CHAPTER 1

1.1. Given the vectors $\mathbf{M}=-10 \mathbf{a}_{x}+4 \mathbf{a}_{y}-8 \mathbf{a}_{z}$ and $\mathbf{N}=8 \mathbf{a}_{x}+7 \mathbf{a}_{y}-2 \mathbf{a}_{z}$, find:
a) a unit vector in the direction of $-\mathbf{M}+2 \mathbf{N}$.

$$
-\mathbf{M}+2 \mathbf{N}=10 \mathbf{a}_{x}-4 \mathbf{a}_{y}+8 \mathbf{a}_{z}+16 \mathbf{a}_{x}+14 \mathbf{a}_{y}-4 \mathbf{a}_{z}=(26,10,4)
$$

Thus

$$
\mathbf{a}=\frac{(26,10,4)}{|(26,10,4)|}=\underline{(0.92,0.36,0.14)}
$$

b) the magnitude of $5 \mathbf{a}_{x}+\mathbf{N}-3 \mathbf{M}$:

$$
(5,0,0)+(8,7,-2)-(-30,12,-24)=(43,-5,22), \text { and }|(43,-5,22)|=\underline{48.6}
$$

c) $|\mathbf{M}||2 \mathbf{N}|(\mathbf{M}+\mathbf{N})$:
$|(-10,4,-8)||(16,14,-4)|(-2,11,-10)=(13.4)(21.6)(-2,11,-10)$
$=\underline{(-580.5,3193,-2902)}$
1.2. Given three points, $A(4,3,2), B(-2,0,5)$, and $C(7,-2,1)$:
a) Specify the vector \mathbf{A} extending from the origin to the point A.

$$
\mathbf{A}=(4,3,2)=\underline{4 \mathbf{a}_{x}+3 \mathbf{a}_{y}+2 \mathbf{a}_{z}}
$$

b) Give a unit vector extending from the origin to the midpoint of line $A B$.

The vector from the origin to the midpoint is given by
$\mathbf{M}=(1 / 2)(\mathbf{A}+\mathbf{B})=(1 / 2)(4-2,3+0,2+5)=(1,1.5,3.5)$
The unit vector will be

$$
\mathbf{m}=\frac{(1,1.5,3.5)}{|(1,1.5,3.5)|}=\underline{(0.25,0.38,0.89)}
$$

c) Calculate the length of the perimeter of triangle $A B C$:

Begin with $\mathbf{A B}=(-6,-3,3), \mathbf{B C}=(9,-2,-4), \mathbf{C A}=(3,-5,-1)$.
Then

$$
|\mathbf{A B}|+|\mathbf{B C}|+|\mathbf{C A}|=7.35+10.05+5.91=\underline{23.32}
$$

1.3. The vector from the origin to the point A is given as $(6,-2,-4)$, and the unit vector directed from the origin toward point B is $(2,-2,1) / 3$. If points A and B are ten units apart, find the coordinates of point B.

With $\mathbf{A}=(6,-2,-4)$ and $\mathbf{B}=\frac{1}{3} B(2,-2,1)$, we use the fact that $|\mathbf{B}-\mathbf{A}|=10$, or
$\left|\left(6-\frac{2}{3} B\right) \mathbf{a}_{x}-\left(2-\frac{2}{3} B\right) \mathbf{a}_{y}-\left(4+\frac{1}{3} B\right) \mathbf{a}_{z}\right|=10$
Expanding, obtain
$36-8 B+\frac{4}{9} B^{2}+4-\frac{8}{3} B+\frac{4}{9} B^{2}+16+\frac{8}{3} B+\frac{1}{9} B^{2}=100$
or $B^{2}-8 B-44=0$. Thus $B=\frac{8 \pm \sqrt{64-176}}{2}=11.75$ (taking positive option) and so
$\mathbf{B}=\frac{2}{3}(11.75) \mathbf{a}_{x}-\frac{2}{3}(11.75) \mathbf{a}_{y}+\frac{1}{3}(11.75) \mathbf{a}_{z}=\underline{7.83 \mathbf{a}_{x}-7.83 \mathbf{a}_{y}+3.92 \mathbf{a}_{z}}$
1.4. given points $A(8,-5,4)$ and $B(-2,3,2)$, find:
a) the distance from A to B.

$$
|\mathbf{B}-\mathbf{A}|=|(-10,8,-2)|=\underline{12.96}
$$

b) a unit vector directed from A towards B. This is found through

$$
\mathbf{a}_{A B}=\frac{\mathbf{B}-\mathbf{A}}{|\mathbf{B}-\mathbf{A}|}=\underline{(-0.77,0.62,-0.15)}
$$

c) a unit vector directed from the origin to the midpoint of the line $A B$.

