Embryonic Genes

Jason Ryan, MD, MPH

Embryonic Genes

- Sonic Hedgehog
- FGF
- Wnt-7a
- Homeobox (Hox) genes

Patterning

- Development of body pattern
 - Head, arms, legs

Ed Uthman/Wikipedia

Sonic Hedgehog Gene

SHH Gene

- Makes Sonic Hedgehog protein
- Embryonic signaling protein
- Many embryonic roles: limbs, brain, eyes
- Key roles:
 - CNS development
 - Limb development

Chris Dorward/Flikr

Sonic Hedgehog Gene

CNS Development

- Formation forebrain
- Signaling separates right and left brain
- Establishes midline
- Mutations: Holoprosencephaly
 - Holo = "whole"
 - Prosencephalon = forebrain

Gaudete/Wikipedia

Regional Brain Development

OpenStax College

Holoprosencephaly

- Failure of cleavage of prosencephalon
- Left/right hemispheres fail to separate
- Single-lobed brain
 - No left/right hemispheres
- Facial abnormalities
 - Cleft lip/palate
 - Cyclopia

Limb Development

- Limb "patterning"
- Limbs develop along three planes

Ed Uthman/Wikipedia

Limb Development

- Proximal to distal
 - Humerus \rightarrow radius \rightarrow wrist
- Dorsal-ventral axis
 - Dorsal: Extensors
 - Ventral: Flexors
- Anterior-posterior axis
 - Anterior: towards head
 - Radius and thumb
 - Ulna fingers

Limb Development

Apical Ectodermal Ridge

- Critical for proximal to distal development
- Ectoderm overlying mesoderm
- Area of limb bud formation
- Removal: Limb stops growing

Apical Ectodermal Ridge

- Influences underlying mesodermal growth
 - "Progress zone" forms in mesoderm with growing cells
 - Mesoderm also influences ectodermal ridge
- Key transcription factor: Fibroblast Growth Factor
 - From expression of FGF gene
- Ridge removed, replaced with FGF: Normal growth

Dorsal-Ventral Development

- Flexors/extensors
- Depends on multiple genes
 - Radial fringe (dorsal)
 - Engrailed1 (ventral)
 - SER2 (border)

Dorsal-Ventral Development

- Wnt-7a key for dorsal development
 - Activates LMX-1 gene in mesoderm
 - "Dorsalizes" mesoderm

Boards&Beyond

- Gene deletion: Two ventral sides to limb
- Mouse embryos: sole on both surfaces of paws
- Ventral side: Engrailed1 represses Wnt-7

Wnt Genes

- Family of genes
- Originally described in Drosophila
 - Winged integration gene
- Found in many species including humans
- Early embryo: regulators of **dorsal-ventral axis**
- Later embryogenesis: anteroposterior axis

Hikasa H and Sokol S. **Wnt Signaling in Vertebrate Axis Specification.** Cold Spring Harb Perspect Biol. 2013 Jan (5(1)

AP Development

Anterior-Posterior

- Depends on zone of polarizing activity
- Posterior limb (near little finger)
- Influences AER
- Major signaling molecule: SHH
 - Sonic Hedgehog protein

Gaudete/Wikipedia

Homeobox Genes

HOX Genes

- Code for transcription factors
- Regulators of AP axis development
- Homeotic genes
 - Homeosis = transformation of one structure into another
 - Homeotic genes = lead to formation of body segments
 - Mutation \rightarrow abnormal body part formation
- All homeotic genes have same sequences ~180 bases
 - Called the Homeobox (part of gene)

Homeobox Genes

HOX Genes

Boards&Beyond

- Family of genes: HOXA1, HOXB1, HOXD1, etc.
- Rare mutations of some HOX genes described
 - Most result in abnormal limb formations
 - Fruit flies: legs grow from head instead of antenna!
 - Polydactyly (extra fingers/toes)
 - Syndactyly (fused fingers/toes)

ikkyu2 /Wikipedia

Pschemp/Wikipedia

Embryonic Genes

Summary

- Sonic Hedgehog
 - Hemispheres of brain \rightarrow holoprosencephaly
 - Limb AP axis: zone of polarizing activity \rightarrow AER
- FGF
 - Limb proximal-distal axis \rightarrow apical epidermal ridge
- Wnt-7a
 - Limb dorsal-ventral axis \rightarrow "dorsalizes" limb
- Homeobox (Hox) genes
 - Limb AP axis
 - Mutation \rightarrow abnormal digits/toes

Embryogenesis

Jason Ryan, MD, MPH

Fertilization

- Haploid mature **spermatozoon** (1N, 1C)
- Haploid ovum (1N, 1C)
- Forms zygote (2N, 2C)

Wikipedia/Public Domain

DNA Synthesis

- Maternal/paternal DNA in "pronucleus"
- 2N, 2C \rightarrow DNA synthesis \rightarrow chromatids \rightarrow 2N, 4C
- Zygote divides into two cells (2N, 2C)

Boards&Beyond.

Wikipedia/Public Domain

Cleavage

Fetal Development

• Two cell stage: first **1-2 days** after fertilization

Morula

- Cells continue to divide
- Morula = ball of cells

Blastulation

- Formation of **blastula** from morula
- Blastula contains fluid cavity called blastocoel

Blastulation

- In humans, blastula called blastocyst
- Outer cells: trophoblast
 - Polarized: one side different from other
 - Watery fluid of blastocoel secreted by trophoblast cells
- Inner cell mass (apolar)

Boards&Bey

- Give rise to all tissues of body
- Embryonic stem cells derived from inner cell mass

Blastocyst

Wikipedia/Public Domain

Implantation

- Blastocyst implants in uterus about day 6-10
- β-hCG secretion begins

Gastrulation

- Blastula \rightarrow 3 layered structure called **gastrula**
- Three germ layers
 - Ectoderm
 - Mesoderm
 - Endoderm

Gastrulation

- Inner cell mass \rightarrow bilaminar disc
- Two cell layers separated by basement membrane
- **Epiblast** and hypoblast

Wikimedia Commons

Primitive Streak

- Formed by invagination of epiblast cells
- Creates a visible line ("streak") in blastocyst
- Presence indicates start of gastrulation

Wikipedia/Public Domain

Zephyris/Wikipedia

Gastrulation

- Epiblast \rightarrow three germ layers
 - Ectoderm, endoderm, mesoderm

Zephyris/Wikipedia

Wikimedia Commons

Germ Layers

Jason Ryan, MD, MPH

Gastrulation

- Formation of gastrula
- Contains three germ layers
 - Ectoderm
 - Mesoderm
 - Endoderm

Ectoderm

- Epidermis
- Nervous system

Pixabay/Public Domain

Quasar Jarosz/Wikimedia

Nervous System Development

Boards&Beyond.

Nervous System Development

- Notochord arises in mesoderm
 - Adult remnant: nucleus pulposus of spine
- Induces overlying ectoderm → neural plate
- Neural plate folds → neural tube

Boards&Beyond

Debivort/Wikipedia

Nervous System Development

Neural tube: CNS

- CNS neurons, oligodendrocytes, astrocytes
- Retina
- Spinal cord

Neural crest: PNS

- Cranial nerves
- Dorsal root ganglia
- Autonomic ganglia
- Schwann cells
- Meninges
- Microglia (phagocytes): Mesoderm

Endoderm

- **GI epithelium** and derivatives
- Liver, gallbladder, pancreas
- Alveoli, epithelium of trachea/bronchi
 - Airway cartilage from mesoderm

Wikipedia/Public Domain

Patrick J. Lynch/Creative Commons

Mesoderm

- Muscle, bone, connective tissue
- Cardiovascular structures
- Kidneys
- Lymphatics
- Blood

Wikimedia Commons

Mesoderm

- Many congenital defects in mesoderm derivatives
- Congenital heart defects
- Limb deformities
- Renal defects

Mesenchyme

- Embryonic connective tissue
 - Not found in adults except for mesenchymal stem cells
- Mostly derives from mesoderm
- Cells surrounded by proteins and fluid
- Gives rise to most connective tissue
 - Bones, cartilage, lymphatic and circulatory systems
- Mesenchymal tumors = sarcomas

- First 8 weeks after fertilization
- Organogenesis occurs
- Must vulnerable period to teratogens
- Followed by fetal period
 - Most adult structure established
 - Organs/structures grow

Heart Development

- Week 4
 - Heart begins beating
- Week 6
 - Transvaginal ultrasound detects fetal heart movement

Limbs

- Week 4
 - Limbs form
- Week 8
 - Baby begins moving

Genitalia

- Week 10
 - Prior to week 10 genitalia look similar for males/females
 - SRY gene (Y chromosome) \rightarrow penis development
 - Lack of SRY gene \rightarrow clitoris development
- Ultrasound identification of gender
 - Usually week 15 to 20

Pituitary Gland

- Anterior pituitary (adenohypophysis)
 - From Rathke's pouch of ectoderm
 - Outpouching of upper mouth
- Posterior pituitary (neurohypophysis)
 - From **neural tube**

Boards&Beyond.

Wikipedia/Public Domain

Adrenal Gland

- Cortex: Mesoderm
 - Aldosterone, cortisol, androgens
- Medulla: Neural crest
 - Epinephrine, norepinephrine

OpenStax College/Wikipedia

Jason Ryan, MD, MPH

Morphogenesis

Process of embryo taking shape

Intrinsic

- Failure of embryo to develop
- Abnormal genes or other internal processes
- Agenesis, Aplasia, Hypoplasia, Malformation

• Extrinsic

- External force impacts normal development
- Disruption, Deformation

Intrinsic Errors

Agenesis

- Missing organ caused by missing embryonic tissue
- Renal agenesis

Intrinsic Errors

• Aplasia

- Missing organ due to growth failure of embryonic tissue
- Thymic aplasia (DiGeorge syndrome)

Wikipedia/Public Domain

Intrinsic Errors

• Hypoplasia

- Incomplete organ development
- Microcephaly

Marie Sogaard et al/Wikipedia

Intrinsic Errors

- Malformation
- Abnormal development of structure
- Neural tube defects
- Cleft lip or palate
- Congenital heart defects

Extrinsic Errors

Disruption

- Normal tissue growth arrested due to external force
- Classic example: amniotic band syndrome
 - Fetal structures entrapped by fibrous bands in utero
 - Often involves limbs or digits

Wikipedia/Public Domain

Extrinsic Errors

Deformation

- External force leads to abnormal growth (not arrest)
- Deforms or misshapes structure
- Classic example: Potter's syndrome

Potter's Syndrome

- Fetus exposed to absent or ↓ amniotic fluid
- Amniotic fluid = fetal urine
- Severe **renal malfunction** = ↓ amniotic fluid
- Loss of fetal cushioning to external forces

Potter's Syndrome

- External compression of the fetus
 - Abnormal face/limb formation
- Alteration in lung liquid content
 - Abnormal lung formation
- Also called Potter's sequence

Teratogens I

Jason Ryan, MD, MPH

Teratogens

- Substances that cause abnormal fetal development
- Common effects:
 - Fetal loss
 - Growth restriction
 - Birth defects
 - Impaired neurologic function

Teratogens

- Many mechanisms:
 - Cell death/apoptosis
 - Disrupted metabolism
 - Disrupted cell growth/proliferation
- Greatest risk of fetal exposure 1st trimester
 - Embryonic period
 - Formation of organs

Teratogen Timing

- First two weeks
 - "All or none" period
 - Spontaneous abortion or no effect
- Weeks 2-8
 - Organogenesis
 - Structural defects
- After week 8
 - Decreased growth
 - Central nervous system dysfunction
 - Usually no birth defects

Teratogens

• Drugs

- Substances of abuse
 - Alcohol, cocaine, smoking
- Radiation
- Chemicals (mercury)
- Maternal illness
 - Diabetes
 - Phenylketonuria (PKU)
- Infectious agents
 - TORCH: Toxoplasmosis, Other, Rubella, CMV, Herpes

Drug Testing

- Animals
 - FDA requires all drugs be tested in animal models
 - Often rodents (rats)
- Case reports

Pixabay/Public Domain

Drug Categories

- FDA labels drugs during pregnancy in categories
- Category A: no risk to fetus in human studies
- Category B: no risk to fetus in other studies
- Category C: risk cannot be ruled out
- Category D: positive evidence of risk
- Category X: contraindicated in pregnancy
 - Drugs known to be teratogenic in animals and humans
 - Risks clearly outweigh benefits

ACE Inhibitors and ARBs

- Pregnancy class D
- 1st trimester: numerous congenital malformations
- 2nd/3rd trimester: Oligohydramnios
 - Decreased fetal kidney function
 - Fetal renal failure
 - Can lead to Potter's syndrome
 - Pulmonary hypoplasia, limb/skeletal deformities

Seizure Drugs

- Women with epilepsy may require drugs in pregnancy
- All anti-seizure drugs may affect fetus
 - Neural tube defects
 - Congenital heart disease
 - Cleft palate
 - Short fingers
 - Abnormal facial features

Seizure Drugs

- High risk drugs
 - Valproic acid (11 neural tube defects)
 - Phenytoin
 - Phenobarbital
 - Carbamazepine
- Many anti-seizure drugs associated with \downarrow folic acid
- \downarrow folic acid \rightarrow neural tube defects
- High dose folic acid supplementation

Fetal Hydantoin Syndrome

- Associated with **phenytoin** use in pregnancy
- Growth deficiency
- Abnormal facial features
 - Broad, short nose
 - Wide-spaced eyes
 - Malformed ears
 - Microcephaly
 - Classically cleft lip and cleft palate

Chemotherapy

- Rarely women develop malignancy while pregnant
 - Hodgkin lymphoma
- Ideally chemotherapy deferred
 - After birth
 - 2nd/3rd trimester
- Fetal malformations 15% with therapy in 1st trimester

Chemotherapy

- Highest risk: alkylating agents and antimetabolites
- Adverse effects on fetus:
 - Spontaneous abortion
 - Missing digits
 - Many other fetal abnormalities

Aurélie & Sylvain Mulard/Wikipedia

Isotretinoin

- Derivative of vitamin A
- Used to treat acne
- Pregnancy class X
- Spontaneous abortions (~20%)
- "Embryopathy": 20-30% of live births
 - Abnormal facial features (low ears, wide-spaced eyes)
 - Congenital heart disease
 - Hydrocephalus
- Birth control mandatory

Wikipedia/Public Domain

Vitamin A Excess

- Teratogenic in first trimester
- Spontaneous abortions
- Microcephaly
- Cardiac anomalies
- Occurs at doses several times RDA

Vitamin A

Methotrexate

- Inhibits folate metabolism
- Used as anti-inflammatory
- Pregnancy class X
 - Used to induce abortion in ectopic pregnancy
- May cause **neural tube defects**

Methotrexate

Aminopterin/methotrexate embryopathy

- Neural tube defects
- Abnormal skull/face shape
- Cleft palate
- Hydrocephalus
- Limb anomalies

Boards&Beyond.

Warfarin

- Anticoagulant
- Pregnancy class D

- Optic atrophy (vision loss)
- Warfarin Embryopathy
 - Bone and cartilage abnormalities
 - Stippled epiphyses: small, round densities on X-ray
 - Nasal hypoplasia
 - Limb hypoplasia

Behrang Amini, MD/PhD

Methimazole

- Treatment for hyperthyroidism
- Pregnancy class D

Wikipedia/Public Domain

- May cause fetal and neonatal hypothyroidism
- Aplasia cutis: absence of epidermis on scalp
 - Solitary defect on scalp ~70% of cases
 - Missing patch skin/hair
- Propylthiouracil (PTU) used in 1st trimester

Lithium

- Used in psychiatric disorders
- Pregnancy class D
- Teratogenic effects primarily involve heart
- Ebstein's anomaly most common

Antibiotics

- Aminoglycosides
 - Reports of permanent deafness in fetus
- Tetracycline
 - Accumulate in fetal teeth and long bones
 - May permanently discolor fetal teeth
- Fluoroquinolones
 - Fetal cartilage damage

Antibiotics

- Trimethoprim
 - May disrupt folate metabolism in fetus \rightarrow neural tube defects
- Sulfonamides
 - Displace bilirubin from albumin
 - Can cause kernicterus

Thalidomide

- Pregnancy class X
- Rarely used for treatment of multiple myeloma
- Used in 1950s as sedative in pregnancy
- Limb deformities
 - Amelia: absence of limb
 - Micromelia: short limbs
 - Phocomelia: abnormal limb

Wikipedia/Public Domain

Diethylstilbestrol

- Nonsteroidal estrogen
- Used to prevent miscarriage, premature birth
- Removed from US market 1971
- Slightly increased risk of breast cancer for mothers
- Female babies: Reproductive tract abnormalities

Pixabay/Public Domain

Diethylstilbestrol

- Hypoplastic uterus
- Cervical hypoplasia
- Vaginal adenosis
 - Metaplasia of cervical or endometrial epithelium in vagina
 - Persistent Müllerian tissue after birth
- Vaginal clear cell adenocarcinoma
- High rate of infertility

Teratogens II

Jason Ryan, MD, MPH

Teratogens

- Drugs
- Substances of abuse
 - Alcohol, cocaine, smoking
- Radiation
- Chemicals (mercury)
- Maternal illness
 - Diabetes
 - Phenylketonuria (PKU)
- Infectious agents
 - TORCH: **T**oxoplasmosis, **O**ther, **R**ubella, **C**MV, **H**erpes

- Neurotoxin
 - Multiple mechanisms: Cell death, failure of cell migration
- May cause fetal alcohol syndrome (FAS)
 - Characteristic facial features
 - Congenital heart defects
 - Skeletal anomalies
 - Intellectual disability

Facial Features

- Smooth philtrum
 - Groove from base of nose to upper lip
- Short palpebral fissures
 - Small opening of eyes
- Thin vermillion border
 - Upper lip

Teresa Kellerman/Wikipedia

Heart Defects

Congenital heart defects

- Atrial septal defect
- Ventricular septal defect
- Tetralogy of Fallot

Growth/Skeletal

- Below average height, weight
- Limb defects
 - Finger contractions
 - Congenital hip dislocations

RobinH

CNS

- Structural defects
 - Microcephaly
 - Small corpus callosum, cerebellum, basal ganglia
- Abnormal reflexes
- Hypotonia
- Cranial nerve deficits
- Intellectual impairment (reduced IQ)

First trimester

- Facial abnormalities
- Brain abnormalities
- Congenital heart disease

Third trimester

- Mostly affects size of baby, brain growth
- Intellectual impairment:
 - May occur without facial or brain anomalies

Smoking

- Two toxins: Nicotine and carbon monoxide
- Impaired oxygen delivery to the fetus
 - Nicotine-induced vasoconstriction → ↓ placental blood flow
 - CO competes with O2 $\rightarrow \downarrow$ **oxyhemoglobin**

Pixabay/Public Domain

Smoking

IUGR/Low birthweight

- 20% cases associated with smoking
- Placental anomalies
 - Abruption
 - Previa
 - Premature rupture of membranes
- Preterm labor
- Well-documented association with SIDS

Pixabay/Public Domain

Cocaine

- Vasoconstriction
- IUGR/low birthweight
- Placental abruption
- Preterm birth
- Miscarriage

Valerie Everett/Flikr

Mercury

- Methylmercury found in fish/seafood
 - Not removed by cooking
 - Highest levels: swordfish, shark, tilefish, Mackerel King
- Fetal brain highly sensitive to mercury
 - Mother not usually affected
- Delayed milestones

Boards&Beyond

• Rarely blindness, deafness, or cerebral palsy

Wikipedia

CH₃ - Hg Methylmercury

No evidence of harm at small doses

- Higher dosages 8-15 weeks may cause:
 - Intellectual disability
 - Microcephaly
 - Growth restriction
- Lead shielding used to protect fetus

Ted Eytan/Wikipedia

Nevit Dilmen/Wikipedia

- Multiple effects on fetus:
 - Increased growth
 - Blood sugar alterations
 - Congenital heart disease
 - CNS disorders
- Adverse effects related to severity of diabetes

- Macrosomia (large baby)
 - Baby born large for gestational age
 - Weight >90th percentile is common
 - Babies often >9lbs at birth
- Can lead to birth injury
 - Shoulder dystocia (shoulders cannot pass through birth canal)

Paul/Flikr

Neonatal Hypoglycemia

- Baby makes excess insulin ("hyperinsulinemic state")
- Blood glucose levels below 40 mg/dL
- Transient: usually the first 24 hours of life
- Close glucose monitoring after delivery is essential

- Congenital heart defects: 3-9% of babies
- Transposition of the great arteries (TGA)
- Ventricular septal defects (VSDs)
- Truncus arteriosus
- Tricuspid atresia
- Patent ductus arteriosus (PDA)

Wikipedia/Public Domain

Caudal Regression Syndrome

Sacral Agenesis

- Classically associated with maternal diabetes
 - Usually children of insulin-dependent mothers
- Incomplete development of sacrum
- May include sirenomelia
 - "Mermaid syndrome"
 - Fusion of legs
- Often includes a neural tube defect

Caudal Regression Syndrome

Sacral Agenesis

Stanislav Kozlovskiy/Wikipedia

H. Aslan et a. Prenatal diagnosis of Caudal Regression Syndrome: a case report. BMC Pregnancy and Childbirth. 1, 8. 2001.

