

• A 25 years old lady presented with , fatigue,lethargy ,palpitation and shortness of breath on exertion. she is also having polymenorrhagia. On examination she is pale and her nails are spoon shaped. Her blood picture show low Hb, low haematocrit, RBC are small and hypochromic.....

 A 7 years old boy having pallor, prominent cheek bones and abdominal distension. His symptoms started during first year of his life. He has received several blood transfusion. His liver and spleen enlarged. Hb electrophoresis show high %age HbF.....

- Learning objective..
- Define Anemia.
- Classification Anemia.
- Types of Anemia.
- Signs and Symptoms of Anemia.
- Investgation of Anemia.
- Treatment of Anemia.

- In its broadest sense, anemia is a functional inability of the blood to supply the tissue with adequate O₂ for proper metabolic function.
- Anemia is not a disease, but rather the expression of an underlying disorder or diseases.

- Blood has abnormally low oxygen-carrying capacity
 - Blood oxygen levels cannot support normal metabolism
 - It is a symptom rather than a disease itself

- Quantitative and/or qualitative deficiency of RBC
- \downarrow No of RBCs
- \downarrow Amount of Hb

• $\downarrow O_2$ carrying capacity

Determinants of anemia

- Insufficient Erythrocytes
- Decreased Hemoglobin Content
- Abnormal Hemoglobin

Insufficient Erythrocytes

- Hemorrhagic anemia result of acute or chronic loss of blood
- Hemolytic anemia prematurely ruptured erythrocytes
- Aplastic anemia destruction or inhibition of red bone marrow

Decreased Hemoglobin Content

- Iron-deficiency anemia results from:
 - A secondary result of hemorrhagic anemia
 - Inadequate intake of iron-containing foods
 - Impaired iron absorption
- Megaloblastic anemia results from:
 - Deficiency of vitamin B_{12}
 - Pernecious Anemia...Lack of intrinsic factor needed for absorption of $\rm B_{12}$
 - Defeciency of Folic acid.

Abnormal Hemoglobin

- Thalassemias absent or faulty globin chain in hemoglobin
- Sickle-cell anemia results from a defective hemoglobin called hemoglobin S (HbS)

• Anemia may develop:

- When RBC loss or destruction exceeds the maximal capacity of bone marrow RBC production
- When bone marrow production is impaired

- Various diseases and disorders are associated with anemia include:
 - Nutritional deficiencies
 - External or internal blood loss
 - Increased destruction of RBCs
 - Abnormal hemoglobin synthesis

Ineffective or decreased production of RBCs

- Bone marrow suppression by toxins, chemicals, radiation, Infection
- Bone marrow replacement by malignant cells

Classification of anemias

 Anemia may be classified morphologically based on the average size of the cells and the hemoglobin concentration into:

Microcytic, hypochromic Macrocytic Normocytic, normochromic

Normocytic RBC

NORMOCYTE		GHRONOLAB
DESCRIPTION	VARIATIONS	CONFUSIONS
Description:		
Normal size and volume, mean cell v	rolume (MCV) 80-100 fl.	
Flexible biconcave, discoid shape complex, centriole or lysosomes.	e. Non-nucleated cell, no Golgi's	
Significance:		Magnification: 1:1000
Healthy state.		
		Size:
		7-8,5 μm

Normal RBCs

Microcytic RBC

MICROCYTE		- GHRONOLAB
DESCRIPTION	VARIATIONS	CONFUSIONS
- Description:		- Atte
Smaller diameter and volume than cells, normal thickness (MCV < 70 fl)	normal, round or slightly oval red	
 Shape: Flexible biconcave, discoid shape. 		
 Significance: Iron deficiency, thalassemias, sidero 	blastic anemia.	Staining method: May-Grünwald/Giemsa Microscope: Light Magnification: 1:1000
		Size: <6 μm

