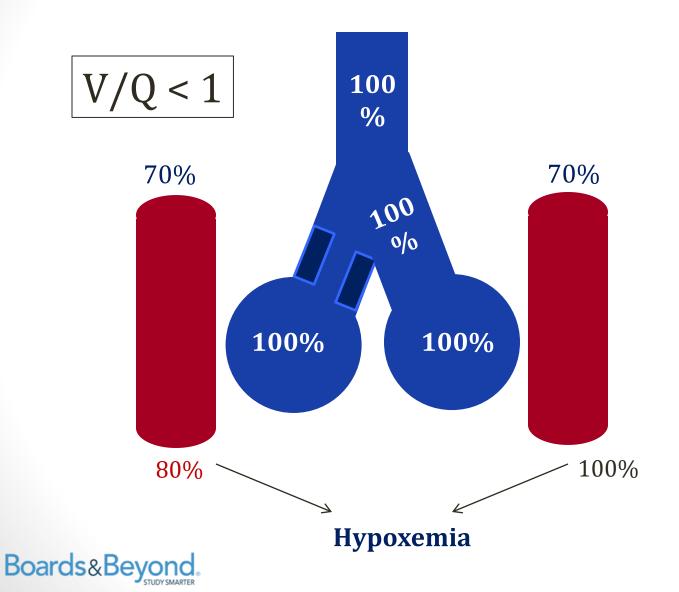

- No V
- Extreme reduction in V/Q
- V/Q = 0
- Venous blood to arterial system without oxygenation
- Causes hypoxemia







## Shunting




# V/Q Mismatch

- V/Q <1
  - Reduced ventilation relative to perfusion
  - Perfusion wasted
  - Blood going where not enough O<sub>2</sub> present
  - Extreme version V/Q = 0 is shunt
- Hypoxemia with increased A-a gradient
- Improves with oxygen



### V-Q Mismatch



## **Carbon Dioxide**

- Causes of hypercapnia
  - Hypoventilation
  - Increased dead space
  - Increased CO<sub>2</sub> production
- Hypoxemia with high A-a gradient: no ↑ CO<sub>2</sub>



# Mechanisms of Hypoxemia

High A-a gradient

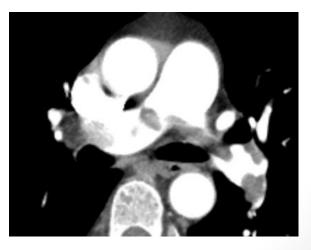
|                         | PaO2         | PaCO2 | PaO2 using<br>100% O2 |
|-------------------------|--------------|-------|-----------------------|
| Diffusion<br>Limitation | Ļ            |       | ſ                     |
| Shunt<br>V/Q = 0        | Ļ            |       | No change             |
| V/Q<br>Mismatch         | $\downarrow$ |       | 1                     |



## Mechanisms of Hypoxemia

|                        | PaO2         | PAO2         | A-a<br>difference |
|------------------------|--------------|--------------|-------------------|
| Normal A-a<br>Gradient | $\downarrow$ | $\checkmark$ | 10-15             |
| High A-a<br>Gradient   | $\downarrow$ |              | Increased         |




## Mechanisms by Disease

- Most diseases (COPD, PNA, pulm edema) have hypoxemia from multiple mechanisms
  - PNA may cause V/Q mismatch or shunt
- Some examples worth knowing
  - Intra-cardiac shunt: pure shunt mechanism
  - Inhale a peanut: V/Q = 0 (also pure shunt)
  - Pulmonary Embolism

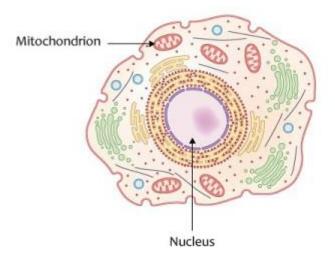


# Pulmonary Embolism

- Obstructed blood flow
- ↑ dead space
- Hypoxemia does occur in many patients
- V/Q mismatch
  - Blood flow forced through open vessels
  - Increased Q (working vessels)
  - Same V
  - Decreased V/Q (mismatch)



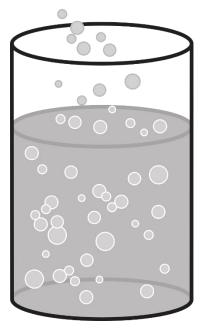



# Carbon Dioxide

Jason Ryan, MD, MPH



## **Carbon Dioxide**


- Produced by cellular metabolism
- Transported to lungs via <u>three</u> mechanisms
  - Dissolved (5%)
  - Bound to hemoglobin (3%)
  - Bicarbonate (>90%)





## **Dissolved CO2**

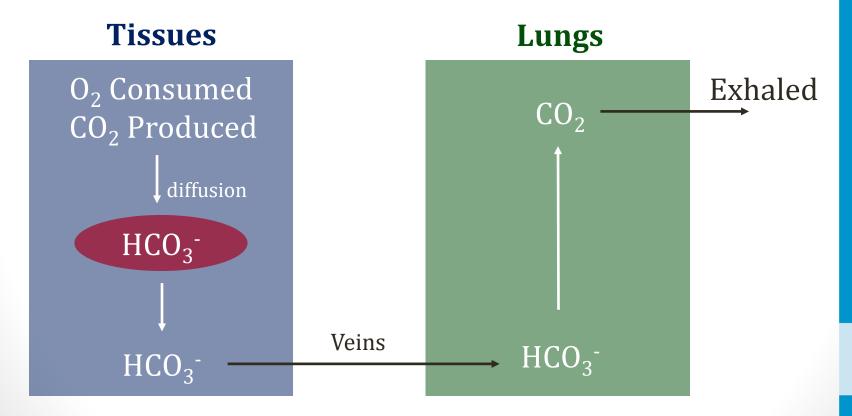
- Determined by Henry's law
- Pa<sub>CO2</sub> x solubility = dissolved CO<sub>2</sub>
- Very small amount (5%) total blood CO<sub>2</sub>





Public Domain

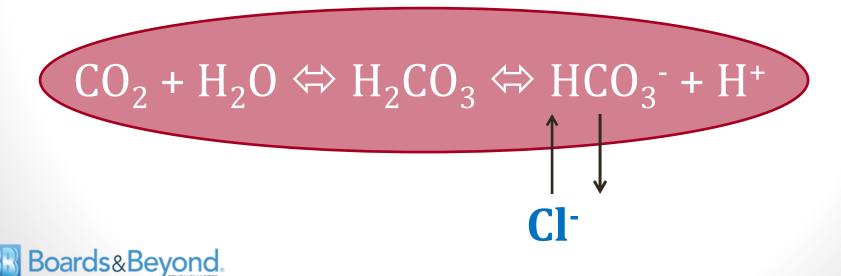
#### Bicarbonate


- Most (>90%) CO<sub>2</sub> exists as bicarbonate
- Carrier form of CO<sub>2</sub>
- Red cells contain large amounts carbonic anhydrase
- Converts CO<sub>2</sub> to HCO<sub>3</sub><sup>-</sup>

#### $CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+$



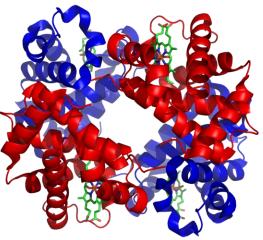
#### Bicarbonate


#### $CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+$



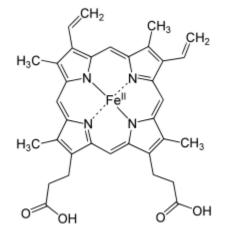


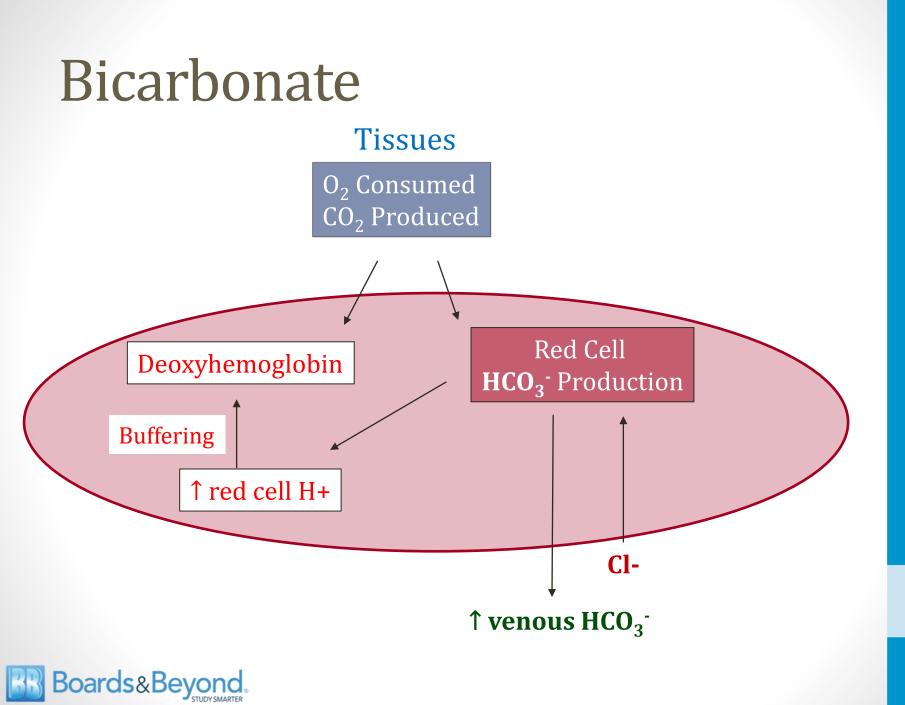
### **RBC** Bicarbonate Transport


- HCO<sub>3</sub><sup>-</sup> inside RBCs leaves cell to plasma
  - H+ remains in red cells
- Chloride (Cl<sup>-</sup>) enters cell
  - Maintains electrical neutrality
  - "Chloride shift"
- RBCs have high Cl<sup>-</sup> content in venous blood



## **RBC Buffering H<sup>+</sup>**


 $CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+$ 


- H<sup>+</sup> produced when bicarbonate generated
  - Could cause dangerous fall in pH
- Deoxyhemoglobin buffers (absorbs) H<sup>+</sup> in red cells
  - $\uparrow$  deoxyhemoglobin in RBCs when  $\uparrow$  CO<sub>2</sub>
- Prevents H<sup>+</sup> from reducing pH



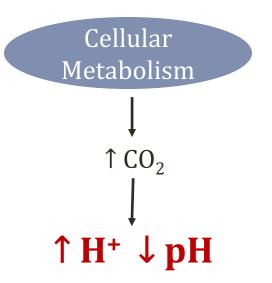
Richard Wheeler and Zephyris

Boards&Beyond





## Carbaminohemoglobin


- Hemoglobin bound to CO<sub>2</sub>
  - Binds at different site from O<sub>2</sub>
- CO<sub>2</sub> binding alters affinity for oxygen
  - More  $CO_2 \rightarrow More O_2$  release
  - CO<sub>2</sub> decreases affinity for oxygen





### **Bohr Effect**

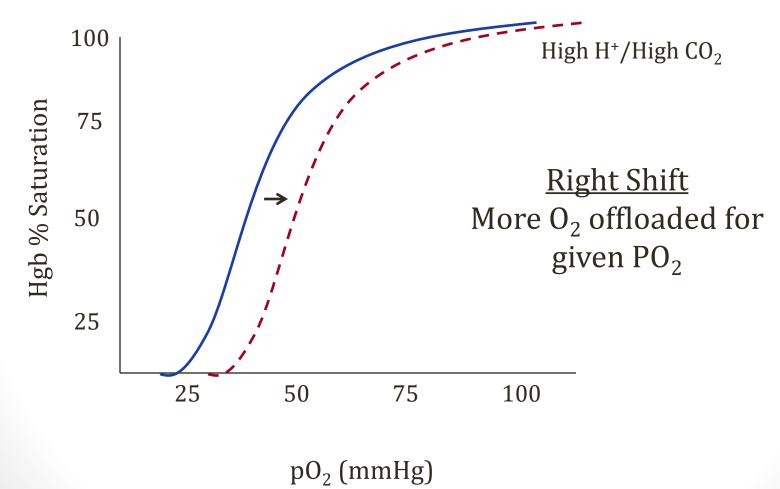
- $CO_2$  produced by metabolism  $\rightarrow$  generates  $H^+$  in RBCs
  - $CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+$
- <u>H<sup>+</sup> and low pH</u> are *indicators of metabolism*
- H<sup>+</sup> and low pH trigger **release of O<sub>2</sub>** by hemoglobin





### **Bohr Effect**

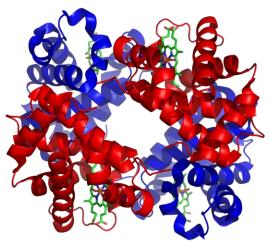
- Deoxyhemoglobin has high affinity for H<sup>+</sup>
- H<sup>+</sup> binds hemoglobin in low O<sub>2</sub>/high CO<sub>2</sub> areas
- Converts Hgb to "taut form" which releases O<sub>2</sub>
  - Shifts O<sub>2</sub> curve to right


Boards&Beyond

Hemoglobin releases more oxygen

#### $CO_2 + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow HCO_3^- + H^+$

Bohr Effect ←

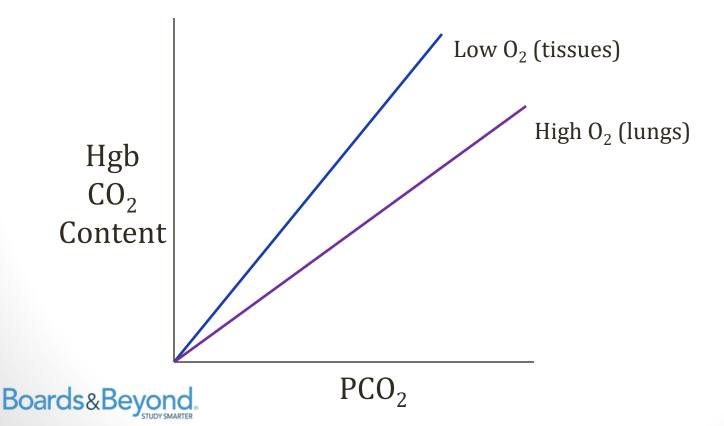

#### **Bohr Effect**



Boards & Beyond.

### Haldane Effect

- O<sub>2</sub> binding alters affinity for CO<sub>2</sub>
  - Low O<sub>2</sub> environment Hgb binds more CO<sub>2</sub>
  - High O<sub>2</sub> environment Hgb binds *less* CO<sub>2</sub>




Richard Wheeler and Zephyris



### Haldane Effect

- Deoxyhemoglobin binds more CO<sub>2</sub>
  - Allows more CO<sub>2</sub> loading with O<sub>2</sub> consumption
  - Allows more CO<sub>2</sub> unloading with high O<sub>2</sub>



## **Tissues versus Lungs**

#### <u>Tissues</u>

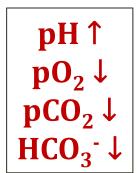
- Low O<sub>2</sub> (consumption)
- High CO<sub>2</sub> (metabolism)
- High H<sup>+</sup>
- Low pH
- Favors O<sub>2</sub> unloading
  - Bohr Effect
- Favors CO<sub>2</sub> loading
  - Haldane Effect

#### <u>Lungs</u>

- High O<sub>2</sub> (air)
  - Low CO<sub>2</sub> (exhalation)
- Low H<sup>+</sup>
- High pH
- Favors O<sub>2</sub> loading
  - Bohr Effect
- Favors CO<sub>2</sub> unloading
  - Haldane Effect



# CO<sub>2</sub> Transport


|                          | Lungs/Arteries | Tissues/Veins |
|--------------------------|----------------|---------------|
| P <sub>02</sub>          | 100            | $\downarrow$  |
| P <sub>CO2</sub>         | 40             | 1             |
| HCO <sub>3</sub> -       | 24             | 1             |
| рН                       | 7.4            | $\downarrow$  |
| Deoxyhemoglobin          | $\downarrow$   | 1             |
| Red cell Cl <sup>-</sup> | $\downarrow$   | 1             |
| Dissolved CO2            | $\downarrow$   | 1             |
| Carbaminohemoglobin      | $\downarrow$   | 1             |



# High Altitude

- Lower atmospheric pressure
- Lower pO<sub>2</sub>
- Hypoxia  $\rightarrow$  hyperventilation
- $\downarrow pCO_2 \rightarrow$  respiratory alkalosis (pH rises)
- After 24-48hrs, kidneys will excrete HCO<sub>3</sub><sup>-</sup>
- pH will fall back toward normal







Wikipedia/Public Domain

### Exercise

- $\uparrow O_2$  consumption
- $\uparrow$  CO<sub>2</sub> production
- ↑ Ventilation

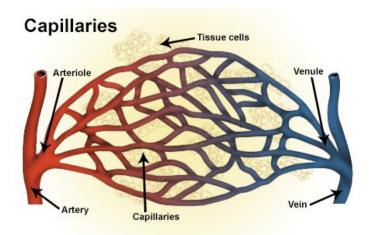




#### Exercise

- More CO<sub>2</sub> produced by muscles
- CO<sub>2</sub> levels in *venous* blood rise
- More O<sub>2</sub> consumed by muscles
- O<sub>2</sub> levels in *venous* blood fall

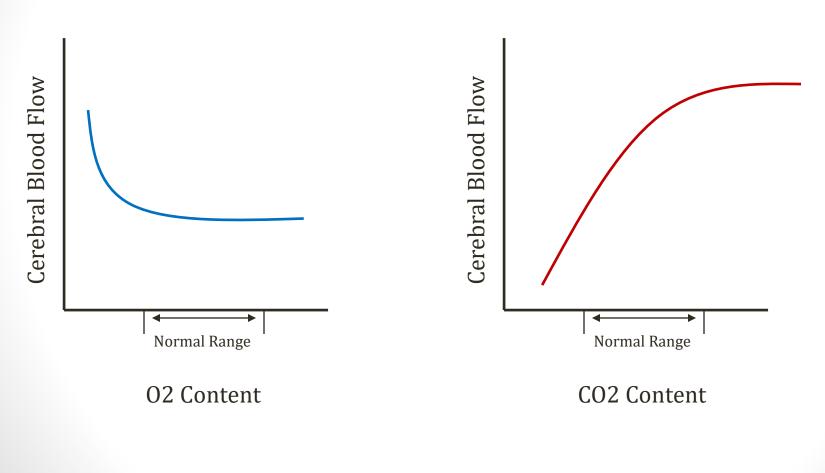





William Warby/Flikr

#### Exercise

- ↑ ventilation and blood flow
- Normal PaO<sub>2</sub> and PaCO<sub>2</sub> despite metabolic changes


<u>Veins</u>: O2 falls, CO2 rises <u>Arteries</u>: O2 and CO2 normal



Wikipedia/Public Domain

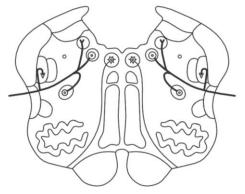


#### **Cerebral Blood Flow**



Boards&Beyond.