Phenylketonuria

- Maternal PKU
 - Occurs in women with PKU who consume phenylalanine
- High levels of phenylalanine acts as a teratogen
- Serum phenylalanine monitored in pregnancy
- Dietary restriction of phenylalanine essential

Phenylketonuria

- IUGR
- Microcephaly
- Intellectual disability (mental retardation)
- Congenital heart defects
 - Coarctation of the aorta
 - Hypoplastic left heart syndrome

Pharyngeal Arches

Jason Ryan, MD, MPH

- Embryonic structure
- Key for development of head and neck

Terminology

- *Branchia*: Greek word for gills
- "Branchial": relating to gills
- Humans: similar embryonic structures
- Branchial or pharyngeal

- Three components
- Pharyngeal arches
- Pharyngeal clefts
- Pharyngeal pouches

Boards&Beyond.

Loki austanfell/Wikipedia

Pharyngeal Arches

- Core of **mesenchyme** (connective tissue)
 - Gives rise to cartilage/bone and muscles
- Neural crest cells migrate to center
 - Gives rise to cranial nerves
- Artery \rightarrow forms aortic arches

First Pharyngeal Arch

Bones

- "Maxillary process"
 - Maxilla
 - Zygomatic bone
- "Mandibular process"
 - Mandible
 - Meckel's cartilage → incus and malleus

Maxilla and Mandible

First Pharyngeal Arch

Muscles

Muscles of mastication

- Temporalis, masseter, pterygoids
- Anterior digastric
- Mylohyoid
- Tensor tympani (ear)

Pterygoids

Mylohyoid

Temporalis

Masseter

Digastric

First Pharyngeal Arch

Trigeminal Nerve

- Trigeminal mandibular and maxillary divisions
- Sensory to face
- Motor: muscles of mastication

First Pharyngeal Arch

Portion of maxillary artery

Bones

- "Reichert's cartilage"
- Stapes (ear)
- Styloid process of temporal bone
- Lesser horn of hyoid

Bones

Muscles

- Stapedius (ear)
- Auricular muscles (ear)
- Stylohyoid
- Posterior digastric
- Muscles of facial expression

Stylohyoid m.

Nerve

• Facial nerve

Artery

- Stapedial artery
 - Embryonic vessel
 - Usually involutes in development
- Hyoid artery
 - Embryonic vessel
 - Develops into small branch of internal carotid

Cartilage/Bones

- Hyoid bone
 - Body and greater horn

Muscles

Stylopharyngeus

Glossopharyngeal nerve (IX)

Artery

- Common carotid
- Proximal internal carotid

- Fifth arch does not persist in humans
- 4th/6th: both innervated by **vagus nerve** branches
 - 4th: superior laryngeal
 - 6th: recurrent laryngeal

Jkwchui/Wikipedia

Cartilage

- Both arches fuse to form **larynx cartilage**
 - Thyroid
 - Cricoid
 - Arytenoid
 - Corniculate
 - Cuneiform

Inner Surface

Cuneiform cartilage

Insertion of

Cricoarytænoideus posterior

ARYTENOID

Olek Remesz/Wikipedia

Muscles

- Laryngeal muscles
- 4th Arch
 - Cricothyroid
 - Levator palatini
 - Pharyngeal constrictors
- 6th Arch
 - Intrinsic muscles of larynx
 - (except cricothyroid)

Olek Remesz/Wikipedia

Arteries

- 4th Arch
 - Left: aortic arch
 - Right: proximal right subclavian artery
- 6th Arch ("pulmonary arch")
 - Left: proximal pulmonary artery
 - Left: ductus arteriosus
 - Right: proximal pulmonary artery

Arteries

Pharyngeal Arches

Arch	Nerve	Structures
1 st	CNV (TG)	Maxilla/Mandible
2 nd	CN VII (Facial)	Hyoid
3 rd	CN IX (GP)	Hyoid
$4^{\text{th}} - 6^{\text{th}}$	CN X (Vagus)	Larynx

Aortic Arches

Boards&Beyond.

Treacher Collins Syndrome

- First and second arch syndrome
- Failure of neural crest cell migration
- Underdeveloped facial bones
 - Small mandible (mandibular hypoplasia)
 - Small jaw (micrognathia)
 - Absent/small ears

Boards&Beyond

- Glossoptosis (retraction of tongue)
- May lead to difficulty breathing
 - Underdeveloped lower jaw
 - Obstruction of airway by tongue

Tongue

- Anterior two thirds: 1st and 2nd arches
 - Lingual swellings and tuberculum impar
 - Sensation: CN V (1st arch)
 - Taste: CN VII (2nd arch)
- Posterior third: 3rd and 4th arches
 - Sensory: GP Nerve (IX) of 3rd arch
 - Some posterior taste via CN X (4th arch)
- Motor:
 - Hypoglossal (XII)
 - One exception: palatoglossus (CN X)

Gabymichel/Wikipedia

Cleft Lip and Palate

Jason Ryan, MD, MPH

Cleft Lip and Palate

- Cleft lip: most common craniofacial malformation
- Often occurs with cleft palate
- Multifactorial etiology
 - Environmental, genetic

James Heilman, MD /Wikipedia

Cleft Lip

- Primary palate (front of palate)
- Formed by **fusion** of structures
- Nasal prominences fuse: form philtrum
- Maxillary prominences from 1st pharyngeal arch
- Fuse with medial nasal prominences to form 1° palate
- Failure of this process leads to cleft lip

Cleft Lip

Cleft Lip

Unilateral incomplete

Unilateral complete

Bilateral complete

Cleft Palate

- Secondary palate (back of palate)
- Lateral structures: palatal shelves (processes)
- Fusion to form 2° palate
- Failure leads to cleft palate

Cleft Palate

Incomplete cleft palate

Unilateral complete lip and palate

Bilateral complete lip and palate

Wikipedia/Public Domain

Pharyngeal Pouches and Clefts

Jason Ryan, MD, MPH

Pharyngeal Apparatus

- Three components
- Pharyngeal arches
- Pharyngeal clefts
- Pharyngeal pouches

Pharyngeal Apparatus

Boards&Beyond.

Wikipedia/Public Domain

Pharyngeal Apparatus

Loki austanfell/Wikipedia

Pharyngeal Pouches

- Four pharyngeal pouches
- Composed of endoderm

1st Pharyngeal Pouch

- Forms many portions of inner ear
- Eustachian tube
- Middle ear cavity
- Contributes to tympanic membrane

Chittka L, Brockmann/Wikipedia

2nd Pharyngeal Pouch

- Lining of **palatine tonsils** (back of throat)
- 2nd pouch forms buds
- Invaded by mesoderm
- Invaded by lymphatic tissue

3nd Pharyngeal Pouch

- Thymus (mediastinum)
- Left and right inferior parathyroid glands (neck)
- Forms two "wings"
 - Dorsal (back): Parathyroid
 - Ventral (front): Thymus

Busca tu equilibrio/Wikipedia

4th Pharyngeal Pouch

- Superior parathyroid glands
- Ultimobranchial body
 - Incorporates into thyroid gland
 - Forms C-cells (calcitonin)
 - Derived from neural crest cells
- Also forms two "wings"
 - Dorsal (back): Parathyroid
 - Ventral (front): Ultimobranchial body

Busca tu equilibrio/Wikipedia

DiGeorge Syndrome

Thymic Aplasia

- Failure of 3rd/4th pharyngeal pouch to form
- Most cases: 22q11 chromosomal deletion
- Abnormal thymus, parathyroid function
- Classic triad:
 - Loss of thymus (Loss of T-cells, recurrent infections)
 - Loss of parathyroid glands (hypocalcemia, tetany)
 - Congenital heart defects ("conotruncal")

Pharyngeal Clefts

- Four pharyngeal clefts
- Lined by ectoderm
- 1st cleft develops into external auditory meatus
 - Also contributes to tympanic membrane
- 2nd through 4th clefts form **cervical sinus**
 - Temporary cavity
 - Obliterates in development

Chittka L, Brockmann/Wikipedia

Branchial Cleft Cyst

Present as neck mass

- Location based on cleft of origin
- 2nd cleft cysts are most common
- Below angle of the mandible
- Anterior to sternocleidomastoid muscle
- Often noticed when become infected
- Fistula to skin may develop

Wikipedia/Public Domain

Branchial Cleft Cyst

- Often occur in children
- Mass does not move with swallowing
- Contrast with thyroglossal duct cyst
 - Midline neck mass
 - Moves with swallowing

Wikipedia/Public Domain

Genital Embryology

Jason Ryan, MD, MPH

Genital System

- Chromosomal sex determined at fertilization
 - XX (female) or XY (male)
- Later development:
 - Gonads (ovaries/testes)
 - Internal genitalia
 - External genitalia

Wikipedia/Public Domain

Gonads

Testis/Ovaries

- Gonadal ridges form about 7 weeks
- Derived from mesenchyme (mostly mesoderm)
- Germ cells derived from epiblast
- Invade gonadal ridges
- Failure to reach ridges : gonads do not develop
- Male/female gonads initially identical
 - "Indifferent gonad"

Testis

- SRY gene (Y chromosome)
- Codes for testis determining factor
- Forms Sertoli and Leydig cells
- Leydig cells produce testosterone
- Testosterone \rightarrow male development
- Medullary (testis) cords form
- Expand out of testis \rightarrow connect to genital ducts

Wikipedia/Public Domain

Ovary

- Medullary cords regress
- Cortical cords develop \rightarrow form clusters
- Surround germ cells
- Oogonia and follicular cells form primordial follicles

- Two pairs of genital ducts in embryo
 - Mesonephric (wolffian)
 - Paramesonephric (müllerian)
- Mesonephros: interim kidney 1st trimester
 - Associated duct: mesonephric duct
 - Paramesonephric duct: formed near mesonpehric duct

- Develop into internal genital tracts
 - Male: epididymis, vas deferens, seminal vesicles
 - Female: fallopian tubes, uterus, upper vagina

Tsaitgaist/Wikipedia

Miraceti/Wikipedia

Male

- Sertoli cells: Müllerian inhibitory factor (MIF)
 - Suppress development of paramesonephric ducts
 - Male remnant: appendix testis (tissue at upper testis)
- Leydig cells: Androgens
 - Stimulate development of mesonephric ducts

Male

- Mesonephric ducts elongate to form:
 - Epididymis
 - Ductus (vas) deferens
 - Seminal vesicles
 - Ejaculatory ducts

Male

• Epididymis

- Duct behind testis
- Transport sperm from seminiferous tubules to vas deferens

Ductus deferens (vas deferens)

Transport sperm from epididymis to ejaculatory ducts

Male

Seminal vesicles

- Glands behind bladder
- Secrete about 75% of fluid in semen
- Connect with ejaculatory ducts

• Ejaculatory ducts

- Collect sperm/fluid from seminal vesicles and vas deferens
- Pass through prostate
- Connect to urethra

Male Genitalia

Tsaitgaist/Wikipedia

Female

- Paramesonephric ducts form internal structures
 - Only occurs in absence of MIF and androgens
- Fallopian tubes
- Uterus
- Upper 2/3 vagina

Female Genitalia

Miraceti/Wikipedia

Gartner's Duct

- Wolffian/mesonephric remnant in females
- Found on vaginal walls
- May form cyst

Teixeira, J., Rueda, B.R., and Pru, J.K., Uterine Stem cells (September 30, 2008), StemBook, ed. The Stem Cell Research Community, StemBook, doi/10.3824/stembook.1.16.1,

Urogenital Sinus

- Cloaca divides
 - Forms urogenital sinus and anal canal
- Urogenital sinus forms male/female structures

Urogenital Sinus

- Males
 - Upper portion: bladder
 - Pelvic (middle) portion: prostate and prostatic urethra
 - Phallic portion: penile urethra
- Females
 - Upper portion: bladder
 - Pelvic portion: Inferior vagina
 - Connects with paramesonephric ducts

Uterine Anomalies

- "Lateral fusion defects" most common
 - Failed fusion of two sides of uterus
- May cause infertility, pregnancy loss

Uterine Anomalies

- Most common: septate uterus
 - Septum divides uterus
 - Two endometrial cavities
 - Defect in resorption of septum between Müllerian ducts
- Treatment: septoplasty

Uterine Anomalies

- Bicornuate: Fundus is indented
 - Partial fusion of the Müllerian ducts
- Unicornuate: Uterus connects to one ovary
 - Other ovary not connected to uterus
- Uterine didelphys (double uterus)
 - Müllerian ducts fail to fuse

Hysterosalpingography

Jemsweb/Wikipedia

External Genitalia

- Begins with indifferent stage
- Four key structures
 - Genital tubercle
 - Urogenital sinus (from cloaca)
 - Urogenital folds (from cloaca)
 - Labioscrotal (genital) swellings

External Genitalia

Male

- Genital tubercle elongates \rightarrow phallus
- Urogenital folds close \rightarrow penile urethra
- Urogenital sinus \rightarrow glands
 - Prostate gland
 - Bulbourethral glands (of Cowper)
- Labioscrotal swelling \rightarrow scrotum

Hypospadia

- Congenital anomaly of male urethra
- Ventral opening of urethra
- Failure of urethral folds to close
- Cryptorchidism in ~10% of patients

Subcoronal

Midshaft

Penoscrotal

Wikipedia/Public Domain

Epispadia

- Urethral opening on dorsal side of penis
- Much less common than hypospadia
- Abnormal position/formation of genital tubercle
- Commonly occurs with bladder exstrophy

External Genitalia

Male

- Requires dihydrotestosterone
 - Testosterone \rightarrow DHT
 - Enzyme: **5α-reductase**
- 5α-reductase deficiency
 - Ambiguous genitalia until puberty
 - At puberty: ↑ testosterone

External Genitalia

Female

- Genital tubercle elongates \rightarrow clitoris
- Urogenital folds (no fusion) \rightarrow labia minora
- Urogenital sinus \rightarrow glands
 - Paraurethral glands (Skene)
 - Bartholin glands
- Labioscrotal swelling \rightarrow labia majora
- Requires estrogen >> androgen

Spermatogenesis and Oogenesis

Jason Ryan, MD, MPH

Gametogenesis

- Development of haploid gametes
 - Male and female sex cells
 - Sperm
 - Oocytes

Wikipedia/Public Domain

Primordial Germ Cells

- Common origins of spermatozoa and oocytes
- Derived from **epiblast cells**
- Migrate to reside among endoderm cells of yolk sac
- During 8th week: migrate to **genital ridge**

Spermatogenesis

Begins at puberty

- Sex cords in testes develop a lumen
- Become seminiferous tubules
- Spermatogenesis occurs in seminiferous tubules

Meiosis

- Diploid cells give rise to haploid cells (gametes)
- Unique to "germ cells"
 - Spermatocytes
 - Oocytes
- Chromosome content of cells:
 - 2n 2C (diploid)
 - 2n 4C (diploid)
 - 1n 2C (haploid)
 - 1n 1C (haploid)

Boards&Beyond.