$$
\mathbf{a}_{0 M}=\frac{(\mathbf{A}+\mathbf{B}) / 2}{|(\mathbf{A}+\mathbf{B}) / 2|}=\frac{(3,-1,3)}{\sqrt{19}}=\underline{(0.69,-0.23,0.69)}
$$

d) the coordinates of the point on the line connecting A to B at which the line intersects the plane $z=3$. Note that the midpoint, $(3,-1,3)$, as determined from part c happens to have z coordinate of 3 . This is the point we are looking for.
1.5. A vector field is specified as $\mathbf{G}=24 x y \mathbf{a}_{x}+12\left(x^{2}+2\right) \mathbf{a}_{y}+18 z^{2} \mathbf{a}_{z}$. Given two points, $P(1,2,-1)$ and $Q(-2,1,3)$, find:
a) \mathbf{G} at $P: \mathbf{G}(1,2,-1)=(48,36,18)$
b) a unit vector in the direction of \mathbf{G} at $Q: \mathbf{G}(-2,1,3)=(-48,72,162)$, so

$$
\mathbf{a}_{G}=\frac{(-48,72,162)}{|(-48,72,162)|}=\underline{(-0.26,0.39,0.88)}
$$

c) a unit vector directed from Q toward P :

$$
\mathbf{a}_{Q P}=\frac{\mathbf{P}-\mathbf{Q}}{|\mathbf{P}-\mathbf{Q}|}=\frac{(3,-1,4)}{\sqrt{26}}=\underline{(0.59,0.20,-0.78)}
$$

d) the equation of the surface on which $|\mathbf{G}|=60$: We write $60=\left|\left(24 x y, 12\left(x^{2}+2\right), 18 z^{2}\right)\right|$, or $10=\left|\left(4 x y, 2 x^{2}+4,3 z^{2}\right)\right|$, so the equation is

$$
\underline{100=16 x^{2} y^{2}+4 x^{4}+16 x^{2}+16+9 z^{4}}
$$

1.6. For the \mathbf{G} field in Problem 1.5, make sketches of G_{x}, G_{y}, G_{z} and $|\mathbf{G}|$ along the line $y=1, z=1$, for $0 \leq x \leq 2$. We find $\mathbf{G}(x, 1,1)=\left(24 x, 12 x^{2}+24,18\right)$, from which $G_{x}=24 x, G_{y}=12 x^{2}+24$, $G_{z}=18$, and $|\mathbf{G}|=6 \sqrt{4 x^{4}+32 x^{2}+25}$. Plots are shown below.

1.7. Given the vector field $\mathbf{E}=4 z y^{2} \cos 2 x \mathbf{a}_{x}+2 z y \sin 2 x \mathbf{a}_{y}+y^{2} \sin 2 x \mathbf{a}_{z}$ for the region $|x|,|y|$, and $|z|$ less than 2, find:
a) the surfaces on which $E_{y}=0$. With $E_{y}=2 z y \sin 2 x=0$, the surfaces are 1) the plane $z=0$, with $|x|<2,|y|<2$; 2) the plane $y=0$, with $|x|<2,|z|<2 ; 3$) the plane $\underline{x=0}$, with $|y|<2,|z|<2$; 4) the plane $x=\pi / 2$, with $|y|<2,|z|<2$.
b) the region in which $E_{y}=E_{z}$: This occurs when $2 z y \sin 2 x=y^{2} \sin 2 x$, or on the plane $2 z=y$, with $|x|<2,|y|<2,|z|<1$.
c) the region in which $\mathbf{E}=0$: We would have $E_{x}=E_{y}=E_{z}=0$, or $z y^{2} \cos 2 x=z y \sin 2 x=$ $y^{2} \sin 2 x=0$. This condition is met on the plane $\underline{y=0}$, with $|x|<2,|z|<2$.
1.8. Two vector fields are $\mathbf{F}=-10 \mathbf{a}_{x}+20 x(y-1) \mathbf{a}_{y}$ and $\mathbf{G}=2 x^{2} y \mathbf{a}_{x}-4 \mathbf{a}_{y}+z \mathbf{a}_{z}$. For the point $P(2,3,-4)$, find:
a) $|\mathbf{F}|: \mathbf{F}$ at $(2,3,-4)=(-10,80,0)$, so $\underline{|\mathbf{F}|=80.6}$.
b) $|\mathbf{G}|$: \mathbf{G} at $(2,3,-4)=(24,-4,-4)$, so $|\mathbf{G}|=24.7$.
c) a unit vector in the direction of $\mathbf{F}-\mathbf{G}: \mathbf{F}-\mathbf{G}=(-10,80,0)-(24,-4,-4)=(-34,84,4)$. So

$$
\mathbf{a}=\frac{\mathbf{F}-\mathbf{G}}{|\mathbf{F}-\mathbf{G}|}=\frac{(-34,84,4)}{90.7}=\underline{(-0.37,0.92,0.04)}
$$

d) a unit vector in the direction of $\mathbf{F}+\mathbf{G}: \mathbf{F}+\mathbf{G}=(-10,80,0)+(24,-4,-4)=(14,76,-4)$. So

$$
\mathbf{a}=\frac{\mathbf{F}+\mathbf{G}}{|\mathbf{F}+\mathbf{G}|}=\frac{(14,76,-4)}{77.4}=\underline{(0.18,0.98,-0.05)}
$$

