REGULATION OF THYROID HORMONES

OVERVIEW

- Thyroid hormones control metabolic activity; optimum level present at all times due to stringent feedback regulation.
- Triiodothyronine aka $T3 \rightarrow$ potent and active.
- Thyroxine aka $\mathbf{T4} \rightarrow \mathbf{less}$ potent than T3.

Feedback mechanisms involving the **hypothalamus** and **anterior pituitary gland** control the rate of thyroid secretion.

- Thyroid stimulating hormone (TSH) aka Thyrotropin released from ANTERIOR
 PITUITARY GLAND → thyroid follicular cells → thyroid hormones secretion
- TSH, a glycoprotein, mediates its actions via **cAMP** on thyroid follicular cells \rightarrow proteolysis of thyroglobulin (stored in these cells) \rightarrow T3 and T4 release.
- Other effects of TSH on thyroid gland:
 1) Increased activity of the iodide pump→ iodide trapping for hormone synthesis
 - 2) Increased **iodination of tyrosine** to form the thyroid hormones
 - 3) Increased gland size and vascularity

TSH—Thyroid stimulating hormone; TRH—Thyrotropin releasing hormone; T_3 —Triiodothyronine; T_4 —Thyroxine.

(a) Thyroid follicles

© 2011 Pearson Education. Inc.

- Anterior Pituitary secretion of TSH is regulated by Thyrotropin releasing hormone (TRH) from the Hypothalamus.
- TRH, synthesized by neurons in **paraventricular nucleus** (PVN) of hypothalamus.
- TRH → anterior pituitary gland via phospholipase c → secretes
 TSH → thyroid follicular cells → release thyroid hormones

TSH—Thyroid stimulating hormone; TRH—Thyrotropin releasing hormone; T_3 —Triiodothyronine; T_4 —Thyroxine.

Figure 77-7 Regulation of thyroid secretion. T₃, triiodothyronine; T₄, thyroxine.

EFFECTS OF COLD AND OTHER NEUROGENIC STIMULI ON TRH AND TSH SECRETION

- Cold exposure → increase TRH and TSH secretion; person moving to colder climates (e.g. Arctic) will have increased BMR.
- Prolonged fasting -> reduces plasma leptin (satiety hormone) levels
- Decreased levels of leptin may also directly inhibit **TRH neurons**.
- Together these effects reduce expression of TRH, TSH, and thyroid hormone secretion → reduced metabolic rate and conservation of energy when food supplies are scarce.
- Excitement and anxiety →sympathetic nervous system stimulation → acute decrease in secretion of TSH because these states increase the metabolic rate and body heat and therefore exert an inverse effect on the heat control center.

Thyroid hormones exert a negative feedback effect on TRH and TSH secretion.

thyroxine.

ANTITHYROID SUBSTANCES SUPPRESS THYROID SECRETION

- The same active pump that transports iodide ions into the thyroid cells (sodium iodide symporter; NIS) can also pump thiocyanate ions, perchlorate ions, and nitrate ions.
- Administration of one of these ions \rightarrow competes with iodide ion for this pump \rightarrow no iodide is pumped into the cell \rightarrow no thyroid hormone synthesis.

ANTITHYROID SUBSTANCES SUPPRESS THYROID SECRETION

EFFECT OF EXCESS IODIDE

- Iodides in High Concentrations Decrease Thyroid Activity and Thyroid Gland Size and its blood supply
- Given 2-3 weeks before thyroid surgery to decrease size of thyroid gland and minimize bleeding during surgery.
- Nuclear accidents: Give lodide to inhibit radiation induced damage to thyroid gland and thyroid cancer → iodide competes with the radioactive iodine. Chernobyl??

JARED HARRIS STELLAN SKARSGÄRD EMILY WATSON

A 5 PART MINI SERIES CHERNOBYL

WHAT IS THE COST OF LIES?

THANK YOU