MINERALS

BY FATIMA HAIDER

KGMC

- Chromium increase the effect of insulin
- Ceruloplasmin carrier of copper
- Menkes disease is a lethal multisystemic disorder of copper metabolism
- Wilson's disease is a rare inherited disorder that causes copper to accumulate in liver, brain and other vital organs
- Deficiency of potassium might lead to paralytic ileus
- Zinc is present as a cofactor in carbonic anhydrase
- Solubility of calcium is highly pH dependant. Low pH promotes calcium absorption
- Fluoride should be added regularly in traces to diet to avoid dental caries
- Macrominerals
 - Calcium
 - Phosphorus
 - Magnesium
 - Sodium
 - Potassium
 - Chloride
 - Sulfur
- Trace minerals (needed in less than 100 mg)
 - Iron
 - Zinc
 - Copper
 - Iodine
 - Fluorine
 - Chromium
 - Cobalt
 - Selenium
 - Manganese
 - Molybdenum
- Tetany is caused by low calcium levels
- Physiologically active form of calcium is ionized calcium
- Hemochromatosis, or iron overload, is a condition in which body stores too much iron
- Selenium acts as antioxidant
- Plasma calcium and inorganic phosphorus are decreased in osteomalacia
- Intestinal absorption of calcium is hampered by phytate
- Iron is better absorbed in acidic medium
- Acrodermatitis enteropathica is a disorder of zinc metabolism
- Iron in mucosal cells bind with protein ferritin
- Cobalt is a constituent of Vitamin B₁₂

- Molybdenum is a component of Xanthine oxidase
- Rennin acts on casein of milk in infants in presence of Ca⁺²
- A diabetic patient was given an insulin infusion. The patient suddenly developed cardiac arrhythmias due to:

Ans: Hypokalemia

- The antioxidant mineral selenium is absolutely essential for normal development of spermatozoa
- Addison's disease i.e. diminished secretion of aldosterone results in Hyperkalemia + Hyponatremia + Hypochloremia

MACROMINERAL	FUNCTIONS	DEFICIENCY
Sodium	-Principal extracellular cation	-dehydration
	-buffer constituent	-acidosis
	-water and acid base balance	
	-cell membrane permeability	-excess leads to edema and hypertension
	-uptake of glucose, galactose	
	and amino acids	
Potassium	-principal intracellular cation	- muscle weakness
	-buffer constituent	 paralysis and mental confusion
	-water and acid base balance	- acidosis
	-neuromuscular irritability	
Chloride	-principal extracellular anion	 deficiency secondary to vomiting and diarrhea
	-electrolyte	
	-osmotic balance	
	-acid base balance	
	-gastric HCl formation	
Calcium	-constituent of bone and teeth	- tetany
	-blood clotting	- muscle cramps
	-regulation of nerve, muscle	- convulsions
	and hormone function	-osteoporosis and rickets
Phosphorus	-constituent of bone and teeth,	- growth retardation
	nucleic acids, NAD, FAD, ATP	- skeletal deformities
	etc.	- muscle weakness
	-required for energy	- cardiac arrhythmia
	metabolism	
Magnesium	-cofactor for phosphate	- muscle spasms
	transferring enzymes	- tetany
	-constituent of bones and	- confusions
	teeth	- seizures
	-muscle contraction	
	-nerve transmission	
Sulfur	-constituent of proteins, bile	Unknown
	acid, GAG, vitamins like	
	thiamine, lipoic acid	
	-involved in detoxication	
	reactions	

MICROELEMENT	FUNCTION	DEFICIENCY
Chromium	Potentiate the effect of insulin	Impaired glucose metabolism
Cobalt	Constituent of Vitamin B ₁₂	Macrocytic anemia
Copper	 -constituent of oxidase enzymes e.g. tyrosinase, cytochrome oxidase, ferroxidase, ceruloplasmin iron absorption and mobilization 	 -microcytic hypochromic anemia -depigmentation of skin, hair - excessive deposition in liver in Wilson's disease
Fluoride	 -constituent of bone and teeth -strengthens bone and teeth 	Dental caries
lodine	-constituent of thyroid hormones (T_3 and T_4)	 - Cretinism in children - goiter in adults
Iron	-constituent of heme and non-heme compounds -transport and storage of O ₂	Microcytic anemia
Manganese	Cofactor for number of enzymes e.g. arginase, carboxylase, kinase etc.	Not well defined
Molybdenum	Constituent of xanthine oxidase, sulfite oxidase and aldehyde oxidase	Xanthinuria (excess urinary excretion of xanthine)
Selenium	-antioxidant -cofactor for glutathione peroxidase -protects cell against membrane lipid peroxidation -found as selenocysteine in selenoproteins	Cardiomyopathy
Zinc	-cofactor for enzymes in DNA, RNA and protein synthesis -constituent of insulin, carbonic anhydrase, carboxypeptidase, LDH, alcohol dehydrogenase, alkaline phosphatase	 growth failure impaired wound healing defects in taste and smell loss of appetite