1.9. A field is given as

$$
\mathbf{G}=\frac{25}{\left(x^{2}+y^{2}\right)}\left(x \mathbf{a}_{x}+y \mathbf{a}_{y}\right)
$$

Find:
a) a unit vector in the direction of \mathbf{G} at $P(3,4,-2)$: Have $\mathbf{G}_{p}=25 /(9+16) \times(3,4,0)=3 \mathbf{a}_{x}+4 \mathbf{a}_{y}$, and $\left|\mathbf{G}_{p}\right|=5$. Thus $\mathbf{a}_{G}=\underline{(0.6,0.8,0)}$.
b) the angle between \mathbf{G} and \mathbf{a}_{x} at P : The angle is found through $\mathbf{a}_{G} \cdot \mathbf{a}_{x}=\cos \theta$. So $\cos \theta=$ $(0.6,0.8,0) \cdot(1,0,0)=0.6$. Thus $\theta=53^{\circ}$.
c) the value of the following double integral on the plane $y=7$:

$$
\begin{gathered}
\int_{0}^{4} \int_{0}^{2} \mathbf{G} \cdot \mathbf{a}_{y} d z d x \\
\int_{0}^{4} \int_{0}^{2} \frac{25}{x^{2}+y^{2}}\left(x \mathbf{a}_{x}+y \mathbf{a}_{y}\right) \cdot \mathbf{a}_{y} d z d x=\int_{0}^{4} \int_{0}^{2} \frac{25}{x^{2}+49} \times 7 d z d x=\int_{0}^{4} \frac{350}{x^{2}+49} d x \\
=350 \times \frac{1}{7}\left[\tan ^{-1}\left(\frac{4}{7}\right)-0\right]=\underline{26}
\end{gathered}
$$

1.10. Use the definition of the dot product to find the interior angles at A and B of the triangle defined by the three points $A(1,3,-2), B(-2,4,5)$, and $C(0,-2,1)$:
a) Use $\mathbf{R}_{A B}=(-3,1,7)$ and $\mathbf{R}_{A C}=(-1,-5,3)$ to form $\mathbf{R}_{A B} \cdot \mathbf{R}_{A C}=\left|\mathbf{R}_{A B}\right|\left|\mathbf{R}_{A C}\right| \cos \theta_{A}$. Obtain $3+5+21=\sqrt{59} \sqrt{35} \cos \theta_{A}$. Solve to find $\theta_{A}=65.3^{\circ}$.
b) Use $\mathbf{R}_{B A}=(3,-1,-7)$ and $\mathbf{R}_{B C}=(2,-6,-4)$ to form $\mathbf{R}_{B A} \cdot \mathbf{R}_{B C}=\left|\mathbf{R}_{B A}\right|\left|\mathbf{R}_{B C}\right| \cos \theta_{B}$. Obtain $6+6+28=\sqrt{59} \sqrt{56} \cos \theta_{B}$. Solve to find $\theta_{B}=45.9^{\circ}$.
1.11. Given the points $M(0.1,-0.2,-0.1), N(-0.2,0.1,0.3)$, and $P(0.4,0,0.1)$, find:
a) the vector $\mathbf{R}_{M N}: \mathbf{R}_{M N}=(-0.2,0.1,0.3)-(0.1,-0.2,-0.1)=\underline{(-0.3,0.3,0.4)}$.
b) the dot product $\mathbf{R}_{M N} \cdot \mathbf{R}_{M P}: \quad \mathbf{R}_{M P}=(0.4,0,0.1)-(0.1,-0.2,-0.1)=(0.3,0.2,0.2) . \mathbf{R}_{M N}$. $\mathbf{R}_{M P}=(-0.3,0.3,0.4) \cdot(0.3,0.2,0.2)=-0.09+0.06+0.08=\underline{0.05}$.
c) the scalar projection of $\mathbf{R}_{M N}$ on $\mathbf{R}_{M P}$:

$$
\mathbf{R}_{M N} \cdot \mathbf{a}_{R M P}=(-0.3,0.3,0.4) \cdot \frac{(0.3,0.2,0.2)}{\sqrt{0.09+0.04+0.04}}=\frac{0.05}{\sqrt{0.17}}=\underline{0.12}
$$

d) the angle between $\mathbf{R}_{M N}$ and $\mathbf{R}_{M P}$:

$$
\theta_{M}=\cos ^{-1}\left(\frac{\mathbf{R}_{M N} \cdot \mathbf{R}_{M P}}{\left|\mathbf{R}_{M N}\right|\left|\mathbf{R}_{M P}\right|}\right)=\cos ^{-1}\left(\frac{0.05}{\sqrt{0.34} \sqrt{0.17}}\right)=\underline{78^{\circ}}
$$

