VITAMINS ## BY FATIMA HAIDER KGMC | VITAMIN | ACTIVE FORM | SOURCES | FUNCTIONS | |--|---|---|---| | Vitamin B ₁ | Thyamine | Cereals, meat, nuts, | -carbohydrate metabolism | | (Thiamine) | pyrophosphate
(TPP) | green vegetables, eggs | -normal functioning of nervous system | | Vitamin B ₂
(Riboflavin) | Flavin
mononucleotide
(FMN) and
Flavin adenine
dinucleotide (FAD) | Yeast, germinating seeds, green leafy vegetables, milk, eggs, liver, meat | Work with other B vitamins to promote healthy growth and tissue repair, and helps release energy from carbohydrates -electron transfer | | Vitamin B₃
(Niacin) | NAD ⁺ and NADP ⁺ | Yeast, legumes, liver,
meat | -work with other B vitamins to help
release energy from carbohydrates
- plays a role in DNA repair
-electron transfer | | Vitamin B₅
(Pentothenic
Acid) | Coenzyme A and
Acyl carrier protein
(ACP) | Wheat germs, cereals, yeast, liver, eggs | -synthesis of cholesterol -energy production -fatty acid synthesis -acyl carrier | | Vitamin B ₆
(Pyridoxine) | Pyridoxal
phosphate (PLP) | Yeast, unrefined cereals, pulses, vegetables, meat, fish, egg yolk | -maintain healthy brain function-formation of RBCs-breakdown of proteins-synthesis of antibodies | | Vitamin B ₇
(Biotin) | Biocytin (enzyme bound biotin) | Liver, kidney, egg yolk, vegetables | -coenzyme of carboxylase reactions | | Vitamin B ₉
(Folic Acid) | Tetrahydrofolic
acid | Green leafy vegetables, liver, yeast | -transfer one-carbon units -synthesis of methionine, serine, purine nucleotides, and thymidine monophosphate - work with B ₁₂ and Vitamin C to help the body digest and utilize proteins | | Vitamin B ₁₂
(Cobalamin) | Methylcobalamin,
Deoxyadenosyl-
cobalamin | Only animal origin,
meat, egg, liver, fish | -coenzyme for reactions: Hemocysteine → methionine Methylmalonyl CoA → succinyl CoA - formation of RBCs - maintenance of CNS | | Vitamin C
(Ascorbic Acid) | Ascorbic acid | Citrus fruits, amla, leafy vegetables, tomatoes | -collagen biosynthesis - bone and dentin formation - wound healing - acts as antioxidant | | | | | - prevents atherosclerosis and | |-------------------|---------------------------|---------------------------|---| | | | | coronary heart disease by preventing oxidation of LDL | | | | | - converts folic acid to its active form | | | | | - absorption of iron from intestine | | Vitamin A | Retinoids i.e. | -Fish liver oil | - vision | | | Retinol, Retinal, | - animal liver | 1.0.0 | | (Retinol) | | | - cell differentiation and growth | | | Retinoic acid | - milk and dairy | - mucus secretion | | | | products | - maintenance of epithelial cells | | | | -dark green leaves e.g. | $-\beta$ -carotenes have antioxidant | | | | spinach | function | | | | - yellow and red fruits | -maintenance of reproduction | | | | and vegetables e.g. | | | | | carrots, tomatoes, | | | | | peaches | | | Vitamin D | 1,25dihydroxy | Cod liver oil, sunlight | -regulation of calcium and phosphorus | | (Cholecalciferol) | Cholecalciferol | induced synthesis of | metabolism | | | (calcitriol) | vitamin D₃ in skin, egg | -calcification of bone | | | | yolk | | | Vitamin E | lpha-tocopherol | Soya and corn oils, | - natural antioxidant | | (Tocopherol) | | germ oil, fish oil, eggs, | -protects cell membrane and tissues | | | | alfalfa | from damage by oxidation | | | | | -required for normal reproduction and | | | | | prevents sterility | | Vitamin K | Phylloquinone | Green leafy vegetables, | -important role in blood coagulation | | | (Vitamin K₁), | tomatoes, cheese, | - required for activation of clotting | | | Menaquinones | meat, egg yolk | factors prothrombin II, factor VII, IX | | | (Vitamin K ₂) | | and X | | | | | - γ -carboxylation of glutamate | | | | | residues in clotting | | VITAMIN | DAILY
REQUIRE-
MENTS | DEFICIENCY | TOXICITY | |-------------------------------------|----------------------------|--|--| | Vitamin B1
(Thiamine) | 1.0 – 1.5 mg | Beriberi (four types) 1.Dry beriberi (peripheral neuritis) 2.Wet beriberi (cardiac manifestation) 3.Cerebral beriberi (Wernickle Korsakoff syndrome) 4.Infantile beriberi | No established toxic level
(Toxicity with water-soluble
vitamins are not common as
any excess amount will leave
through the urine) | | Vitamin B2
(Riboflavin) | 1.3 – 1.7 mg | Cheilosis (fissures at angle of mouth), Glossitis (inflammation of mouth), dermatitis, vascularization of cornea | None | | Vitamin B3
(Niacin) | 15 – 20 mg | Pellagra characterized by 4 D's Dermatitis, Diarrhea, Dementia, Death | -Vasodilation and flushing