### Panic Attacks


- Hyperventilation
- Low CO<sub>2</sub>
- Hypocapnia  $\rightarrow$  cerebral vasoconstriction
- CNS symptoms (dizziness, blurred vision)



Pixabay/Public Domain



- PaCO<sub>2</sub> is the major stimulus for breathing
- Central chemoreceptors in **medulla** most important
- Peripheral chemoreceptors: carotid and aortic bodies
  - Sense CO<sub>2</sub> but more sensitive to O<sub>2</sub>
- High  $Pa_{CO2} \rightarrow$  increased respiratory rate
- Low  $Pa_{CO2} \rightarrow$  decreased respiratory rate



Medulla



- COPD patients: chronic retention of CO<sub>2</sub>
  - Lose sensitivity to CO<sub>2</sub>
  - Oxygen becomes major breathing stimulus
- Excess oxygen therapy given  $\rightarrow$  hypoventilation
- Theory: response to CO<sub>2</sub> blunted
  - Respiratory depression with high O<sub>2</sub>
- New data indicates more complex
  - Haldane effect



Wikipedia/Public Domain



- CO<sub>2</sub> level useful to determine ventilation status
  - High CO<sub>2</sub>: hypoventilation
  - Low CO<sub>2</sub>: hyperventilation
- Clinical scenario:
  - Patient with pneumonia
  - O<sub>2</sub> applied via nasal cannula
  - O<sub>2</sub> level 95%
  - Blood gas: PaCO<sub>2</sub> = 60mmHg (high)



- Clinical scenario
  - Patient with neuromuscular disease (ALS)
  - $O_2$  saturation on  $O_2$  95%
  - Blood gas: PaCO<sub>2</sub> = 60 (high)
  - Respiratory muscles failing
- Symptoms of hypercapnia (high CO<sub>2</sub>)
  - Lethargy
  - Confusion
  - Agitation



# Lung Physical Exam

Jason Ryan, MD, MPH



# Lung Exam

- Percussion
  - Finger against thorax  $\rightarrow$  tap
- Auscultation
  - Stethoscope thorax
  - Upper, mid, lower lung fields
- Special techniques
  - Fremitus
  - Pectoriloquy



#### Percussion

- Normal sounds = resonant
- Abnormal: dull or hyperresonant
- Dull
  - Pleural effusion
  - Consolidation (pneumonia)
- Hyperresonant  $\rightarrow$  air trapped
  - Pneumothorax
  - Emphysema



# Lung Auscultation

- Normal breath sounds are vesicular
- Most all pathologic lung processes result in decreased lung sounds over affected area





# **Adventitious Lung Sounds**

- Rales
- Wheezes
- Rhonchi
- Bronchial breath sounds
- Stridor



#### Rales

- Also called crackles
- Small airways "pop" open after collapse
- Early inspiratory, late inspiratory or expiratory
- Classic causes
  - Pulmonary edema (bases)
  - Pneumonia
  - Interstitial fibrosis





#### Wheezes

- Air flows through narrowed bronchi
- Usually expiratory or inspiratory/expiratory
- Classic cause is asthma
- Other causes:
  - Heart failure (cardiac asthma)
  - Chronic bronchitis
  - Obstruction (tumor; localized wheeze)





# Rhonchi

- Secretions in large airways
- Coarse breath sounds
- Classic cause is COPD





#### **Bronchial Breath Sounds**

- High pitched lung sounds
- Like flow through tube
- Longer expiratory phase than normal
- Seen in pneumonia with consolidation





#### Stridor

- Wheeze that is almost entirely inspiratory
- Usually loudest over neck
- Indicates partial obstruction of larynx or trachea
- Some classic causes
  - Laryngotracheitis (croup)
  - Epiglottitis (Hib in children)
  - Retropharyngeal abscess
  - Diphtheria



# Pectoriloquy

- Sounds over chest through stethoscope
- Bronchophony
  - Voice sounds are louder and clearer
- Whispered pectoriloquy
  - Whispered "99-99-99"
  - Should be muffled
  - Abnormal if clear
- Egophony: "Eeeeee" sounds like "Aaaay"
- All indicated fluid in lungs: Effusion, consolidation



#### Fremitus

- Place hands on patients back
- Patient says "ninety-nine"
- Vibrations travel through airways to back
- Varies with density of lung tissue
- Only common condition with increased fremitus is lobar pneumonia
- Decreased in most other processes
  - Pleural effusion
  - Pneumothorax
  - Atelectasis



# Nail Clubbing

- Associated with many pulmonary diseases
- Bronchiectasis
- Cystic Fibrosis
- Lung tumors
- Pulmonary fibrosis
- Also cyanotic congenital heart disease



Image courtesy of James Heilman, MD

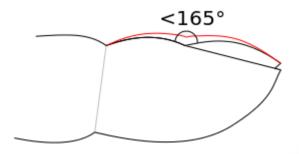



Image courtesy of Jfdwolff



# Pulmonary Function Tests

Jason Ryan, MD, MPH



# Dyspnea

- Many, many causes
- Deconditioning
- Cardiac causes
- Anemia
- Pulmonary causes



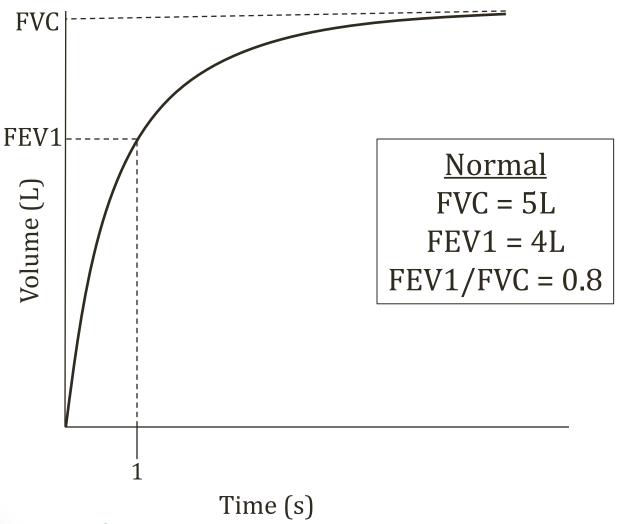
# Pulmonary Dyspnea

- Obstruction
  - Can't get air out of lungs
  - Air trapped
  - Poor oxygenation
- Restriction
  - Can't get air into lungs
  - Poor oxygenation

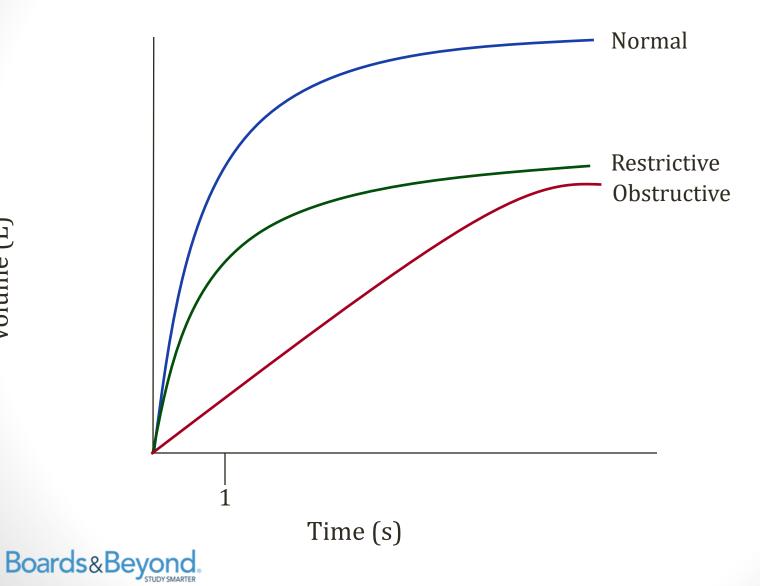


# **Pulmonary Function Testing**

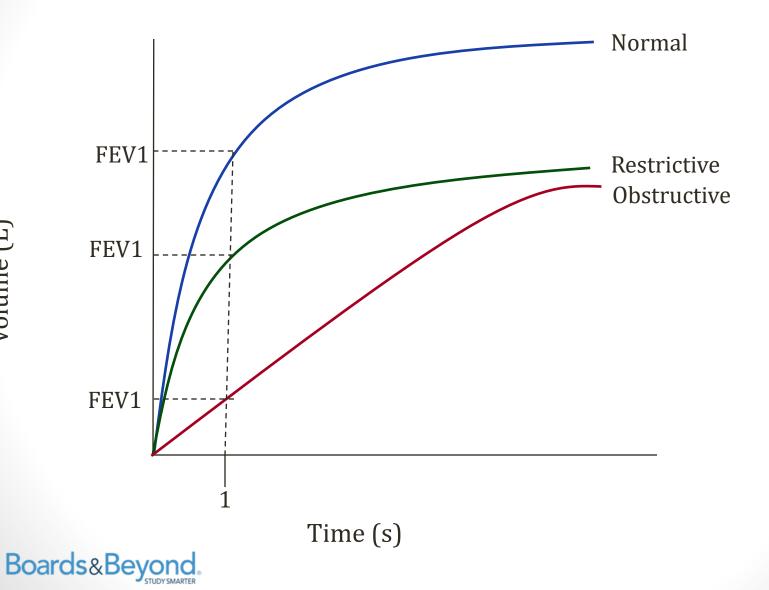
- Determining flows, volumes in lung
- Helps determine cause of dyspnea
  - Sometimes unclear from history, exam, x-ray, etc.
- Helps determine disease severity/progression
  - Many diseases monitored by PFTs
  - COPD, Pulmonary Fibrosis



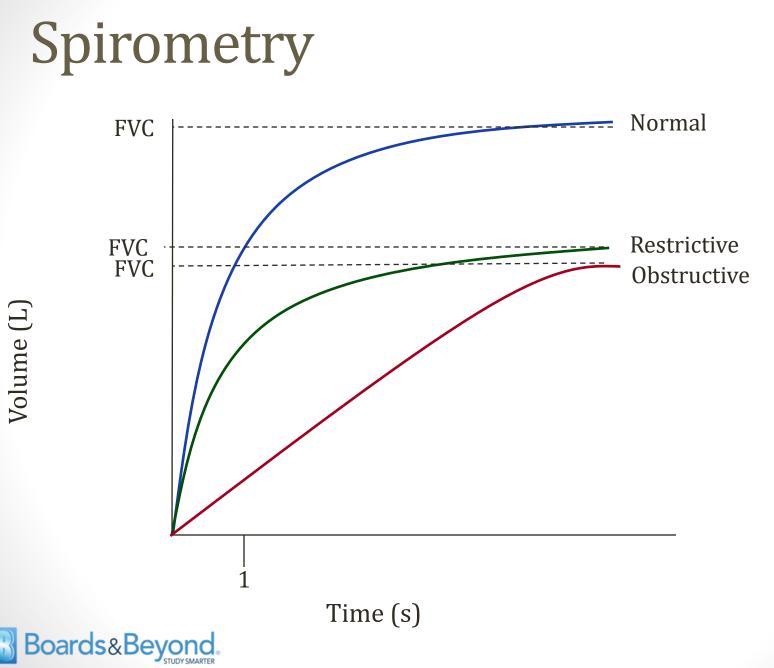

- Method for assessing pulmonary function
  - Pulmonary function tests (PFTs)
- Patient blows into machine
- Volume of air measured over time







Image courtesy of Jmarchn







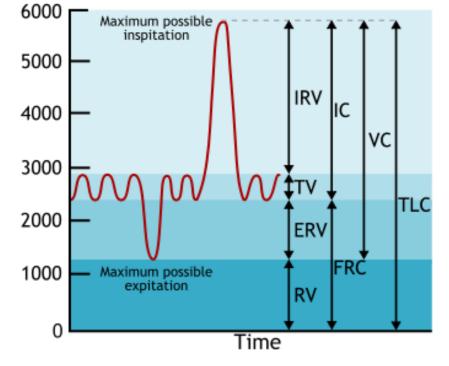

Volume (L)



Volume (L)

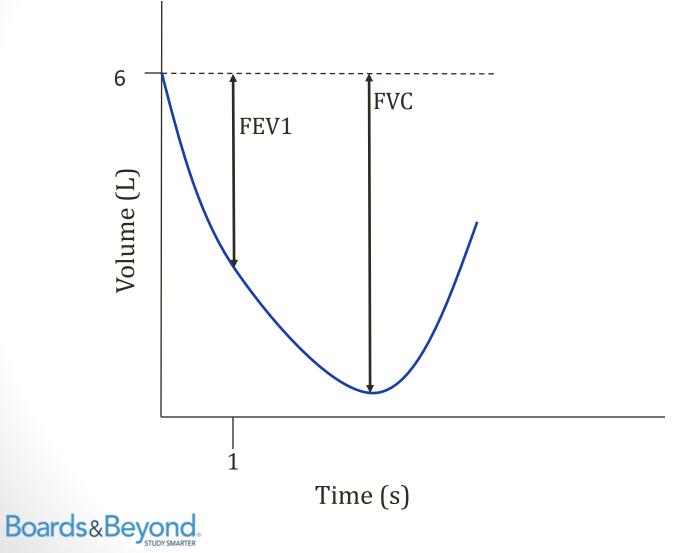


# Summary

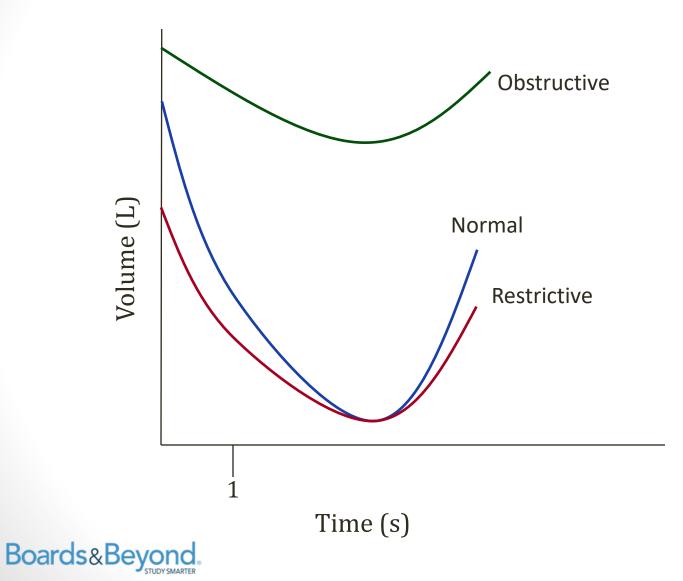

- FEV1 and FVC fall in both obstructive and restrictive diseases
- FEV1 falls MORE than FVC in obstructive

|             | FEV1                   | FVC          | FEV1/FVC     |
|-------------|------------------------|--------------|--------------|
| Obstructive | $\downarrow\downarrow$ | $\downarrow$ | $\downarrow$ |
| Restrictive | $\downarrow$           | $\downarrow$ | >80%         |

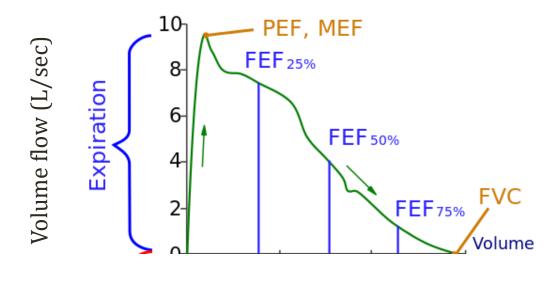



### Volumes

- Spirometry can measure
  - VC (FVC)
  - IRV
  - ERV
- Cannot measure
  - RV
  - FRC
- Residual volume rarely measured clinically
- Requires special techniques