1.12. Given points $A(10,12,-6), B(16,8,-2), C(8,1,-4)$, and $D(-2,-5,8)$, determine:
a) the vector projection of $\mathbf{R}_{A B}+\mathbf{R}_{B C}$ on $\mathbf{R}_{A D}: \mathbf{R}_{A B}+\mathbf{R}_{B C}=\mathbf{R}_{A C}=(8,1,4)-(10,12,-6)=$ $(-2,-11,10)$ Then $\mathbf{R}_{A D}=(-2,-5,8)-(10,12,-6)=(-12,-17,14)$. So the projection will be:

$$
\left(\mathbf{R}_{A C} \cdot \mathbf{a}_{R A D}\right) \mathbf{a}_{R A D}=\left[(-2,-11,10) \cdot \frac{(-12,-17,14)}{\sqrt{629}}\right] \frac{(-12,-17,14)}{\sqrt{629}}=\underline{(-6.7,-9.5,7.8)}
$$

b) the vector projection of $\mathbf{R}_{A B}+\mathbf{R}_{B C}$ on $\mathbf{R}_{D C}: \mathbf{R}_{D C}=(8,-1,4)-(-2,-5,8)=(10,6,-4)$. The projection is:

$$
\left(\mathbf{R}_{A C} \cdot \mathbf{a}_{R D C}\right) \mathbf{a}_{R D C}=\left[(-2,-11,10) \cdot \frac{(10,6,-4)}{\sqrt{152}}\right] \frac{(10,6,-4)}{\sqrt{152}}=\underline{(-8.3,-5.0,3.3)}
$$

c) the angle between $\mathbf{R}_{D A}$ and $\mathbf{R}_{D C}$: Use $\mathbf{R}_{D A}=-\mathbf{R}_{A D}=(12,17,-14)$ and $\mathbf{R}_{D C}=(10,6,-4)$. The angle is found through the dot product of the associated unit vectors, or:

$$
\theta_{D}=\cos ^{-1}\left(\mathbf{a}_{R D A} \cdot \mathbf{a}_{R D C}\right)=\cos ^{-1}\left(\frac{(12,17,-14) \cdot(10,6,-4)}{\sqrt{629} \sqrt{152}}\right)=\underline{26^{\circ}}
$$

1.13. a) Find the vector component of $\mathbf{F}=(10,-6,5)$ that is parallel to $\mathbf{G}=(0.1,0.2,0.3)$:

$$
\mathbf{F}_{\| G}=\frac{\mathbf{F} \cdot \mathbf{G}}{|\mathbf{G}|^{2}} \mathbf{G}=\frac{(10,-6,5) \cdot(0.1,0.2,0.3)}{0.01+0.04+0.09}(0.1,0.2,0.3)=(0.93,1.86,2.79)
$$

b) Find the vector component of \mathbf{F} that is perpendicular to \mathbf{G} :

$$
\mathbf{F}_{p G}=\mathbf{F}-\mathbf{F}_{\| G}=(10,-6,5)-(0.93,1.86,2.79)=(9.07,-7.86,2.21)
$$

c) Find the vector component of \mathbf{G} that is perpendicular to \mathbf{F} :

$$
\mathbf{G}_{p F}=\mathbf{G}-\mathbf{G}_{\| F}=\mathbf{G}-\frac{\mathbf{G} \cdot \mathbf{F}}{|\mathbf{F}|^{2}} \mathbf{F}=(0.1,0.2,0.3)-\frac{1.3}{100+36+25}(10,-6,5)=(0.02,0.25,0.26)
$$

1.14. The four vertices of a regular tetrahedron are located at $O(0,0,0), A(0,1,0), B(0.5 \sqrt{3}, 0.5,0)$, and $C(\sqrt{3} / 6,0.5, \sqrt{2 / 3})$.
a) Find a unit vector perpendicular (outward) to the face $A B C$: First find

$$
\begin{aligned}
\mathbf{R}_{B A} \times \mathbf{R}_{B C} & =[(0,1,0)-(0.5 \sqrt{3}, 0.5,0)] \times[(\sqrt{3} / 6,0.5, \sqrt{2 / 3})-(0.5 \sqrt{3}, 0.5,0)] \\
& =(-0.5 \sqrt{3}, 0.5,0) \times(-\sqrt{3} / 3,0, \sqrt{2 / 3})=(0.41,0.71,0.29)
\end{aligned}
$$

The required unit vector will then be:

$$
\frac{\mathbf{R}_{B A} \times \mathbf{R}_{B C}}{\left|\mathbf{R}_{B A} \times \mathbf{R}_{B C}\right|}=\underline{(0.47,0.82,0.33)}
$$

b) Find the area of the face $A B C$:

$$
\text { Area }=\frac{1}{2}\left|\mathbf{R}_{B A} \times \mathbf{R}_{B C}\right|=\underline{0.43}
$$

