

"The one who works sees results and the one who sleeps sees dreams."

THE PULMONARY CIRCULATION-1

Dr Zubia Shah

Learning Objectives

- Describe the **pressures** in the pulmonary circulatory system.
- Describe **blood volume** of the lungs.
- Describe **blood flow** through the lungs and its distribution.
- Compare the **systemic and pulmonary circulations** with respect to pressures, resistance to blood flow, and response to hypoxia.
- Describe the regional differences in pulmonary blood flow in an erect position.
- List the normal airway, alveolar, arterial and mixed venous PO2 & PCO2 values.

Types of Pulmonary Circulation a high-pressure, low-flow circulation → trachea, bronchial tree, supporting tissues of lung, adventitia of pulmonary arteries and veins **Bronchial** arteries a low-pressure, high-flow circulation → The pulmonary artery and its branches \rightarrow alveolar capillaries and the

pulmonary veins then return the blood to the left atrium

Physiological Anatomy of Pulmonary Circulation

Pulmonary vessels

- Low-pressure, high-flow
- Thin, distensible high compliance

ml/mmHg

- PA: venous, deoxygenated blood!
- Function: gas exchange
- Bronchial vessels
 - High-pressure, low-flow
 - Systemic circulation, 1-2% of CO
 - Function: nutritive!
- Lymphatic vessels
 - Begin in connective tissue surrounding terminal bronchioles
 - Function: prevention of lung edema, removing particles

Pressures In the Pulmonary System

- Right ventricle:
 - P_s: 25 mm
 - P_d: o mmHg
- Pulmonary artery:
 - P_s: 25 mmHg
 - P_d: 8 mmHg
 - P_{mean}:15 mmHg
- Left atrium:
 - 1-5 mmHg (2 mmHg)
 - pulmonary wedge pressure

Balloon-tipped, Swan-Ganz catheter for measuring pulmonary capillary wedge pressure (PCWP).

5 mmHg

Mean Pulmonary Capillary Pressure is 7 mmHg

Pressures in the Different Vessels of the Lungs

Blood Volume of Lungs

Blood Volume Of The Lungs 70 ml of pulmonary blood volume is in about 9% of total **Blood volume of** pulmonary capillaries, blood volume of the lungs is about and rest is divided the entire equally between the 450 milliliters circulatory system pulmonary arteries and veins

Lungs Serve as a Blood Reservoir

can vary from one-half normal up to twice normal

 • blowing a trumpet → 250 ml of blood can be expelled from pulmonary circulation into systemic circulation

 loss of blood by hemorrhage can be partly compensated for by the automatic shift of blood from the lungs into the systemic vessels but that has 9 times more blood Cardiac Pathology May Shift Blood From the Systemic Circulation to the Pulmonary Circulation

Left heart failure, mitral stenosis or mitral regurgitation \rightarrow

blood to dam up in the pulmonary circulation sometimes increasing the pulmonary blood volume as much as 100 percent and causing large increases in the pulmonary vascular pressures

Factors Affecting Blood Flow

Autonomic innervation
Humoral Factors (histamine, bradykinin)

Effect of Hypoxia on Alveolar & Pulmonary Blood Flow

PO2 falls below 73 mmHg adjacent blood vessels constrict reducing blood flow an effect opposite to systemic circulation

Hypoxia increases the Pulmonary Vascular Resistance

Effect of Hydrostatic Pressures In Lungs on Pulmonary Blood Flow

Effect on Mean Pulmonary Arterial Pressure by Increasing Cardiac **Output During** Exercise

Comparison of Pressures in Systemic & Pulmonary Circulation

Normal Zones of Perfusion In Lung

Zone 2	Intermittent Blood Flow/Medium
Apex	Pa is 15mmHg less than heart level
10cm above	Apical systolic pressure is 10 mmHg (25-15) so blood
mid level of	flows during systole
heart	During diastole Pa is 8mmHg so no blood flows
Zone 3 Below zone 2	Continuous Blood Flow/Highest Pa is greater in both systole and diastole than PA 0 mmHg so blood flow is continuous

Zone 1 Blood Flow Occurs Under Abnormal Conditions

- Pulmonary systolic arterial pressure is too low (severe blood loss) or
- Alveolar pressure is too High

 An upright person is breathing against a positive air pressure so that PA is at least 10mmHg greater than normal Systolic Pa is normal → no blood will flow

Accommodation of Increased Blood Flow In Lungs

• Heavy exercise \rightarrow 4-7 times increase in Pulmonary blood flow

 \circ 3 ways to accommodate

- 1. *†* the number of open capillaries (3-fold)
- 2. Distending the capillaries (2-fold \uparrow in rate of flow)
- 3. ↑ Pulmonary Arterial Pressure

The first 2 changes \$\geq\$ Pulmonary Vascular Resistance so much that Pa rises very little

NORMAL VALUES

- Alveolar P₀₂ = 100 mmHg
- Arterial P₀₂ = 100 mmHg
- Alveolar P_{CO2} = 40 mmHg
- Arterial P_{CO2} = 40 mmHg
- Venous P₀₂ = 40 mmHg
- Venous P_{co2} = 46 mmHg

PO2 Levels In Different Regions