Spermatogonia

- 2n 2C cells
- Derived from primordial germ cells
- Precursors of spermatozoa

Spermatogenesis

- 1° spermatocytes
 - 2n, 4C cells from spermatogonia
 - DNA synthesis completed
 - Starting meiosis I
- 2° spermatocytes
 - Meiosis I completed
 - Starting meiosis II
 - 1n, 2C cells

Spermatogenesis

- Spermatids
 - Haploid (1n 1C)

Undergo spermiogenesis

- Form spermatozoa (sperm)
- Singular: spermatozoon

Spermiogenesis

Formation of spermatozoa

- Formation of acrosome
 - Cap of sperm
 - Contains enzymes to assist in fertilization
- Condensation of nucleus
- Formation of neck and tail
- Shedding of most of cytoplasm

Sertoli Cells

- Line walls of seminiferous tubules
- Support and nourish developing spermatozoa
- Regulate spermatogenesis
- Stimulated by FSH
- Supported by Leydig cell testosterone (paracrine)
- Need **FSH and LH** for normal spermatogenesis

Sertoli Cells

Form blood-testis barrier

- Tight junctions between adjacent Sertoli cells
- Apical side (toward tubule): meiosis, spermiogenesis
- Basal side: spermatogonia cell division
- Isolates sperm; protection from autoimmune attack

Uwe Gille/Wikipedia

Seminiferous Tubules

Spermatogonia

- Germ cells
- Behind blood-testis barrier
- Separated from tubule by Sertoli cells

• Sertoli cells

- Line tubules
- Support/regulate spermatogenesis
- Form blood testis barrier

• Leydig cells

- Found in interstitium (between tubules)
- Secrete testosterone

Seminiferous Tubules

OpenStax College/Wikipedia

Oogenesis

- Primordial germ cells → oogonia (2n 2C)
- Oogonia divide in utero
- Oogonia \rightarrow 1° oocytes (2n 4C)
- Maximum number formed by 5th month in utero
 - About 7 million
- Surrounded by cells \rightarrow primordial follicle

Oogenesis

- Primary oocytes: diploid cells formed in utero
 - Beginning meiosis I
 - Arrested in prophase of meiosis I until puberty
- At puberty
 - Menstrual cycles begin
 - A few primary oocytes complete meiosis 1 each cycle
 - Some form polar bodies \rightarrow degenerate
 - Some form 2° oocytes

Oogenesis

- 2° oocytes (1n 2C)
 - Meiosis II begins \rightarrow arrests in metaphase
- No fertilization: oocyte degenerates
- Fertilization \rightarrow completion of meiosis II
- Forms ovum (1n 1C)

Placenta

Jason Ryan, MD, MPH

Placenta

Nutrient and gas exchange between mother/fetus

Wikipedia/Public Domain

Decidual Reaction

- Endometrium reaction at implantation
- Decidua = altered uterine lining during pregnancy
- Decidua basalis
 - Uterus at site of implantation
 - Interacts with trophoblast
- Decidua capsularis
 - Surrounds fetus
- Decidua parietalis
 - Opposite wall of uterus

Membranes

• Amnion

- Inner membrane that covers fetus
- Holds amniotic fluid
- Protects embryo

• Chorion

- Membrane that surrounds amnion/embryo
- Derived from trophoblast
- Supports fetus and amnion

Wikipedia/Public Domain

Wikimedia Commons

Placental Terminology

Basal plate

- Maternal side of placenta
- In contact with uterine wall
- Includes maternal decidua basalis

Chorionic plate

- Fetal side of placenta
- Chorion at placenta
- Gives rise to chorionic villi

Trophoblast

- Outer layer of blastocyst
- Develops into placenta

Blastocyst.png/Wikipedia

Trophoblast

- Proliferates into two cell layers
- Syncytiotrophoblast: outer layer
 - Invades endometrium
 - Finger-like projections: villi
 - Form lacunae (spaces) for maternal blood
- Cytotrophoblast: inner layer
 - Proliferates \rightarrow cells migrate into syncytiotrophoblast
 - Secretes proteolytic enzymes to aid invasion
- Chorionic villi: projections of both layers
 - Contact with maternal blood
 - Nutrient/gas exchange

Trophoblast

Chorionic Villi

- Outer layer: syncytiotrophoblast
- Inner layer: cytotrophoblast
- Contact area with maternal blood

BruceBlaus/Wikipedia

Chorionic Villi

- Fetal mesoderm invades villi
- Branches of umbilical artery/vein grow
- Eventually connects to umbilical cord

Boards&Beyond.

Placental Circulation

- Maternal side
 - Endometrial (spiral) art \rightarrow villous space \rightarrow endometrial vein
- Fetal side
 - Umbilical arteries (deoxygenated blood)
 - Umbilical arteries \rightarrow chorionic arteries \rightarrow capillaries
 - Capillaries \rightarrow umbilical vein (oxygenated blood)

Placental Barrier

- No mixing of maternal/fetal blood
- Oxygen and carbon dioxide diffuse
- Facilitated transport of glucose
- Active transport of amino acids
- IgG antibodies (not IgM)
- Some other nutrients, drugs, infectious agents

Umbilical Cord

- Connection between embryo and placenta
- Derives from fetus
- Contains umbilical arteries and veins
- Yolk sac
 - Cavity (sac) formed in early embryogenesis
- Allantois
 - Outpouching of hindgut

GI Embryology

Amniotic cavity

Allantois

Outpouching from wall of gut

- Walls form **umbilical blood vessels**
- Lumen occludes in development
- Becomes urachus
 - Fibrous remnant of allantois
 - Connects bladder to umbilicus

Umbilical Cord

Two umbilical arteries

Deoxygenated fetal blood to placenta

One umbilical vein

Oxygenated fetal blood from placenta

Johnlancer123/Wikipedia

Single Umbilical Artery

- Abnormal variant
- Often identified on prenatal ultrasound
- Associated with **fetal anomalies**
 - Aneuploidy
 - Congenital malformations

Umbilical Cord

Wharton jelly

- Contains mucopolysaccharides
- Similar to vitreous humor

Allantoic duct

- Connects fetal bladder to umbilical cord
- Obliterates in development
- Becomes urachus
- Duct sometimes seen in umbilical cord

Urachus

- Remnant of allantois
- Connection between bladder and umbilical cord
- In adult: median umbilical ligament
- May cause **adenocarcinoma** of bladder

Urachus Anomalies

- Patent urachus
 - Urine discharge from umbilicus
- Vesicourachal diverticulum
 - Diverticulum of bladder
- Urachal cyst
 - Partial obliteration
 - Fluid-filled cavity
 - May become infected

Immunology of Pregnancy

- Fetus: foreign antigens
 - Half of genes from father
 - HLA proteins differ from mother
- Protected from maternal immunity by placenta
- Several mechanisms
 - Trophoblast cells **do not express many MHC class I** antigens
 - Placenta secretions block immune response

Twins

Jason Ryan, MD, MPH

Twins

- One pregnancy: two babies
- Dizygotic twins
 - Two zygotes
 - Two separate ova fertilized by two separate sperm
 - Two siblings born from single pregnancy
 - "Fraternal twins"

Monozygotic twins

- One zygote divides in two
- One ova fertilized by one sperm
- "Identical twins"

Trlkly/Wikipedia

Twins

- Often one twin dies in utero
 - Resorption of fetus/embryo
 - Delivery of single baby
- More fetuses = shorter pregnancy
 - Single fetus ~ 40 weeks
 - Twins ~ 37 weeks
 - Triplets ~ 33 weeks

Dizygotic Twins

- Each baby has own amnion and chorion
- "Dichorionic diamniotic"
- Two separate placentas
- Common in mothers using IVF

Monozygotic Twins

- May have a single shared placenta
- Variable number of amnions, chorions
- Depends on when zygote divides

Kevin Dufendach/Wikipedia

Monozygotic Twins

- Days 1-3
 - May have two placentas
 - Dichorionic, diamniotic
- Days 4–8
 - Chorion already under development
 - Monochorionic diamniotic
- Days 9-12
 - Chorion and amnion already under development
 - Monochorionic monoamniotic
- Day 13+
 - Also monochorionic monoamniotic
 - May result in conjoined twins

Boards & Beyond.

Kevin Dufendach /Wikipedia

Twin Pregnancies

- Increased risk of maternal/fetal complications
- Fetus
 - Growth restriction
 - Congenital anomalies
 - Preterm delivery
- Maternal
 - Gestational hypertension/preeclampsia

Pregnancy

Jason Ryan, MD, MPH

Pregnancy Dating

- Embryonic age
 - Age dated to fertilization
- Gestational age
 - Age dated to last menstrual period
 - Embryonic age plus two weeks

Fertilization

- Occurs within 1 day of ovulation
- Usually occurs in the **ampulla of fallopian tube**

Implantation

- Occurs about 6 days after ovulation
- Syncytiotrophoblast secretes hCG

Human chorionic gonadotropin

- Similar structure to luteinizing hormone (LH)
 - Two glycoprotein subunits ("heterodimeric glycoprotein")
 - α and β subunits
 - LH and hCG: same α subunit
 - Also same α subunit in FSH and TSH
- Binds LH receptors in corpus luteum

Human chorionic gonadotropin

- Maintains corpus luteum
- Corpus luteum continues progesterone release
- Prevents menstruation
- Maintains pregnancy for first 10 weeks

Human chorionic gonadotropin

- Used to detect pregnancy
- Usually antibody based tests (ELISA variants)
- Detect β subunit of hCG

Human chorionic gonadotropin

- Serum tests
 - Most sensitive method for detecting hCG
 - Can detect very low levels 1-2mIU/mL
 - May be positive within 1 week of conception
- Urine tests
 - hCG threshold 20 to 50mIU/mL
 - May not be positive until 2 weeks or more

Pixabay/Public Domain

Syncytiotrophoblast

- Secretes hCG
- Begins progresterone synthesis about 10 weeks
- Placenta maintains pregnancy going forward

Human placental lactogen

Chorionic somatomammotropin

- Protein hormone
- Produced by syncytiotrophoblast
- Higher levels as placenta grows during pregnancy
- Blocks effects of insulin
 - Raises blood glucose level (good for baby)
 - Promotes breakdown of fatty acids by mother for fuel
 - Promotes breakdown of proteins for fuel

Diabetes in Pregnancy

- Pregnancy is an **insulin-resistant state**
- Decreased maternal response to insulin
- Diabetes mellitus
 - Worsened by pregnancy
- Gestational diabetes
 - Onset of diabetes during pregnancy
- Screening with serum glucose testing
 - Glycosuria occurs in normal pregnancy

Plasma Volume

- Total body volume expands
- Blood fills placenta
- Diverted from maternal circulation
- \uparrow renin \rightarrow salt/water retention

Red Cell Mass

- Red cell mass expands
- Increased maternal EPO
- Dilutional anemia
 - Rise in volume > rise in red cells
 - Result:↓Hct

Databese Center for Life Science (DBCLS)

Hemodynamics

Cardiac output rises

- Preload increased by rise in blood volume
- Afterload reduced due to fall in systemic vascular resistance
- Maternal heart rate rises slightly

Hemodynamics

Peripheral resistance falls

- Placenta is a low resistance system
- Also maternal vasodilation
- Blood pressure normally falls

$$R_{total} = R_1 + R_2$$

Supine Hypotension

- Occurs in later stages of pregnancy
- Large baby compresses IVC when lying flat
- Decreased venous return (preload)
- Fall in cardiac output
- Reflex tachycardia may produce symptoms

Public Domain

Coagulation

Pregnancy is a hypercoagulable state

- Probably evolved to protect against blood loss at delivery
- Many clotting factor levels change
- Increased fibrinogen
- Decreased protein S
- Fetus also obstructs venous return \rightarrow DVTs common

Physiologic Changes

Pulmonary

- Ventilation increases
 - More CO2 to exhale
 - Also hormone-induced
- Mostly due to increased tidal volumes
- Respiratory rate minimally changed

Labor

- Regular uterine contractions
- Progressive dilation of cervix
- Descent and expulsion of fetus
- Normally occurs at 40 weeks
- Preterm labor <37 weeks

Terbutaline/Ritodrine

- β -2 agonists \rightarrow \uparrow cAMP
- Relax uterine (smooth) muscle
- Inhibit contractions

Apgar Score

- Used to access newborn immediately after birth
- **10 point score** at 1 and 5 minutes after birth
- Value of 0, 1, or 2 for five categories:
 - Heart rate
 - Respiratory effort
 - Muscle tone
 - Reflex irritability
 - Skin color (pink, blue)
- 5-min score ≤3 associated with **neurologic damage**
 - Cerebral palsy

Pregnancy Termination

Mifepristone

- Anti-progesterone
- Blocks progesterone effects on uterus
- Prevents implantation

Misoprostol

- Synthetic prostaglandin E₁ analog
- Induces uterine contractions
- Combination: Medical abortion in >90% women
- NOTE: Methotrexate used only in ectopic pregnancy

Maternal-Fetal Disorders

Jason Ryan, MD, MPH

- Pregnancy outside the uterus
- 98% occur in fallopian tube
- Most commonly ampulla (mid portion)

Wikipedia/Public Domain

- Symptoms in 1st trimester
- Vaginal bleeding
- Abdominal pain (may mimic appendicitis)
- Abnormal 1hCG based on dates

Wikipedia/Public Domain

- Diagnosis: ultrasound
- Treatment:
 - Methotrexate
 - Surgery

James Heilman, MD/Wikipedia

Risk Factors

- Damage to fallopian tube
- Prior ectopic pregnancy
- Tubal disorders
 - Tubal ligation (rarely pregnancy occurs)
 - Tubal surgery (tumor)
 - Pelvic inflammatory disease (Chlamydia, Neisseria)

Risk Factors

- Infertile women: higher incidence
- Kartagener syndrome (1° ciliary dyskinesia)
 - Fallopian tubes: ciliated epithelium

Spontaneous Abortion

Miscarriage

- Pregnancy loss before 20 weeks
 - After 20 weeks: stillbirth or fetal demise
- Presents as vaginal bleeding
- Often requires D&C to remove all tissue
- 50% cases due to fetal chromosomal abnormalities

Spontaneous Abortion Risk Factors

- Maternal smoking, alcohol, cocaine
- Maternal infection (TORCH)
- Hypercoagulable states
- Lupus/antiphospholipid syndrome

Amniotic Fluid

- Primary sources: fetal urine and lung secretions
- Major source for removal: fetal swallowing
- Oligohydramnios
 - Decreased amniotic fluid
 - Often a fetal kidney problem
- Polyhydramnios
 - Excessive amniotic fluid
 - Often a swallowing/GI problem

Oligohydramnios

Fetal renal abnormalities

- Bilateral renal agenesis
- Posterior urethral valves (males)

Placental insufficiency

- Preeclampsia
- Maternal vascular diseases
- Premature rupture of membranes

Image courtesy of Piotr Michał Jaworski

Oligohydramnios

- Can lead to Potter's sequence
 - Loss of fetal cushioning to external forces
 - Compression of the fetus
 - Limb deformities
 - Flat face
 - Pulmonary hypoplasia

Polyhydramnios

Fetal swallowing malformations

- Esophageal/duodenal atresia
- Anencephaly

Maternal diabetes

• Fetal hyperglycemia \rightarrow polyuria

Fetal anemia

- Leads to high fetal cardiac output
- Increased urine production
- Can occur in parvovirus infection
- Multiple gestations
 - More fetal urine

- Less than 2500 grams (5.5lbs)
- Caused by:
 - Premature delivery
 - Intrauterine growth restriction (IUGR)
- Increased risk of:
 - Neonatal mortality
 - Newborn complications
- Lower birth weight \rightarrow greater risk complications

Pixabay/Public Domain

Selected Risk Factors/Causes

- Congenital abnormalities of fetus
- Multiple gestation
- Maternal conditions
 - Preeclampsia
 - Abruptio placenta
 - Alcohol
 - Smoking
 - Cocaine use

Øyvind Holmstad/Wikipedia

Newborn Problems

Hypothermia

- Less white adipose tissue (insulation)
- Less brown adipose tissue (heat generation)
- Large ratio surface area to weight (lose heat easily)

• Hypoglycemia

- Loss of maternal glucose
- Insufficient fetal generation of glucose
- Hyperbilirubinemia
 - ↑ unconjugated bilirubin
 - May lead to newborn jaundice

Nevit Dilmen/Wikipedia

Newborn Problems

- Respiratory distress
- Neonatal RDS
 - Deficiency of surfactant
- Transient tachypnea of the newborn
 - Inadequate lung fluid clearance
- Pneumonia
- Respiratory failure
- Need for ventilator support

Persistent Fetal Circulation

- In utero: high PVR
- Blood shunted right \rightarrow left
 - Via foramen ovale and ductus arteriosus
- At birth \rightarrow oxygen to lungs \rightarrow PVR falls
- **Persistent high PVR** \rightarrow shunting \rightarrow hypoxemia
- Abnormal development of pulmonary vasculature
 - Small vessels
 - Thickened walls
 - Excessive vasoconstriction

Immune Function

- Cellular immunity impaired
- \downarrow T-cells and B-cells at birth
- Some babies have neutropenia

Mgiganteus/Wikipedia

Newborn Problems

Databese Center for Life Science

- Polycythemia of the newborn
- Excessively elevated hematocrit at birth (>65)
- Newborns normally have increased red cell mass
 - Fetus in a relatively hypoxic environment in utero
 - Increased hemoglobin production
 - Placental blood may transfer to baby at birth
- Usually asymptomatic
- Rarely may cause symptoms
 - Hypoglycemia (excessive RBC glucose utilization)
 - Hyperbilirubinemia

Newborn Problems

- Necrotizing Enterocolitis
- Intestinal necrosis and obstruction
- Usually terminal ileum or colon
- Can lead to perforation

Mikael Häggström/Public Domain

Major risk factor is prematurity, low birth weight

Newborn Problems

- Intraventricular Hemorrhage
 - Hemorrhage into lateral ventricle
- Hypotonia
- Loss of spontaneous movements
- Seizures, coma
- Germinal matrix problem
 - Highly vascular area near ventricles
 - Premature infants: poor autoregulation of blood flow here
 - In full term infants, this area has decreased vascularity

Pixabay/Public Domain

Long Term Outcomes

• SIDS

- Sudden infant death syndrome
- Leading cause infant mortality 1 month to 1 year in US
- Increased risk with preterm birth or low birth weight
- Increased risk of neurocognitive problems
 - Cognition
 - Social skills
 - Behavioral and emotional skills

SIDS

Sudden Infant Death Syndrome

- Sudden death of infant < 1 year of age
- Unexplained by other causes
- Risk factors
 - Stomach sleeping
 - Maternal smoking during pregnancy
 - Very young maternal age (<20)
 - Bed sharing (infant/parent)
 - Prematurity/low birth weight

Hypertension in Pregnancy

Jason Ryan, MD, MPH

Hypertension in Pregnancy

- Pre-existing/chronic hypertension
 - Elevated BP prior to pregnancy or 20 weeks
- Gestational hypertension
 - Elevated BP that develops after 20 weeks
- Preeclampsia-eclampsia
 - Hypertension in pregnancy
 - Proteinuria
 - End-organ damage

Pexels

Gestational Hypertension

- Elevated BP after 20 weeks
- No proteinuria or evidence of preeclampsia
- Safe drugs in pregnancy
 - α-methyldopa
 - Labetalol (β1β2α1 blocker)
 - Nifedipine (calcium channel blocker)