1.15. Three vectors extending from the origin are given as $\mathbf{r}_{1}=(7,3,-2), \mathbf{r}_{2}=(-2,7,-3)$, and $\mathbf{r}_{3}=(0,2,3)$. Find:
a) a unit vector perpendicular to both \mathbf{r}_{1} and \mathbf{r}_{2} :

$$
\mathbf{a}_{p 12}=\frac{\mathbf{r}_{1} \times \mathbf{r}_{2}}{\left|\mathbf{r}_{1} \times \mathbf{r}_{2}\right|}=\frac{(5,25,55)}{60.6}=\underline{(0.08,0.41,0.91)}
$$

b) a unit vector perpendicular to the vectors $\mathbf{r}_{1}-\mathbf{r}_{2}$ and $\mathbf{r}_{2}-\mathbf{r}_{3}: \mathbf{r}_{1}-\mathbf{r}_{2}=(9,-4,1)$ and $\mathbf{r}_{2}-\mathbf{r}_{3}=$ $(-2,5,-6)$. So $\mathbf{r}_{1}-\mathbf{r}_{2} \times \mathbf{r}_{2}-\mathbf{r}_{3}=(19,52,32)$. Then

$$
\mathbf{a}_{p}=\frac{(19,52,32)}{|(19,52,32)|}=\frac{(19,52,32)}{63.95}=\underline{(0.30,0.81,0.50)}
$$

c) the area of the triangle defined by \mathbf{r}_{1} and \mathbf{r}_{2} :

$$
\text { Area }=\frac{1}{2}\left|\mathbf{r}_{1} \times \mathbf{r}_{2}\right|=\underline{30.3}
$$

d) the area of the triangle defined by the heads of $\mathbf{r}_{1}, \mathbf{r}_{2}$, and \mathbf{r}_{3} :

$$
\text { Area }=\frac{1}{2}\left|\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) \times\left(\mathbf{r}_{2}-\mathbf{r}_{3}\right)\right|=\frac{1}{2}|(-9,4,-1) \times(-2,5,-6)|=\underline{32.0}
$$

1.16. Describe the surfaces defined by the equations:
a) $\mathbf{r} \cdot \mathbf{a}_{x}=2$, where $\mathbf{r}=(x, y, z)$: This will be the plane $x=2$.
b) $\left|\mathbf{r} \times \mathbf{a}_{x}\right|=2: \mathbf{r} \times \mathbf{a}_{x}=(0, z,-y)$, and $\left|\mathbf{r} \times \mathbf{a}_{x}\right|=\sqrt{z^{2}+y^{2}}=2$. This is the equation of a cylinder, centered on the x axis, and of radius 2 .
1.17. Point $A(-4,2,5)$ and the two vectors, $\mathbf{R}_{A M}=(20,18,-10)$ and $\mathbf{R}_{A N}=(-10,8,15)$, define a triangle.
a) Find a unit vector perpendicular to the triangle: Use

$$
\mathbf{a}_{p}=\frac{\mathbf{R}_{A M} \times \mathbf{R}_{A N}}{\left|\mathbf{R}_{A M} \times \mathbf{R}_{A N}\right|}=\frac{(350,-200,340)}{527.35}=\underline{(0.664,-0.379,0.645)}
$$

The vector in the opposite direction to this one is also a valid answer.
b) Find a unit vector in the plane of the triangle and perpendicular to $\mathbf{R}_{A N}$:

$$
\mathbf{a}_{A N}=\frac{(-10,8,15)}{\sqrt{389}}=(-0.507,0.406,0.761)
$$

Then
$\mathbf{a}_{p A N}=\mathbf{a}_{p} \times \mathbf{a}_{A N}=(0.664,-0.379,0.645) \times(-0.507,0.406,0.761)=(-0.550,-0.832,0.077)$
The vector in the opposite direction to this one is also a valid answer.
c) Find a unit vector in the plane of the triangle that bisects the interior angle at A : A non-unit vector in the required direction is $(1 / 2)\left(\mathbf{a}_{A M}+\mathbf{a}_{A N}\right)$, where

$$
\mathbf{a}_{A M}=\frac{(20,18,-10)}{|(20,18,-10)|}=(0.697,0.627,-0.348)
$$

1.17c. (continued) Now

$$
\frac{1}{2}\left(\mathbf{a}_{A M}+\mathbf{a}_{A N}\right)=\frac{1}{2}[(0.697,0.627,-0.348)+(-0.507,0.406,0.761)]=(0.095,0.516,0.207)
$$

Finally,

$$
\mathbf{a}_{b i s}=\frac{(0.095,0.516,0.207)}{|(0.095,0.516,0.207)|}=\underline{(0.168,0.915,0.367)}
$$

1.18. Given points $A\left(\rho=5, \phi=70^{\circ}, z=-3\right)$ and $B\left(\rho=2, \phi=-30^{\circ}, z=1\right)$, find:
a) unit vector in cartesian coordinates at A toward $B: A\left(5 \cos 70^{\circ}, 5 \sin 70^{\circ},-3\right)=A(1.71,4.70,-3)$, In the same manner, $B(1.73,-1,1)$. So $\mathbf{R}_{A B}=(1.73,-1,1)-(1.71,4.70,-3)=(0.02,-5.70,4)$ and therefore

$$
\mathbf{a}_{A B}=\frac{(0.02,-5.70,4)}{|(0.02,-5.70,4)|}=\underline{(0.003,-0.82,0.57)}
$$

b) a vector in cylindrical coordinates at A directed toward $B: \mathbf{a}_{A B} \cdot \mathbf{a}_{\rho}=0.003 \cos 70^{\circ}-0.82 \sin 70^{\circ}=$ $-0.77 . \mathbf{a}_{A B} \cdot \mathbf{a}_{\phi}=-0.003 \sin 70^{\circ}-0.82 \cos 70^{\circ}=-0.28$. Thus

$$
\mathbf{a}_{A B}=-0.77 \mathbf{a}_{\rho}-0.28 \mathbf{a}_{\phi}+0.57 \mathbf{a}_{z}
$$

c) a unit vector in cylindrical coordinates at B directed toward A :

