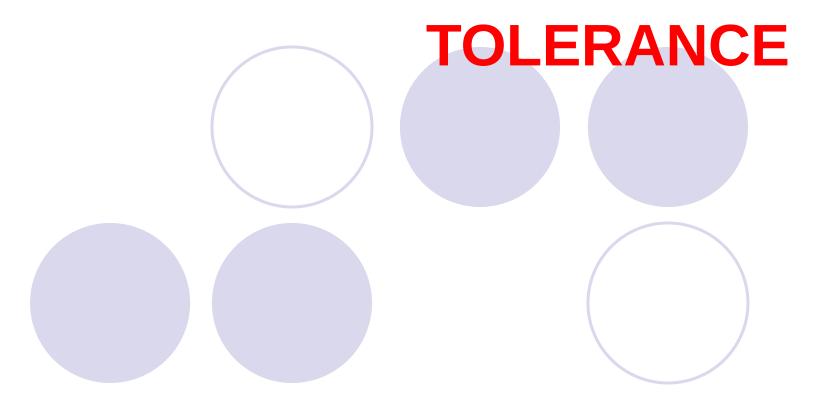
DISEASES OF IMMUNITY

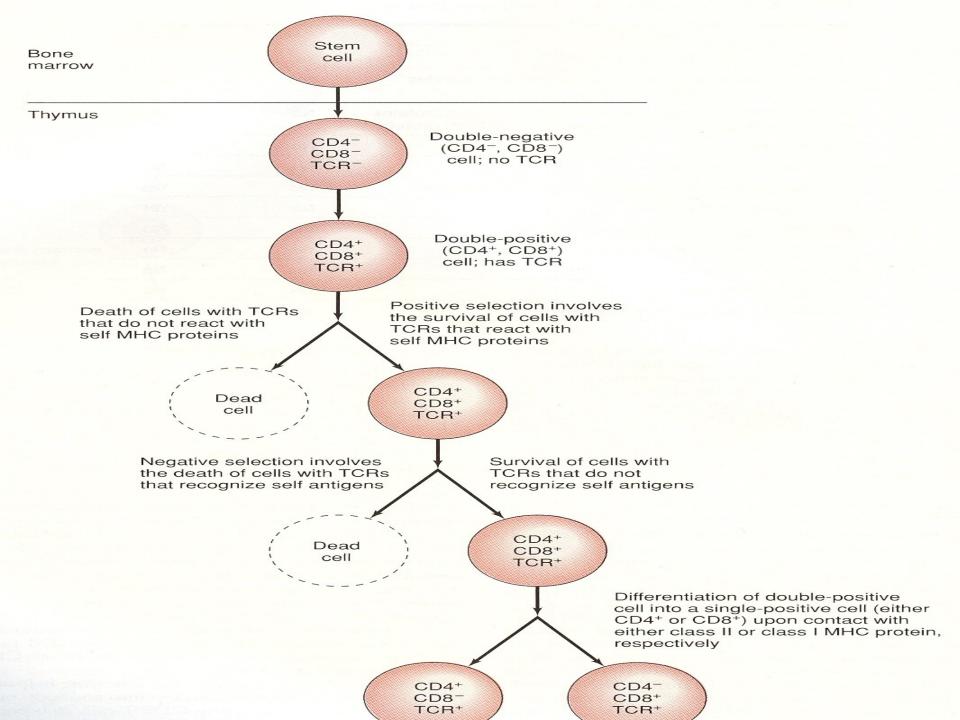

TOLERANCE & AUTOIMMUNITY

INTRODUCTION

- Immune system is a double edge sword
- Most of the times it is beneficial but some times it is harmful
- Two aspects will be discussed;
 - 1. How the immune system tolerates own tissues?
 - 2. How the body becomes intolerant to own tissues, when self Tolerance breaks?

DISEASES OF IMMUNITY

IMMUNOLOGIC TOLERANCE


- "TOLERANCE" = Unresponsiveness
- "IMMUNOLOGIC TOLERANCE" = Unresponsiveness to an antigen
- "SELF-TOLERANCE" = Unresponsiveness to one's own antigens

INTRODUCTION

- Immunological tolerance occurs when an immunocompetent host fails to respond to an antigen although immune system is functioning normally.
- Basic Rule; Antigens present during embryonic life are considered "self" and don't stimulate immune response, so we are tolerant to these antigens. Antigens encountered after maturity of immune system are considered "non-self"
- Although both T & B cells play a role, it is T cell tolerance that plays a major role.