Public Domain

- Multi-system disorder of pregnancy
- Hypertension
- Proteinuria
- End-organ dysfunction

Pathogenesis

- Disorder of the placenta
 - Normally trophoblast invades/transforms spiral arteries
 - Abnormal invasion/transformation \rightarrow preeclampsia
- Placental under-perfusion
- Leads to release of circulating substances
- Diffuse maternal endothelial dysfunction
- Vasospasm and coagulation
- Resolves with delivery (placental removal)

Pathogenesis

Openi/NIH/Public Domain

Pathogenesis

- Extravillous trophoblast fails to penetrate myometrium
- Spiral arteries do not develop normally
- Remain narrow → placental hypoperfusion
- Placental biopsy: fibrinoid necrosis of vessels

Nephron/Wikipedia

Clinical Features

- Usually occurs 3rd trimester
- New onset hypertension
 - In mother with no known HTN
 - First pregnancy

• Proteinuria or end-organ damage

- Renal failure (vasospasm of renal vessels)
- CNS (headache, visual changes, confusion)
- Liver failure

Clinical Features

- Often presents with edema
- Endothelial dysfunction
- Proteinuria \rightarrow low oncotic pressure
- Increased salt/water retention

James Heilman, MD

Clinical Features

- Often involves the liver
- Edema of the liver
- Ischemia/necrosis
- Elevated liver enzymes common

Risk Factors

- Prior preeclampsia
- First pregnancy
- Family history
- Multiple gestations

Risk Factors

- Maternal conditions (prior to pregnancy)
 - Diabetes
 - Hypertension
 - Obesity
 - Chronic kidney disease
 - Lupus/Antiphospholipid syndrome

Complications

- Placental insufficiency
 - Growth restriction
 - Oligohydramnios
- Placental abruption

Wikipedia/Public Domain

Complications

- Pulmonary edema
- Heart failure
- Liver hematoma with/without rupture
- Liver failure
- Disseminated intravascular coagulation
- Stroke
- Dialysis (advanced renal failure)

Eclampsia

Pixabay/Public Domain

- Seizures in a mother with preeclampsia
- Generalized, tonic-clonic seizures
- May lead to coma/death
- Often complicated by DIC, respiratory failure
- Exact etiology of seizures unclear
- Related to blood flow/endothelial dysfunction

Eclampsia

- Anticonvulsive of choice: magnesium sulfate
 - Most effective drug
 - Often given for **prevention** in preeclampsia
- Definitive treatment: delivery of baby

Pixabay/Public Domain

HELLP Syndrome

- Variant of preeclampsia
- Hemolysis
- Elevated Liver enzymes
- Low Platelet count
- Complication of preeclampsia (severe form)
- Coagulation activation and liver infarction

Databese Center for Life Science

HELLP Syndrome

Microangiopathic hemolytic anemia

- Schistocytes
- Elevated bilirubin
- Low haptoglobin
- Thrombocytopenia (consumption)
- Treatment: delivery of baby

Paulo Henrique Orlandi Mourao

Placental Complications

Jason Ryan, MD, MPH

Abruptio Placentae

- Placental detachment prior to delivery of baby
 - Normally implanted placenta
 - Partial or complete early separation
- Blood loss from maternal vessels
 - Rupture of maternal vessels in **decidua basalis**
- Blood separates decidua from uterus
- Loss of gas and nutrient exchange
- Life-threatening to mother and fetus

Clinical Presentation

- Occurs in 3rd trimester
- Abrupt onset of painful vaginal bleeding
 - Posterior abruption may have minimal/no bleeding
- Abdominal or back pain
- Uterine contractions
- Often diagnosed clinically
- Ultrasound not reliable

Complications

- Maternal shock
- Fetal distress/demise
- Disseminated intravascular coagulation (DIC)

Cortical Necrosis

- Ischemic necrosis of renal cortex
- Rare cause of acute renal failure
- Related to ischemia and DIC
- Can lead to permanent renal failure
- Often associated with placental abruption
- Clinical presentation
 - Acute renal failure
 - Anuria

Boards&Beyond

- Hematuria (may be gross)
- Flank pain

Piotr Michał Jaworski

Risk Factors

- Previous abruption
- Maternal hypertension/preeclampsia
- Smoking
- Cocaine
- Abnormal uterus
 - Bicornuate uterus
 - Prior C-section
- Trauma (motor vehicle accident)

Placenta Previa

- Previa = "going before"
 - Placenta before baby
- Placenta attached to lower uterus
- Over or close to cervical os

Vasaprevia.jpg/Wikipedia

Placenta Previa

- May cause **painless bleeding** during pregnancy
- May lead to preterm birth
- May require C-section delivery
- Risk factors
 - Prior placenta previa
 - Prior C-section
 - Multiple prior pregnancies

Vasaprevia.jpg/Wikipedia

Velamentous Umbilical Cord

- Normal umbilical cord: inserts into central placenta
- Velamentous cord: inserts into fetal membranes
- Attaches to chorion
- Fetal vessels travel with membranes to placenta
- Vessels exposed
- No protection from Wharton's jelly
- Risk of rupture/bleeding

Velamentous Umbilical Cord

Schokohäubchen/Wikipedia

Vasa Previa

- Fetal blood vessels in membranes near cervical os
- Rupture of membranes at birth \rightarrow bleeding
- Usually requires C-section delivery

Vasa previa met velamenteuze navelstrenginsertie

Sigrid de Rooij/Wikipedia

- Normal placenta attaches to decidua
- Abnormal decidua \rightarrow abnormal attachment
- Placenta attaches directly to myometrium
- Three forms
 - Placenta accreta (most common)
 - Placenta increta
 - Placenta percreta

Wikipedia/Public Domain

- Caused by defective uterine decidualization
- Most important risk factor: prior C-section
 - Especially with **placenta previa**
- Other risk factors:
 - Prior uterine surgery or D&C

- Placenta accreta
 - Placenta attached to myometrium
 - No penetration into myometrium
- Placenta increta
 - Placenta penetrates myometrium
- Placenta percreta
 - Placenta penetrates through myometrium
 - Invades uterine serosa (outer layer)
 - Can attach to bladder/rectum

Wikipedia/Public Domain

Clinical Presentation

- Usually diagnosed on routine ultrasound
- Undetected: placenta fails to detach after birth
 - Part/all of placenta remains attached to uterus
 - Breaks into pieces
 - Massive bleeding
- Maternal hemorrhage
- Shock, DIC, ARDS

Boards&Beyond

- Delivery usually by C-section
- Often requires hysterectomy

Wikipedia/Public Domain

Postpartum Hemorrhage

- Uterine atony (most common cause)
 - Uterus contracts after delivery \rightarrow constricts spiral arteries
 - Lack of contraction = atony
 - Often treated with oxytocin
 - Also treated with uterine massage
- Trauma
 - Lacerations from delivery
 - Especially if instruments used
 - Surgical incisions

Postpartum Hemorrhage

- Coagulopathy
 - Blood loss may consumes clotting factors
 - Some obstetric conditions may cause DIC
 - Abruption, amniotic fluid embolism, preeclampsia
- Retained tissue
 - Placenta expelled by uterine contractions
 - Retained tissue \rightarrow bleeding

Amniotic Fluid Embolism

- During labor or shortly after
- Amniotic fluid, fetal cells, fetal debris
- Enter maternal circulation
- Inflammatory reaction
- Often fatal

Wikipedia/Public Domain

Amniotic Fluid Embolism

- Phase I (respiratory/shock)
 - Key features: respiratory distress, \$\$\psi_2\$, hypotension
- Phase II (hemorrhagic phase)
 - Massive hemorrhage
 - DIC
 - Key feature: **bleeding**
- Seizures also often occur

Gestational Tumors

Jason Ryan, MD, MPH

GTD

Gestational Trophoblastic Disease

- Rare variant of pregnancy
- Neoplasms of trophoblast (placenta)
- Usually benign (molar pregnancy)
- Rarely malignant

Hydatidiform Mole

Molar Pregnancy

- Most common form of GTD
- Hydatid = fluid filled cyst
- Mola = Greek for "false pregnancy"
- Growth of trophoblast tissue
- Swollen chorionic villi
- Villi form clusters "clusters of grapes"
- Ultrasound: "snowstorm appearance"

Hydatidiform Mole Molar Pregnancy

Mikael Häggström/Wikipedia

Complete Mole

- Fertilization of "empty" egg
 - All chromosomes of paternal origin
 - No maternal chromosomes

Pixabay/Public Domain

Complete Mole

- Cells usually 46,XX karyotype
- Haploid sperm that duplicates
 - 23 X → 46 XX
 - 46,YY does not occur \rightarrow lethal
- Rarely 46,XY moles occur
 - Empty egg fertilized by two sperm
- **p57-negative** on immunostaining
 - Cyclin dependent kinase
 - Only expressed by maternal chromosomes (imprinted)

Complete Mole

• No fetal tissue

- Maternal chromosomes needed for fetal tissue
- No fetus to drain villi = massively swollen villi
- Most common form of molar pregnancy

Partial Mole

- Less common form
- Some fetal tissue (maternal chromosomes)
- Fertilization of normal egg by two sperm
- Some villi drainage = less swollen villi
- Cells usually triploid
 - 69,XXX
 - 69,XXY
 - Rarely 69,XYY
- p57-positive (maternal genetic material)

Complete Molar Pregnancy Clinical Features

- Initially may appear to be normal pregnancy
 - Positive pregnancy test; uterine enlargement
- Size/date discrepancy of uterus
 - Uterus too big for stage of pregnancy
- Painless uterine bleeding
 - Separation of molar villi from decidua
- These findings often lead to ultrasound

Mikael Häggström/Wikipedia

Complete Molar Pregnancy

Clinical Features

Hyperemesis gravidarum

• Severe nausea and vomiting with weight loss

Maternal serum hCG

- Higher than normal for gestational age
- May be very high (>100,000) early in pregnancy

Ovarian theca lutein cysts

- Ovarian stimulation by hCG
- Often bilateral

Complete Molar Pregnancy

Clinical Features

Hyperthyroidism

- Requires very high hCG
- hCG stimulation of TSH receptor
- Low TSH
- High T3/T4
- Preeclampsia

Partial Molar Pregnancy

Clinical Features

- Uterine size
 - May be normal (some villi drainage to fetus)
 - May be small for gestational age (slow growth of fetus)
- Marked 1hCG less common

Molar Pregnancy

Treatment

- Uterine suction curettage
- Rarely hysterectomy
- Chemotherapy: Methotrexate or Actinomycin D
 - For high risk patients only
 - Features suggesting high likelihood of choriocarcinoma

- Rare malignant gestational neoplasm
- Can follow a normal pregnancy
- Complete molar pregnancy
 - 15% develop locally invasive disease
 - 5% develop metastatic disease
- Partial mole
 - <5% develop any invasive disease</p>

- Must monitor hCG level after molar pregnancy
- Should fall after treatment
- Plateau: indication of persistent disease

- Syncytiotrophoblast and cytotrophoblast cells
- No formation of villi
- Early spread with extensive metastases
- Hematogenous spread
- 80% of case metastasize to lungs

Clinical Features

- Vaginal bleeding
- Cough, hemoptysis
- Elevated hCG level
- Possible ovarian cysts, hyperthyroidism (hCG)

Treatment

- Highly sensitive to chemotherapy
- Methotrexate or Actinomycin D
- Most patients cured

Non-Gestational Choriocarcinoma

- Rare germ cell tumor
- May arise in the ovary or testes
- Germ cells differentiate into trophoblasts
- Histologically same as gestational choriocarcinoma
- Produces β-hCG
- More difficult to treat/cure

TORCH Infections

Jason Ryan, MD, MPH

TORCH Infections

- Maternal infections \rightarrow fetal abnormalities
- TORCH
 - **T**oxoplasmosis
 - Other (syphilis, varicella-zoster, parvovirus B19)
 - **R**ubella
 - CMV
 - Herpes

TORCH Infection

- Maternal illness during pregnancy
- Infection \rightarrow fetus
- Miscarriage
- Stillbirth
- Fetal abnormalities at birth

Øyvind Holmstad/Wikipedia

Toxoplasma gondii

Toxoplasmosis

- Protozoa
- Commonly lives in cats (felines)
- Oocysts shed in stool
- Infection from ingested oocysts (soil)
- Also meat from contaminated animal

Toxoplasma gondii

Toxoplasmosis

- Maternal 1° infection (immunocompetent mother)
 - 80 to 90% of infections asymptomatic
 - Lymphadenopathy
 - Fever, chills, sweats
- Latent infection usually does not infect fetus
- Diagnosis
 - IgM antibodies in first week
 - IgG antibodies peak 6 to 8 weeks, fall over next two years

Toxoplasma gondii

Toxoplasmosis

- Most newborns appear normal
- Classic triad in fetus:
 - Hydrocephalus
 - Chorioretinitis (inflammation of choroid in eye)
 - Intracranial calcifications (often seen on prenatal US imaging)

Wikipedia/Public Domain

Syphilis Treponema pallidum

- Spirochete (bacteria)
- Transmitted by sexual contact
- Maternal symptoms
 - Primary syphilis: Chancre
 - Secondary syphilis: Maculopapular rash (palms/soles)
- Findings in baby can be early or late
 - Early (<2ys); Late (>2yrs)

Congenital Syphilis

Early Findings

- Maculopapular rash
- Runny nose
- Abnormal long-bones
 - More common in legs
 - Many, many abnormalities reported

Wikipedia/Public Domain

Congenital Syphilis

Late Findings

- Ears/nose
 - Saddle nose (no nasal bridge)
 - Hearing loss/deafness
- Teeth

- Hutchinson teeth (notched, peg-shaped teeth)
- Mulberry molars (maldevelopment of the molars)
- Legs
 - Saber shins (bowed legs)
- Caused by scarring and gumma formation

Wikipedia/Public Domain

mauroguanandi

Varicella Zoster Virus

- Herpes virus (DNA)
- Maternal infection
 - Primary: Chickenpox
 - Reactivation: Herpes Zoster (shingles)
- Maternal 1° first trimester disease \rightarrow fetal infection

Varicella Zoster Virus

- Newborn signs and symptoms
 - Scars in a dermatomal pattern
 - Microcephaly, hydrocephalus, seizures
 - Ocular abnormalities (cataracts, nystagmus)
 - Limb atrophy and hypoplasia
- Long term: learning disabilities, mental retardation

Parvovirus B19

- Non-enveloped, single-stranded DNA virus
- Found in respiratory secretions of infected persons
- Classic infection: Fifth disease in children
 - "Slapped cheek" appearance of face
- Adults often develop arthritis
 - Hands, wrists, knees, and ankles
- Infects red cell progenitors
 - Mild ANEMIA in normal individuals
 - Severe in chronic anemia (sickle cell)

Sandyjameslord/Wikipedia

Parvovirus B19

- Fetus especially vulnerable to B19
 - Shortened RBC half-life
 - Expanding RBC volume
 - Immature immune system
- Miscarriage, fetal death

Parvovirus B19

Hydrops fetalis

- Fluid accumulation in fetus
- Ascites, pleural, etc.
- Often diagnosed on ultrasound
- "Immune hydrops" from Rh mismatch
- Many non-immune causes including B19

Toni Kasole Lubala, Nina Lubala, Arthur Ndundula Munkana. Adonis Muganza Nyenga, Augustin Mulangu MutomboT

Rubella

- RNA virus
- Found in nasal/throat secretions of infected persons
- Maternal infection via respiratory droplets
- Mild, self-limited illness
 - Maculopapular rash
 - Lymphadenopathy
 - Joint pain

Wikipedia/Public Domain

Congenital Rubella Syndrome

- Sensorineural deafness
- Cataracts

Boards&Beyond.

- Cardiac malformations
 - Classically a patent ductus arteriosus (PDA)
- Blueberry muffin baby

Wikipedia/Public Domain

Blueberry Muffin Baby

- Purpuric skin lesions
- Extramedullary hematopoiesis
 - In utero hematopoiesis occurs outside bone marrow
 - Normally stops prior to birth
 - Persists in rubella infection
- May also be seen in congenital toxoplasmosis, CMV

Wikipedia/Public Domain

CMV

- Herpes virus (DNA)
- Several modes of maternal infection:
 - Sexual contact
 - Close contact of infected individual (family member, daycare)
 - Blood/tissue exposure (transfusion, organ transplant)
- 1° CMV infection asymptomatic 90% cases
- May cause mild febrile illness
- "Mononucleosis-like"
- Nonspecific symptoms
- Rhinitis, pharyngitis, headache, myalgia, arthralgia

CMV

- Most infected newborns are asymptomatic
- Major consequence: sensorineural hearing loss
 - Most common consequence of congenital CMV
 - Many babies diagnosed based only on failed hearing screen
 - Most common ID cause of congenital sensorineural deafness

Pixabay/Public Domain

CMV

- Other potential findings
 - Small for gestational age, microcephaly
 - Hepatosplenomegaly
 - Blueberry muffin baby
 - Seizures
- Classic neuroimaging finding:
 - Intracranial calcifications
 - Usually periventricular

Daniel J Bonthius, Stanley Perlman. Congenital Viral Infections of the Brain: Lessons Learned from Lymphocytic Choriomeningitis Virus in the Neonatal Rat. PLOS Pathogens

Herpes Simplex

- HSV 2 (DNA virus)
- Genital HSV \rightarrow fetus at birth via genital tract lesions
 - NOT transplacental

SOA-AIDS Amsterdam/Wikipedia

Herpes Simplex

- Vesicles: skin, near eyes, in mouth
- May spread to CNS
- May disseminate to multiple organs

Vaginal Cancer

Jason Ryan, MD, MPH

Vaginal Malignancies

- Vaginal carcinoma
- Clear cell carcinoma
- Embryonal rhabdomyosarcoma (infants)

Vaginal Carcinoma

- Very rare
- Usually squamous cell carcinoma
- Almost always involves HPV
- Same risk factors as cervical cancer
- Rarely a primary tumor of vagina
- Most commonly: extension of cervical carcinoma

Lymphatic Drainage

- Upper vagina
 - From Mullerian duct
 - Iliac nodes
- Lower vagina
 - From urogenital sinus
 - Inguinal nodes

Wikipedia/Public Domain

Clear Cell Carcinoma

- Rare malignancy of cervix or vagina
- Associated with maternal diethylstilbestrol (DES)
 - Nonsteroidal estrogen
 - Used to prevent miscarriage, premature birth
 - Removed from US market 1971
- Female babies: Reproductive tract abnormalities

Pixabay/Public Domain

Diethylstilbestrol

- Abnormal uterus, cervix
- Vaginal adenosis
- Vaginal clear cell adenocarcinoma
- High rate of infertility

Vaginal Adenosis

- Upper vagina: Mullerian duct
- Lower vagina: Urogenital sinus

• Adenosis

- Mullerian tissue in outer cervix/vagina
- Columnar epithelium in vagina
- Lack of normal squamous epithelium
- Associated with in utero DES exposure
- May lead to clear cell carcinoma

Sarcoma botryoides

Embryonal Rhabdomyosarcoma

- Rare vaginal tumor of young children
- May also develop in boys
 - "Paratesticular tumors"
 - Scrotal or inguinal enlargement
- Derives from embryonal rhabdomyoblasts
 - Immature **muscle cells**

Sarcoma botryoides

Embryonal Rhabdomyosarcoma

- Occurs in children < 5 years old
- Clear, grape-like mass growing from vagina
 - Botryoid = appearance of bunch of grape
- May invade peritoneum \rightarrow obstruct bladder
- Treatment: surgery and chemotherapy

Desmin

- Muscle filament
- Part of Z-disks in sarcomeres
- Marker of rhabdomyosarcoma
- 99% of rhabdomyosarcomas positive for desmin

Cervical Cancer

Jason Ryan, MD, MPH

Cervix

Boards&Beyond.