#### Spirometry with Volumes



#### Spirometry with Volumes



#### Flow Volume Loop



Volume (L)



Image courtesy of SPhotographer

#### Flow Volume Loop

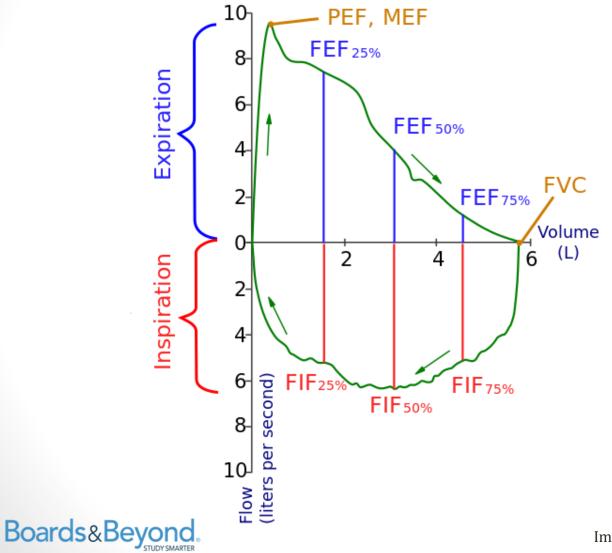
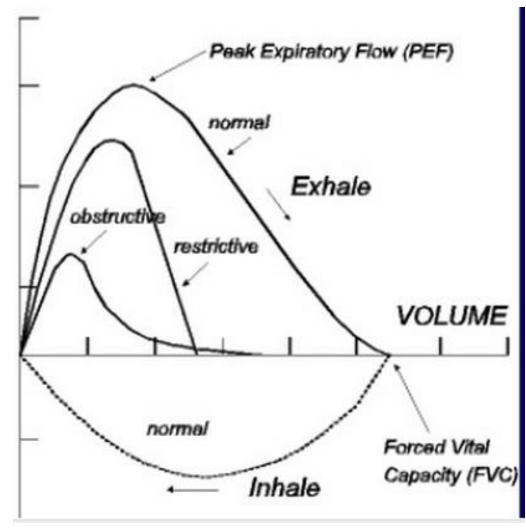



Image courtesy of SPhotographer

#### **Flow Volume Loops**



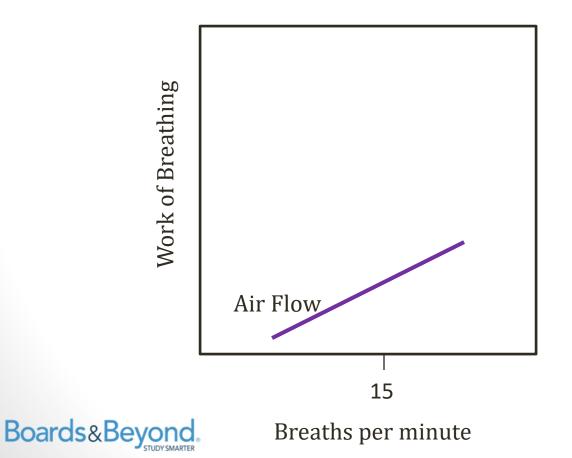
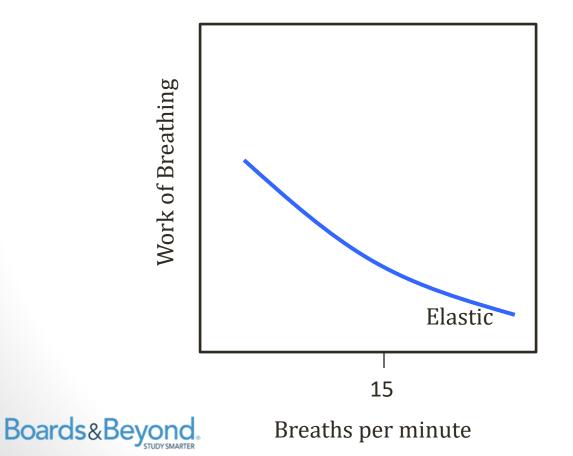
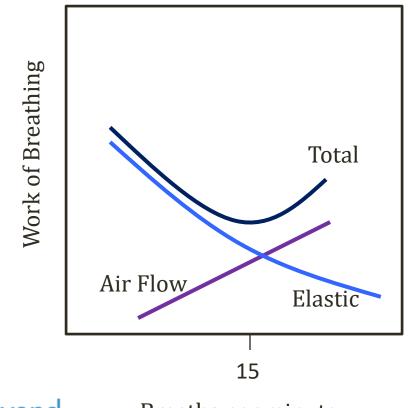




Image courtesy of Yaser Ammar,


• Work proportional to resistance

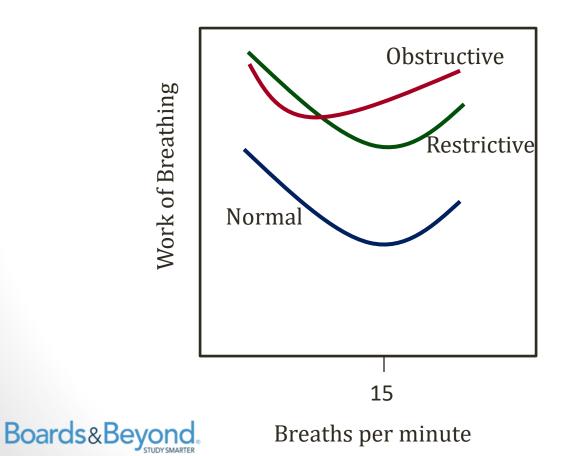



• Airflow resistance: Slower you breathe, less resistance



• Elastic resistance: Faster you breathe, less resistance




- Slower you breathe, less airflow resistance
- Faster you breathe, less elastic resistance



Boards&Beyond.

Breaths per minute

- Increases in obstructive and restrictive disease
- Different patterns



# Obstructive Lung Disease

Jason Ryan, MD, MPH



#### **Obstructive Lung Diseases**

- Key points: Air trapping, slow flow out, less air out
- Reduced FEV1 (slow flow out)
- Reduced FVC (less air out)
- Reduced FEV1/FVC (hallmark)



### Residual & Total Lung Volume

- Both go up in obstructive disease
  - From air trapping
- Both fall in restrictive disease
  - Less air fills the lungs due to restriction



### **Obstructive Lung Diseases**

- Chronic bronchitis
- Emphysema
- Asthma
- Bronchiectasis



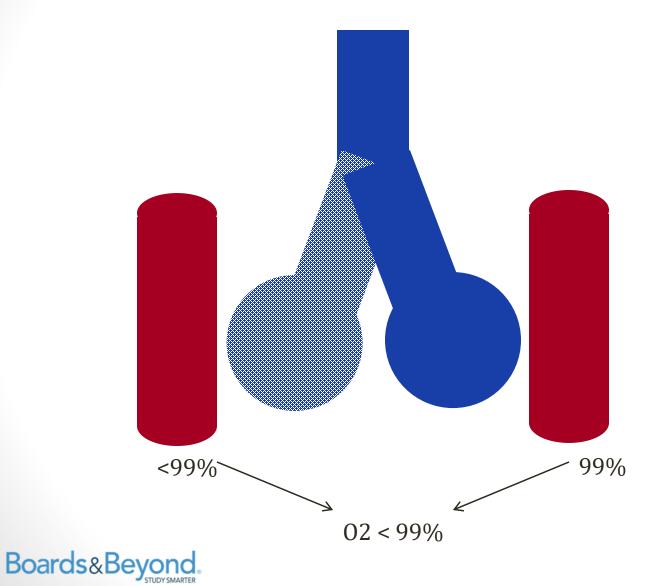
- Chronic cough
- Productive of sputum
- At least 3 months over two years
- No other cause of cough present
- Strongly associated with smoking



- Hypertrophy of mucous secreting glands
- Reid Index
  - Thickness of glands/total wall
  - >50% in chronic bronchitis
- Lungs can plug with mucous "mucous plugging"
- Increased risk of infection



- Poor ventilation of lungs
- Increased CO2
- Decreased O2
- Hypoxic vasoconstriction
- Pulmonary hypertension
- Right heart failure (cor pulmonale)




- Cough
- Wheezing
- Crackles
- Dyspnea
- Cyanosis (shunting)



# Shunting

3



### Emphysema

- Smokers
  - Too many proteases created
  - Overwhelm anti-proteases
  - Upper lung damage
- α1 anti-trypsin deficiency
  - Ineffective anti-proteases
  - Lower lobe damage

Proteases





### Emphysema

- Destruction of alveoli
  - Smoke activates macrophages
  - Recruitment of neutrophils
  - Release of proteases
- Loss of elastic recoil
- Small airways collapse on exhalation
- Air "trapped" in lungs



### Emphysema

- Dyspnea
- Cough (less sputum than chronic bronchitis)
- Hyperventilation
- Weight loss
- Cor pulmonale
- Barrel Chest

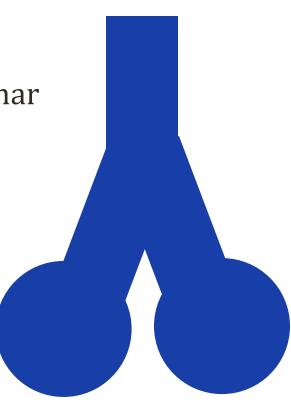





Image courtesy of James Heilman, MD

### Acinus

- Acinus = bronchiole + alveoli
- Smokers = centriacinar damage
- α1 anti-trypsin deficiency = panacinar





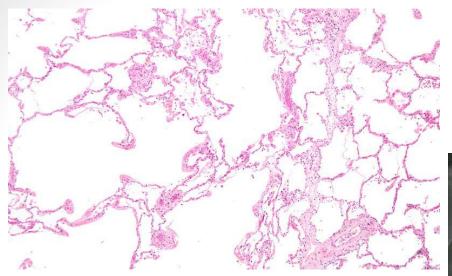



Image courtesy of Nephron

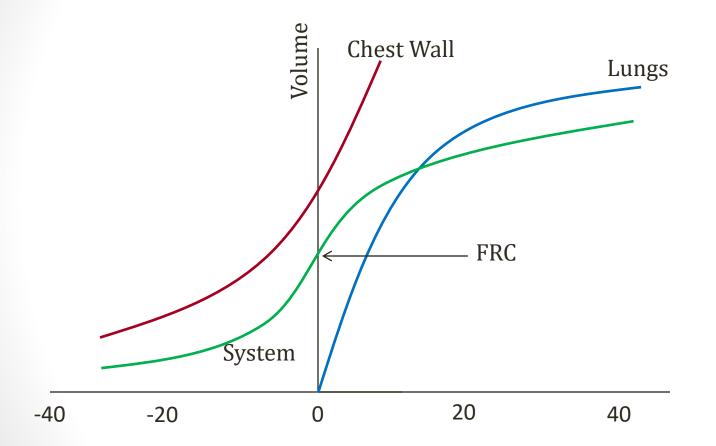





Image courtesy of James Heilman, MD



#### **Chest Volumes and Pressures**



Boards&Beyond.

### Blue Bloater – Pink Puffer

- Chronic Bronchitis Blue Bloater
  - Cyanosis from shunting (blue)
  - Air trapping (bloated)
- Emphysema Pink Puffer
  - Loss of alveoli
  - Loss of surface area for O2 absorption (dead space)
  - Hyperventilation to compensate (puffer)
  - Initially this maintains O2 level (pink)



### COPD

- Chronic Obstructive Pulmonary Disease
- Includes chronic bronchitis, emphysema, asthma
- Many similar symptoms (cough, dyspnea, wheezing)
- Many similar treatments



# α1 Anti-trypsin Deficiency

- Inherited (autosomal co-dominant)
- Decreased or dysfunctional AAT
- AAT balances naturally occurring proteases
- Elastase found in neutrophils & alveolar macrophages



# α1 Anti-trypsin Deficiency

#### • Lung

- Panacinar emphysema
- Imbalance between neutrophil elastase (destroys elastin) and elastase inhibitor AAT (protects elastin)
- Lower lung damage
- Liver cirrhosis
  - Abnormal  $\alpha 1$  builds up in liver
  - Only occurs in phenotypes with pathologic polymerization of AAT in endoplasmic reticulum of hepatocytes
  - Some patients have severe AAT deficiency but no intrahepatocytic accumulation



### α1 Anti-trypsin Deficiency

- Classic case
  - Typical COPD symptoms: cough, sputum, wheeze
  - Younger patient (40s)
  - Imaging: emphysematous changes most prominent at bases
  - Obstructive PFTs
- Question often asks about panacinar involvement
- These patients should NEVER smoke
  - Stimulates neutrophil elastase production



### Asthma

- Reversible bronchoconstriction
- Usually due to allergic stimulus
  - Type I hypersensitivity reaction
- Airways are HYPERresponsive
- Common in children
- Associated with other allergic (atopic) conditions
  - Rhinitis, eczema
  - May have family history of allergic reactions



# Asthma Triggers

- URI
- Allergens (animal dander, dust mites, mold, pollens)
- Stress
- Exercise
- Cold
- Aspirin



### AERD

Aspirin Exacerbated Respiratory Disease

- Asthma, chronic rhinosinusitis, nasal polyposis
  - Chronic asthma/rhinosinusitis symptoms
  - Acute exacerbations after ingestion aspirin or NSAIDs
- Dysregulation of arachidonic acid metabolism
- Overproduction leukotrienes
- Treatment: Leukotriene receptor antagonists
  - Montelukast, Zafirlukast



# Asthma Symptoms

- Episodic symptoms
- Dyspnea, wheezing, cough
- Hypoxia during episodes
- Decreased I/E ratio
- Reduced peak flow
- Mucous plugging (airway obstruction/shunt)
- Death: Status asthmaticus





# Asthma Diagnosis

- Usually classic history/physical exam
- Methacholine challenge
  - Muscarinic agonist
  - Causes bronchoconstriction
  - Administer increasing amounts of nebulized drug
  - Spirometry after each dose
  - Look for dose at which FEV1 falls significantly
  - If dose is low  $\rightarrow$  positive test



# Asthma Pathology

- Recurrent episodes
- Smooth muscle hypertrophy
- Inflammation



# Asthma Pathology

- Classic sputum findings
  - Curschmann's spirals
  - Charcot-Leyden crystals

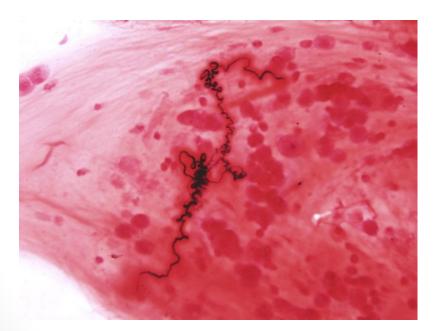





Image courtesy of Patho

Image courtesy of Jmh649



#### **Pulsus Paradoxus**

Most frequent non-cardiac causes are asthma/COPD



### Bronchiectasis

- Result of chronic, recurrent airway inflammation
- Airways become permanently dilated
- Obstruction
  - Large airways dilated
  - Small/medium airways thickened bronchial walls



#### Bronchiectasis



Image courtesy of Yale Rosen



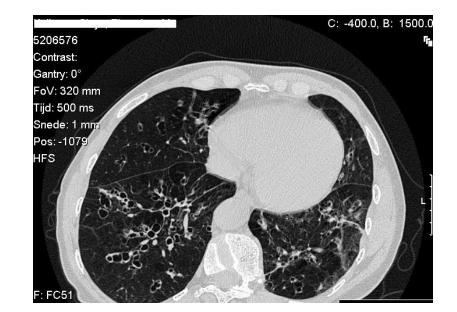



Image courtesy of Laura Fregonese, Jan Stolk

### **Bronchiectasis Symptoms**

- Recurrent infections
- Cough, excessive sputum (foul smelling)
- Hemoptysis
- Cor pulmonale
- Amyloidosis



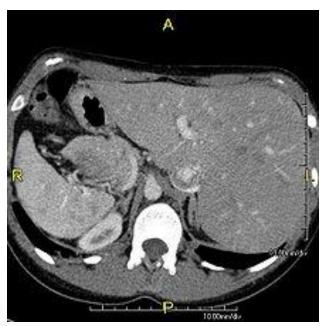
### **Bronchiectasis Etiologies**

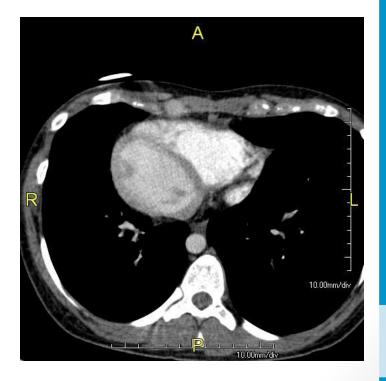
- Obstruction (tumor)
- Smoking
- Cystic fibrosis
- Kartagener's syndrome
- Allergic bronchopulmonary aspergillosis