T CELLS TOLERANCE

- During T cell development in the thymus, the process of negative selection leads to the deletion of thymocytes whose T cell receptors have 'high affinity' for self antigens esp; MHC.
- Tolerance acquired within thymus is central tolerance & outside thymus is peripheral tolerance

B CELLS TOLERANCE

B cell tolerance occurs;
By clonal deletion during B cell development in the bone marrow.

 Tolerance in B cells is much less complete than T cells (So Autoimmue diseases are usually Ab mediated)

INDUCTION OF TOLERANCE

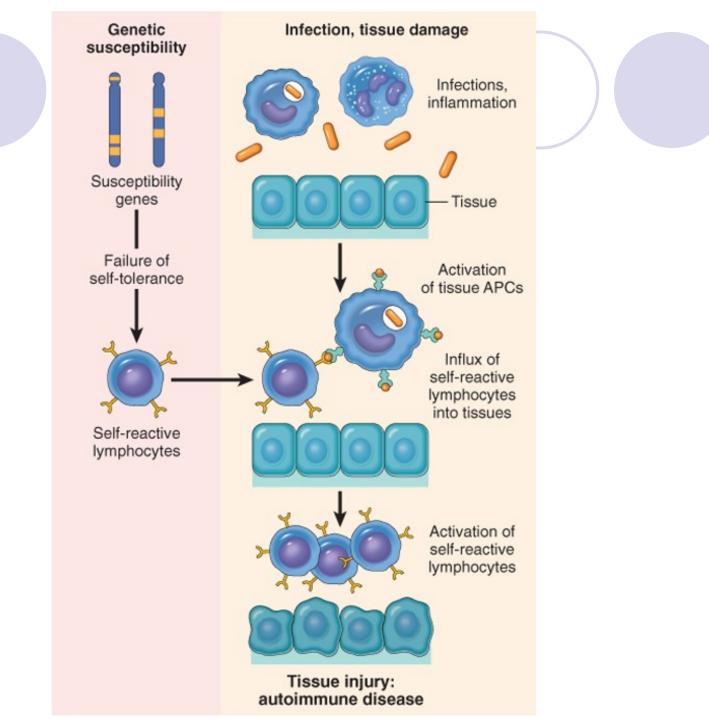
- Depends upon;
 - 1. <u>Immunologic maturity of the host</u>; In fetal periods grafts are accepted well
 - Structure & dose of Ag; Simple Ag is tolerated well than a complex one. A very low/ high dose produces tolerance
 - T cells become tolerant early & for longer time than B cells
 - 4. <u>Immunosuppresive therapy</u>; induces tolerance
 - 5. <u>Continuous presence of Ag;</u> Preserves tolerance

What is immunologic tolerance?

Briefly describe induction of tolerance.

MCQ's

- Each of the following statement regarding immunologic tolerance is correct <u>except</u>;
 - Tolerance is not Ag specific so immune paresis results in anergy against many antigens
 - Tolerance is induced more easily in T cells than B cells
 - Tolerance is more easily induced in neonates than adults
 - d. Tolerance is induced easily by simple molecules than complex molecules



INTRODUCTION

- "Autoimmunity" = Immune reaction against self
- Simply, Self-tolerance breaks down, causing disease
- Adult host exhibits tolerance to antigens present during fetal life that are recognized as "self", but in certain situations the tolerance may be lost, resulting in autoimmunity
- The most important step in autoimmune disease is activation of self reactive helper (CD4+) T cells. Most reactions are Ab mediated

AUTOIMMUNITY- PATHOGENESIS

- 1. <u>Genes</u>; HLA-B27: ↑ risk of ankylosing spondylitis & HLA-DR4: ↑ risk of rheumatoid arthritis (RA)
- 2. <u>Endocrines</u>; 90% autoimmune diseases occur in females
 - 1. Graves, Hashimoto's thyroiditis; common in Females
 - 2. Ankylosing spondilitis; common in Males
 - 3. RA; relieved during pregnancy
- 3. <u>Environmental triggers/ Infections/ Drugs/ Diet</u>
 - 1. Exposes hidden self-antigens
 - 2. Activate antigen presenting cells
 - 3. Most are multifactorial; Genes + Environment