Use $\mathbf{a}_{B A}=(-0,003,0.82,-0.57)$. Then $\mathbf{a}_{B A} \cdot \mathbf{a}_{\rho}=-0.003 \cos \left(-30^{\circ}\right)+0.82 \sin \left(-30^{\circ}\right)=-0.43$, and $\mathbf{a}_{B A} \cdot \mathbf{a}_{\phi}=0.003 \sin \left(-30^{\circ}\right)+0.82 \cos \left(-30^{\circ}\right)=0.71$. Finally,

$$
\mathbf{a}_{B A}=\underline{-0.43 \mathbf{a}_{\rho}+0.71 \mathbf{a}_{\phi}-0.57 \mathbf{a}_{z}}
$$

1.19 a) Express the field $\mathbf{D}=\left(x^{2}+y^{2}\right)^{-1}\left(x \mathbf{a}_{x}+y \mathbf{a}_{y}\right)$ in cylindrical components and cylindrical variables: Have $x=\rho \cos \phi, y=\rho \sin \phi$, and $x^{2}+y^{2}=\rho^{2}$. Therefore

$$
\mathbf{D}=\frac{1}{\rho}\left(\cos \phi \mathbf{a}_{x}+\sin \phi \mathbf{a}_{y}\right)
$$

Then

$$
D_{\rho}=\mathbf{D} \cdot \mathbf{a}_{\rho}=\frac{1}{\rho}\left[\cos \phi\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}\right)+\sin \phi\left(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho}\right)\right]=\frac{1}{\rho}\left[\cos ^{2} \phi+\sin ^{2} \phi\right]=\frac{1}{\rho}
$$

and

$$
D_{\phi}=\mathbf{D} \cdot \mathbf{a}_{\phi}=\frac{1}{\rho}\left[\cos \phi\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}\right)+\sin \phi\left(\mathbf{a}_{y} \cdot \mathbf{a}_{\phi}\right)\right]=\frac{1}{\rho}[\cos \phi(-\sin \phi)+\sin \phi \cos \phi]=0
$$

Therefore

$$
\mathbf{D}=\frac{1}{\rho} \mathbf{a}_{\rho}
$$

1.19b. Evaluate \mathbf{D} at the point where $\rho=2, \phi=0.2 \pi$, and $z=5$, expressing the result in cylindrical and cartesian coordinates: At the given point, and in cylindrical coordinates, $\mathbf{D}=0.5 \mathbf{a}_{\rho}$. To express this in cartesian, we use

$$
\mathbf{D}=0.5\left(\mathbf{a}_{\rho} \cdot \mathbf{a}_{x}\right) \mathbf{a}_{x}+0.5\left(\mathbf{a}_{\rho} \cdot \mathbf{a}_{y}\right) \mathbf{a}_{y}=0.5 \cos 36^{\circ} \mathbf{a}_{x}+0.5 \sin 36^{\circ} \mathbf{a}_{y}=0.41 \mathbf{a}_{x}+0.29 \mathbf{a}_{y}
$$

1.20. Express in cartesian components:
a) the vector at $A\left(\rho=4, \phi=40^{\circ}, z=-2\right)$ that extends to $B\left(\rho=5, \phi=-110^{\circ}, z=2\right)$: We have $A\left(4 \cos 40^{\circ}, 4 \sin 40^{\circ},-2\right)=A(3.06,2.57,-2)$, and $B\left(5 \cos \left(-110^{\circ}\right), 5 \sin \left(-110^{\circ}\right), 2\right)=$ $B(-1.71,-4.70,2)$ in cartesian. Thus $\mathbf{R}_{A B}=(-4.77,-7.30,4)$.
b) a unit vector at B directed toward A : Have $\mathbf{R}_{B A}=(4.77,7.30,-4)$, and so

$$
\mathbf{a}_{B A}=\frac{(4.77,7.30,-4)}{|(4.77,7.30,-4)|}=\underline{(0.50,0.76,-0.42)}
$$

c) a unit vector at B directed toward the origin: Have $\mathbf{r}_{B}=(-1.71,-4.70,2)$, and so $-\mathbf{r}_{B}=$ (1.71, 4.70, -2). Thus

$$
\mathbf{a}=\frac{(1.71,4.70,-2)}{|(1.71,4.70,-2)|}=\underline{(0.32,0.87,-0.37)}
$$