# Primary Ciliary Dyskinesia

Immotile-cilia syndrome


- Cilia unable to beat, beat normally, or absent
- Inherited (autosomal recessive)
- Gene mutations dynein structure/formation
- Dynein = motor protein creates movement




### Kartagener's syndrome

- Chronic sinusitis
- Bronchiectasis (chronic cough, recurrent infections)
- Male infertility
- Situs inversus

Boards&Beyond





### Kartagener's syndrome

- Classic case:
  - Child
  - Recurrent sinus/ear infections
  - Chronic cough
  - Bronchiectasis on chest CT
  - Obstruction on PFTs
  - Situs inversus
- Question often asks about dynein protein

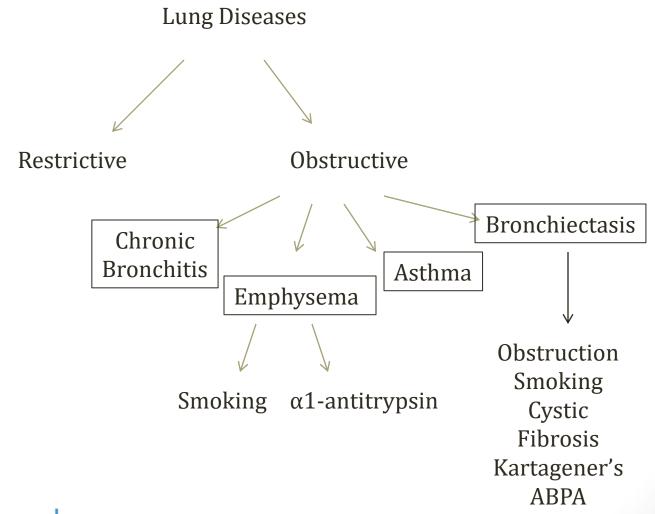


### ABPA

Allergic bronchopulmonary aspergillosis

- Hypersensitivity (allergic) reaction to aspergillus
- Lungs become colonized with Aspergillus fumigatus
  - Low virulence fungus
  - Only infects immunocompromised or debilitated lungs
- Occurs predominantly in asthma and CF patients
- ABPA patients:
  - Increases Th2 CD4+ cells
  - Synthesis interleukins
  - Eosinophilia
  - IgE antibody production




### ABPA

Allergic bronchopulmonary aspergillosis

- Classic case
  - Asthma or CF patient
  - Recurrent episodes cough, fever, malaise
  - Brownish mucus plugs, hemoptysis
  - Peripheral blood eosinophilia
  - High IgE level
  - Bronchiectasis on imaging
  - PFTs with obstruction
- Diagnosis: Skin testing aspergillosis
- Treatment: Steroids



### Summary





# Restrictive Lung Disease

Jason Ryan, MD, MPH



# **Restrictive Lung Diseases**

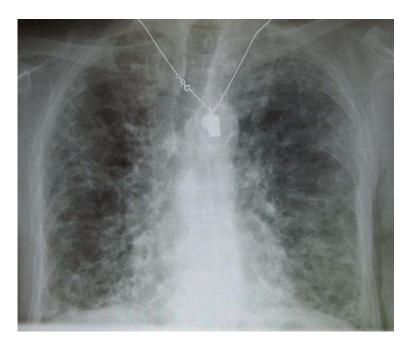
- Key points: Can't get air in  $\rightarrow$  less air out
- Reduced FVC (less air in/out)
- Reduced FEV1 (less air in/out)
- Normal (>80%) FEV1/FVC (hallmark)



#### Causes

- #1: Poor breathing mechanics
- #2: Interstitial lung diseases




# **Poor Breathing Mechanics**

- Not a primary pulmonary issue
- Under-ventilation of lungs
- Alveoli working: A-a gradient normal
- Neuromuscular
  - ALS, Polio, myasthenia gravis
- Structural
  - Scoliosis
  - Morbid obesity



### Interstitial Lung Disease





#### Bilateral, diffuse pattern Small, irregular opacities (reticulonodular) "Honeycomb" lung appearance.



Image courtesy of James Heilman, MD

# DLCO

Diffusing capacity in lung of carbon monoxide

- DLCO separates cases restrictive disease
- Restriction with normal DLCO
  - Extra-pulmonary cause: obesity
- Restriction with low DLCO
  - Interstitial lung disease



# DLCO

- DLCO = diffusing capacity of carbon monoxide
- Measures ability of lungs to transfer gas to RBCs
- Patient inhales small amount (not dangerous) CO
- CO uptake is diffusion limited
  - Amount taken up  $\approx$  diffusion function lungs
- Machine measures CO exhaled
- Normal = 75 140% predicted
- Severe disease <40% predicted</li>



# Low DLCO Conditions

- Interstitial lung disease
- Emphysema
- Abnormal vasculature
  - Pulmonary hypertension
  - Pulmonary embolism
- Prior lung resection
- Anemia
  - Corrects when adjusted for Hb level



#### **Interstitial Diseases**

- "Diffuse parenchymal lung diseases"
- Large group of disorders
- Similar clinical, radiographic, physiologic, or pathologic manifestations



# **Interstitial Diseases**

- Idiopathic pulmonary fibrosis
- Systemic diseases with interstitial lung features
  - Scleroderma
  - Rheumatoid arthritis
  - Goodpasture's
  - Wegener's
  - Sarcoidosis
- Pneumoconiosis
- Drug toxicity (amiodarone, methotrexate)
- Hypersensitivity pneumonitis



# Idiopathic pulmonary fibrosis

- Most common type: Idiopathic interstitial pneumonia
- Slow onset dyspnea
- Typically affects adults over the age of 40



# Pneumoconiosis

Occupational lung diseases

- Coal miner's lung
- Silicosis
- Asbestosis



# Coal miner's lung

- Inhalation of coal dust particles
- CXR or Chest CT:
  - Small, rounded, nodular opacities
  - Preference for the upper lobes



# Silicosis

- Inhalation of silica in quartz, granite, or sandstone
- Most widespread pneumoconiosis in US
- Foundries (metal production facilities)
- Sandblasting (abrasive blasting)
- Mines



# Silicosis

- Macrophages react to silica
- Inflammation  $\rightarrow$  fibroblasts  $\rightarrow$  collagen
- High prevalence of TB
  - Impaired macrophage killing
- High prevalence of bronchogenic carcinoma



# Silicosis

- Affects upper lobes
- Eggshell calcifications of lymph nodes

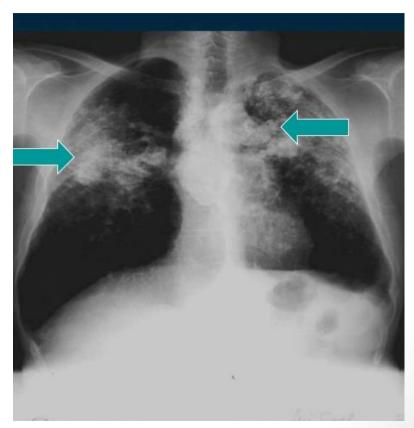
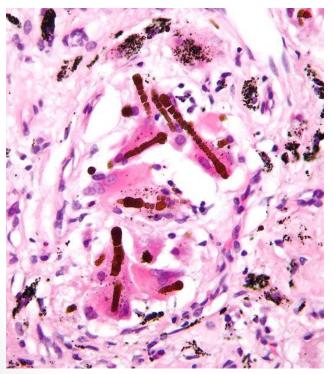





Image courtesy of Dr. Lucas Pedro Pablo Burchard Señoret


# Asbestosis

- Inhalation of asbestos fibers
- Shipbuilding, roofing, plumbing
- Classically affects lower lobes
- Three clinical problems:
  - Interstitial lung disease (asbestosis)
  - Pleural plaques
  - Lung cancer



#### Asbestosis

- CXR: Calcified pleural plaques pathognomonic
- Path: Asbestos bodies (ferruginous body)
  - Asbestos fibers surrounded by a coating of iron and protein



Boards&Beyond Image courtesy of Nephron

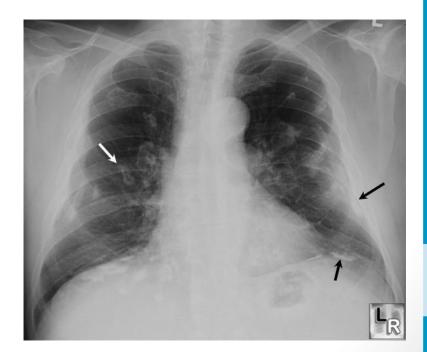



Image courtesy of www.learningradiology.com

# Asbestosis

- Bronchogenic carcinoma
- Mesothelioma
  - Asbestos is the only known risk factor for mesothelioma
  - Occurs decades after exposure
  - Pleural thickening and pleural effusion
  - Slow onset symptoms (dyspnea, cough, chest pain)
  - Poor prognosis



# Drug toxicity

- Bleomycin
- Busulfan
- Amiodarone
- Methotrexate



# Hypersensitivity pneumonitis

- Hypersensitivity reaction to environmental antigen
  - Agricultural dusts
  - Microorganisms (fungal, bacterial, or protozoa)
  - Chemicals
- Mixed type III/IV hypersensitivity
- Classic case is a farmer's lung
  - Moldy hay, grain exposure
- Also common in bird/poultry handlers
  - Waste from birds  $\rightarrow$  dried, finely dispersed dust



# Hypersensitivity pneumonitis

- Classic case
  - Farmer or bird handler
  - Cough, dyspnea, chest tightness
  - Diffuse crackles
- Diagnosis (challenging):
  - Bronchoalveolar lavage
  - Inhalation challenge
  - Lung biopsy
- Treatment:
  - Avoid exposure
  - Steroids



# Treatment of COPD & Asthma

Jason Ryan, MD, MPH



# **COPD** and Asthma Drugs

- Short-acting bronchodilators
  - Albuterol
  - Ipratropium
- Long-acting bronchodilators
  - Salmeterol, Formoterol
  - Tiotropium
- Steroids



# β2 Agonists

- Activate adenylate cyclase  $\rightarrow$   $\uparrow$ cAMP
- Relax bronchiole smooth muscle
- Short acting: Albuterol
  - Nebulizer or inhaler
  - Use during acute attacks (prn)
- Long acting: Salmeterol, Formoterol
  - Not used as monotherapy (always with ICS)
- Systemic side effects (rare)
  - Tremor, arrhythmia



# **Muscarinic Antagonists**

- Vagal nerve  $\rightarrow$  Ach  $\rightarrow$  Bronchoconstriction
- MA drugs block M receptors smooth muscle
- Prevents bronchoconstriction



# **Muscarinic Antagonists**

- Short acting: Ipratropium
- Long acting: Tiotropium



# Steroids

- Inhaled: Beclomethasone, Fluticasone, Budesonide
- Oral: Prednisone
- IV: Methylprednisolone (Solumedrol)



# Steroids

- Inhibit synthesis of cytokines
- Bind to glucocorticoid receptor (GR)
- Many, many immunosuppressive effects
- $\downarrow$  expression many interleukins, IFN- $\gamma$ , TNF- $\alpha$ , GM-CSF
- Inactivation NF-KB
  - Transcription factor
  - Induces production of TNF-α

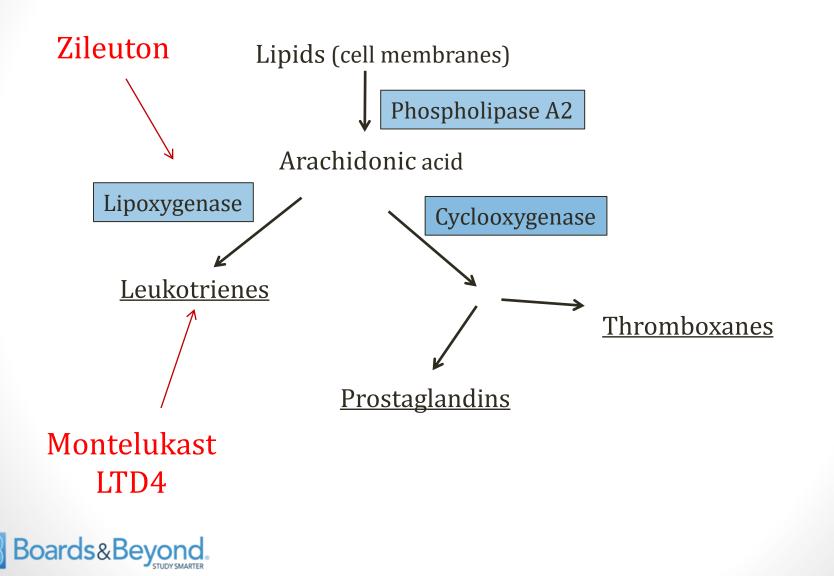


## Steroids

- Common side effect is oral candidiasis ("thrush")
- Patients instructed to rinse after inhalation






Image courtesy of James Heilman, MD

# **Special Asthma Drugs**

- Leukotriene receptor antagonists (PO)
  - Montelukast (Singulair)
  - Useful in aspirin sensitive asthma
- Zileuton (PO)
  - 5-lipoxygenase inhibitors
  - Blocks conversion of arachidonic acid to leukotrienes



## Eicosanoids



# **Special Asthma Drugs**

- Omalizumab (SQ injection)
  - IgG monoclonal antibody
  - Inhibits IgE binding to IgE receptor on mast cells & basophils
- Cromolyn (inhaler/nebulizer)
  - Inhibits mast cell degranulation
  - Blocks release of histamine, leukotrienes



# Theophylline

- Methylxanthines
- Multiple, complex mechanisms
- Bronchodilation
  - Likely through inhibition PDE
  - Less hydrolysis (breakdown) cAMP
  - ↑cAMP
- Also down-regulates inflammatory cell functions



# Theophylline

- Narrow therapeutic index
- Levels must be monitored
- Dose must be titrated
- Goal is a peak serum concentration 10 to20mg/L

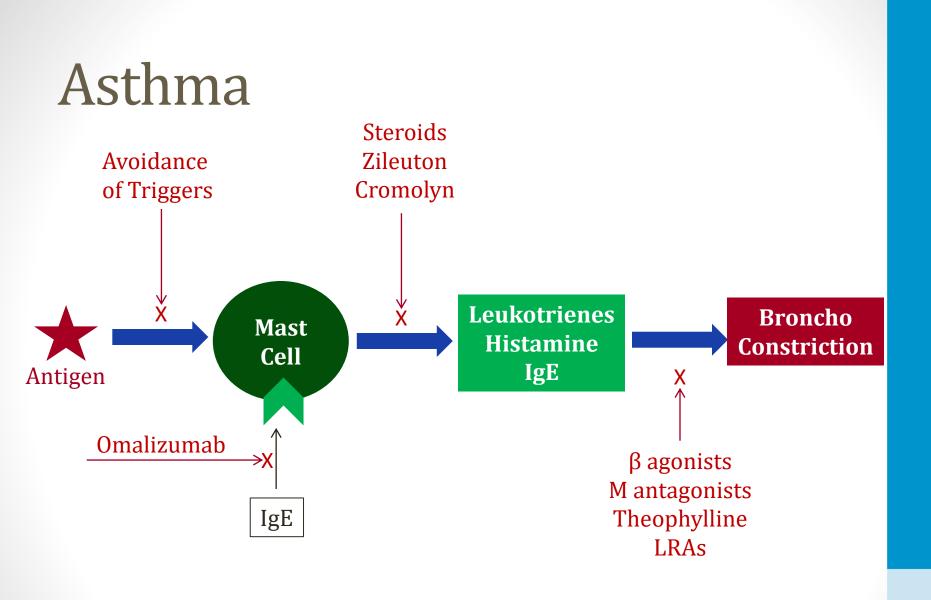


# Theophylline

- Metabolized by P450
- Many drug-drug interactions
- Common culprits:
  - Cimetidine
  - Ciprofloxacin
  - Erythromycin
  - Clarithromycin
  - Verapamil



## Theophylline

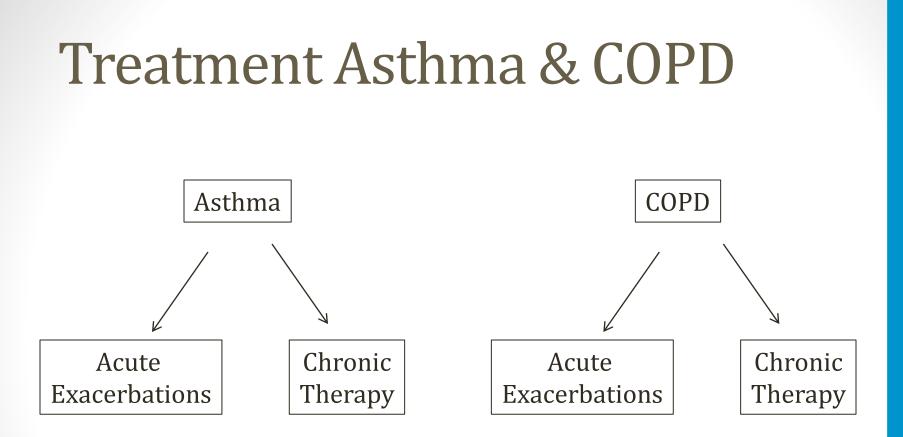

- GI toxicity
  - Nausea, vomiting
- Neurotoxicity
  - Seizures
- Overdose scenario: Nausea, vomiting, seizures