NUCLEOTIDES AND NUCLEIC ACIDS

- Pseudouridine is a modified base present in tRNA
- Nucleosome is a double stranded DNA with all histones except H₁
- Cap of mRNA present at 5' end have high guanine content Tail of mRNA present at 3' end is poly-Adenine tail
- Pyrimidine nucleus contains two nitrogen atoms and four carbon atoms
- Purine nucleus contains four nitrogen atoms and five carbon atoms
- Purines and pyrimidines are attached to sugar in a nucleotide through N-glycosidic linkage
- tRNA Regions:
 - 1. Acceptor arm CCA sequence present at 3' end
 - 2. D arm presence of base dihydrouridine (D)
 - 3. Anticodon arm
 - 4. T φ C arm contains both ribothymidine (T) and pseudouridine
- Chargaff's rule states that DNA from any species of any organism should have 1:1 stoichiometric ratio of purine and pyrimidine bases
- Cyclic AMP is formed from ATP
- Smallest RNA is tRNA
- Most abundant free nucleotide in mammalian cells is ATP
- Precursor mRNA comprises the bulk of heterogenous nuclear RNA (hnRNA)
- Allopurinol is a competitive inhibitor of xanthine oxidase
- Nucleic acid synthesis would be reduced most directly by deficiency of folic acid
- The number of base pairs present in each turn of B form of DNA helix is 10
- Chargaff's rule is only applicable for double stranded DNA molecule. It is not applicable for single stranded DNA or RNA molecule
- Uracil and ribose form uridine

BLOOD

• Hemoglobin synthesis

- Succinyl Co-A + Glycine → ALA (alpha levulinic acid) This is a rate limiting step and involves enzyme ALA synthase
- 2 ALA condensation → Prophobilinogen Enzyme: ALA dehydrogenase
- 3. 4 Prophobilinogen condensation → Uroporphyrinogen Enzyme: Uroporphyrinogen Synthetase + Co-synthetase
- 4. Uroporphyrinogen III ----- Coproporphyrinogen III

(in mitochondria)

Coproporphyrinogen III ----- Protoporphyrinogen III (in cytosol)

- 5. Protoporphyrinogen III <u>lose 6 H</u> → Protoporphyrin III (Protoporphyrin IX) Enzyme: Ferrochelatase
- 6. Protoporphyrin III + Fe^{+2} \longrightarrow Heme
- 7. Heme + Globin Hemoglobin
- Lead inhibits enzymes
 - ALA dehydrogenase
 - Ferrochelatase
- HEMOLYTIC JAUNDICE
 - Massive lysis of RBCs in hemolytic anemia e.g. sickle cell anemia
 - Bilirubin is produced in a rate faster than the rate of conjugation by liver
 - Increased blood unconjugated bilirubin
 - In urine, urobilinogen is increased
 - No bilirubin in urine as it is bound to albumin (color of urine is normal)
 - Dark color stool due to increased stercobilin (produced from increased urobilinogen)
- HbS is formed by substitution of amino acid at position 6 in β -chain
- Gower 1 Hb is a form of hemoglobin existing in embryonic life and is primary embryonic hemoglobin. It is composed of two zeta chains and two epsilon chains
- VARIEGATE POPHYRIA
 - Autosomal dominant genetic disorder
 - Due to deficient activity of mitochondrial enzyme protoporphyrinogen oxidase
- The first bile pigment formed in heme catabolism is biliverdin
- Porphyrins emit red fluorescence because of double bond joining two pyrrole rings