Wikipedia/Public Domain

Cervical Cancer

- 3rd most common gynecologic cancer in US
- Human papilloma virus detected in 99.7% cases
- Identifiable in precursor stage via Pap smear

- Epithelial neoplasia
- Occurs in the squamocolumnar junction
 - Junction between squamous and columnar epithelium
 - Endocervix: columnar epithelium
 - Ectocervix: squamous epithelium

Transformation zone

- 95% cancers arise here
- Extends outward

Public Domain

Squamocolumnar Junction

Ed Uthman/Wikipedia

Cervical Cancer

Risk Factors

- Human Papillomavirus infection
- Immunodeficiency state
 - Cannot clear HPV
- Cigarette smoking
 - Affects secretions in endocervical glands
- Sexual intercourse at a young age
- Multiple sexual partners

Wikipedia/Public Domain

Human Papillomavirus

- Non-enveloped
- Double stranded, circular DNA virus
- Multiple subtypes: 1, 2, 6, 11, 16, 18
- Most common sexually transmitted infection
- Clinical disease depends on subtype:
 - Cutaneous warts
 - Genital warts
 - Cancer

HPV Cancer Risk

- Persistent infection over years can lead to cancer
- Malignancies associated with HPV infection:
 - Cervical
 - Anal, Penile
 - Oropharyngeal squamous cell cancers (mouth, throat)
- Usually types 16 and 18
 - High risk sub types for cancer

HPV Cancer Risk

- High prevalence HPV among sexually active women
 - Most will clear infection
 - Some will have infection persist
- Vaccine available (capsid proteins)
 - Some target types 16/18
 - Others also target 11/6 (genital warts)

HPV Virology

• Two key oncogenes: E6 and E7

• E6 gene

- Codes for protein that inhibits p53 suppressor gene
- p53 protein: controls cell cycle G1 to S phase progression
- Inhibited p53 \rightarrow uncontrolled growth

• E7 gene

- Codes for protein that inhibits RB suppressor gene
- Rb protein inactivates E2F transcription factor
- Inhibited Rb \rightarrow E2F activation \rightarrow uncontrolled growth

G1-S Checkpoint

- Progresses slowly through stages to carcinoma
- Classified as "cervical intraepithelial neoplasia"
- CIN1: Low grade lesion
 - Often regresses
 - Not always treated
- CIN2 and CIN 3: High grade lesions
 - High risk of progression
 - Usually require treatment

CIN1

Ed Uthman/Wikipedia

Ed Uthman/Wikipedia

Cervical Carcinoma

- Most commonly squamous cell carcinoma
 - 2nd most common adenocarcinoma (endocervix origin)
- Almost always in women with HPV infection
- Usually occurs in 40s/50s
- Usually in a woman who do not get screened

Lee, Makin, Mtengezo, and Malata

Cervical Carcinoma

- Usually asymptomatic
- May present as vaginal bleeding
 - Irregular/heavy menses
 - Post-coital bleeding
- Can invade locally: bladder, rectum

Cervical Carcinoma

Diagnosis

- Colposcopy
 - Use of a colposcope
 - Illuminated, magnified view of cervix
- Biopsy
- Usually done after abnormal Pap smear

Pap Smear

- Secondary prevention of cervical neoplasia
- Screening test for cervical dysplasia and carcinoma
- Used to detect Koilocytes
- Epithelial cell infected by HPV
- Large, darkened nuclei
- Best at detecting squamous cell carcinoma

Public domain/Wikipedia

Endometrial Disorders

Jason Ryan, MD, MPH

Uterus

- Myometrium: Smooth muscle
- Endometrium: Mucosal surface
 - Glands and stroma

BruceBlaus/Wikipedia

BruceBlaus/Wikipedia

Glands and Stroma

Boards&Beyond.

Endometrium

- Growth and shedding during menstrual cycle
- **Estrogen** = stimulates growth
- **Progesterone** = stimulates secretory activity
- Progesterone withdrawal = menstruation

Endometrium

Endometrium

- Proliferative phase
 - Estrogen driven
 - ↑ glands and stroma
- Secretory phase
 - Progesterone driven
 - ↓ proliferation
 - Secretory vacuoles appear
 - Prominent spiral arterioles

Endometrium

Myometrium

P. Choudhary

Abnormal Uterine Bleeding

- Abnormal quantity, duration, or schedule
 - AUB/HMB: Heavy menstrual bleeding
 - AUB/IMB: Intermenstrual bleeding
- Polyps
- Adenomyosis
- Leiomyoma
- Malignancy/hyperplasia
- Coagulopathy
- Ovulatory disorders anovulatory cycle
- Endometrial causes
- Iatrogenic (IUD, drugs)
- NOS

Anovulatory Cycle

- Menstrual cycle without ovulation
- No ovulation → no corpus luteum formation
 - Absence of luteal phase of ovary
 - No switch to progesterone secretion
- Excessive endometrial growth from estrogen
- "Unopposed growth" from lack of progesterone
- Irregular bleeding

Anovulatory Cycle

- Common at menarche
 - Underdeveloped hypothalamus-pituitary-ovary axis
- Common approaching menopause
 - Loss of ovulation
 - Continued estrogen production
- Also may result from other disorders
 - Thyroid disease
 - Obesity

Endometritis

- Inflammation of the endometrium
- Acute or pregnancy-related
- Chronic or non-pregnancy related

Nephron/Wikipedia

Acute Endometritis

Pregnancy-Related Endometritis

- Occurs post-partum
- **Bacterial infection** after delivery or miscarriage
- Key risk factor: **cesarean section delivery**
- Prophylactic antibiotics used before C-section
- Often also involves myometrium ("metritis")
- Fever, abdominal pain, uterine tenderness
- Usually diagnosed clinically

Acute Endometritis

Pregnancy-Related Endometritis

- Polymicrobial infections
 - Gram positives, gram negatives, anaerobes
 - Staph, strep, E. coli, Bacteroides
- Broad-spectrum antibiotics used
- Classic regimen: clindamycin plus gentamycin
 - Cure rate >90%
- Alternative: ampicillin-sulbactam

RPOC

Retained Products of Conception

- Placental/fetal tissue remaining in uterus
- May occur after delivery or miscarriage
- Uterine bleeding and pelvic pain
- Tissue becomes necrotic
- **Prone to infection** by flora from cervix/vagina
- Leads to acute endometritis
- Diagnosis by history and imaging
- Treatment: antibiotics +/- surgery

Chronic Endometritis

- Intrauterine devices (IUDs)
- Pelvic Inflammatory Disease
 - Ascending infection
 - May involve uterus, fallopian tubes, ovaries
 - Salpingitis, oophoritis, endometritis
 - Chlamydia or gonorrhea
 - Treatment: antibiotics
- Tuberculosis
 - Hematogenous spread from lungs
 - Biopsy: Acid- Fast Bacilli

Chronic Endometritis

- Associated with infertility
 - Indication for biopsy
- Biopsy hallmark: plasma cells
- White blood cells may be normal in endometrium
- Plasma cell indicates chronic inflammation

Wikipedia/Public Domain

Endometrial Polyps

- Hyperplastic growth of glands and stroma
- Most (95%) benign
- Project from endometrium ("exophytic mass")
- Often asymptomatic
- May cause painless uterine bleeding
- Removed surgically
 - Stop bleeding
 - Prevent infection
 - Small chance malignancy

Endometrial Polyps

- Histology:
 - Stroma
 - Glands
 - May see smooth muscle
- Associated with unopposed estrogen
- Common near menopause
 - Ovarian estrogen production
 - Chronic anovulation \rightarrow lack of progesterone

Tamoxifen

- Selective estrogen receptor modulator (SERM)
- Competitive antagonist of breast estrogen receptor
 - Used in ER positive (ER+) breast cancer
- Estrogen agonist in other tissues (bone/uterus)

Tamoxifen

- Partial agonist to endometrium
- Endometrial proliferation
- Hyperplasia
- **Polyp formation** (up to 36% of women)
- May cause endometrial cancer

Jason Ryan, MD, MPH

- Endometrial tissue outside uterus
- Glands and stroma
- May occur anywhere
- Several common locations
 - Ovary/Fallopian Tubes
 - Uterosacral ligaments
 - Rectovaginal septum
 - Pelvic peritoneum

BruceBlaus/Wikipedia

Pathogenesis

- Exact etiology unknown, several theories
- Retrograde flow
 - Movement of menstrual tissue through fallopian tubes
 - Travels to ovaries, peritoneum
- Metastasis
 - Spread through venous or lymphatic system
- Metaplasia
 - Endometrium from coelomic epithelium in development
- Stem cells
 - Progenitor cells develop into endometrial tissue

Symptoms

Boards&Beyond

- Ectopic endometrial tissue hormone-sensitive
 - Growth from estrogen
 - Atrophy from progesterone withdrawal
- Growth, bleeding, inflammation in ectopic sites

Classic Symptoms

- Dysmenorrhea
 - Cyclic menstrual pelvic pain
- Dyspareunia
 - Painful intercourse
 - Ectopic tissue near vagina

Infertility

- Many women unaware of disorder
- Ovarian/fallopian lesions \rightarrow infertility
- ~40% infertile woman have endometriosis

Other Symptoms

- Dyschezia
 - Painful defecation
 - Ectopic tissue near rectum
- Dysuria
 - Painful urination
 - Ectopic tissue near bladder

Diagnosis

- Physical exam may be normal
- Vaginal tenderness
- Nodules in posterior fornix
 - Upper vagina behind cervix
- Ovarian mass

Diagnosis

Normal uterus size

• Enlarged uterus: adenomyosis

Retroverted uterus

- Uterus tipped backwards
- Detected on physical exam
- May be seen in normal women
- More common in women with endometriosis

Diagnosis

- Definitive diagnosis: biopsy of lesion
 - Often requires surgical exploration
- Classic ovarian finding: chocolate cyst

Boards&Beyond.

Wikipedia/Public Domain

Other Features

- Classically occurs in women of reproductive age
- Improves at menopause and in pregnancy
- Increased risk of ovarian epithelial cancer

Wikipedia/Public Domain

Treatment

- Definitive treatment: surgical removal
- Nonsteroidal anti-inflammatory drugs (NSAIDs)
 - Reduce inflammation

Boards&Beyond.

Wikimedia Commons

Treatment

Oral contraceptive pills (OCPs)

- First line therapy
- Suppress ovarian function
- Key component: **progestins**
- Suppress ovaries \rightarrow cause anovulation
- Anti-estrogen \rightarrow limit endometrial growth

BruceBlaus/Wikipedia

Leuprolide

- GnRH agonist
- Binds to receptors in pituitary
- Down-regulation of GnRH receptor
- Pituitary desensitization $\rightarrow \downarrow$ LH/FSH
- \downarrow estrogen production from ovaries

Danazol

- Steroid
- Weak androgen and progesterone activity
- Inhibits LH surge \rightarrow anovulation
- Suppresses ovarian function
- Rarely used due to side effects

Danazol

Danazol

Adverse Effects

- Androgen effects
 - Weight gain
 - Edema
 - Decreased breast size
 - Acne and oily skin
 - Increased hair growth
 - Deepening of the voice
- Low estrogen effects: hot flashes
- Intracranial hypertension (pseudotumor cerebri)
 - Headache, papilledema

Danazol

Adenomyosis

- Endometrial glands/stroma in myometrium
- Hyperplasia of basal endometrium into myometrium
- Diffusely enlarged uterus ("globular")
- Two major symptoms:
 - Heavy menstrual bleeding
 - Painful menstruation
- Often co-exists with endometriosis

Adenomyosis

- Less responsive to medical therapy
- Definitive treatment: hysterectomy

Hic et nunc/Wikipedia

Endometrial Cancer

Jason Ryan, MD, MPH

Leiomyoma

Fibroid

- Benign tumor of myometrium (smooth muscle)
- Usually multiple tumors
- Occur in pre-menopausal women
- Growth stimulated by estrogen
- Usually resolve at menopause (↓ estrogen)

Hic et nunc/Wikipedia

Leiomyoma Fibroid

Histology: Smooth muscle cell proliferation

Boards&Beyond.

KGH/Wikipedia

Leiomyoma

Fibroid

- Usually asymptomatic
- Often detected as pelvic mass on exam
- Can be visualized with ultrasound
- May cause:
 - Irregular bleeding (often heavier, longer menstrual flow)
 - Infertility
 - Pelvic pain

Leiomyosarcoma

- Malignant smooth muscle tumor of uterus
- Arise de novo (not from fibroids)
- Occur in post-menopausal women
- Usually a single large mass

Endometrial Hyperplasia

- Stimulation of endometrium by unopposed estrogen
- Absence of progesterone stimulation/withdrawal
- Usually occurs in peri/postmenopausal women
 - Menstruation has slowed or stopped
 - Anovulation \rightarrow no progesterone from ovary
 - Any estrogen source \rightarrow hyperplasia

Endometrial Hyperplasia

Sources of Estrogen

• Obesity

- Increased conversion androgens → estrogens (estrone)
- Polycystic ovarian syndrome (PCOS)
 - Obesity/anovulation
- Tamoxifen
 - Estrogen agonist
- Hormone replacement therapy (estrogen only)
- Ovarian granulosa cell tumor
 - Secrete estrogen
 - May present with uterine bleeding and adnexal mass

Endometrial Hyperplasia

Clinical Features

- Presents as abnormal uterine bleeding
- Same presentation as endometrial carcinoma
- Same risk factors as endometrial carcinoma
- Diagnosis: endometrial biopsy
 - Abundant, crowded glands

Endometrial Hyperplasia

Clinical Features

obgymgmcri

Endometrial Hyperplasia

- Risk for endometrial carcinoma
- Graded based on histology
 - Simple, complex
 - Presence of atypical cells
- **Complex, atypical**: high risk of cancer

Endometrial Hyperplasia

Treatment

- Low risk forms: Progestins
 - Oppose estrogen effects
 - Reverse hyperplasia
 - Improve bleeding
- High risk forms: Hysterectomy

- Most common gynecologic cancer
- Most common in post menopausal women
 - Average age of diagnosis ~60 years old
 - Menopause: anovulation \rightarrow more estrogen exposure
- Classic presentation: abnormal uterine bleeding

- Diagnosis: endometrial biopsy
- Often preceded by endometrial hyperplasia
- Often driven by unopposed estrogen
- Usually detected early
- Often treated with total abdominal hysterectomy

Pathophysiology

- Classified histologically
- Major types: Endometriod and serous
- Endometrioid subtype (Type I)
 - Estrogen-dependent hyperplasia
- Serous subtype (Type II)
 - Estrogen independent

Endometrioid Subtype

- Due to estrogen-dependent hyperplasia
- Risk factors: more estrogen = more risk
- Resembles endometrium ("endometriod")

Nephron/Wikipedia

Serous Subtype

- Estrogen-independent tumors
- Pink, serous material on biopsy
- Arise from **atrophic endometrium** post-menopause
- Most frequently altered gene: p53 tumor suppressor
 - Present in 90% tumors
- Poor prognosis (more aggressive type)

Nephron/Wikipedia

HNPCC

Hereditary Non-Polyposis Colorectal Cancer/Lynch Syndrome

- Germline mutation in DNA mismatch repair genes
- Leads to colon cancer
- Also increased risk of endometrial cancer
 - Most common non-colon malignancy
 - Lifetime risk up to 70% (3% in general population)

Ovarian Cysts

Jason Ryan, MD, MPH

Ovarian Cysts

- Often detected by ultrasound
- Often "functional"
 - From normal ovarian structure
 - Follicle

Boards&Beyond

Corpus luteum

James Heilman, MD/Wikipedia

Lyrl/Wikipedia

Ovarian Follicle

- **Egg** surrounded by cells
- Two key cell types: theca and granulosa cells

Hormone Synthesis

Estrogens

• Theca cells

- Convert cholesterol into androstenedione (androgen)
- Stimulated by LH

Granulosa cells

- Convert androstenedione into estradiol (estrogen)
- Stimulated by **FSH**

Follicular Cysts

- Common cause of ovarian mass in young women
- Derive from an ovarian follicle (1st half cycle)
- Failure of ovarian follicle to rupture
- Or when follicle ruptures and reseals

Follicular Cysts

- Lined by granulosa cells
- Filled with estrogen
- May continue to release estrogen
- May stimulate endometrial growth
- Classic symptoms: pain plus irregular bleeding

PCOS

Polycystic Ovarian Syndrome

- Multiple follicular cysts
- Amenorrhea
- Excess androgens
- Insulin resistance/diabetes

Corpus Luteal Cyst

- Corpus luteum: large structure
- Forms 2nd half of menstrual cycle
- Failure to involute \rightarrow cyst

Corpus Luteal Cyst

- May continue producing progesterone
- May delay menstruation
- Classic presentation
 - Pain
 - Missed period
 - Adnexal mass

Ed Uthman

Theca-lutein Cysts

- Usually bilateral, multiple cysts
- Luteinized theca cells with edema
 - Hyperplasia of theca cells
- Benign
- Associated with high β-hCG levels
 - Twins
 - Molar pregnancy
- Usually regress

Ovarian Epithelial Tumors

Jason Ryan, MD, MPH

Ovary Structures

- Oocytes (eggs)
 - Germ cell tumors
- Supporting cells
 - Theca/granulosa
 - Fibroblasts
 - Sex cord stromal tumors
- Surface epithelium
 - Adenomas/Carcinomas

Wikipedia/Public Domain

Ovarian Surface Epithelium

- Simple cuboidal epithelium
- Single layer of cells
- Derived from coelomic epithelium
 - Epithelial lining of intraembryonic celom
 - Space that gives rise to thoracic and abdominal cavities
 - Forms outer layer of male/female gonads
 - Also forms lining of body wall, liver, lungs, GI tract

Clinical Features

- Often a "silent" disease
- Classic presentation: adnexal mass
 - Identified on pelvic exam or imaging
- Vague abdominal symptoms
 - Bloating
 - Early satiety
 - Pelvic/abdominal pain
- Average age: 63 years old

Clinical Features

- Rarely can present with acute symptoms
- Often in advanced disease
- Bowel obstruction
 - Local spread through peritoneum
- Ascites
- Pleural effusion
 - Malignant pleural effusion (pleural metastasis)
 - Cancer cells in pleural fluid
- Venous thromboembolism

- Most common type of ovarian tumors
- Serous (40%)
 - Secrete serum (water)
- Mucinous (25%)
 - Secrete mucous
- Endometrioid (10%)
 - Similar to endometrium
- Benign, malignant, or borderline
 - Benign: adenoma
 - Malignant: adenocarcinoma

Serous Cystadenoma

Often bilateral

- Cyst filled with watery fluid
- Thin wall of single cells lining cyst

Nephron/Wikipedia Boards&Beyond.