Microbe	Autoimmune Disease
1. Bacteria	
Streptococcus pyogenes	Rheumatic fever
Campylobacter jejuni	Guillain-Barré syndrome
Escherichia coli	Primary biliary cirrhosis
Chlamydia trachomatis	Reiter's syndrome
Shigella species	Reiter's syndrome
Yersinia enterocolitica	Graves' disease
Borrelia burgdorferi	Lyme arthritis
2. Viruses	
Hepatitis B virus ¹	Multiple sclerosis
Hepatitis C virus	Mixed cryoglobulinemia
Measles virus	Allergic encephalitis
Coxsackievirus B3 ²	Myocarditis
Coxsackievirus B43	Type 1 diabetes mellitus
Cytomegalovirus	Scleroderma
Human T-cell leukemia virus	HTLV-associated

myelonathy

MECHANISMS OF AUTOIMMUNE PATHOLOGY

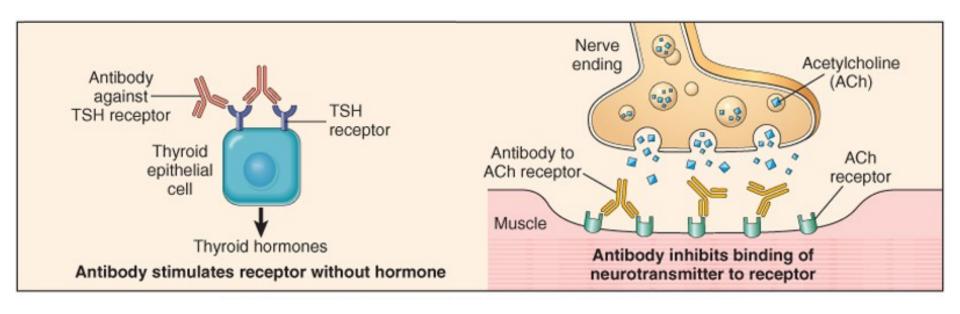
- MOLECULAR MIMICRY; Many bacterial viruses are implicated as a source of cross reacting antigens- activating T/ B cells
 - 1. Strep pyogenes- Rheumatic fever
 - 2. Shigella- Reiter's disease
 - 3. Hepatitis B- Multiple sclerosis
- ALTERATION OF NORMAL PROTEINS; Drugs can bind normal proteins and make them immunogenic (Procainamide-SLE)
- 3. RELEASE OF SEQUESTERED ANTIGENS; Sperms, brain, lens & uvea are sequestered and their antigens are not exposed to immune system (priviledged sites). DNA in sequestered sites, exposed after infections/ chemicals & radiations
- 4. "Sympathetic ophthalmia"

AUTOANTIBODIES - CAUSE OR EFFECT?

- Almost all patients with autoimmune conditions have some autoantibodies present in their serum.
- They also have autoreactive T cells present.
- It is not known whether the autoantibodies play an important role in the disease/ are a secondary result of the tissue damage which has been caused by the disease process itself.

Examples of autoimmune disease

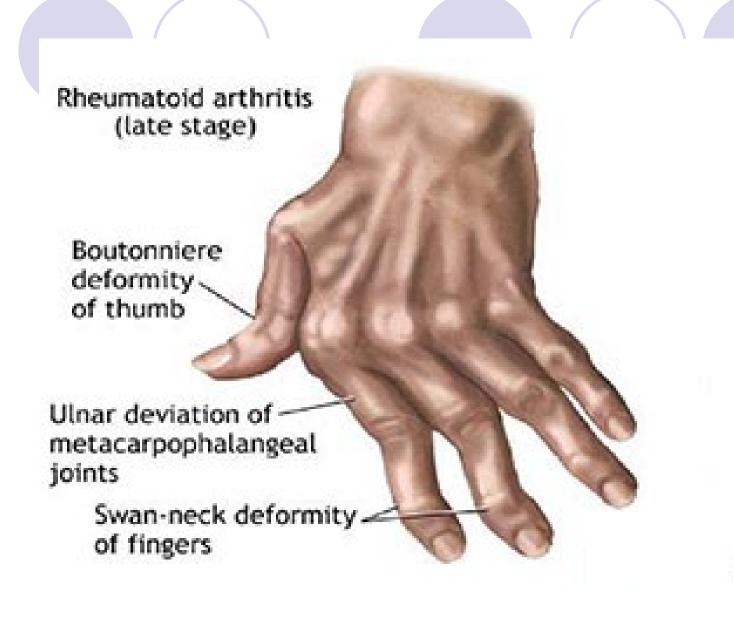
Graves' Disease (thyrotoxicosis) Hashimoto's thyroiditis pernicious anaemia Addison's disease insulin dependent diabetes mellitus Goodpasture's syndrome myasthenia gravis multiple sclerosis(?) autoimmune haemolytic anaemia idiopathic thrombocytopenic purpura rheumatoid arthritis scleroderma systemic lupus erythematosis (SLE)