## Theophylline

- Cardiotoxicity
  - Blocks adenosine receptors
  - Increased heart rate
  - Arrhythmias (atrial tachycardia, atrial flutter)
  - Cause of death in overdose/poisoning
- Key clinical scenario
  - Patient on theophylline for asthma/COPD
  - SVT
  - Adenosine fails to slow heart rate








## Special COPD Drugs

- Theophylline
- Roflumilast (PO)
  - Phosphodiesterase-4 (PDE-4) inhibitor
  - Decreases inflammation
  - May relax airway smooth muscle



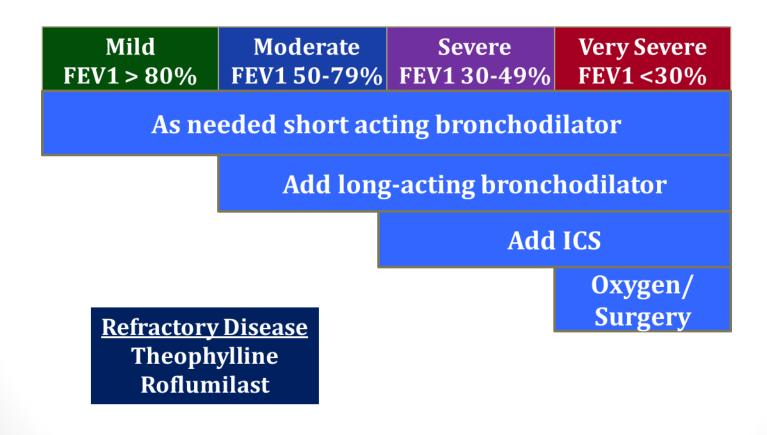




#### **COPD:** Acute Exacerbations

- Oxygen
- Nebulized albuterol +/- ipratropium (Combivent)
- IV or oral corticosteroids
  - Prednisone 60mg daily
  - Methylprednisolone 80mg IV q8hrs
- Antibiotics (severe, hospitalized patients)
  - Fluoroquinolones
  - Amoxicillin/clavulanate




#### **GOLD** Criteria

#### Global Initiative for Chronic Obstructive Lung Disease

| Stage  | Symptoms    | FEV1        |
|--------|-------------|-------------|
| Gold 1 | Mild        | FEV1 >80%   |
| Gold 2 | Moderate    | FEV1 50-79% |
| Gold 3 | Severe      | FEV1 30-49% |
| Gold 4 | Very Severe | FEV1 <30%   |



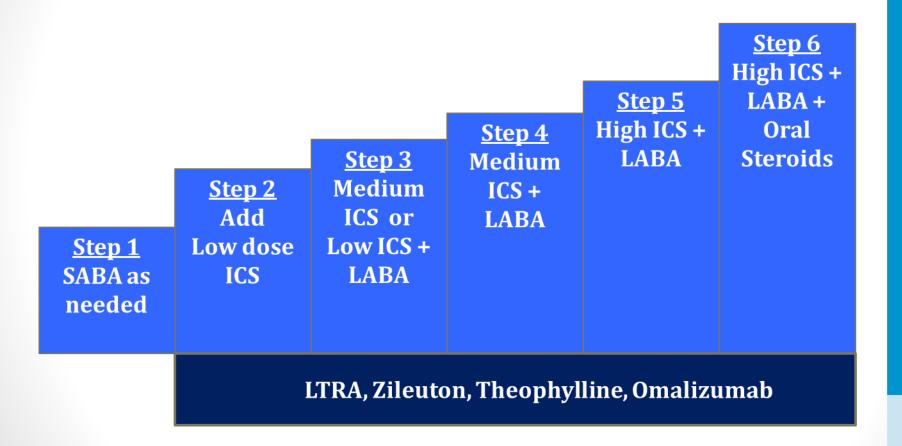
### **COPD: Chronic Therapy**





### **COPD: Chronic Therapy**

- Oxygen
  - Associated with increased survival
  - PaO2 < 55mmHG or O2 sat <88%
- Pulmonary rehabilitation
  - Improves exercise capacity, quality of life
  - Decrease dyspnea
- Vaccinations
- Smoking cessation




#### **Asthma: Acute Exacerbations**

- Oxygen
- Nebulized albuterol
- IV or oral corticosteroids
  - Prednisone 60mg daily
  - Methylprednisolone 80mg IV q8hrs
- Rarely used:
  - Ipratropium
  - IV Magnesium sulfate



### Asthma: Chronic Therapy





### Surgical Treatment

- For advanced "end-staged" COPD
- Lung volume reduction surgery/Bullectomy
  - Remove diseased lung tissue
  - Allow healthy lung tissue more room to expand
- Lung transplant



# Pneumonia

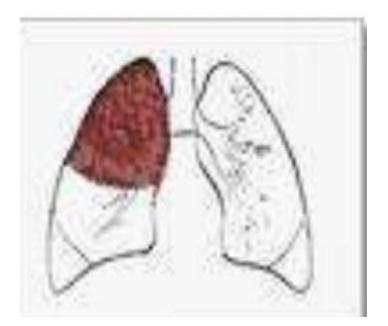
Jason Ryan, MD, MPH



#### Pneumonia

- Infection of the lungs
- Three patterns
  - Lobar
  - Bronchopneumonia
  - Interstitial (atypical)




#### Lobar Pneumonia

- Classic form of pneumonia (S. pneumoniae)
- Bacteria acquired in nasopharynx
- Aerosolized to alveolus
- Enter alveolar type II cells
- Pneumococci multiply in alveolus
- Invade alveolar epithelium
- Pass from one alveolus to next (pores of Cohn)
- Inflammation/consolidation of lobes
- Can involve entire lung



#### Lobar Pneumonia





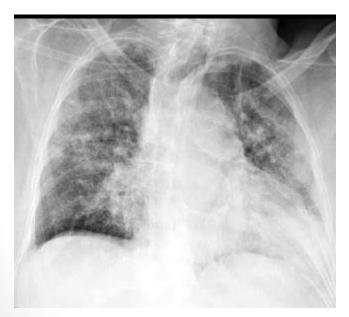
Images courtesy of Vijit Agrawal



### Four Lobar Stages

- #1: Congestion (1<sup>st</sup> 24 hours)
  - Alveolar capillaries dilate
  - Exudate of bacteria develops
- #2: Red hepatization (2-3days)
  - Exudate of RBCs, neutrophils, fibrin
  - "Fresh" exudate: RBCs/WBCs intact
  - Pneumococci alive
  - Lobes look red




### Four Lobar Stages

- #3: Gray hepatization (4-6days)
  - Gray, firm lobe
  - Exudate with neutrophils/fibrin
  - RBCs disintegrate
  - Dying pneumococci
- #4: Resolution
  - Return to normal (little scarring)
  - Enzymes digests exudate
  - Type II pneumocyte key for regeneration



#### Bronchopneumonia

- <u>Patchy</u> inflammation of multiple lobules
- Primary involvement airways and surrounding interstitium
- Staphylococcus aureus



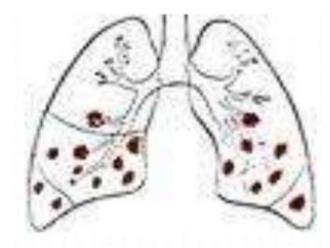



Image courtesy of drahmed142010
Boards&Beyond.

Image courtesy of Vijit Agrawal

#### **Interstitial Pneumonia**

- Inflammatory infiltrate of alveolar walls only
- More indolent course
- Viruses
- Legionella pneumophila
- Mycoplasma pneumoniae
- Chlamydophila pneumoniae

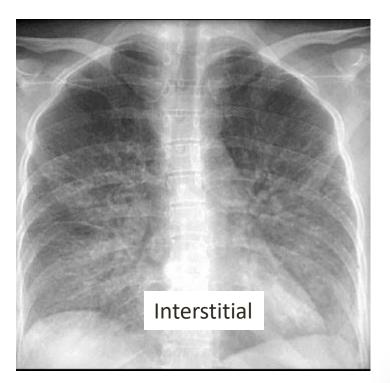



Image courtesy of drahmed142010



### **Atypical Pneumonia**

- Pneumonia caused by:
  - Legionella pneumophila
  - Mycoplasma pneumoniae
  - Chlamydophila pneumoniae
- Usually milder than strep pneumonia
- Respiratory distress rare
- Interstitial infiltrates on CXR
- "Walking pneumonia"

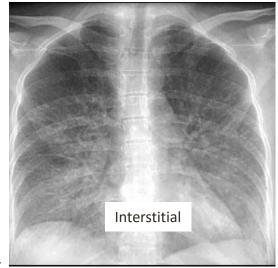





Image courtesy of drahmed142010

#### **Causes of Pneumonia**

Children

| Neonates                 | Children                                                                        |
|--------------------------|---------------------------------------------------------------------------------|
| <4weeks                  | 4wk-18yr                                                                        |
| Group B Strep<br>E. Coli | Viruses (RSV)<br>Mycoplasma<br>Chlamydia Pneumoniae<br>Streptococcus Pneumoniae |



#### **Causes of Pneumonia**

Adults

- S. pneumoniae most common
- Haemophilus influenzae
- Mycoplasma pneumoniae
- C. pneumoniae
- Legionella



### **Causes of Pneumonia**

Adults

- Gram-negative rods
  - Klebsiella, E. Coli, Pseudomonas
  - Uncommon unless severe PNA
  - Often isolated in hospitalized patients
- S. Aureus (postinfluenza pneumonia)
- Anaerobes (aspiration PNA; lung abscess)
- Viruses
  - Influenza
  - RSV (children)



## Signs/Symptoms

- High Fever
- Cough
- Sputum production
- Elevated WBC
- Pleuritic chest pain



### Diagnosis

- Usually:
  - History
  - Physical exam
  - X-ray (sometimes CT scan)
- Rarely
  - Sputum culture
  - Bronchoalveolar lavage



#### **Clinical Classes of Pneumonia**

- Community acquired
  - Usually S. Pneumoniae, H. Influenza, S. Aureus
  - Sometimes Mycoplasma, Chlamydia, Legionella (atypicals)
- Nosocomial
  - Bad bugs
  - Often gram negatives (Pseudomonas, Klebsiella, E. Coli)
  - Hospital Acquired
  - Ventilator-associated pneumonia (VAP)
  - Healthcare-associated pneumonia (HCAP; nursing homes)



# **Community Acquired PNA**

Uncomplicated

- No co-morbidities
- No recent antibiotic use
- Low community rates resistance
- Azithromycin, Clarithromycin, or Doxycycline
- Three to five day course
  - Patient should be afebrile 48-72 hrs and clinically stable



# **Community Acquired PNA**

Complicated

- COPD, CKD, Diabetes, CHF, Alcoholism
- Recent antibiotic use
- Fluoroquinolone (levofloxacin)
- Amoxicillin plus azithromycin



### **Nosocomial PNA**

- Lots of resistance to antibiotics
- Gram negative rods
  - E. coli, Klebsiella, Enterobacter, Pseudomonas, Acinetobacter
- Staph Aureus including MRSA
- Often cover for pseudomonas, MRSA
- Sometimes multi-drug combinations
- Cefepime or Ceftazidime
- Imipenem or Meropenem
- Piperacillin-tazobactam (Zosyn)



### Complications

- Sepsis
- Respiratory failure
- Lung abscesses
- Pleural effusion
- ARDS



#### ARDS

Acute Respiratory Distress Syndrome

- Triggered by various lung injuries
- Injury  $\rightarrow$  release of pro-inflammatory cytokines
  - TNF, interleukins
- Cytokines recruit neutrophils to lungs
- Neutrophils release toxic mediators
  - Reactive oxygen species, proteases
- Damage to capillary endothelium and alveolar epithelium
- Protein escapes from vascular space
- Fluid pours into the interstitium



### ARDS

Triggers

- Sepsis (most common)
- Infection (PNA)
- Aspiration
- Trauma
- Acute pancreatitis
- Transfusion-related acute lung injury (TRALI)



Looks like pulmonary edema but PCPW is normal



Image courtesy of James Heilman, MD

#### ARDS

Treatment

- Mechanical ventilation
- Low tidal volume
- Supportive care (fluids, nutrition)
- VAP pneumonia is serious complication



### Legionella

- First identified at American Legion convention
- Infection from inhalation of aerosolized bacteria
  - Not airborne
- Outbreaks at hotels with contaminated water
- Can cause nosocomial pneumonia in nursing homes



#### Legionella Symptoms

- Initially mild pneumonia symptoms
  - Fever; mild, slightly productive cough
- Can progress to severe pneumonia
- GI symptoms
  - Watery diarrhea, nausea, vomiting, and abdominal pain
- Hyponatremia (Na<130 meq/L) common</li>
  - Can occur in any PNA but more common Legionella



#### Legionella Diagnosis

- Special culture requirements
  - Does not gram stain well
- Buffered charcoal yeast extract agar (BCYE)
- Iron and cysteine added for growth
- Supplemented with antibiotics and silver dyes
  - Antimicrobials prevent overgrowth by competing organisms
  - Dyes give distinctive color to Legionella
- Urinary antigen test
  - Rapid test available in minutes
  - Does not test for all Legionella types



#### **Legionella** Diagnosis

- Classic Case
  - Mild cough
  - Watery diarrhea
  - Confusion (low Na)
  - Negative bacteria on gram stain
- Diagnose with urinary antigen test
- Treatment: Fluoroquinolone or Azithromycin



#### **Pontiac Fever**

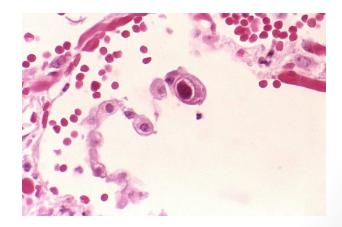
- Mild form of Legionella infection
- Fever, malaise, chills, fatigue, and headache
- No respiratory complaints
- Chest radiograph usually normal



### Mycoplasma Pneumonia

- Atypical pneumonia
- Can't see on gram stain (no cell wall)
- Classically causes outbreaks in young adults
  - College dorm residents
  - Military recruits
- CXR looks worse than symptoms
- Can cause autoimmune hemolytic anemia
  - IgM antibody  $\rightarrow$  RBC antigen
  - "Cold" hemolytic anemia
- Stevens-Johnson syndrome




#### Influenza Virus

- Atypical pneumonia
- Influenza A or B viruses
- Fever, headache, myalgia, and malaise
- Nonproductive cough, sore throat, runny nose
- Major complication is secondary pneumonia
  - Strep pneumoniae, Staph aureus, H. influenzae
  - Worsening symptoms after initial improvement
  - Cause of death



#### CMV

- Pneumonia in transplant patients on immunosuppressive drugs
- "Owl eye" intranuclear inclusions





#### RSV

#### **Respiratory Syncytial Virus**

- Viral respiratory infection in infants
- Often seasonal outbreaks (Nov April)
- Most common cause lower respiratory tract illness in children
  - Bronchiolitis, pneumonia, acute respiratory failure
- Often starts as upper airway infection
  - Runny nose
- Few days later, lower tract symptoms
  - Wheezing often present



### RSV

#### **Respiratory Syncytial Virus**

- Treatment: Ribavirin
  - Inhibits synthesis of guanine nucleotides
- Prevention: Palivizumab
  - Monoclonal antibody against F protein
  - RSV contains surface F (fusion) protein
  - Causes respiratory epithelial cell fusion
  - Used in pre-term infants (high risk RSV)
  - Sometimes congenital heart disease



#### RSV

#### **Respiratory Syncytial Virus**

- Classic case
  - Young child (often <2yo)</li>
  - Fever, runny nose
  - Few days later, cough, wheezing



#### **Aspiration Pneumonia**

- Aspiration of microorganisms
- Bugs from oral cavity and nasopharynx to lungs
- Risk factors:
  - Reduced consciousness (anesthesia)
  - Seizures
  - Alcoholics
  - Dysphagia from neuromuscular weakness
- Classic patients:
  - Debilitated nursing home patient
  - Alcoholic



#### **Aspiration Pneumonia**

- Klebsiella
- Staph Aureus
- Anaerobic bacteria
  - Peptostreptococcus
  - Fusobacterium
  - Prevotella
  - Bacteroides
- Clindamycin first-line therapy



#### Klebsiella Pneumonia

- Can cause lobar pneumonia
- Often from aspiration
- Marked inflammation/necrosis
- Thick, mucoid and blood-tinged sputum
- "Currant jelly"



## Lung Abscess

- Contained, fluid-filled space in lungs
  - "Air fluid level" on imaging
- Usually a consequence of aspiration
- Rarely due to bronchial obstruction from cancer
- Predominantly anaerobes
  - Peptostreptococcus
  - Prevotella
  - Bacteroides
  - Fusobacterium
- Sometimes S. Aureus, Klebsiella
- Treatment: Clindamycin



#### PCP

#### Pneumocystis jirovecii

- Diffuse interstitial pneumonia
- Requires immunocompromise
  - Classically HIV
  - AIDS-defining illness
- Yeast  $\rightarrow$  inhaled
  - Usually no symptoms if immune system intact