Ed Uthman, MD/Wikipedia

Serous Cystadenocarcinoma

- Most common malignant ovarian tumor
- Complex cysts with watery fluid
- Growth of epithelial layer
- Cells similar to fallopian tube cells

KGH/Wikipedia

Psammoma Bodies

Boards&Beyond Images courtesy of Michael Blechner, MD

Mucinous Tumors

Mucinous cystadenoma

- Thin walled cyst filled with mucous
- Often larger than serous tumors
- Often "multiloculated": many small cavities, recesses
- Mucinous cystadenocarcinoma
 - Malignant variant of cystadenoma

Pseudomyxoma Peritonei

- Mucinous spread to abdomen
- "Mucinous ascites"
- Diffuse gelatinous material in abdomen/pelvis
- Bowel obstruction may occur
- Seen in appendix cancer

Endometrioid Tumors

- Contain tubular glands similar to endometrium
- Often occur in patients with endometriosis
- Good prognosis
 - Often identified at early stage
 - Sensitive to chemotherapy

Brenner Tumor

- Rare subtype of epithelial ovarian tumor
- Contains **bladder** epithelial (transitional) cells
- Usually benign
- Often found incidentally
- "Coffee bean" nuclei seen on biopsy

Boards&Beyond.

Nephron/Wikipedia

Epithelial Cell Tumors Risk Factors

More ovulation associated with more risk

More Risk	Less Risk
Advanced age Early Menarche Late Menopause Nulliparity	Pregnancy Breast Feeding Oral Contraceptive Pills

Risk Factors

- Family history of ovarian cancer
- Infertility (any cause)
- Polycystic Ovarian Syndrome (PCOS)
- Endometriosis
- Tubal ligation: Protective (↓ risk)
 - Possibly related to fallopian tube factors \rightarrow cancer

BRCA1 and BRCA2

- BRCA1/BRCA2 genes \rightarrow DNA repair proteins
- Gene mutation associated with breast/ovarian cancer
- Common among Ashkenazi Jews
 - Non-Jewish population in US: 1 in 400
 - Ashkenazi Jewish population in US: 1 in 40

Juhu /Wikipedia

HNPCC

Hereditary Non-Polyposis Colorectal Cancer/Lynch Syndrome

- Germline mutation in DNA mismatch repair genes
- Leads to colon cancer
- Also increased risk of:
 - Endometrial cancer (most common non-colon malignancy)
 - Ovarian cancer (epithelial serous)

CA-125

Cancer Antigen 125

- Biomarker for epithelial ovarian cancer
- Poor performance for screening
- Useful in evaluating adnexal mass
- Useful in monitoring response to treatment
 - Serial measurement for follow-up

Ovarian Stromal Tumors

Jason Ryan, MD, MPH

Ovary Structures

- Oocytes (eggs)
 - Germ cell tumors
- Supporting cells
 - Theca/granulosa
 - Fibroblasts
 - Sex cord stromal tumors
- Surface epithelium
 - Adenomas/Carcinomas

Wikipedia/Public Domain

Stromal Cell Tumors

- "Sex cord stromal tumors"
- Fibroblasts, theca cells, granulosa cells
- Often produce hormones

Estradiol (17β-estradiol)

- Most common ovarian stromal tumor
- Tumors derived of granulosa-type cells
- May contain theca cells ("granulosa-theca cell tumor")
- Secrete estrogens
- Usually unilateral
- May become malignant ("malignant potential")

- Adult subtype (95% cases)
 - Median age 50 to 54 years
 - Symptoms from excess estrogen production
- Juvenile subtype
 - Develop before puberty
 - "Sexual precocity" from excess estrogen production
 - Puberty at very early age (usually < 8 years old)

Clinical Features

- Often present as large adnexal mass
- Estrogen symptoms
 - **Endometrial hyperplasia** → uterine bleeding
 - Often bleeding in postmenopausal woman
 - Breast tenderness
- Associated with endometrial carcinoma
 - Endometrial biopsy often performed

Histology

- Pathognomonic finding: Call-Exner bodies
- Cells surrounding space filled with pink material

Nephron/Wikipedia

Fibroma

- Benign tumors of fibroblasts
- Solid, white tumor
- Usually unilateral
- No hormone activity
- Occur in postmenopausal women
- Usually present as a pelvic/adnexal mass
- Two classic clinical associations
 - Ascites
 - Meigs syndrome

Ed Uthman, MD/Wikipedia

Ascites and Meigs Syndrome

- Ascites occurs in 40% cases of ovarian fibroma
- Meigs syndrome
 - Ovarian fibroma
 - Ascites
 - Pleural effusion
- Etiology unclear
- Probably related to capillary leak from tumor factors
- Removal of tumor resolves ascites and effusion

Thecoma

- Usually co-exist with fibromas ("fibrothecoma")
- Pure thecoma: rare
- May produce estrogens
- May lead to endometrial hyperplasia/bleeding

Sertoli-Leydig Cell Tumor

- Tumor of Sertoli and Leydig cells
 - Often occur in males as testicular tumors
 - May occur in the ovary
- Tumor produces androgens
 - Breast atrophy
 - Amenorrhea
 - Sterility (anovulation)
 - Hirsutism

Wikipedia/Public Domain

Ovarian Germ Cell Tumors

Jason Ryan, MD, MPH

Ovary Structures

- Oocytes (eggs)
 - Germ cell tumors
- Supporting cells
 - Theca/granulosa
 - Fibroblasts
 - Sex cord stromal tumors
- Surface epithelium
 - Adenomas/Carcinomas

Wikipedia/Public Domain

Ovarian Germ Cell Tumors

- Occur in **young women**
- Usually 10 to 30 years old
- Many secrete AFP or β-hCG
- Tumors of germ cell derivatives
 - Germ layers (Teratoma)
 - Germ cells (Dysgerminoma)
 - Yolk sack (Yolk sac tumors)
 - Placental tissue (Choriocarcinoma)

Teratoma

- Most common overall germ cell tumor
- Cells from all three germ layers
 - Ectoderm (skin, hair follicles)
 - Endoderm (lung, GI)
 - Mesoderm (muscle, cartilage)
- Benign form: Dermoid cyst
- Malignant form: Immature teratoma
- Rare monodermal forms

Dermoid Cyst

Mature Cystic Teratoma

- "Dermoid" = skin like
- Contain hair, squamous cells, sebaceous (oily) material
- Walls may contain calcification, **tooth-like material**

Wikipedia/Public Domain

Dermoid Cyst

Mature Cystic Teratoma

- Usually asymptomatic, unilateral
 - 10-20% bilateral
- Characteristic features on ultrasound

Mikael Häggström/Wikipedia

Dermoid Cyst

Mature Cystic Teratoma

- Usually removed surgically to avoid complications:
 - Torsion
 - **Rupture** \rightarrow tumor material in abdominal cavity \rightarrow peritonitis
 - Small risk (<1%) of malignant transformation
 - Elements may become malignant
 - Skin malignancies common
 - Squamous cell carcinoma most common

Struma Ovarii

- Specialized subtype of teratoma
- Mostly thyroid tissue ("monodermal")
- Rarely (<10% cases) may cause hyperthyroidism
- Classic board case:
 - Hyperthyroid symptoms
 - Ovarian mass

Nephron/Wikipedia

Immature Teratoma

- Malignant teratoma
- Solid mass
- Contain immature fetal tissue
- Most commonly contain neural tissue
- Elements of all three germ layers

Dysgerminoma

- Most common malignant germ cell tumor
- Same characteristics as **seminoma** in males
 - Seminoma much more common
- Unilateral in 90% of cases
- May produce enzymes/hormones (tumor markers)
 - Lactate dehydrogenase (LDH)
 - Placental alkaline phosphatase
 - B-hCG
- Highly responsive to treatment

Dysgerminoma

- Histology: undifferentiated germ cells
- Nests of large cells with clear cytoplasm
- Central nuclei
- "Fried egg" appearance

Nephron/Wikipedia

Yolk Sac Tumor

Endodermal Sinus Tumor

- Rare malignant germ cell tumor
- Derives from extraembryonic yolk sac cells
- Similar to endodermal sinuses of yolk sac in rats
- Secrete alpha fetoprotein (AFP)
 - AFP normally derives from yolk sac

Wikipedia/Public Domain

Yolk Sac Tumor

Endodermal Sinus Tumor

- Large, solid mass
- Necrosis and hemorrhage
- Commonly presents with abdominal pain
- Also occurs in males in testes

Yolk Sac Tumor

Endodermal Sinus Tumor

- Hallmark: Schiller-Duval bodies
- Glomerular-like structures ("glomeruloid")

Jensflorian /Wikipedia

Choriocarcinoma

- Rare malignant gestational neoplasm
- Often follows normal or molar pregnancy
- Rarely may occur in ovary as germ cell tumor
- Syncytiotrophoblast and cytotrophoblast cells
- No formation of villi

Choriocarcinoma

- Secrete human chorionic gonadotropin (hCG)
 - Useful for diagnosis
 - Mimics LH
 - May cause precocious puberty in girls
 - May cause irregular vaginal bleeding
 - Mimics TSH \rightarrow may lead to hyperthyroidism

Choriocarcinoma

- Aggressive hematogenous spread
- Often in lungs, liver, bone at diagnosis
- More difficult to treat/cure than placental tumors

Breast Tissue

Jason Ryan, MD, MPH

Breast

- Produces milk for baby
- Made up of ~15 to 20 lobes
- Each lobe: multiple lobules
- Each lobe attached to duct
- Each duct drains to the nipple
- Lobes surrounded by stroma/fat

Wikipedia/Public Domain

Breast Structures

National Cancer Institute

Terminal Duct Lobular Unit

- Functional unit of breast
- Extralobular terminal duct: attaches to lobule
- Intralobular terminal duct: duct system into lobule
- Clusters of acini (sacs) within lobule that secrete milk

Breast Epithelium

- Lines surface of ducts and lobules
- Contains two layers over basement membrane
- Luminal epithelial cells
 - Secrete milk
- Myoepithelial cells
 - Contractile
 - Respond to oxytocin

Milk Lines

- Two thickenings of ectoderm
- Form breasts/nipples
- Axilla to groin
- Form mammary ridges
- Disappear later except for breast
- Extra nipples may form

Geneva Foundation for Medical Education and Research
Hormones

Breast tissue: hormone sensitive

Estrogens

- Major effect on ducts
- Puberty: estrogen increases breast size in females
- Menstrual cycle: cyclic increase in breast size (tenderness)
- Pregnancy: increase in breast size

Progesterone

- Mostly acts on lobules
- Growth in lobules (preparation for pregnancy/delivery)

Prolactin

• Increased levels in pregnancy \rightarrow increases breast size

Pregnancy

- Growth of breast tissue
- Driven by hormones
 - Estrogens, progesterone, and prolactin
 - Possibly some effect of hCG
- In pregnancy **no significant milk formation**
 - Inhibited by progesterone and estrogens
- Delivery: fall in hormones
- Milk production occurs

Maintenance of Lactation

- Requires removal of milk and nipple stimulation
- Triggers **prolactin** release from anterior pituitary
- Also **oxytocin** from posterior pituitary
- Absence of milk removal: involution
- Prolactin \rightarrow inhibits ovulation during lactation

Breast Milk Contents

- Lactose
- Antimicrobial components
 - Antibodies (mostly IgA passive immunization)
 - Macrophages
 - Lymphocytes
 - Lactoferrin (anti-microbial)
 - Lysozymes (breaks down bacterial cell walls)

Public Domain

Breast Feeding Benefits

- Benefits to child
 - Lowers risk of infant infections (GI, pulmonary)
 - Possible long-term benefits
 - Some studies show reduced allergies, diabetes, obesity

Achoubey/Wikipedia

Breast Feeding Benefits

Benefits to mother

- Decreased risk of breast and ovarian cancer
- Possible decreased risk of cardiovascular disease
- Faster childbirth recovery
- Reduced stress
- Maternal-infant bonding
- Enhanced weight loss
- Longer postpartum anovulation

Wikipedia/Public Domain

Galactorrhea

- Production of milk outside lactation
- Common complaint: "Nipple discharge"
- Most causes related to prolactin
 - Prolactin \rightarrow milk production
 - Prolactin release inhibited by dopamine (hypothalamus)
 - Dopamine antagonists → ↑ prolactin → milk production

Galactorrhea

Chronic nipple (neurogenic) stimulation

- Chronic stimulation $\rightarrow \uparrow$ prolactin
- Example: poorly fitting bra

Prolactinoma

- Pituitary tumor
- Galactorrhea: classic sign
- Drugs
 - Typical antipsychotics (Haldol)

Gynecomastia

- Breast development in males
- May be physiologic
- May occur in association with galactorrhea

Wikipedia

Gynecomastia

Physiologic Causes

- Common in newborn male babies
 - Placental transfer of maternal estrogens
 - Resolves with time

Common at puberty in males

- Some androgen to estrogen conversion
- Transient
- Common in older men (>50)
 - Less testosterone, more fatty tissue

Marg/Wikipedia

Gynecomastia Other Causes

- Cirrhosis
 - Decreased liver metabolism of estrogens
- Klinefelter syndrome (male 47,XXY)
 - Male hypogonadism (↓ testosterone)
- Several classic drugs
 - All have anti-androgen effects
 - Spironolactone (diuretic)
 - Cimetidine (H₂ blocker)
 - Ketoconazole (anti-fungal)

Breast Disorders

Jason Ryan, MD, MPH

Breast Mass

Evaluation

- Clinical features
 - Change with menstrual cycle
 - Discharge
- Mammography (microcalcifications)
- Ultrasound (fluid filled cysts)
- Biopsy

Fibrocystic Changes

- Group of breast changes/lesions
- All are **benign**
 - "Non-proliferative"
 - Not associated with risk of cancer
- Occur in premenopausal women
- Present as "lumpy, bumpy" breasts
- Must be distinguished from breast cancer

Fibrocystic Changes

Simple cysts

- Occur in terminal duct lobular unit
- Fluid-filled, round cysts
- Filled with dark fluid
- "Blue domed" cyst on gross specimens

• Fibrosis

- Cyst rupture \rightarrow inflammation \rightarrow fibrosis
- Apocrine metaplasia
 - Also called "benign epithelial alteration"
 - Alterations to lobular epithelial cells
 - Take on appearance of apocrine (gland) cells

Fibrocystic Changes

Fibrocystic Changes

Breast Cyst

Proliferative Breast Disorders

- Proliferation of epithelial cells
- No atypia (normal cells)
- Small increase in risk of breast cancer
- Key types
 - Epithelial hyperplasia
 - Sclerosing adenosis
 - Intraductal papilloma

Epithelial Hyperplasia

- Normal ducts/lobules: double-layer epithelium
 - Luminal cells and myoepithelial cells
- Hyperplasia:
 ↑ luminal/myoepithelial cells
 - Distended ducts or lobules
 - Lumen filled with cluster of cells

Librepath/Wikipedia

Sclerosing Adenosis

- Increased number of compressed acini
- Dense stroma
- May result in calcifications

Nephron/Wikipedia

Intraductal Papilloma

- Growth of ductal epithelial cells
 - "Intraductal"
 - Proliferation of normal epithelial cells
 - Develop in ducts or lactiferous sinuses
- Cells grown in "finger-like" projections
 - "Papilla"

National Cancer Institute

Intraductal Papilloma

KGH/Wikipedia

Intraductal Papilloma

- Present with bloody/serous discharge
- May also have a small mass near the nipple

Stromal Tumors

- Most breast cancers: carcinomas
 - Arise from epithelial cells
- Stromal tumors
 - Fibroadenoma
 - Phyllodes Tumor
- Both arise from intralobular stroma
- Stromal growth may trigger epithelial proliferation

Fibroadenoma

- Most common benign breast tumor
- Masses of fibrous and glandular tissue
- Compressed epithelial lined spaces
- Hypoechoic on ultrasound

KGH/Wikipedia

Fibroadenoma

- Occurs ages 15 to 35 years (premenopausal)
- Hormone sensitive
- Increase in size during menstrual cycle/pregnancy
- Decrease in size after menopause
- Well-defined, solid, mobile mass
- Develop in lobules

KGH/Wikipedia

Phyllodes Tumor

- Also a stromal fibroepithelial tumor
 - Usually benign
 - Low grade forms similar to fibroadenomas
 - High grade variants can metastasize
- Usually present in older women (>60 years)
- Phyllodes = Greek word "leaf like"
- Leaf-like growths of stroma covered by epithelial cells

Phyllodes Tumor

Nephron/Wikipedia

Mammary Duct Ectasia

- Benign inflammatory condition
- Affects older women (~50 years old)
- Classically in multiparous women
- Distension (ectasia) of subareolar ducts (nipple)
- Due to chronic inflammation and fibrosis
- Presents as breast mass
- Dirty white, greenish or black nipple discharge
- Usually no pain, erythema
- Must be differentiated from breast cancer