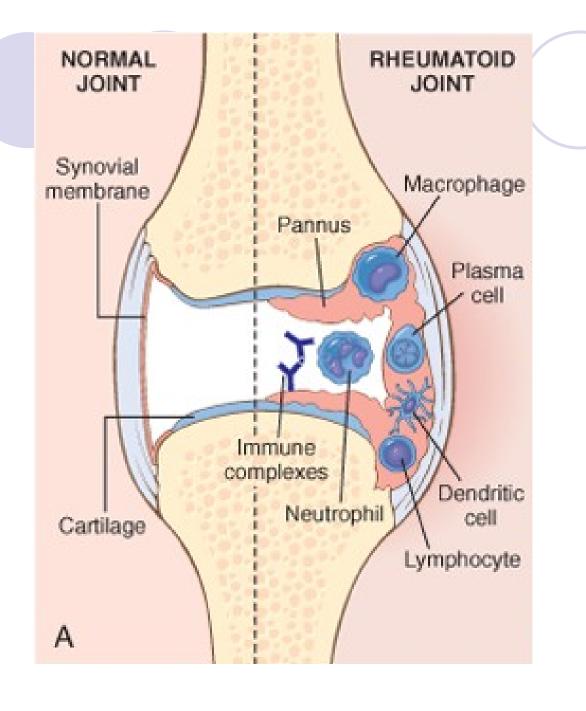

Table 66–1. Important autoimmune diseases.

Type of Immune Response	Autoimmune Disease	Target of the Immune Response
Antibody to receptors	Myasthenia gravis	Acetylcholine receptor
	Graves' disease	TSH ¹ receptor
	Insulin-resistant diabetes	Insulin receptor
	Lambert-Eaton myasthenia	Calcium channel receptor
Antibody to cell components	Systemic lupus erythematosus	dsDNA, histones
other than receptors	Rheumatoid arthritis ²	IgG in joints
	Rheumatic fever	Heart and joint tissue
	Hemolytic anemia	RBC membrane
	Idiopathic thrombocytopenic purpura	Platelet membranes
	Goodpasture's syndrome	Basement membrane of kidney and lun
	Pernicious anemia	Intrinsic factor and parietal cells
	Hashimoto's thyroiditis ²	Thyroglobulin
	Insulin-dependent diabetes mellitus ²	Islet cells
	Addison's disease	Adrenal cortex
	Acute glomerulonephritis	Glomerular basement membrane
	Periarteritis nodosa	Small and medium-sized arteries
	Guillain-Barré syndrome	Myelin protein
	Wegener's granulomatosis	Cytoplasmic enzymes of neutrophils
	Pemphigus	Desmoglein in tight junctions of skin
	IgA nephropathy	Glomerulus
Cell-mediated	Allergic encephalomyelitis	Reaction to myelin protein causes
	and multiple sclerosis	demyelination of brain neurons
	Celiac disease	Enterocytes

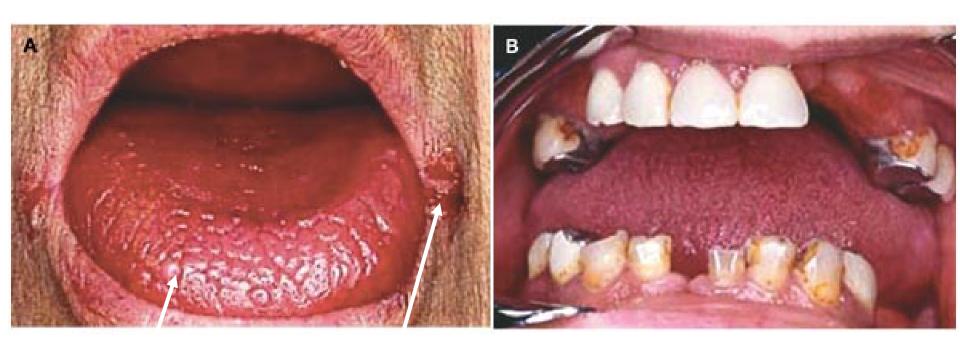
¹TSH, thyroid-stimulating hormone.

²These diseases involve a significant cell-mediated as well as antibody-mediated response.





GRAVES DISEASE


MYASTHENIA GRAVIS

ORAL CHANGES IN SJÖGREN SYNDROME

ATROPHIC PAPILLAE, DEEPLY FISSURED EPITHELIUM

ANGULAR CHEILITIS

MISSING TEETH AND MULTIPLE CARIES