Micocytic Hypochromic anemia

Macrocytic RBC

MACROCYTE		CHRONOLAS
DESCRIPTION	VARIATIONS	CONFUSIONS
Description:		- 🔿 ko -
Larger volume than normal (MCV >1	00 fl). ell filled with hemoglobin.	
Significance:		Staining method: May-Grünwald/Giemsa Microscope: Light Magnification: 1:1000
Liver disease, drug induced anemia deficiency.	ı, Vitamin B₁₂ deficiency, folic acid	Size: C
		9 - 10 µm

40 -

Macrocytic anemia

Normochromic RBC

NORMOCHROMIC ERYTHROCYTE		- Euronolae
DESCRIPTION	VARIATIONS	CONFUSIONS
Description:		
Normally colored.		
Flexible biconcave, discoid shape. Non-nucleated cell, no Golgi's complex, centriole or lysosomes.		Staining method: May-Grünwald/Giemsa Microscope: Light Magnification: 1:1000
		Size: 7 - 8,5 μm

Summary of variations in color and size

Etiological classification

Impaired RBC production.
 Increased RBC destruction.
 Blood Loss.

Classification of Anemia

- Nutritional anemia
- Pernicious anemia
- Aplastic anemia
- Renal anemia
- Blood loss anemia
- Hemolytic anemia
- Congenital anemia

Nutritional Anemia

- Iron deficiency anemia
 - $-\downarrow$ intake of iron
 - $-\downarrow$ absorption of iron
 - Chronic blood loss
 - $-\uparrow$ demand of iron (e.g. pregnancy)
 - No of cells may be normal
 - $-\downarrow$ iron $\rightarrow \downarrow$ Hb $\rightarrow \downarrow$ size of cells (microcytic)
 - $-\downarrow$ iron $\rightarrow \downarrow$ Hb $\rightarrow \downarrow$ colour (Hypo chromic)
 - (brittle spoon shaped nails- koilonychias- is a common feature)

Nutritional Anemia

- Magaloblastic anemia
 - $-\downarrow$ dietary Vitamin B12
 - $-\downarrow$ intrinsic factor
 - $-\downarrow$ Folic acid
 - Maturation failure
 - Cells- bigger (megaloblasts)
 - Cell membrane fragile \rightarrow easy rupture
 - Hb contents normal

Hypochromic RBC

HYPOCHROMIC ERYTHROCYTE			- CHRONOLAS
DESCRIPTION	VARIATIONS	CONFU:	SIONS
Description:		_	
Increased area of pallor to >1/3 diam	eter of cell.		
- Shape:	Non-nucleated cell no Golai's		© Chronotab AG
complex, centriole or lysosomes.	. Non-nucleated cell, no oolgi s		

Microcytic Hypochromic anemia

Hypochromic Anemia

Pernicious Anemia

- Maturation failure anemia
- \downarrow Vit. B12 due to poor absorption from GIT
- \downarrow intrinsic factor in the stomach
 - Autoimmune destruction of parietal cells
 - Atrophy of gastric mucosa
 - Gastrectomy
- Megaloblastic anemia
- Cell membrane fragile \rightarrow easy rupture

Macro ovalocyte

MEGALOCYTOSIS

- CHRONOLA

Aplastic Anemia

- Failure of bone marrow to produce RBCs
- Aplasia of the bone marrow
- Bone marrow may be destroyed
 - Radiation e.g X-rays, gamma rays, nuclear bomb explosion
 - Chemicals e.g.benzene, arsenic, chloramphenicol. quinine, gold salts, benzene, radium etc
 - Bacterial toxins
 - Tuberculous invasion
 - HIV infections
 - Invasion of bone marrow by cancer cells
 - Chemotherapy for cancer

Renal Anemia

• Renal diseases (CRF) $\rightarrow \downarrow$ Erythropoietin

• ↓ Erythropoietin → → ↓ Production of erythrocytes

Hemorrhagic Anemia

- Acute blood loss anemia
 - Normocytic
 - Normochromic
 - $-\downarrow$ RBC count
 - $-\downarrow$ Hb/cmm of blood
- Chronic blood loss anemia
 - Microcytic
 - Hypochromic
 - $-\downarrow$ RBC count
 - $-\downarrow$ Hb/cmm of blood