Mammary Duct Ectasia

MD Specialclass

Fat Necrosis

- Results from trauma
 - Often biopsy, surgery
 - Sports injury, seatbelt injury

Prassa CBSR

- Many women do not recall a specific trauma
- Benign, inflammatory process
- Often mimics breast cancer
 - May present as painless mass in breast
 - Often asymptomatic
 - Calcifications on mammogram
- Biopsy shows fat necrosis with inflammatory cells

Lactational Mastitis

Acute Mastitis

- Occurs in women during breast feeding
- Trauma to skin around nipple
- Breast erythema, tenderness
- Often fever, malaise
- Most commonly infection with S. Aureus
- Usual treatment: **dicloxacillin or cephalexin**
- Mother should continue nursing
- Can progress to abscess requiring drainage

Periductal Mastitis

Squamous Metaplasia of Lactiferous Ducts

- Inflammation of subareolar ducts
- More than 90% cases occur in female smokers
 - Smoking toxic to subareolar ducts
 - Smoking may cause relative vitamin A deficiency in ducts

Pixabay/Public Domain

Periductal Mastitis

Squamous Metaplasia of Lactiferous Ducts

- Inflammation → squamous metaplasia
- Duct epithelium cuboidal \rightarrow squamous
- Periareolar mass with redness, tenderness, warmth
- Often 2° infection requiring antibiotics
- Often requires incision/drainage

Breast Disorders

Summary

- Fibrocystic changes
 - Cysts, fibrosis, apocrine metaplasia
 - Benign
- Proliferative breast disorders
 - Epithelial hyperplasia, sclerosis adenosis, papilloma
 - Associated with increased risk
 - Not usually precursors of cancer
- Stromal tumors
 - Fibroadenoma
 - Phyllodes tumor

Breast Disorders

Summary

- Mammary duct ectasia (white discharge)
- Fat necrosis (trauma)
- Mastitis (erythema, tenderness)

Breast

Carcinoma

Jason Ryan, MD, MPH

- Most common non-skin cancer in women
- 2nd most deadly cancer in women (lung)
- Mostly a disease of older postmenopausal women
 - Rare before age 25
 - Incidence increases after age 30
- Can occur in men (rare)

Risk Factors

- Female gender (99% of cases)
- Age (peak incidence 70-80 years)
- Race
 - Non-Hispanic white women: greatest risk
- 1st degree relative with breast cancer
 - Mother, sister, daughter

Risk Factors

- Increased estrogen exposure
 - Earle menarche/late menopause
 - Obesity
 - Breast feeding = protective
- Age at first live birth
 - Young (<20) = protective
 - Older (>35) = higher risk

Detection

- Palpable breast mass
- Mammography
 - Detects micro-calcifications
 - Occur in malignant lesions
 - Also seen in fat necrosis and sclerosing adenosis

Wikipedia/Public Domain

Major Types

- Ductal versus lobular
 - Ductal = resemble duct cells
 - Lobular = resemble lobules
 - Both types from TDLU
- In situ versus invasive
 - In situ = limited by basement membrane

Major Types

- Almost all (95%) are adenocarcinomas
- Arise from epithelial cells of ducts/lobules
- At diagnosis >70% have invaded basement membrane

DCIS

Ductal Carcinoma In Situ

- Malignant growth of epithelial cells of TDLU
- Fills ductal lumen
- Limited by intact basement membrane

Cribriform DCIS

KGH/Wikipedia

DCIS

Ductal Carcinoma In Situ

- Forms microcalcifications (LCIS does not)
- Usually detected by mammography
- Many subtypes based on histology

Comedo DCIS

- Central necrosis
- Large tumor cells
- Pleomorphic nuclei
- High risk

Difu Wu/Wikipedia

Paget Disease

- Erythema at **nipple** due to underlying malignancy
- Occurs when DCIS extends to nipple
- May cause bloody nipple discharge
- Paget cells seen on biopsy

Wikipedia/Public Domain

Paget Disease

- Palpable mass in >50% cases
- ~50% have mass on mammogram
- Usually invasive carcinoma found

Wikipedia/Public Domain

LCIS

Lobular Carcinoma In Situ

- Proliferation of cells in ducts/lobules
- Limited by intact basement membrane
- "Discohesive growth:" loose intercellular connections
 - Loss of adhesion protein E-cadherin
- Round cells clumped together

Difu Wu/Wikipedia

LCIS

Lobular Carcinoma In Situ

- Does not lead to micro-calcifications
- Usually an **incidental finding** on biopsy
- Often bilateral
- May be multi-focal

LCIS

Lobular Carcinoma In Situ

• **Risk factor** for invasive carcinoma

- Non-invasive lesion
- Risk of carcinoma in both breasts
- Management: surveillance +/- chemoprevention
 - Common drug: Tamoxifen (SERM)
 - Blocks endogenous estrogen effects

Tamoxifen

Invasive Ductal Carcinoma

- Most common type (~80%) invasive carcinoma
- Biopsy: duct cells with stroma

Difu Wu/Wikipedia

Invasive Ductal Carcinoma

- Most commonly in outer quadrant of breast
 - More breast tissue

Inflammatory Carcinoma

- Erythema, swelling of breast (**peau d'orange**)
 - Dimpling of skin
 - Similar to orange rind
- Tumor invasion of skin (dermal) lymphatic vessels
- Mimics infection
- High grade
- Poor prognosis

Invasive Lobular Carcinoma

- Cells grow in "single file"
- Lack of E-cadherin adhesion protein expression
 - Can't stick together in clumps
- Often bilateral with multiple lesions

Ed Uthman/Wikipedia

Prognosis

Axillary lymph node metastases

- Most important prognostic factor for invasive cancer
- Detected by biopsy
- Sentinel node biopsy often performed

Wikipedia/Public Domain

Predictive Markers

- Important for prognosis and therapy
- Estrogen receptor positivity (ER+)
- Progesterone receptor positivity (PR+)
- Human epidermal growth factor receptor-2 (HER2)
 - Cell surface tyrosine kinase receptor

Boards&Beyond

Predictive Markers

- ER+ and PR+ tumors
 - May respond to Tamoxifen (SERM)
- HER2+ tumors
 - May respond to Trastuzumab
- "Triple negative" tumors
 - Highly aggressive
 - More common in women under 40
 - African-American women: highest risk

Familial Breast Cancer

- Cause about 10% of breast cancers
- BRCA1 and BRCA2 gene mutation:
 - Both gene mutations associated with breast cancer
 - Cause of ~85% of single gene familial cases
- Genes code for DNA repair proteins
- Also associated with other malignancies
 - BRCA1: Ovarian cancer
 - BRCA2: Male breast cancer and pancreatic cancer

BRCA1 and BRCA2

- More common among Ashkenazi Jews
- Germline gene mutation
- Autosomal dominant
- Incomplete penetrance
 - Not all individuals with disease mutation develop disease

Juhu /Wikipedia

Male Breast Cancer

- Incidence 1% compared to women
- Usually occurs 60 to 70 years of age
- Usually presents as subareolar mass +/- discharge
 - Most breast tissue in males near nipple
- Key associations:
 - Klinefelter syndrome (3 to 8% cases)
 - BRCA2 gene mutations (4 to 14% cases)

Penile Disorders

Jason Ryan, MD, MPH

- Three cavernous bodies ("the corpora")
- Corpus cavernosa: Two large spongy tissue beds
- Corpus spongiosusm: Smaller spongy tissue bed
 - Surrounds urethra

Wikipedia/Public Domain

Esseh/Wikipedia

- Tunica albuginea
 - Latin: "tunica" = covering, "albuginea" = white
 - White connective tissue surrounding corpus cavernosa
- Buck's fascia
 - Covers all three erectile structures

Mcstrother/Wikipedia

Penis Physiology

- Key structures: arterioles and corpora
- Flaccid penis:
 - High tone of cavernosal arterioles
 - \downarrow inflow of blood
- Erection (tumescence)
 - Smooth muscle relaxation
 - ↑ blood flow
 - Corpora swell (sinusoids)
 - Compress veins/venules
 - ↓ outflow
- High inflow/low outflow \rightarrow \uparrow intracorporeal pressure

Penis Physiology

- Detumescence
 - Smooth muscle contraction
 - Corpora shrink
 - Venous outflow

Peyronie Disease

- Abnormal tunica albuginea
- Acquired disorder
 - Likely related to trauma in a susceptible individual
- Localized fibrosis of tunica albuginea
- Pain
- Nodule
- Abnormal curvature when erect
- Erectile dysfunction

Boards & Beyond

SugarMaple/Wikipedia

Peyronie Disease

- Treatment: Pentoxifylline
 - Phosphodiesterase inhibitor
 - Reduces inflammation
 - Prevents collagen deposition
- Injection or oral administration

Penile Fracture

- **Rupture** of tunica albuginea
- Often associated with urethral damage
- Caused by blunt trauma
- Audible snap \rightarrow pain, swelling, ecchymosis

Mcstrother/Wikipedia

Priapism

- Persistent erection
- Lasting more than 2-4 hours
- Not due to sexual activity

Priapism

Types

- Ischemic
 - Most common type (95% of cases)
 - Lack of outflow \rightarrow tissue ischemia
- Non-ischemic
 - "High flow" priapism
 - Fistula between arteries and corpus cavernosum
 - Often follows trauma

Ischemic Priapism

Etiology

- Failure of cavernosal outflow
- Two classic causes: Sickle cell and drugs
- Sickle cell anemia
 - Veno-occlusion

• Drugs

- Block smooth muscle contraction
- Antipsychotics/antidepressants (trazadone, SSRIs)
- Alpha blockers (doxazosin, tamsulosin, terazosin, prazosin)
- Erectile dysfunction drugs

Ischemic Priapism

Treatment

- Urologic emergency
- Hypoxia, acidosis of penile blood occurs
- May cause permanent erectile dysfunction
- May leads to penile necrosis
- Treatments:
 - Corporal aspiration
 - Intracavernosal phenylephrine
 - Surgery

Condylomata Acuminata

Anogenital Warts

- STD caused by papillomavirus (6, 11)
- Soft, tan, cauliflower-like lesions
- "Verrucous" = warts
- Also seen vulva, perianal area (rectal bleeding)
- Treatment:
 - Chemical agents
 - Surgical therapy
- Does not lead to cancer

SOA-AIDS Amsterdam/Wikipedia

Condylomata Acuminata Histology

Peri-nuclear clear vacuolization (koilocytosis)

KGH/Wikipedia

Squamous Cell Carcinoma

- Rare penile malignancy
- Arises from squamous skin cells
- Occurs in the glans or shaft
- Occurs in older men (mean age ~60)
- Rare in US, Europe
- Common in Africa, Asia, South America

Squamous Cell Carcinoma

Risk Factors

- Uncircumcised penis
 - Circumcision: reduced exposure to carcinogens
- HPV Infection
 - HPV DNA in 30-50% of cases
 - Types 16 and 18
- Smoking

Squamous Cell Carcinoma

Pre-malignant (in situ) lesions

- In situ carcinoma (no basement membrane invasion)
- Bowen disease
 - Gray-white plaque (leukoplakia) on shaft of penis
- Erythroplasia of Queyrat
 - Dark red lesion on glans of penis
 - Bowen disease of the glans
- Bowenoid papulosis
 - Multiple, red-brown papules

Erectile Dysfunction

- Inability to achieve/maintain an erection
- Usually psychological component
- Associated with many conditions
 - Heart disease
 - HTN
 - Diabetes
 - Obesity
 - Certain medications
 - Smoking
 - Alcoholism and other forms of substance abuse
 - Sleep apnea

Sildenafil, Vardenafil, Tadalafil

- PDE5 breaks down cGMP in smooth muscle cells
- Inhibition \rightarrow more cGMP \rightarrow relaxation
- Improved response to NO

Smooth Muscle Cell

- Erectile dysfunction (improved blood flow)
- Pulmonary hypertension (\downarrow PVR)
- Benign prostatic hyperplasia (BPH)
 - Only tadalafil has FDA approval

- Contraindicated in patients taking nitrates
 - Life-threatening hypotension
 - Cannot use with **nitroglycerine**, isosorbide
- Headache and flushing
- Priapism

Smooth Muscle Cell

- Vision problems
 - Temporary blue vision (cyanopia)
 - Only reported with sildenafil
 - Drug cross-reacts with PDE-6 in retina
 - Resolves in hours

Scrotal Disorders

Jason Ryan, MD, MPH

- Testicle rotates in scrotum
- Twists spermatic cord
 - Forms at deep inguinal ring
 - Travels through inguinal canal
 - Enters scrotum through superficial inguinal ring
 - Ends at testes
 - Carries arteries, veins, ductus deferens

Wikipedia/Public Domain

Scrotal ligament

- Secures testis to scrotum
- Limits movement in scrotum
- Abnormal function may lead to torsion
- Allows testes to twist

Wikipedia/Public Domain

- Compression of thin-walled venous outflow
- Continued inflow through arteries (thick walled)
- Engorgement of testicle
- Hemorrhagic infarction

Kalumet/Wikipedia

- Neonatal form (rare)
 - Occurs in first 30 days after birth
 - Testes not yet attached to scrotum
- "Adult" form
 - Boys 12-18 years old
 - Often caused by **anatomic defect**
 - Lack of attachment testicle to scrotum
 - "Bell clapper deformity:" tunica vaginalis covers cord
 - Increased mobility of testicle in scrotum

Clinical Features

- Painful, swollen testicle
- Absent cremaster reflex
 - Stroking inner thigh
 - Normal response: contraction of cremaster muscle
 - Pulls ipsilateral scrotum/testis up

Kalumet/Wikipedia

- May lead to infertility
- Treatment: urgent surgery
 - Detorsion (manual or surgical)
 - Orchiopexy (fixation of testicle)
 - Testicle removal (if nonviable)

Must treat contralateral testis

Kalumet/Wikipedia

• Dilatation of **pampiniform plexus** of spermatic veins

Wikipedia/Public Domain

- Caused by obstruction to outflow of venous blood
- More common on left
 - Left spermatic vein \rightarrow left renal (long course)
 - Compressed between aorta and superior mesenteric artery
 - "Nutcracker effect"
 - Right vein drains directly to IVC
- Associated with renal cell carcinoma
 - Invades renal vein

- Scrotal pain and swelling
 - Dilated veins = "Bag of worms"
- More swelling with:
 - Valsalva
 - Standing
- Diagnosed by ultrasound
- Can cause infertility
 - 1 temperature
 - Poor blood flow

Fisch12/Wikipedia

Schomynv /Wikipedia

Treatment

- Surgery (varicocelectomy)
 - Isolate dilated/abnormal veins
 - Redirect blood flow to normal veins
- Embolization
 - Interventional radiology procedure
 - Catheter inserted into dilated/abnormal veins
 - Coil or sclerosants used to clot off veins

Hydrocele

- Accumulation of fluid in tunica vaginalis
 - Small, fluid-filled sac attached to testicle
- Scrotal swelling
- Transilluminates with light
 - Differentiates from solid mass (i.e. tumor)

Hydrocele

- Newborn form
 - Incomplete closure of processus vaginalis
 - "Communicating hydrocele"
 - Peritoneal fluid collects in tunica vaginalis
 - Usually resolve spontaneously by 1 year of age
- Adult form
 - "Noncommunicating hydrocele"
 - Often idiopathic
 - May be 2° to infection, torsion, trauma
 - May become bloody ("hemotocele")

Hydrocele

Spermatocele

- Large epididymal cyst
- Usually at head (top) of epididymis
- Usually asymptomatic
- Detected on physical exam
- Mass at top of testicle
- Separate from testis
- Can diagnosis with ultrasound

Wikipedia/Public Domain

KDS444 /Wikipedia

Cryptorchidism

- "Hidden testes"
- Usually due to undescended testes
 - Abdominal
 - Inguinal canal
- Can be unilateral/bilateral

Cryptorchidism Complications

- Low sperm counts
 - ↑ temperature effects on Sertoli cells
- ↑ risk of germ cell tumors
- Inguinal hernias
- Testicular torsion

Cryptorchidism

- Testes may descend on their own
 - Usually occurs by 6 months of age
- Orchiopexy
 - Surgical placement of the testis in scrotum
 - Sperm counts usually become normal

Testicular Tumors

Jason Ryan, MD, MPH

Testicular Malignancy

- Many similarities to ovarian malignancies
- Key difference: no common epithelial cancers
- Two main categories:
 - Germ cell tumors
 - Sex cord-stromal tumors

Testicular Tumors

Germ cell tumors

- Seminoma and Non-seminomas
- Embryonal carcinoma, Yolk Sac tumor
- Choriocarcinoma, teratoma
- Non-germ cell tumors
 - Leydig cell tumor
 - Sertoli cell tumor
 - Lymphoma

Mikael Häggström/Wikipedia

Testicular Tumors

- Usually present as painless, testicular mass
- Do not transilluminate
- Often evaluated with ultrasound
- If cancer suspected: orchiectomy
- Usually not biopsied
 - Risk of tumor seeding
 - Into scrotum or spread to inguinal nodes

Germ Cell Tumors

- Most common type (95%) of testicular malignancy
- Usually occur in young men 15-34 years old
- Key risk factors:
 - Cryptorchidism
 - Kleinfelter syndrome

Malcolm Gin/Wikipedia

Germ Cell Tumors

- Always malignant (capable of metastasis)
- Often a mix of subtypes
- Highly curable
- 5-year survival ~95%

Seminoma

- Most common germ cell tumor
- Same characteristics as **dysgerminoma** in females
 - Seminoma much more common
 - Dysgerminoma: rare ovarian cancer

Boards&Beyond.