- Liver damage | | Vitamin B5
(Pentothenic
Acid) | 5 – 10 mg | Burning feet syndrome | None | | Vitamin B6
(Pyridoxine) | 1.6 – 2 mg | Neurological disorders (depression, nervousness, irritability), Epileptic convulsions, dermatitis, hypochromic microcytic anemia | Pyridoxine seems to be safe at levels 100 to 150 mg/day. Women, self medicating for PMS taking 500 to 5000 mg/day have shown peripheral neuropathy within 1 to 3 years | | Vitamin B7
(Biotin) | 150 – 300 μg | Deficiency is uncommon as biotin is synthesized by intestinal microorganisms in large quantities Experimentally induced symptoms are nausea, anorexia, glossitis, dermatitis, alopecia (loss of hair), depression, muscle pain | None | | Vitamin B9
(Folic Acid) | 200 μg | Megaloblastic or macrocytic anemia, neural tube defects, promotes birth defect spina bifida | None | | Vitamin B12
(Cobalamin) | 3 µg | Pernicious anemia (intrinsic factor deficiency), megaloblastic anemia (functional folate deficiency), neuropathy (dementia), Methylmalonic aciduria | None | | Vitamin C
(Ascorbic Acid) | 60 – 70 mg | Scurvy (bleeding tendency, muscle weakness, swollen bleeding gums, loosening of teeth, osteoporosis, poor wound healing) | Severe diarrhea and deficiency of oxalate stones in kidneys | | Vitamin A | 800 – 1000
retinol
equivalents | Night blindness, xerophthalmia, formation of Bitot's spots, dry, rough and scaly skin, retardation of growth in children, infertility | Nausea, vomiting, alopecia (loss of hair), scaly and rough skin, bone and joint pain, teratogenic effect on fetus | |--------------------------------|--------------------------------------|---|---| | Vitamin D
(Cholecalciferol) | 200 – 400 IU | Rickets (in children),
Osteomalacia (in adults) | Nausea, vomiting, anorexia, increased thirst, loss of weight, hypercalcemia, formation of kidney stones | | Vitamin E
(Tocopherol) | 8 – 10 mg | Hemolytic anemia,
Retrolental fibroplasia in
premature infants | None | | Vitamin K | 70 – 140 μg | Hemorrhagic disorder,
Increased clotting time | -hemolytic anemia and
kernicterus in infants with low
birth weight | - During posttranslational processing, the glutamic acid residues on the osteocalcin prohormone are carboxylated by the enzyme gamma glutamyl carboxylase, which requires Vitamin K as a cofactor - Chemically, intrinsic factor is a glycoprotein - Niacin can be synthesized in human beings from tryptophan - Folic acid co-enzymes are specifically concerned with metabolic reactions involving the transfer of one carbon moiety - In vitamin A deficiency, Bitot spots appear on cornea - Pellagra is more common in people whose staple diet is maize - Selenium regulates throid hormones and work together with Vitamin E to reduce free radicals generated in the cell - Dicumarol is an anticoagulant that acts as a Vitamin K antagonist - Vitamin C enhances iron absorption - Vitamin B₁₂ deficiency can be made by measuring the urinary excretion by methyl malonic acid - First hydroxylation of Vitamin D occurs in liver Second hydroxylation of Vitamin D occurs in kidney - Vitamins synthesized in our body - 1. Vitamin D produced when skin is exposed to sunlight - 2. Vitamin K synthesized by bacteria in gut - 3. Niacin synthesized from tryptophan - 4. Biotin synthesized by bacteria in gut - Biotin is a coenzyme for five carboxylase enzymes - Ileum of GIT is related with absorption of Vitamin B₁₂ - Proline and lysine are acted upon by Vitamin C to undergo hydroxylation - Transketolase activity is affected by thiamine deficiency - Vitamin K activates certain clotting factors by carboxylation of glutamic acid residues - Consuming raw eggs on a regular basis for an extended time causes biotin deficiency because avidin present in egg white tightly binds biotin unavailable for intestinal absorption - Pantothenic acid is a component of coenzyme A - Coenzyme A is involved in transacetylation - When amount of carbohydrates is increased in diet, the requirement of thiamine is increased - Cobalt is present in Vitamin B₁₂ - Cheilosis fissures at the angles of mouth - Glossitis inflammation of the tongue - Dark adaptation time is increased in Vitamin A deficient individuals - Administration of high levels of folate can mask Vitamin B₁₂ deficiency - Pernicious anemia is treated with intra-muscular or high dose oral vitamin B₁₂ - Deficiency of Vitamin B₆ can be induced by isoniazid - High doses of niacin used to treat hyperlipidemia - Excess Vitamin A can increase incidence of fractures - Vitamin K is produced by intestinal bacteria