- Biliverdin is converted into bilirubin by the action of enzyme biliverdin reductase
- Unconjugated bilirubin is increased in Crigler Najjar syndrome
- Normal individuals have four α globin genes and two genes coding for β chain
- The four pyrrole rings are connected by four methylene bridges
- Unconjugated bilirubin is transported in plasma bound to albumin. Albumin has two bilirubin binding sites.
- The conjugated primary bile acid is glycochenodeoxycholic acid
- Conjugated hyperbilirubinemia seen in Dubin Johnson Syndrome
- Kernicterus is a type of brain damage that can result from high levels of bilirubin in baby's blood
- The catabolism of hemoglobin involves the oxidative cleavage of porphyrin ring
- Normal brown color of feces occur due to the presence of bilirubin
- Serum = Albumin + Globulin
- Plasma = Albumin + Globulin + Fibrinogen
- Infective hepatitis show slight decrease in albumin and significant increased γ-globulins
- Liver cirrhosis show elevations in β and γ -globulins with a decrease in albumin
- Nephrosis shows low level of albumin, significantly elevated α_2 -globulin and elevated β -globulin
- Multiple myeloma shows marked increase in γ -globulin
- Albumin is the most abundant protein found in plasma accounting for 50% of plasma protein mass
- Very low albumin concentration develop edema
- Immunoglobulin
 - Two light chains, two heavy chains
 - Four chains linked by disulfide bonds
 - Light chain have one variable and one constant region
 - Heavy chain have one variable and three constant regions

- Negative acute phase reactants
 - Albumin
 - Prealbumin
 - Transferrin
- Acute phase proteins
 - C-Reactive protein
 - Ceruloplasmin
 - Antiprotease inhibitors
 - α_1 -acid glycoprotein
 - Fibrinogen
 - Heptoglobin
- Fab is a region on antibody that binds to antigens
- IgG can cross placental membrane
- IgM antibodies are the largest antibodies
- Apo C-II acts as cofactor activator for lipoprotein lipase
- Colostrum contains IgA
- The main site of production of plasma proteins is liver
- The most effective buffer of plasma is NaHCO₃ / H₂CO₃
- The major carriers of triacylglycerols are chylomicrons and VLDL

TYPES	PER-	CHARACTERISTICS	FUNCTIONS
	CENTAGE		
IgG	70%	-main antibody in the secondary response -it is only immunoglobulin which crosses the placenta and is the only maternal antibody which protects the fetus	 -neutralizes bacterial toxins and viruses -opsonizes bacteria, making them easier to phagocytize -activates complements which enhances bacterial killing
IgA	20%	-major component of colostrum -also occurs in saliva, tears and respiratory, intestinal and genital tract secretions	-secretory IgA prevents attachment of bacteria and viruses to mucous membranes and helps protect mucous surface from antigenic attack -prevents access of foreign substances to the circulation
IgM	8 - 10%	-main antibody in the primary response to an antigen -produced by fetus	-activate complement, promotes phagocytosis and causes lysis of antigenic cells -antigen receptor on the surface of B lymphocytes
lgD	Less than 1%	Labile molecules. These facts have made the study of IgD function difficult	-uncertain. May function as an antigen receptor -no known antibody function
IgE	0.004%	Binds mast cells and basophils, leads to rupture of the cell membrane, degranulation and release of histamine	-antiallergic and antiparasitic -mediates immediate hypersensitivity by causing release of histamine from mast cells and basophils upon exposure to antigen -main host defence against parasites like helminthes, provides protection in the disease schistosomiasis

CELL AND PH

- In biochemistry, dialysis is an operation to separate dissolved molecules based on molecular weight
- The pressure which stops the osmosis of pure solvent into solution through a semipermeable membrane is known as osmotic pressure
- The sulfonamides are a group of synthetic antimicrobial agents that are structural analogs of para-amino benzoic acid (PABA). They are competitive inhibitors of folic acid metabolism
- The H⁺ ion concentration of pure water is equal to 1x10⁻⁷ M
- The major buffer systems of body
 - 1. Carbonic acid bicarbonate buffer system (H₃PO₄/ H₂PO₄⁻)
 - 2. Phosphate buffer system (H₃PO₄ / H₂PO₄⁻)
 - 3. Protein buffer system
- Normal pH range = 7.35 7.45
- A buffer is a combination of a weak acid and its salt with strong base
- The most important buffer of plasma is carbonic acid bicarbonate buffer
- At isoelectric pH protein molecule has no net charge
- Bicarbonate ions and carbonic acid are present in the blood in 20:1 ratio if the blood pH is within normal range
- Histidine (amino acid) provide efficient buffering in Hb buffer system
- Most reliable method for measuring GFR (Glomerular Filtration Rate) is inulin clearance test
- Diabetic acidosis develops when substances called ketone bodies (which are acidic) build up during uncontrolled diabetes