#### PCP

#### Pneumocystis jirovecii

- Diagnosed by microscopy
  - Sputum sample or BAL
- Staining required  $\rightarrow$  cannot be cultured
- Special stains used
  - Silver stains often used

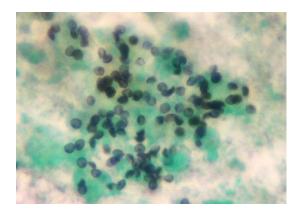





Image courtesy of Yale Rosen

#### PCP

Pneumocystis jirovecii

- Treatments
  - TMP-SMX (first line)
  - Dapsone
  - Pentamidine
- Prophylaxis
  - TMP-SMX when CD4 <200cells/microL
  - High dose steroid or other immunosuppressant



# **Pleural Disease**

Jason Ryan, MD, MPH



### What are the pleura?

- Two layers of tissue surrounding lungs
  - Visceral pleura attached to lung
  - Parietal pleura attached to chest wall
- Pleural space/cavity between layers
- Pleural lined by mesothelial cells
- Secrete small amount pleural fluid for lubrication



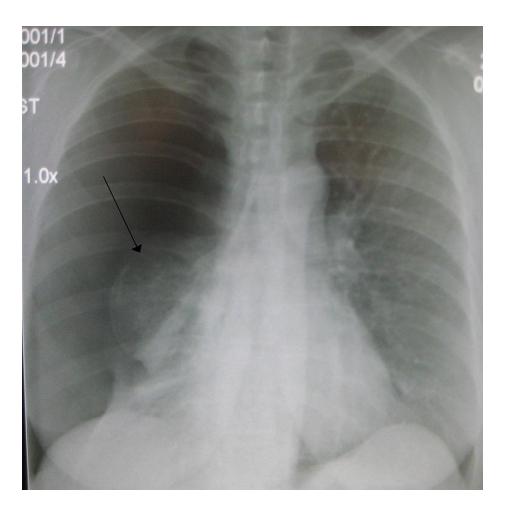
#### Pneumothorax

- Air in pleural space
- Two types to know about
  - Spontaneous
  - Tension



### Spontaneous PTX

- Primary
  - Rupture of subpleural bleb
  - Common in tall, thin young males
- Secondary
  - Older patients with underlying pulmonary disease
  - COPD




### Spontaneous PTX

- Sudden onset dyspnea
- Sometimes pleuritic chest pain
- CXR for diagnosis



#### Pneumothorax





#### Pneumothorax

Treatment

- 100% Oxygen
  - Displaces nitrogen from capillary blood
  - ↑gradient for nitrogen reabsorption from pleural space
- Chest tube
  - Larger pneumothoraces (>15% lung volume)



#### **Tension PTX**

- Usually from trauma
- Air enters pleural space but cannot leave
- Medical emergency
- Emergent thoracentesis/chest tube placement
- Trachea deviates AWAY from affected side



#### **Pleural Effusion**

Accumulation of fluid in pleural space

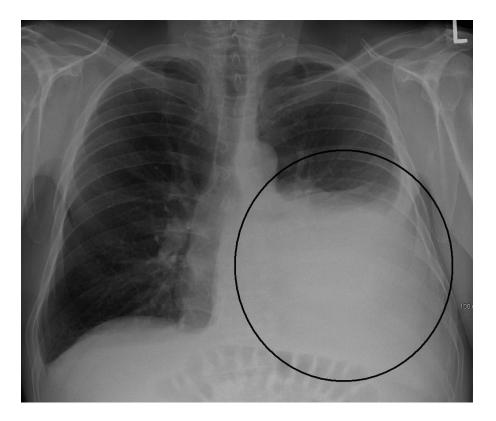





Image courtesy of James Heilman, MD

### **Pleural Effusion**

- Three general etiologies
  - Transudative
  - Exudative
  - Lymphatic



#### **Transudative Effusion**

- Something driving fluid into pleural space
- Most commonly due to CHF (High pressure)
- Other causes:
  - Nephrotic syndrome (low protein)
  - Cirrhosis (low albumin)
- Mostly fluid in effusion
- Very little protein in effusion
- Usually treat for underlying cause (no drainage)



#### **Exudative Effusion**

- Fluid leaking into pleural space
  - High vascular permeability
- Many causes
- Malignancy
- Pneumonia
- More protein in pleural fluid vs. transudative
- Usually requires drainage



#### Transudate vs. Exudate

- Thoracentesis to obtain fluid sample
- Test for protein, LDH
- Light's Criteria Exudate if:
  - Pleural protein/serum protein greater than 0.5
  - Pleural LDH/serum LDH greater than 0.6
  - Pleural LDH greater than 2/3 upper limits normal LDH



## Lymphatic Effusions

"Chylothorax"

- Lymphatic fluid effusion
- From thoracic duct obstruction/injury
- Malignancy most common cause
- Trauma (usually surgical)
- Milky-appearing fluid
- Very high triglycerides
  - TG usually > 110 mg/dL



### **Other Effusions**

- Hemothorax
  - High Hct in fluid
- Empyema
  - Infected pleural fluid
  - Pus, putrid odor, positive culture
- Malignant effusion
  - Positive cytology



#### Mesothelioma

- Pleural tumor
- Asbestos is only known risk factor
  - Decades after exposure
- Imaging: Pleural thickening and pleural effusion
- Slow onset symptoms (dyspnea, cough, chest pain)
- Poor prognosis
  - Median survival 4 to 13 months untreated
  - 6 to 18 months treated with chemo



# Lung Cancer

Jason Ryan, MD, MPH



#### **Common Cancers**

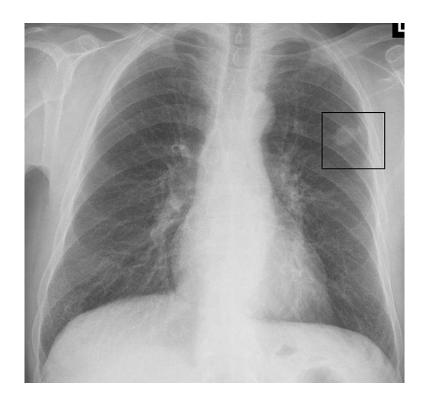
- Breast
- Prostate
- Lung (most deadly)
- Colorectal



### Lung Cancer Risk Factors

- Cigarette smoking
  - Polycyclic Aromatic Hydrocarbons (PAHs)
- Radiation Therapy
  - Hodgkin's and breast cancer survivors
- Environmental toxins
  - Asbestos
  - Radon




## Symptoms

- Usually advanced at presentation
- Cough, dyspnea, rarely hemoptysis
- Usually leads to chest imaging



# Diagnosis

- Pulmonary nodule
- "Coin lesion"
- Compare with prior
- Biopsy for diagnosis





# **Benign Pulmonary Nodules**

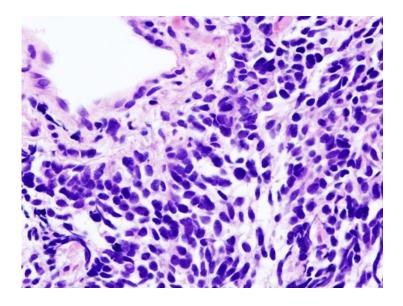
- Granulomas (80% benign nodules)
- Hamartomas
  - Lung tissue and cartilage (with scattered calcification)



## Granulomas

- Fungi
  - Histoplasmosis (patient from Midwest, Miss/Ohio river valley)
  - Coccidioidomycosis (southwest, California)
- Mycobacteria
  - Usually tuberculosis




# Lung Cancers

- Small cell (15%)
  - Fast growing; Early mets
  - Non amenable to surgical resection
  - Smokers
  - Treated with chemo
  - Poor prognosis
- Non-small cell (Most Common: 85%)
  - Can sometimes be resected
  - Better prognosis
  - Smokers and non-smokers



# Small Cell Cancer

- Poorly differentiated small cells
- Classic in male smokers
- Neuroendocrine tumor
- Central tumor





# Small Cell Cancer

Paraneoplastic Syndromes

- ACTH
  - Cushing syndrome
  - Progressive obesity
  - Hyperglycemia
- ADH
  - SIADH
  - Hyponatremia (confusion)
- Antibodies
  - Antibodies against pre-synaptic Ca channels in neurons
  - Block release of acetylcholine
  - Lambert-Eaton syndrome
  - Main symptom is weakness



## Non-Small Cell Cancers

- Squamous Cell Carcinoma
- Adenocarcinoma
- Large cell carcinoma
- Bronchioloalveolar Carcinoma
- Carcinoid tumor



## Squamous Cell Carcinoma

- Hilar mass arising from bronchus
- Key pathology
  - Keratin production ("pearls") by tumor cells
  - Intercellular desmosomes ("intercellular bridges")
- Male smokers
- Can produce PTHrP
  - Hypercalcemia
  - Stones, bones, groans, psychiatric overtones
  - Bone and abdominal pain, confusion



### Adenocarcinoma

- Glandular tumor
- Most common lung cancer: nonsmokers/females
- Peripheral



# Large Cell Carcinoma

- Poorly differentiated
  - Lacks glandular or squamous differentiation
  - Lacks small cells
- Smokers cancer
- Central or peripheral
- Poor prognosis



### Bronchioloalveolar Carcinoma

- Subtype of adenocarcinoma
- Many similar features to adeno:
  - Nonsmokers, Peripheral
- Mucinous type: Derived from goblet cells
- Nonmucinous: Clara cells or type II pneumocytes
- Looks like PNA on CXR
  - Lobar consolidation
- Excellent prognosis
  - Surgery, radiotherapy, sometimes adjuvant chemotherapy



## Carcinoid tumor

- Neuroendocrine
- Well-differentiated cells
- Chromogranin positive
- Non-smokers
- Rarely causes carcinoid syndrome
  - Secretion of serotonin
  - Flushing, diarrhea



# Complications

- Pleural effusions
  - Tap fluid, send for cytology
- Phrenic nerve compression
  - Diaphragm paralysis
  - Dyspnea
  - Hemidiaphragm elevated on CXR
  - Sniff test
- Recurrent laryngeal nerve compression
  - Hoarseness



# SVC Syndrome

- Obstruction of blood flow through SVC
- Can be caused by compression from tumor
  - Lung Masses: NSCLC, SCLC
  - Mediastinal Masses: Lymphoma
- Other causes include thrombosis
  - Indwelling catheters, pacemaker wires
- Facial swelling or head fullness
- Arm swelling
- Can cause increased ICP
  - Headaches, confusion, coma
  - Cranial artery rupture



## SVC Syndrome

- Usually diagnosed CXR or CT Chest
- Various treatment options:
  - Anticoagulation for thrombus
  - Steroids (lymphoma)
  - Chemo/Radiation
  - Endovascular stenting



#### Pancoast Tumor

- Carcinoma at apex of lung
- Involve superior sulcus
  - Groove formed by subclavian vessels
- Arm edema affected side
- Shoulder pain radiating toward axilla/scapula
- Arm paresthesias, weakness
- Can compress sympathetic nerves
- Horner's syndrome
  - Miosis
  - Ptosis
  - Anhidrosis





# Metastasis from Lung Cancer

- Adrenals
  - Usually found on imaging without symptoms
- Brain
  - Headache, neuro deficits, seizures
- Bone
  - Pathologic fractures
- Liver
  - Hepatomegaly, jaundice



## Metastasis to Lung

- More common than primary lung tumors
- Most commonly from breast or colon cancer
- Usually multiple lesions on imaging



# Sleep Apnea

Jason Ryan, MD, MPH



# Sleep Apnea

- Apnea = cessation of breathing
- Sleep apnea = cessation of breathing during sleep
- Usually >10 seconds
- Multiple episodes per night are typical



# Sleep Apnea Symptoms

- Unrestful sleep
- Daytime somnolence
- Loud snoring



# Sleep Apnea Types

- Central sleep apnea
  - No effort to breathe
- Obstructive sleep apnea
  - Decreased air flow despite effort to breathe



# **Central Sleep Apnea**

- Patients with marginal ventilation when awake
  - Hypoventilate when awake
  - Fall asleep  $\rightarrow$  apnea periods
  - Central nervous system disease (encephalitis)
  - Neuromuscular diseases (polio, ALS)
  - Severe kyphoscoliosis
  - Narcotics



# **Central Sleep Apnea**

- Cheyne-Stokes breathing
  - Cyclic breathing
  - Delayed detection/response to changes in PaCO<sub>2</sub>
  - Common in heart failure and stroke patients

Normal Breathing

Cheyne-Stokes



Images courtesy of Aleksa Lukic

## **Obstructive Sleep Apnea**

- Recurrent soft tissue collapse in the pharynx
- Strongest risk factor is obesity



# **Sleep Apnea Complications**

- HTN
- Pulmonary HTN
- Arrhythmias
- Sudden death



# Erythropoiesis

- Chronic hypoxia
- EPO release



# **Sleep Apnea Diagnosis**

- Polysomnography
- "Sleep study"
- Patient sleeps in monitored setting
- EEG, eye movements
- O2 level, HR, respiratory rate
- Number of apnea episodes recorded



# **Sleep Apnea Treatments**

- Weight loss
  - Takes time; not best option for exhausted patients
- CPAP
  - First line for symptomatic patients
- Upper airway surgery
  - Severe disease



#### CPAP

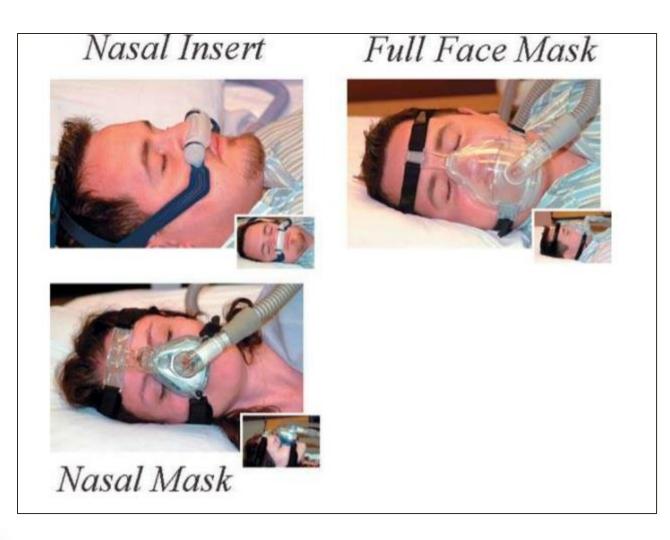





Image courtesy of Aslam Calicut

# **Cystic Fibrosis**

Jason Ryan, MD, MPH



# **Cystic Fibrosis**

- Inherited genetic disease
  - Autosomal recessive pattern
  - Both parents must be carriers
- Results in thick, sticky mucus in lungs/GI tract
- Common cause chronic lung disease in children



### CFTR

Cystic Fibrosis Transmembrane Regulator

- CFTR protein is abnormal in CF
- CFTR gene encodes for the abnormal protein



## CFTR

Cystic Fibrosis Transmembrane Regulator

- ATP ion transporter
- Epithelial Cell Functions
  - Pumps Cl<sup>-</sup> out of epithelial cells
  - Against concentration gradient (uses ATP)
  - Creates a membrane potential that draws out Na/H2O
  - Hydrates mucosal surfaces (lungs, GI tract)
- Sweat gland functions
  - Removes NaCl from sweat (makes sweat hypotonic)
  - CF patients have high NaCl in sweat



### **CFTR Mutations**

- Many mutations identified
- Most common mutation: delta F508
  - Deletion of 3 DNA bases
  - Codes for 508th AA acid: phenylalanine
- Most common consequence: abnormal processing
  - Abnormal protein folding
  - Prevents protein trafficking to correct cellular location



# **CF** Pathophysiology

- Thick mucous in lungs
  - Recurrent pulmonary infections (Pseudomonas, S. Aureus)
  - Chronic bronchitis
  - Bronchiectasis
- Thick mucous in GI tract
  - Impaired flow of bile and pancreatic secretions
  - Malabsorption especially fats
  - Loss of fat soluble vitamins (A, D, E, K)
  - Steatorrhea



#### **CF** Presentation

- Usually diagnosed <2yo</li>
- Respiratory disease (45%)
- Failure to thrive (28%)
- Meconium ileus (20%)



## **CF Lung Disease**

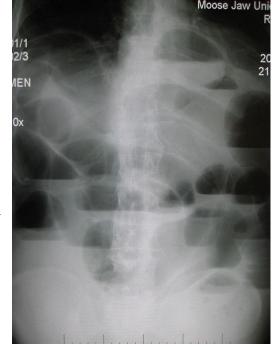
- Productive cough
- Hyperinflation of lungs on CXR
- Obstructive pattern
- Later disease
  - Chronic bronchitis
  - Bronchiectasis
- Acute exacerbations
- Pseudomonas aeruginosa: major pathogen in CF



#### Pancreatic insufficiency

- Chronic pancreatitis
- CF-related diabetes
- Fat malabsorption
- Steatorrhea:
  - Frequent stools
  - Foul-smelling stools
  - Oily or greasy
  - Stools may float