1.21. Express in cylindrical components:
a) the vector from $C(3,2,-7)$ to $D(-1,-4,2)$:
$C(3,2,-7) \rightarrow C\left(\rho=3.61, \phi=33.7^{\circ}, z=-7\right)$ and
$D(-1,-4,2) \rightarrow D\left(\rho=4.12, \phi=-104.0^{\circ}, z=2\right)$.
Now $\mathbf{R}_{C D}=(-4,-6,9)$ and $R_{\rho}=\mathbf{R}_{C D} \cdot \mathbf{a}_{\rho}=-4 \cos (33.7)-6 \sin (33.7)=-6.66$. Then $R_{\phi}=\mathbf{R}_{C D} \cdot \mathbf{a}_{\phi}=4 \sin (33.7)-6 \cos (33.7)=-2.77$. So $\mathbf{R}_{C D}=\underline{-6.66 \mathbf{a}_{\rho}-2.77 \mathbf{a}_{\phi}+9 \mathbf{a}_{z}}$
b) a unit vector at D directed toward C :
$\mathbf{R}_{C D}=(4,6,-9)$ and $R_{\rho}=\mathbf{R}_{D C} \cdot \mathbf{a}_{\rho}=4 \cos (-104.0)+6 \sin (-104.0)=-6.79$. Then $R_{\phi}=$ $\mathbf{R}_{D C} \cdot \mathbf{a}_{\phi}=4[-\sin (-104.0)]+6 \cos (-104.0)=2.43$. So $\mathbf{R}_{D C}=-6.79 \mathbf{a}_{\rho}+2.43 \mathbf{a}_{\phi}-9 \mathbf{a}_{z}$ Thus $\mathbf{a}_{D C}=-0.59 \mathbf{a}_{\rho}+0.21 \mathbf{a}_{\phi}-0.78 \mathbf{a}_{z}$
c) a unit vector at D directed toward the origin: Start with $\mathbf{r}_{D}=(-1,-4,2)$, and so the vector toward the origin will be $-\mathbf{r}_{D}=(1,4,-2)$. Thus in cartesian the unit vector is $\mathbf{a}=(0.22,0.87,-0.44)$. Convert to cylindrical:
$a_{\rho}=(0.22,0.87,-0.44) \cdot \mathbf{a}_{\rho}=0.22 \cos (-104.0)+0.87 \sin (-104.0)=-0.90$, and
$a_{\phi}=(0.22,0.87,-0.44) \cdot \mathbf{a}_{\phi}=0.22[-\sin (-104.0)]+0.87 \cos (-104.0)=0$, so that finally, $\mathbf{a}=\underline{-0.90 \mathbf{a}_{\rho}-0.44 \mathbf{a}_{z}}$.
1.22. A field is given in cylindrical coordinates as

$$
\mathbf{F}=\left[\frac{40}{\rho^{2}+1}+3(\cos \phi+\sin \phi)\right] \mathbf{a}_{\rho}+3(\cos \phi-\sin \phi) \mathbf{a}_{\phi}-2 \mathbf{a}_{z}
$$

where the magnitude of \mathbf{F} is found to be:

$$
|\mathbf{F}|=\sqrt{\mathbf{F} \cdot \mathbf{F}}=\left[\frac{1600}{\left(\rho^{2}+1\right)^{2}}+\frac{240}{\rho^{2}+1}(\cos \phi+\sin \phi)+22\right]^{1 / 2}
$$

Sketch $|\mathbf{F}|$:
a) vs. ϕ with $\rho=3$: in this case the above simplifies to

$$
|\mathbf{F}(\rho=3)|=|F a|=[38+24(\cos \phi+\sin \phi)]^{1 / 2}
$$

b) vs. ρ with $\phi=0$, in which:

$$
|\mathbf{F}(\phi=0)|=|F b|=\left[\frac{1600}{\left(\rho^{2}+1\right)^{2}}+\frac{240}{\rho^{2}+1}+22\right]^{1 / 2}
$$

c) vs. ρ with $\phi=45^{\circ}$, in which

$$
\left|\mathbf{F}\left(\phi=45^{\circ}\right)\right|=|F c|=\left[\frac{1600}{\left(\rho^{2}+1\right)^{2}}+\frac{240 \sqrt{2}}{\rho^{2}+1}+22\right]^{1 / 2}
$$

Problem 1.22a

$=|\mathrm{Fa}|$

1.23. The surfaces $\rho=3, \rho=5, \phi=100^{\circ}, \phi=130^{\circ}, z=3$, and $z=4.5$ define a closed surface.
a) Find the enclosed volume:

$$
\mathrm{Vol}=\int_{3}^{4.5} \int_{100^{\circ}}^{130^{\circ}} \int_{3}^{5} \rho d \rho d \phi d z=\underline{6.28}
$$