Wikipedia/Public Domain
Seminoma

Homogenous mass

- Grey-white appearing
- No hemorrhage or necrosis
- May produce β-hCG
 - Tumor marker in 15% cases
 - Syncytiotrophoblast tissue in tumor
- Placental alkaline phosphatase
 - Old marker
 - Poor sensitivity
- Treatment
 - Surgery +/- chemo/radiation

Ed Uthman/Wikipedia

Seminoma

- Histology: undifferentiated germ cells
- Nests of large cells with clear cytoplasm
- Central nuclei
- "Fried egg" appearance

Nephron/Wikipedia

Embryonal Carcinoma

Non-seminoma Germ Cell Tumor

- Usually occurs as component of mixed tumor
 - Pure embryonal carcinoma rare (2% testicular GCTs)
- Key distinctions from seminoma:
 - Mass with hemorrhage and necrosis
 - Painful
- May have syncytiotrophoblast tissue
 - Secretes β-hCG

Yolk Sac Tumor

Endodermal Sinus Tumor

- Most common GCT children <3 years old
- Derives from extraembryonic yolk sac cells
- Similar to endodermal sinuses of yolk sac in rats
- Secrete alpha fetoprotein (AFP)
 - AFP normally derives from yolk sac

Wikipedia/Public Domain

Yolk Sac Tumor

Endodermal Sinus Tumor

- Hallmark: Schiller-Duval bodies
- Glomerular-like structures ("glomeruloid")

Jensflorian /Wikipedia

Choriocarcinoma

- Rare malignant gestational neoplasm
- Often follows normal or molar pregnancy
- Rarely may occur in testes/ovary as germ cell tumor
- Syncytiotrophoblast and cytotrophoblast cells
- No formation of villi

Choriocarcinoma

- Secrete hCG
 - Useful for diagnosis
- May cause gynecomastia
 - hCG stimulates Leydig cell aromatase activity
 - Androgen \rightarrow estrogens \rightarrow gynecomastia
- May cause hyperthyroidism
 - Mimics TSH

Choriocarcinoma

- Pure choriocarcinoma: most aggressive GCT
- May not cause palpable testicular mass
- Aggressive hematogenous spread
- Often in lungs, liver, bone at diagnosis
- More difficult to treat/cure than placental tumors

Teratoma

- Cells from all three germ layers
 - Ectoderm (skin, hair follicles)
 - Endoderm
 - Mesoderm (cartilage)
- Large mass
- Neural tissue, muscle, cartilage
- Often part of a mixed tumor in adults
- Pure teratoma usually seen in young children
 - Mean age: 20 months
 - Usually before age 4

Germ Cell Tumors

- Clinically divided into two categories
- Seminomas
 - Remain localized for a long time
 - 70% identified in stage one
 - Mets to lymph nodes first
 - Hematogenous spread late
- Non-seminomas
 - Early metastasis
 - Often hematogenous

Mixed Germ Cell Tumors

- Testicular tumors often mix of subtypes
 - Teratoma, embryonal carcinoma, yolk sac tumor
 - Seminoma, embryonal carcinoma
 - Embryonal carcinoma, teratoma
- Prognosis usually worse for mixed tumors

Leydig Cell Tumor

Non-Germ Cell Tumor

- Produce androgens and estrogens
- Gynecomastia
- Sexual precocity (early puberty)
- Golden brown mass (high lipid content)
- **Reinke crystals** in cytoplasm of tumor cells

Basic Medical Key www.basicmedicalkey.com

Sertoli Cell Tumor

Androblastoma

- Usually do not produce hormones
- Most are benign

Mikael Häggström/Wikipedia

Testicular Lymphoma

- Non-Hodgkin lymphoma may involves testes
 - Diffuse large B-cell lymphoma most common subtype
- 5% testicular cancers = lymphoma
- Most common testicular tumor men > 60 years old
- Testicular mass may be presenting complaint

Extragonadal GCT

Extragonadal Germ Cell Tumors

- Occur in males and females
- Arise in midline locations
 - Adults: Anterior mediastinum most common
 - Children: Sacrococcygeal and intracranial most common
- Many types
 - Seminomas/dysgerminomas
 - Teratomas
- Failure of germ cell migration

Prostate

Jason Ryan, MD, MPH

Prostate

- Round gland a base of bladder
- Anterior to rectum
 - Palpation on digital rectal exam
- Encircles urethra
- Produces prostatic fluid
- Stimulated by androgens

This shows the prostate and nearby organs.

Wikipedia/Public Domain

Acute Prostatitis

- Acute inflammation of the prostate
- Usually bacterial
- Older man
 - Similar organisms to cystitis
 - E. coli most common
 - Also proteus, pseudomonas
- Sexually-active, younger men
 - Neisseria gonorrhoeae
 - Chlamydia trachomatis

Acute Prostatitis

Symptoms

- Fevers, chills, malaise
- Dysuria, frequency
- Cloudy urine
- Digital rectal exam:
 - Prostate edematous/enlarged ("boggy")
 - Exquisitely tender
- Workup: Urine analysis (WBC) and culture

Chronic Prostatitis

- Chronic bacterial prostatitis
 - Chronic/recurrent prostatitis symptoms
 - Evidence of bacterial infection
- Chronic abacterial prostatitis
 - Symptoms of prostatitis (pain, difficulty voiding)
 - May present as chronic pelvic and low back pain
 - Sometimes blood in semen
 - No bacteria identified
 - Etiology unclear

Benign Prostatic Hyperplasia

- Age-related condition
- Common in men >50
- Hyperplasia of stromal and epithelial cells
- Results in partial or complete urinary obstruction
- Not a premalignant condition

Wikipedia/Public Domain

Symptoms

- Hesitancy (cannot start urine stream)
- Frequency (incomplete voiding)
- Dribbling
- Bladder may hypertrophy
- Rarely may cause complete obstruction
 - Bladder distention
 - Hydronephrosis
- Increased risk of UTIs

Histology

- "Nodular" hyperplasia
- Transitional zone
- Urethra compressed into "slit"

Wikipedia/Public Domain

Treatment

- Growth driven by dihydrotestosterone (DHT)
- Treatment: 5α-reductase inhibitors (Finasteride)
- Slow onset symptom relief

Treatment

- α1-blockers
 - Smooth muscle relaxation
 - Tamsulosin: Uroselective ($\alpha 1_A$ not $\alpha 1_B$ no hypotension)
- PDE-5 inhibitors
 - Also cause smooth muscle relaxation
 - Tadalafil
- Surgery
 - Transurethral resection of the prostate (TURP)

Prostate Adenocarcinoma

- Most common form of cancer in men
- 2nd most deadly (lung)
- Occurs in older men (>50)
- More common among African Americans

Prostate Adenocarcinoma

- Occur in **peripheral zone** of prostate
- Classically posterior lobe

Wikipedia/Public Domain

Prostate Adenocarcinoma

- Usually asymptomatic (rarely causes dysuria)
- Often felt as **nodule** on digital rectal exam
- Screening with PSA
- Diagnosis: prostate biopsy
 - Transrectal biopsy
 - Often with transrectal ultrasound (TRUS) guidance

BruceBlaus/Wikipedia -

Prostate Needle Biopsy

BruceBlaus/Wikipedia -

PSA

Prostate-specific antigen

- Androgen-regulated substance found in semen
- Produced by normal and malignant prostate tissue
- Elevated in BPH and prostate cancer
- Can be used for screening (controversial)
 - 0-4 ng/mL: Normal
 - 4-10 ng/mL: Elevated
 - >10 ng/mL: Highly suspicious for cancer

Free PSA

- Most PSA bound to protease inhibitors in blood:
 - Antichymotrypsin
 - Macroglobulin
- Can measure % free versus bound PSA
- Prostate cancer produces more bound PSA
- ↑ total PSA with ↓ % free PSA

Prostate Cancer

Grading

- Prognosis based on stage and grade
- Stage: Extent of tumor growth/spread
- Grade: Gleason system
 - Score done by pathologist based on biopsy findings
 - Based on well- versus poorly-differentiated cells

Nephron /Wikipedia

Metastasis

- Hematogenous spread to spine
- May cause back pain and 1 alkaline phosphatase
- Osteoblastic lesions
 - Deposition of new bone
 - Contrast with osteolytic (breakdown)
 - Prostate CA: classic osteoblastic lesion
 - Myeloma: classic osteolytic disease

James Heilman, MD /Wikipedia

James Heilman, MD /Wikipedia

Prostate Cancer

Treatment

- Surgery
- Flutamide
 - Competitive inhibitor of androgen receptors

• Leuprolide

- GnRH analog
- IM or SQ continuous (not pulsatile) therapy
- Suppresses pituitary FSH/LH release

Disorders of Sexual Development

Jason Ryan, MD, MPH

Sex Chromosome Disorders

- Aneuploidy of sex chromosomes
- Turner syndrome (45 X)
- Klinefelter syndrome (47 XXY)
- Double Y males (XYY)
 - Normal appearing male
 - Normal fertility
 - Tall
 - Sometimes severe acne
 - Learning disability, autism

DSD

Disorders of Sexual Development

- Congenital discrepancy between
 - Chromosomal sex (XX/XY)
 - Gonads (testes/ovaries)
 - External genitalia

Sexual Development

- Default genital development is female
- Male development requires special factors:
 - Testosterone
 - Dihydrotestosterone
 - Mullerian inhibiting factor
- Disorders of sexual development
 - Presence of male factors in XX (female)
 - Absence of male factors in XY (male)
- Key test : Karyotype

DSD

Clinical Presentation

- Ambiguous genitalia
 - Common presentations of DSD
 - XX female exposed to excessive androgens
 - XY male with insufficient androgens
- Female external genitalia
 - XY male with lack of androgen activity
 - Often discovered at puberty

Diabetic fetopathy associated with bilateral adrenal hyperplasia and ambiguous genitalia: a case report. *Journal of Medical Case Reports*. 2008; **2** : 251. doi:10.1186/1752-1947-2-251

Ovotesticular DSD

- Ovaries and testes in same individual
 - Separate ovaries and testes
 - Ovotestes (both tissue types in one struture)
- 80% cases in XX individual
- Diagnosis by gonadal biopsy

Ovotesticular DSD

- Range of male/female genital development
 - Abnormal vagina
 - Hypoplastic uterus
 - Undescended testes (cryptorchidism)
 - Abnormal penis
- Puberty: breast development, menstruation may occur
- Most individuals infertile

DSD

Types

- XX DSD
 - Genetic female with abnormal sexual development
 - Presence of male factors in XX (female)
- XY DSD
 - Genetic male with abnormal sexual development
 - Absence of male factors in XY (male)

XX DSD

- Ovaries usually present
- External genitalia ambiguous
- Female baby exposed to androgens
 - Congenital adrenal hyperplasia
 - Gestational hyperandrogenism
- Fetus vulnerable 7-12 weeks gestation

21-α Hydroxylase Deficiency

21-α Hydroxylase Deficiency

- Classic cause of CAH (90% of CAH)
- Low cortisol symptoms (hypoglycemia)
- Low mineralocorticoid symptoms
 - Salt loss (volume depletion)
 - Hyperkalemia
- Androgen symptoms
 - Girls (XX): ambiguous genitalia
 - Boys (XY): precocious puberty (early onset)

Gestational Hyperandrogenism

- Maternal source of androgens in pregnancy
- Mother develops hirsutism and virilization
- Leads to virilization of female fetuses
- Rare gestational masses
 - Luteomas most common
 - Secrete testosterone and dihydrotestosterone
- Maternal administration progestins or androgens
 - Some progestins have androgen activity
 - Given for threatened abortion

Placental Aromatase Deficiency

- Placenta synthesizes estradiol from testosterone
- Aromatase deficiency \rightarrow and rogen excess
- Increased androstenedione and testosterone
- Maternal/fetal virilization

XY DSD

- Testes present
- External genitalia ambiguous or female
- Male baby under-exposed to androgens
- Many potential causes
 - Gonadal dysgenesis
 - 5-α reductase deficiency
 - Androgen insensitivity
 - Rare forms of CAH (↓ androgens)
 - Testosterone synthesis defects

Swyer Syndrome

- XY gonadal dysgenesis
- Female with XY chromosomes and no ovaries
- Streak gonads
 - Mainly fibrous tissue
 - Risk of malignancy (often removed surgically)

Swyer Syndrome

- Female external genitalia
- Müllerian ducts (no Sertoli cells \rightarrow no MIH)
- No puberty/menstruation
 - No functioning ovaries to produce ↑ estrogen
 - Usually given estrogen supplementation

5-α Reductase Deficiency

- Autosomal recessive disorder
- 46,XY male able to make testosterone, not DHT

5-α Reductase Deficiency

Normal internal genitalia

- Normal epididymis, vas deferens, seminal vesicles
- Empty into a blind-ending vagina
- External genitalia predominately female
 - Absent external male genitalia
 - Range of female genitalia seen
 - Sometimes ambiguous genitalia
- Masculinization at puberty
 - Increased testosterone \rightarrow muscle growth
 - Some DHT production

5-α Reductase Deficiency

- Typical case
 - **XY male** with ambiguous genitalia
 - Female child with masculinization at puberty
 - Bilateral undescended testes
 - Normal testosterone levels
 - Vas deferens, seminal vesicles present
 - Absence of uterus
 - Blind vagina
 - Missing/abnormal male external genitalia

CAIS

Complete Androgen Insensitivity Syndrome

- Mutation of androgen receptor in males (XY)
- Testes form in utero (SRY gene present)
- No ovaries
- No internal or external male genital development
 - No cellular response to androgens
- Sertoli cells (testes) present \rightarrow MIH
 - Degeneration of mullerian structures
 - Absent uterus, fallopian tubes

CAIS

Complete Androgen Insensitivity Syndrome

- XY male with female appearance
- Abdominal testes
- Amenorrhea at puberty (no uterus)
- At puberty:
 - Breasts develop (testosterone \rightarrow estrogen)
 - No armpit/pubic hair (depends on androgens)

	Gonads	Internal	External	Puberty
Swyer		Female	Female	
$5-\alpha$ Reductase	Testes	Male	Female	Masculinization
CAIS	Testes		Female	No menses

Disorders of Sex Development

Kallmann Syndrome

- Hypogonadotropic hypogonadism plus anosmia
- Caused by GnRH deficiency
- ↓ LH/FSH
- KAL1 gene mutation
- Impaired migration GnRH neurons to hypothalamus

Kallmann Syndrome

- Primarily a disease of males (5:1 ratio)
- Newborn females appear normal
- Some newborn males: micropenis/cryptorchidism

Kallmann Syndrome

- Often discovered at puberty
- Females
 - Little or no breast development, no axillary hair
 - 1 ° amenorrhea
- Males
 - No facial or body hair
 - No increase muscles mass
 - Failure of the voice to deepen

Diagnostic Tests

- Karyotype
- Abdominal imaging
 - Abdominal testes, uterus
- 17-hydroxyprogesterone
 - Elevated in CAH due to 21-hydroxylase deficiency
- Testosterone and DHT
 - Both elevated in CAIS
 - \downarrow DHT in 5 α reductase deficiency

Luteinizing Hormone

- Secreted by pituitary
- Negative feedback by testosterone
 - Should be low when testosterone high
 - Should be high when testosterone low

	Testosterone	LH
Gonadal failure	t	Ť
Testosterone tumor	Ŷ	Ļ
Exogenous testosterone	Ŷ	Ļ
Pituitary Failure	Ļ	Ļ
CAIS	Ŷ	Ŷ

Hypogonadism

Jason Ryan, MD, MPH

Hypogonadism

- Decreased activity of gonads (ovaries/testes)
- Primary: Disorder of gonads
- Secondary: Hypothalamus/pituitary disease
 - Loss of LH/FSH

Wikipedia/Public Domain

Male Hypogonadism

- Primary hypogonadism
 - Testosterone low
 - LH/FSH increased
 - Hypergonadotropic hypogonadism
- Secondary hypogonadism
 - Testosterone low
 - LH/FSH low (or normal)
 - Hypogonadotropic hypogonadism

Wikipedia/Public Domain

Male Hypogonadism

Clinical Features

• Vary with on age of onset

Pre-puberty

- Failure to undergo puberty normally
- Adult
 - Decreased energy
 - Decreased libido
 - Infertility
 - Loss of sexual hair, muscle mass, bones (untreated for years)

1° Male Hypogonadism

Select causes

- Klinefelter syndrome
- Myotonic dystrophy
- Swyer syndrome (gonadal dysgenesis)
- Mumps

OpenStax College
2° Male Hypogonadism

Select causes

- Pituitary tumors
- Pituitary apoplexy (hemorrhage into gland)
- Kallmann syndrome (GnRH deficiency/anosmia)

Wikipedia/Public Domain

Female Hypogonadism

- Primary hypogonadism
 - Estrogen low
 - LH/FSH increased
- Secondary hypogonadism
 - Estrogen low
 - LH/FSH low (or normal)
- Presents with amenorrhea

Pixabay/Public Domain

Amenorrhea

- Primary amenorrhea
 - Failure to menstruate by age 15
- Secondary amenorrhea
 - Cessation of menses

Pixabay/Public Domain

Primary Amenorrhea

- Pituitary disorders
 - Hypopituitarism
 - Kallmann syndrome (5:1 male ratio)
- Ovarian disorders
 - Turner syndrome most common cause
 - PCOS in adolescence (androgen excess)
- Anatomic disorders
 - Mullerian agenesis (absent vagina/uterus)

Mullerian agenesis

Mayer-Rokitansky-Küster-Hauser Syndrome

- Underdevelopment of Mullerian system
- Congenital absence of vagina
- Usually no cervix or uterus
- 1° amenorrhea
- Normal 2° sexual characteristics
 - Breasts, pubic hair
 - Ovaries functional
 - Normal hormone levels

Secondary Amenorrhea

Selected Causes

- Pregnancy (anovulation)
- Menopause
- Hyperprolactinemia
- Thyroid disease
 - Hyper and hypothyroid
 - Anovulation
 - Multiple mechanisms

Øyvind Holmstad/Wikipedia

Secondary Amenorrhea

Selected Causes

- Corticosteroids/Cushing syndrome
 - Cortisol suppresses GnRH
 - Low LH/FSH
 - Low estradiol
- Cirrhosis
 - Disruption of hormone metabolism
 - Variable levels of testosterone, estradiol, and prolactin
- Spironolactone
 - Anti-androgen (disrupts estrogen/androgen balance)
 - May stimulate progesterone receptors

Asherman Syndrome

- Uterine adhesions
- Adhesions/fibrosis of endometrium
- Infertility
- 2° amenorrhea
- 90% cases from uterine curettage
 - Dilation and curettage ("D&C")
 - Cervix dilated, uterus scraped with a curette
 - Damage to regenerative layer (basalis)
 - Often done after pregnancy/miscarriage to remove tissue

Asherman Syndrome

Floranerolia/Wikipedia

Primary Ovarian Insufficiency

Premature Ovarian Failure

- Hypergonadotropic hypogonadism
- Before 40 years of age
- Clinic features similar to menopause
- Hot flashes
- Vaginal dryness
- Elevated FSH
- Elevated LH
- Low estrogen

Secondary Amenorrhea

Key Diagnostic Tests

- hCG
- Prolactin
- TSH
- FSH
 - High FSH seen in ovarian failure
- Brain MRI (exclude pituitary mass)

Functional Hypothalamic Amenorrhea

- Common cause 2° amenorrhea
- Decrease GnRH secretion
- Low serum estradiol
- LH/FSH low or normal
- Risk factors
 - Eating disorders
 - Excessive exercise
 - Weight loss
 - Stress

CollegeDegrees360/Flikr