Normochromic & Hypochromic cells

Hemolytic Anemia

- Erythroblastosis Fetalis
- Sickle cell anemia
- Congenital spherocytosis
- Hemolysis due to
 - Infections like malaria, septicemia
 - Chemicals like lead, hemolysins
 - Agglutinins
- (Jaundice is common feature in hemolytic anemia)

Erythroblastosis fetalis

- Rh negative mother
- Rh positive fetus
- Mother exposed to positive cells during first delivery
- Antibodies formed against positive cells
- Severe anemia in subsequent fetus bec of haemolysis

Erythroblastosis fetalis

Erythroblastosis fetalis

Sickle cell anemia

- Sickle-cell anemia results from a defective gene coding for an abnormal hemoglobin called hemoglobin S (Hb S)
 - Alpha chains are normal, beta chain is defective
 - Hb S has a single amino acid substitution in the beta chain
 - Valine is substituted for Glutamic acid at position 6
 - Low oxygen → Precipitation and crystallization of Hb S →
 Sickling & hemolysis of RBC
 - Sickle cell disease crises a vicious cycle
 - Hb S precipitate and cells aggregate may block small blood vessels leading to necrosis

Sickle cells

DREPANOCYTOSIS

Drepanocytosis is the presence of drepanocytes in the circulating blood.

These erythrocytes have a sickle shape, i.e., the shape of a half-moon. They are characteristic for cases of hereditary hemolytic anemiadrepanocytosis (sickle-cell anemia). Drepanocytosis is characterized by crises with great pain (vaso-exclusive crises) caused by the obstruction of blood vessels with rigid sickled red cells that contain HbS.

Hereditary spherocytosis

- One of the congenital anemia
- RBC are spherical instead of being biconcave
- Decreased deformability
- Cannot withstand compression
- Hemolysis in tight vascular beds

Spherocytes

SPHEROCYTE		- GHRONOLAB
DESCRIPTION	VARIATIONS	CONFUSIONS
Description: Small erythrocytes containing a hemoglobin, resulting from a loss o span in the circulation is extremely decreased to hypotonic solution.	an increased concentration of f the red cell membrane. Their life short, and osmotic resistance is	
Spherical cells with very increase reduced diameter (about 6 µm), norr	ed thickness (about 3 µm) and nal volume and biconcave shape.	Staining method: May-Grünwald/Giernsa
- Significance:		Microscope: Light
Spheroid cells occur in heredita anemia.	ry spherocytosis and hemolytic	
		Size:
		about 6 µm

Thalassemia

- Cooley's anemia or Mediterranean anemia
- Impaired α or β chain synthesis due to genetic abnormality
- α thalassemia
 - Decreased, defective or absent β chain
 - There may be an excess of $\boldsymbol{\gamma}$ chain
- β thalassemia (more common)
 - Decreased, defective or absent β chain
 - Excess of $\boldsymbol{\alpha}$ chain precipitates in hemopoeitic cells

Common clinical features in anemia

- Pale skin, lips, conjunctiva, mucous membrane, koilonychias etc
- Increased HR, COP, murmurs
- Increased Respiration rate, breathlessness
- Anorexia, nausea, vomiting,
- Headache, lack of concentration, irritability, lethargy, lack of energy, fatigue
- Menstrual disturbances, menorrhagia, oligomenorrhea, amenorrhea

• Investigations...

Peripheral smear. To look for the cause.

• Treatment..

General and supportive. Treatment of the underlying cause.

POLYCYTHEMIA

• Learning objectives...

what is polycythemia. classification. signs and symptoms. investigations and treatment,

• Polycythemia...

Raised Red cell mass, RBC count, Haematocrit

Classification...

Absolute polycythemia.. polycythemia rubra vera. Increased erythropoetin level. appropriatly increased level..CCF,COPD, inappropriatly increased level..RCC, HCC Relative polycythemia..fluid loss from body

• SIGNS AND SYPTOMS

Hyperviscosity syndrome

• TREATMENT...

Antiplatlets. Therapeutic phlebotomy.