#### Pancreatic insufficiency

- Deficiencies of fat-soluble vitamins: A, D, E, and K
- Vitamin K: coagulopathy
- Vitamin D: rickets
- Vitamin A: Night blindness
- Vitamin E: Ataxia, hemolysis



## Meconium ileus

- Meconium
  - Meconium: first stool of newborn
  - Very thick and sticky
- Meconium ileus = bowel obstruction
  - Meconium too thick/sticky
  - Meconium plug forms
- Abdominal distension
- Vomiting
- Air fluid levels of X-ray
- Failure to pass meconium





## Other symptoms

- Biliary disease
  - Bile duct obstruction
  - Pale or clay colored stool
  - Elevation of LFTs
  - Hepatomegaly
  - Cirrhosis
  - Gallstones



## Other symptoms

- Infertility
  - 95 percent males with CF are infertile
  - Absent vas deferens
  - Problem is sperm transport not spermatogenesis
  - Can have children with assisted techniques



## Other symptoms

- Digital clubbing
- Nasal polyps



Image courtesy of James Heilman, MD



## Diagnosis

- Sweat chloride test
- Pilocarpine iontophoresis
- Pilocarpine gauze placed on skin
- Electrode placed over gauze
- Small electrical current drives pilocarpine into skin
- Sweating occurs
- Sweat collected on filter paper
- Chloride content analyzed
- High chloride level suggests CF
- DNA testing done if sweat test abnormal



## Diagnosis

- Rare CF patients have negative sweat test
  - Usually have milder disease
  - Often recurrent pulmonary and sinus infections
- If symptoms highly suggestive, can test nasal transepithelial potential difference
  - Measure nasal voltage
  - CF patients: more negative voltage
  - Due to abnormal sodium processing



#### Treatment

- Promote clearance of airway secretions
  - Inhaled DNase (dornase alfa)
  - Inhaled saline
  - N-acetylcysteine
- Ivacaftor (tablets)
  - Increased chloride ion flux
  - Only for patients with G551D mutation
- Exacerbations are treated with antibiotics
- Lung transplantation



#### **Other Treatments**

- Pancreatic enzyme replacement
- Vitamins (A, D, E, K)
- Vaccinations



## Prognosis

- Average life span ~ 37 years
- Death from lung complications



## Screening

- Prenatal
  - Test for 23 most common CF mutations in US
  - Often test mother first and stop if negative
- Newborn
  - ↑ blood levels immunoreactive trypsinogen (IRT)
  - Blood test  $\rightarrow$  if positive  $\rightarrow$  sweat test



# Tuberculosis

Jason Ryan, MD, MPH



#### Tuberculosis

- Ancient disease: Found in mummies!
- Old name: Consumption
- Tubercle = round nodule
- Tuberculosis = multiple round nodules



#### Mycobacterium tuberculosis

- Obligate aerobes
  - Prefer lungs
  - Reactivation disease prefers upper lobes
- Facultative intracellular pathogens
  - Infect macrophages



## Culture of TB

- Difficult to culture
  - Special media used
  - Lowenstein-Jensen agar
- Slow growing
- Does not stain well with Gram stain
- This is due to mycolic acids in cell wall
  - Also fatty acids and complex lipids



### Acid Fast

- Cell walls impermeable to many dyes
- Stain with very concentrated dyes plus heat
  - Lipid soluble; contain phenols
- Once stained, plate rinsed with acid decolorizer
  - "Acid fast stain"
- TB resists decolorization with acid solvents
- Some other bacteria (Nocardia) also do this



#### **Virulence Factors**

- Trehalose dimycolate ("cord factor")
  - Helps evade immune response
  - Causes granuloma formation
  - Triggers cytokine release
- Sulfatides
  - Glycolipids
  - Inhibits fusion of phagosomes/lysosomes
- Catalase-peroxidase
  - Resists host cell oxidation



## Spread of TB

- Spreads through the air
- Active TB patient's cough, sneeze, etc.
- Inhaled by uninfected person
- Can spread rapidly in crowded areas



#### **Exposure to TB**

- Most patients will not develop active disease
  - Infection can clear or remain "latent"
- Small proportion patients develop active disease



## Primary TB

#### **Clinical Picture**

- Mainly a disease of childhood or chemo patients
  - Ineffective immune response
- Gradual onset: weeks
- Fever
- Cough
- Pleuritic chest pain
- Fatigue, arthralgias



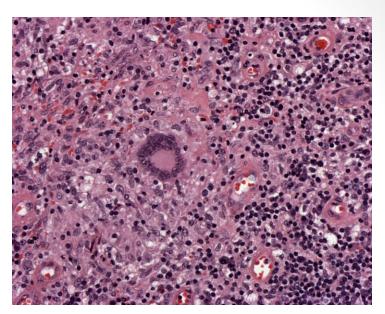
## **Primary TB**

Pathophysiology

- First week
  - TB infects macrophages
  - Phagocytosed
  - Intracellular bacterial proliferation



## Primary TB


Pathophysiology

- Two to four weeks
  - Cell-mediated immune system controls TB
  - TH1 response
  - Activation of CD4+ T cells
  - Interferon-γ secreted
  - Activated macrophages and cytotoxic T lymphocytes



## Granulomas

- Granulomatous inflammation
- Caseating necrosis
- Macrophages transform to :
  - Epithelioid cells
  - Langhans giant cells
- Fibroblasts activated  $\rightarrow$  collagen
- T-cell mediated delayed type hypersensitivity reaction
  - Type IV hypersensitivity reaction





### Hilar Lymphadenopathy

- CXR often normal
- Classic finding is hilar lymphadenopathy
- Occur as early as 1 week after infection
- Resolve slowly over months to years



Image provided by www.learningradiology.com, courtesy of Dr. William Herring, MD, FACR. Used with permission.



## **Ghon Foci**

- Ghon foci form
  - Granulomas
  - Subpleural
  - Mid to lower lungs
- Ghon foci plus lymph node is Ghon complex
- Calcified Ghon complex is a Ranke complex







Images courtesy of kaziomer

## **Primary TB Resolution**

- Most (90%) patients control infection
  - Disease heals leaving fibrosis
  - Sometimes completely clears
  - Usually enters latent phase ("walled off")
  - Immunity develops
  - PPD positive
- Rare (10%) patients have expanded illness
  - Miliary dissemination
  - More common with HIV, CKD, DM (impaired immunity)



## Miliary TB

- Hematogenous spread of TB
- Progressive primary infection or reactivation
- Nearly any organ system can be involved
  - Bones
  - Liver
  - CNS (meningitis)
  - Heart (pericarditis)
  - Skin



Image courtesy of Yale Rosen



## Miliary TB

- Pott's disease
  - Spine infection (osteomyelitis)
  - Back pain, fever, night sweats, weight loss
- Constrictive pericarditis



#### **Reactivation TB**

- Reactivation of dormant TB
- Cough, weight loss, fatigue
- Fever
- Night sweats
- Chest pain
- Often cavitation (caseous and liquefactive necrosis)
- Hemoptysis (erode pulmonary vasculature)
- CXR classically shows upper lobe lesions

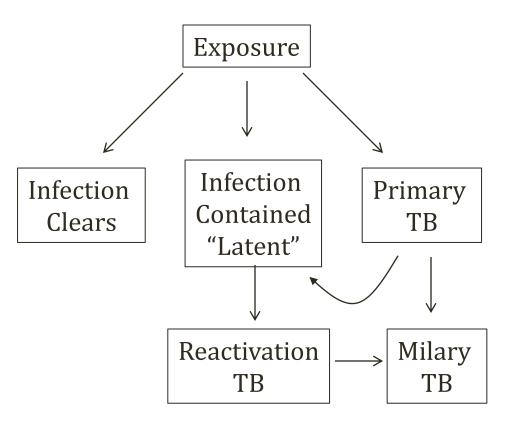




#### **Reactivation TB**

- Can occur when immune compromise develops
- HIV infection
- TNF-α inhibitors
  - Used in autoimmune diseases
  - Etanercept, Infliximab
- Diabetes




## Aspergilloma

- Fungus ball
- Caused by Aspergillus fumigatus
- Non-invasive form of aspergillosis
- Grows in pre-formed cavities
- Pulmonary TB is most common association
- Often asymptomatic
- Can cause hemoptysis
- Diagnosis: Imaging plus sputum culture
- Treatment: Observation vs. surgery





#### **TB Infection Summary**





## **Diagnosis of Active TB**

- Usual method: 3 sputum samples
  - Usually about 8hrs apart
  - Spontaneous or induced
  - Induced: Inhalation of aerosolized saline by nebulizer
- Acid-fast smear and culture



### **Diagnosis of Active TB**

- Not necessary to hospitalize just for TB suspicion
- Outpatients: Remain at home, avoid visitors, mask
- Inpatients: Respiratory isolation
  - Private room
  - Negative air pressure
  - Persons entering must wear a respirator
  - Tight seal over the nose and mouth



### **Diagnosis of Latent TB**

- Identification of latent TB crucial to infection control
- Diagnosis: Tuberculin skin testing (TST)
- SC injection purified protein derivative (PPD)
  - 5 tuberculin units (0.1 mL)
- Wait 48 hours
- Measure diameter of induration (not erythema)



# **PPD** Testing

| Induration | Interpretation                                     |
|------------|----------------------------------------------------|
| <5mm       | Negative                                           |
| >5mm       | Positive if HIV, Immunosuppressed                  |
| >10mm      | High risk individuals*                             |
| >15mm      | Healthy patients >4yo with low<br>likelihood of TB |

\* Silicosis, CKD, DM, IV drug users, homeless, prison employees, others



# **PPD** Testing

- False negatives can occur
- Immunosuppressive drugs
  - Corticosteroids
  - TNF-α inhibitors
- Immunocompromised
  - HIV
  - CKD
  - Malnutrition
- Diseased lymph system
  - Sarcoidosis
  - Some lymphomas or leukemias



#### **BCG Vaccine**

- Bacille Calmette-Guérin
- Live strain of *Mycobacterium bovis*
- More effective in patients with no TB exposure
  - About 80% effective in children
  - Less effective in adults
- Used in children in areas with high prevalence of TB
- Creates false positive PPD



#### **Treatment of Positive PPD**

- Most patients with latent TB will not develop disease
- Small proportion may reactivate
- Prophylaxis lowers risk
- Commonly isoniazid (INH) for 9 months
- Further PPD testing not indicated
  - Will remain positive for life



#### **Treatment of Active TB**

- Requires multi-drug regimens
- Typical regimen:
  - Isoniazid
  - Rifampin
  - Pyrazinamide
  - Ethambutol
  - Sometimes streptomycin
- Sometimes direct observation therapy (DOT)
- Risk of Multi-drug resistant (MDR) TB



### Isoniazid

- Blocks synthesis of mycolic acids
- Bacteria lose their acid fastness
- katG-encoded catalase-peroxidase
  - Converts INH to active form
  - Mutations lead to INH resistance
  - Monotherapy produces resistance



### Isoniazid

- Neurotoxic
  - Neuropathy, ataxia, and paresthesia
  - Competes with B6 as co-factor neurotransmitter synthesis
  - Pyridoxine (B6) co-administered
  - Limits neurotoxicity
- Hepatotoxic (check LFTs)
  - Probably related to metabolites of INH
- Drug-induced lupus



# Rifampin

- Inhibit bacterial DNA-dependent RNA polymerase
- Blocks RNA synthesis
- Main side effects are liver, GI
  - Increased LFTs
  - GI upset: nausea, cramps, diarrhea
- Red/orange discoloration fluids (not dangerous)
  - Urine
  - Saliva
  - Sweat, tears
  - CSF



# Rifampin

#### Other uses

- Leprosy
- Meningococcal prophylaxis
- Chemoprophylaxis in contacts of children HiB



### Pyrazinamide

- Mechanism unknown
  - Converted to pyrazinoic acid (PZA)
  - May be more active in acidic environment inside macrophages
- Hepatotoxic
  - Can raise LFTs
- Competes with uric acid for excretion in kidneys
  - Can raise uric acid levels
  - Hyperuricemia
  - Gout exacerbations



### Ethambutol

- Inhibits arabinosyl transferase
  - Polymerizes arabinose for mycobacteria cell walls
- Key side effect: optic neuropathy
  - Red-green color blindness
  - Difficulty discriminating red and green hues
  - Loss of visual acuity
  - Reversible



# Streptomycin

- Older, aminoglycoside drug
- Inhibits bacterial 30S ribosomal subunit
  - Prevents protein synthesis
- Lots of resistance
  - Mutations of genes for ribosomal proteins



### **Tuberculosis Key Points**

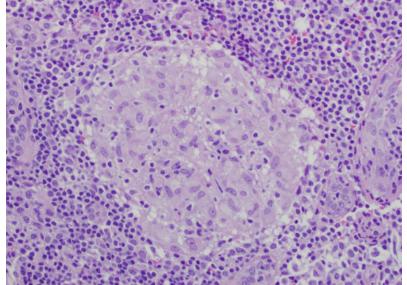
- Mycolic acid cell walls  $\rightarrow$  acid fast
- Infects macrophages (intracellular)
- Delayed type hypersensitivity reaction
- Hilar lymphadenopathy; Ghon complex
- Reactivation in upper lobes (immunosuppressed)
- Latent infection diagnosed with PPD
- Treat latent disease with INH
- Treat active disease with multidrug regimen



# Sarcoidosis

Jason Ryan, MD, MPH




#### Sarcoidosis

- Granulomatous disease
  - Granulomas form many places in the body
- Immune-mediated
  - Immune cells play major role
- Unknown cause



#### Sarcoidosis

- Hallmark is widespread <u>non-caseating</u> granulomas
- Tightly packed central area of macrophages, epithelioid cells, multinucleated giant cells
- Surrounded by lymphocytes, monocytes, mast cells, fibroblasts





# Pathology

- Cell mediated immune process
- Accumulation of TH1 CD4+ helper T cells
  - High CD4:CD8 ratio
- Secrete IL-2 and interferon-γ
- IL-2 stimulates TH1 proliferation
- IFN-γ activates macrophages
- Ultimately leads to granuloma formation
- Key players: CD4 T cells, IL-2, IFN- γ



# **Organ Involvement**

- Lungs (most common)
- Skin
- Eye
- Heart
  - Conduction disease (heart block)
  - Cardiomyopathy
- Many other systems rarely involved
  - Renal: Renal failure
  - CNS: Neurosarcoid, Bells Palsy, Motor loss
- Any system can be involved



# Lung Involvement

- Classic finding is hilar lymphadenopathy
- Classic symptom is cough, dyspnea
- Can cause infiltrates
- Can cause pulmonary fibrosis





#### Skin Involvement

- Many lesions possible
  - Plaques, maculopapules, subcutaneous nodules
- Classic lesion is erythema nodosum
  - Inflammation of fat cells under skin
  - Tender red nodules
  - Usually on both shins

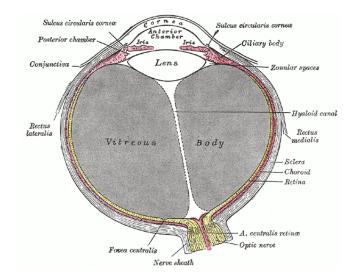





Image courtesy of James Heilman, MD

### Eye Involvement: Uveitis

- Can involve many parts of eye
- Classic is uveitis
- Uvea:
  - Iris, ciliary body, choroid
- Uveitis Types
  - Anterior (iris, ciliary)
  - Posterior (choroid)
- Often mild symptoms
  - Dry eye, blurry vision
- Often detected on routine exam





#### **Other Sarcoidosis Features**

- Hypercalcemia
  - Elevated 1- $\alpha$  hydroxylase activity in alveolar macrophages
  - Increased vitamin D levels (calcitriol)
- High ACE levels
  - Non-specific finding
  - Elevated in many lung diseases

#### $1\alpha$ - hydroxylase 1,25-OH<sub>2</sub> Vitamin D

25-OH Vitamin D



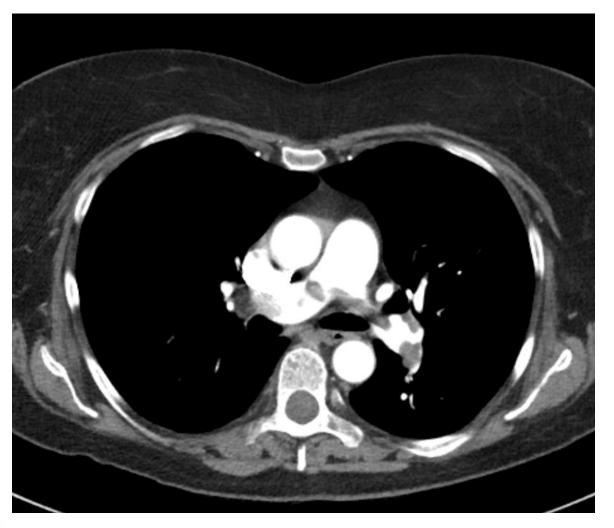
#### **Classic Presentation**

- African American female
- Hilar lymphadenopathy
- Cough, dyspnea
- Often asymptomatic, detected on routine chest x-ray



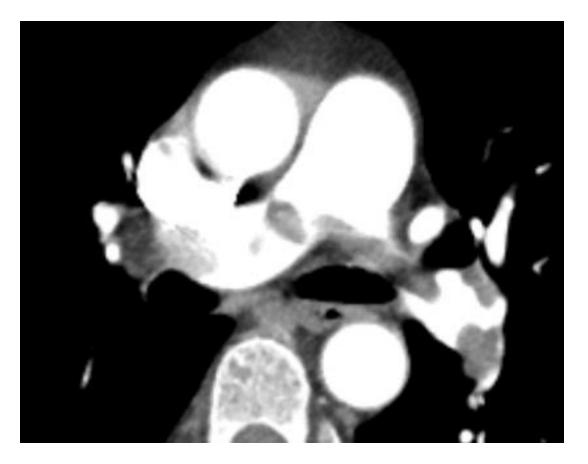
#### Treatment

- Steroids
- Other immunosuppressants
  - Methotrexate
  - Azathioprine
  - Mycophenolate






Jason Ryan, MD, MPH




#### **CT** Angiogram





#### **CT** Angiogram





- Thrombus in pulmonary artery
- Rarely formed in heart or pulmonary vasculature
- Majority come from femoral vein or deep leg veins
- Travels to lung via IVC  $\rightarrow$  RA  $\rightarrow$  RV



- Can be "unprovoked"
- Often secondary to a hypercoagulable state
  - Secondary: Malignancy, surgery, etc.
  - Primary: Protein C/S deficiency, ATIII deficiency, etc.