ENZYMES

- Alkaline phosphatase is an enzyme in blood that helps break down proteins. It plays a particular important role in liver function and bone development
- Five isozymes of normal LDH, can be identified by electrophoresis at pH 8.6
- Creatine phosphokinase found mainly in heart, brain and skeletal muscle
- The most commonly used serum enzymes in pancreatic diseases are total amylase, pancreatic isoamylase, lipase and trypsin
- Km (Michaelis constant) The substrate concentration at which the reaction rate is 50% of the V_{max}
 - Km is a measure of the affinity an enzyme has for its substrate, as the lower the value of Km, the more efficient the enzyme is at carrying out its function at a lower substrate concentration
- Competitive inhibitors
 - Increase Km
 - $\hfill \square$ Do not change V_{max}
- Non-Competitive inhibitors
 - Does not Km
 - Decrease V_{max}
- Elevated serum levels of acid phosphatase are seen in patients with carcinoma of prostate
- All amino transferases require the co-enzyme pyridoxal phosphate
- Hydrolases Enzymes which breaks a biomolecule by the addition of water molecule Lyases Enzymes which breaks a molecule without addition of water
- Group specificity means that the enzyme will act only on molecules that have specific functional groups such as amino, phosphate and methyl groups e.g. pepsin, hexokinase
- Absolute specificity in which enzyme acts upon one specific substrate e.g. urease attacks only on urea
- Relative specificity The enzymes bind with a group of similar substrates and catalyzes a group of similar reactions
- Ligase is also called synthetase

CARBOHYDRATES

- Glycosaminoglycans or mucopolysaccharides
 - Heparin
 - Chondroitin sulfate
 - Hyaluronic acid
 - Dermatan sulfate
 - Keratan sulfate
 - Blood group polysaccharides
- Most of monosaccharides belong to D-series Most of amino acids belong to L-series
- D glucose is dextrorotatory that is why glucose is called Dextrose D fructose is levorotatory
- Sucrose is called invert sugar.
 Sucrose is dextrorotatory. On hydrolysis sucrose yields a mixture of dextrorotatory glucose and leverotatory fructose. Because of the strong levorotatory nature of fructose, the magnitude of levorotation is more. Hence sucrose is called invert sugar.
- Deoxy sugars
 - L-fucose
 - Deoxy ribose
- Sugar acids Uronic acid, glucuronic acid, Galacturonic acid, Mannuronic acid
- Uronic acid important in animals include D-Glucuronic acid and L-iduronic acid. Both are abundant in connective tissue
- Reducing sugar have a free anomeric carbon
 Non-reducing sugar lack a free anomeric carbon
- Amylose linear polymer of D-Glucose
 Amylopectin branched polymer of D-Glucose
 Dextrin formed by partial hydrolysis of starch
 Glycogen branched polymer of glucose
 Cellulose unbranched polymer of glucose
 Inulin polymer of D-fructose
 Dextran branched polymer of D-glucose
 Agar sulfuric acid ester of a complex both D and L galactonic units
- Glycosaminoglycan (GAG) is an unbranched heteropolysaccharides made up of repeating diasaccharides

Components of GAG

- 1. Amino sugar either D-Glucosamine or D-Galactosamine
- 2. Uronic acid either L-Glucuronic acid (HA, chondroitin sulfate) or L-iduronic acid (Dermatan sulfate, heparin, heparan sulfate)

Creatine sulfate has no uronic acid

GAG is a polymer of (uronic acid-amino sugar). This polymer is attached covalently to extracellular proteins called core proteins (except hyaluronic acid) to form proteoglycans

With exception of HA, all GAGs contain sulfate group

HA + Keratan sulfate → N-acetyl glucosamine
 Chondroitin sulfate + Dermatan sulfate → N-acetyl glucosamine
 Heparin → Glucosamine
 Heparan sulfate → Glucosamine + some acetylated glucosamine