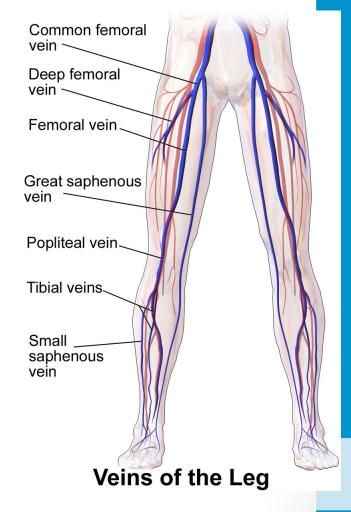
#### Chest pain

Classic presentation is pleuritic

#### Respiratory distress

- Dyspnea
- Hypoxemia
- Tachypnea
- Massive PE can cause sudden death
  - Obstruction to flow through pulmonary arteries
- Small, chronic emboli: pulmonary hypertension




Ventilation-Perfusion

- Dead space
  - Ventilation without perfusion
- V/Q mismatch
- Hyperventilation
- Blood gas findings variable
- Classic findings: low PaO<sub>2</sub> and low PCO<sub>2</sub>



# **Deep Vein Thrombosis**

- Thrombus within a deep vein
- Usually occurs in calf or thigh
- Commonly femoral/popliteal veins
- Can extend or "grow"
- Precedes pulmonary embolism
- Often 2° hypercoagulable state




Bruce Blaus/Wikipedia



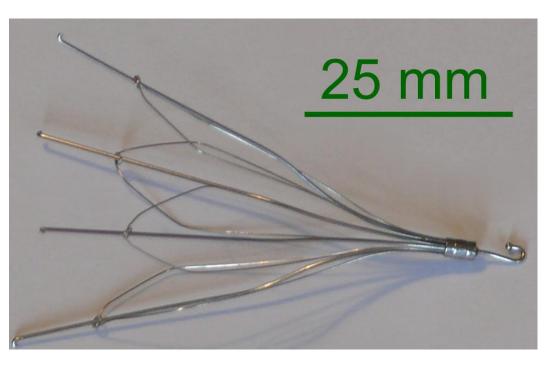
# **Deep Vein Thrombosis**

- Often asymptomatic until PE
- Calf pain
- Palpable cord (thrombosed vein)
- Unilateral edema
- Warmth, tenderness, erythema
- Homan's sign: calf pain with dorsiflexion of foot
- Diagnosis: Lower extremity ultrasound



James Heilman, MD

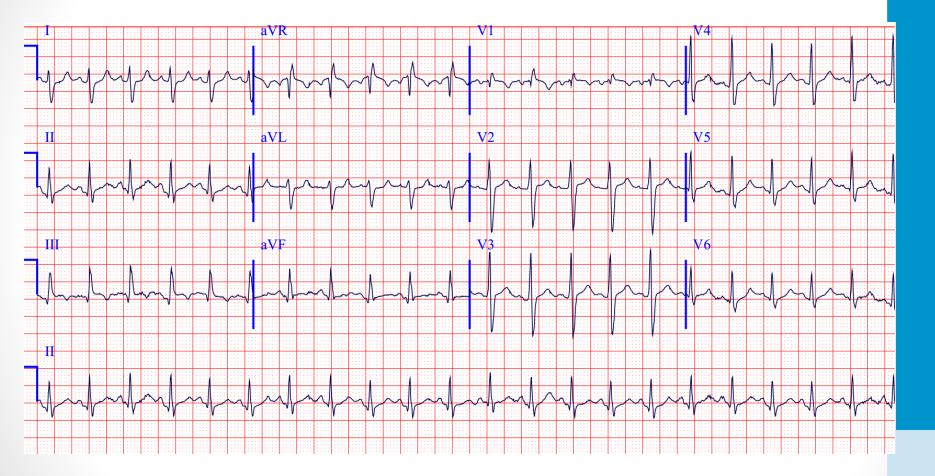



## **Deep Vein Thrombosis**

- Similar treatment to PE
  - "DVT/PE"
  - "Venous thromboembolism" (VTE)
- Prevention important in hospitalized patients
  - Hypercoagulable
  - Immobility, stasis of blood, inflammation
- **Prophylaxis**: SQ heparin, LMWH



#### **IVC** Filter


- Used in high-risk DVT patients
- Placed to prevent pulmonary embolism





BozMo/Wikipedia

# S1Q3T3





S1Q3T3



. .

111



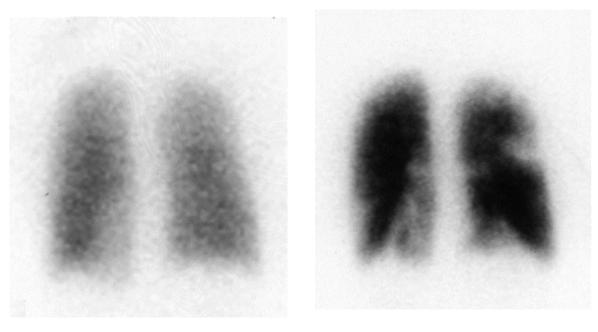
#### Wells Score

| Active cancer                           | 1  |
|-----------------------------------------|----|
| Immobilization of the lower extremities | 1  |
| Recently bedridden                      | 1  |
| Localized tenderness                    | 1  |
| Leg swelling                            | 1  |
| One leg swollen > other                 | 1  |
| Pitting edema                           | 1  |
| Superficial veins visible               | 1  |
| Alternative diagnosis likely            | -2 |

Score >=3 High Probability 1-2 Mod Probability 0 Low Probability



## **D-dimer**


- Degradation product of fibrin
- Sensitive but not specific (unidirectional)
  - Levels elevated in DVT/PE
  - Levels also elevated in many, many other conditions
- Useful when normal in setting of low-mod Wells score



# Pulmonary Embolism

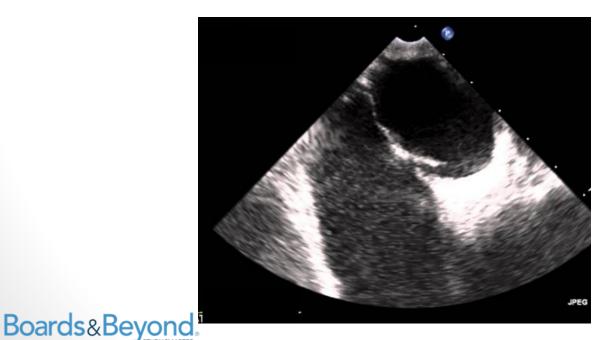
#### Diagnosis

- CT angiogram
- VQ Scan



Westgate EJ, FitzGerald GA Pulmonary Embolism in a Woman Taking Oral Contraceptives and Valdecoxib. *PLoS Medicine* Vol. 2, No. 7, e197. doi:10.1371/journal.pmed.0020197




# **Treatment DVT/PE**

- Initial treatment with heparin or LMWH
- Transition to warfarin (oral)
- Massive PE: thrombolysis (tPA)



#### Patent Foramen Ovale

- Found in ~25% adults
- Failure of foramen ovale to close after birth
- Can allow venous clot to reach arterial system (brain)
- Rarely causes stroke in patients with DVT/PE



### Fat Embolism

- Often occurs after a long bone facture
- Fat may cross lungs  $\rightarrow$  small artery infarctions
- Fat embolism syndrome: pulmonary, neuro, skin





Hellerhoff /Wikipedia

# Fat Embolism

#### • Lung

- Dyspnea, hypoxemia
- Diffuse capillary leak (ARDS)
- Often requires mechanical ventilation
- Neurological
  - Usually confusion
  - May develop focal deficits
- Petechiae



James Heilman, MD/Wikipedia



# Amniotic Fluid Embolism

- During labor or shortly after
- Amniotic fluid, fetal cells, fetal debris enter maternal circulation
- Inflammatory reaction
- Often fatal





Wikipedia/Public Domain

# Amniotic Fluid Embolism

- Phase I
  - Pulmonary artery vasospasm  $\rightarrow$  pulmonary hypertension
  - Right heart failure
  - Hypoxia
  - Myocardial capillary damage  $\rightarrow$  left heart failure
  - Pulmonary capillary damage  $\rightarrow$  ARDS
  - Acute respiratory distress syndrome
- Key features: respiratory distress, ↓O<sub>2</sub>, hypotension



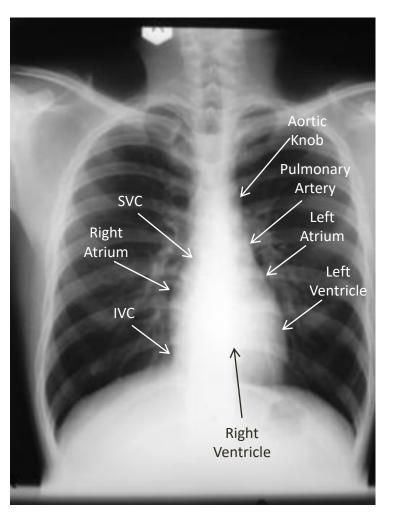
# Amniotic Fluid Embolism

- Phase II (hemorrhagic phase)
  - Massive hemorrhage
  - DIC
- Key feature: bleeding
- Seizures also often occur



# Chest X-rays

Jason Ryan, MD, MPH




# Chest X-ray

- Difficult to see different structures
- Many, many normal variants
- Many, many pathologic findings
- Reasonable goals:
  - Basic chest anatomy
  - Classic examples of pathology



#### **Chest Anatomy**



Boards&Beyond.

#### Pulmonary Edema







### Pulmonary Edema

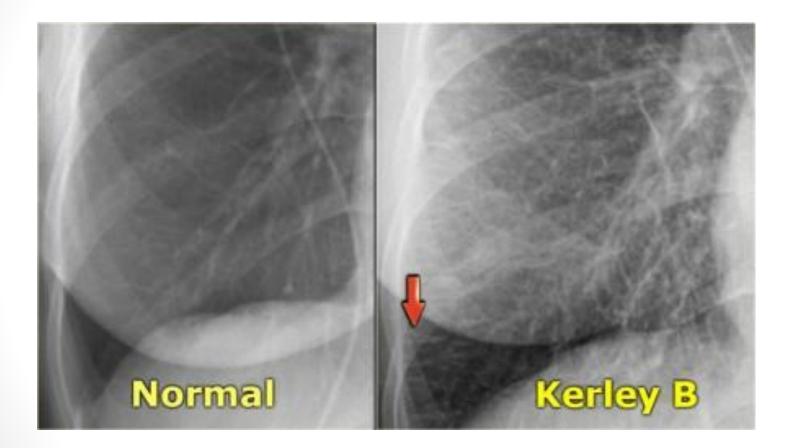
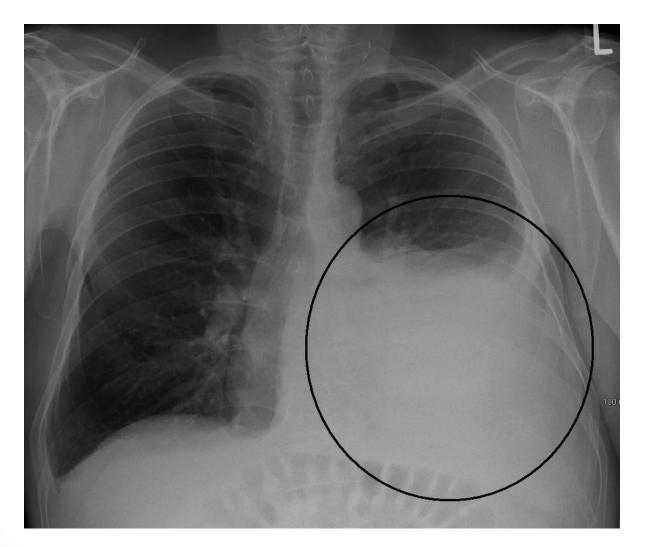
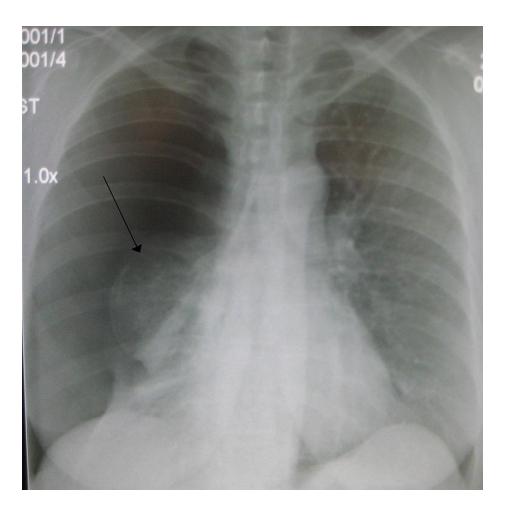


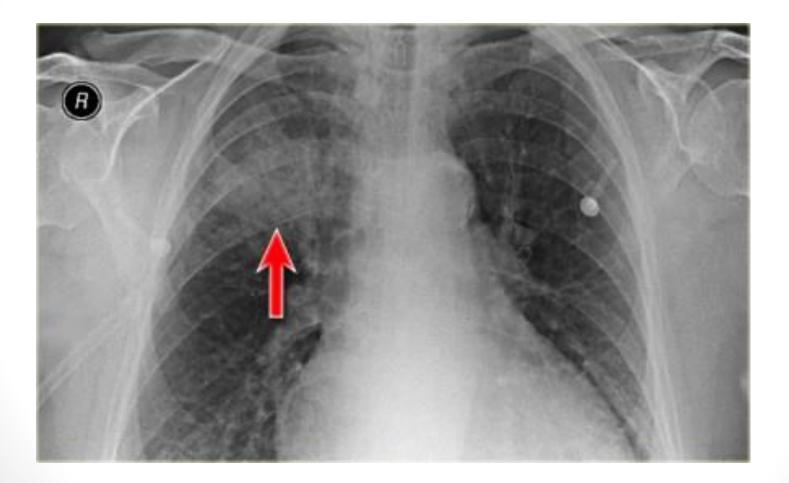



Image courtesy of Radiology Assistant

#### **Pleural Effusion**

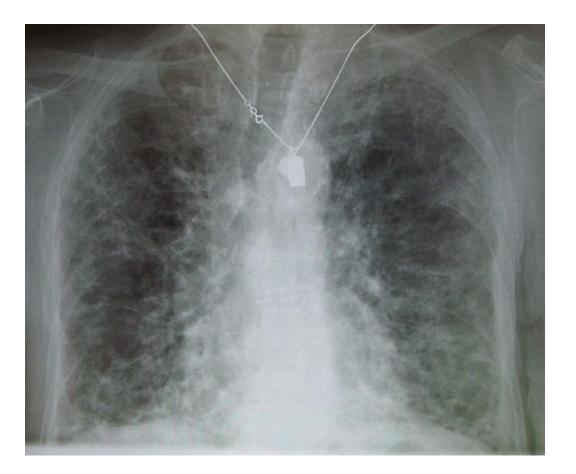







Image courtesy of James Heilman, MD

#### Pneumothorax






#### Lobar Pneumonia





#### **Interstitial Fibrosis**





#### Hilar Lymphadenopathy





# **Pulmonary Nodule**

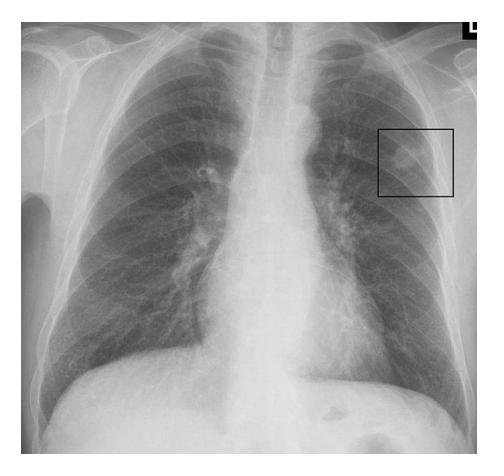





Image courtesy of Lange123