NOTE: The limits on the ϕ integration must be converted to radians (as was done here, but not shown).
b) Find the total area of the enclosing surface:

$$
\begin{aligned}
& \text { Area }=2 \int_{100^{\circ}}^{130^{\circ}} \int_{3}^{5} \rho d \rho d \phi+\int_{3}^{4.5} \int_{100^{\circ}}^{130^{\circ}} 3 d \phi d z \\
& +\int_{3}^{4.5} \int_{100^{\circ}}^{130^{\circ}} 5 d \phi d z+2 \int_{3}^{4.5} \int_{3}^{5} d \rho d z=\underline{20.7}
\end{aligned}
$$

c) Find the total length of the twelve edges of the surfaces:

$$
\text { Length }=4 \times 1.5+4 \times 2+2 \times\left[\frac{30^{\circ}}{360^{\circ}} \times 2 \pi \times 3+\frac{30^{\circ}}{360^{\circ}} \times 2 \pi \times 5\right]=\underline{22.4}
$$

d) Find the length of the longest straight line that lies entirely within the volume: This will be between the points $\mathrm{A}\left(\rho=3, \phi=100^{\circ}, z=3\right)$ and $\mathrm{B}\left(\rho=5, \phi=130^{\circ}, z=4.5\right)$. Performing point transformations to cartesian coordinates, these become $\mathrm{A}(x=-0.52, y=2.95, z=3)$ and $\mathrm{B}(x=$ $-3.21, y=3.83, z=4.5)$. Taking A and B as vectors directed from the origin, the requested length is

$$
\text { Length }=|\mathbf{B}-\mathbf{A}|=|(-2.69,0.88,1.5)|=\underline{3.21}
$$

1.24. At point $P(-3,4,5)$, express the vector that extends from P to $Q(2,0,-1)$ in:
a) rectangular coordinates.

$$
\mathbf{R}_{P Q}=\mathbf{Q}-\mathbf{P}=\underline{5 \mathbf{a}_{x}-4 \mathbf{a}_{y}-6 \mathbf{a}_{z}}
$$

Then $\left|\mathbf{R}_{P Q}\right|=\sqrt{25+16+36}=8.8$
b) cylindrical coordinates. At $P, \rho=5, \phi=\tan ^{-1}(4 /-3)=-53.1^{\circ}$, and $z=5$. Now,

$$
\begin{gathered}
\mathbf{R}_{P Q} \cdot \mathbf{a}_{\rho}=\left(5 \mathbf{a}_{x}-4 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right) \cdot \mathbf{a}_{\rho}=5 \cos \phi-4 \sin \phi=6.20 \\
\mathbf{R}_{P Q} \cdot \mathbf{a}_{\phi}=\left(5 \mathbf{a}_{x}-4 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right) \cdot \mathbf{a}_{\phi}=-5 \sin \phi-4 \cos \phi=1.60
\end{gathered}
$$

Thus

$$
\mathbf{R}_{P Q}=\underline{6.20 \mathbf{a}_{\rho}+1.60 \mathbf{a}_{\phi}-6 \mathbf{a}_{z}}
$$

and $\left|\mathbf{R}_{P Q}\right|=\sqrt{6.20^{2}+1.60^{2}+6^{2}}=8.8$
c) spherical coordinates. At $P, r=\sqrt{9+16+25}=\sqrt{50}=7.07, \theta=\cos ^{-1}(5 / 7.07)=45^{\circ}$, and $\phi=\tan ^{-1}(4 /-3)=-53.1^{\circ}$.

$$
\begin{gathered}
\mathbf{R}_{P Q} \cdot \mathbf{a}_{r}=\left(5 \mathbf{a}_{x}-4 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right) \cdot \mathbf{a}_{r}=5 \sin \theta \cos \phi-4 \sin \theta \sin \phi-6 \cos \theta=0.14 \\
\mathbf{R}_{P Q} \cdot \mathbf{a}_{\theta}=\left(5 \mathbf{a}_{x}-4 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right) \cdot \mathbf{a}_{\theta}=5 \cos \theta \cos \phi-4 \cos \theta \sin \phi-(-6) \sin \theta=8.62 \\
\mathbf{R}_{P Q} \cdot \mathbf{a}_{\phi}=\left(5 \mathbf{a}_{x}-4 \mathbf{a}_{y}-6 \mathbf{a}_{z}\right) \cdot \mathbf{a}_{\phi}=-5 \sin \phi-4 \cos \phi=1.60
\end{gathered}
$$

1.24. (continued)

Thus

$$
\mathbf{R}_{P Q}=\underline{0.14 \mathbf{a}_{r}+8.62 \mathbf{a}_{\theta}+1.60 \mathbf{a}_{\phi}}
$$

and $\left|\mathbf{R}_{P Q}\right|=\sqrt{0.14^{2}+8.62^{2}+1.60^{2}}=8.8$
d) Show that each of these vectors has the same magnitude. Each does, as shown above.
1.25. Given point $P\left(r=0.8, \theta=30^{\circ}, \phi=45^{\circ}\right)$, and

$$
\mathbf{E}=\frac{1}{r^{2}}\left(\cos \phi \mathbf{a}_{r}+\frac{\sin \phi}{\sin \theta} \mathbf{a}_{\phi}\right)
$$

a) Find \mathbf{E} at $P: \mathbf{E}=1.10 \mathbf{a}_{\rho}+2.21 \mathbf{a}_{\phi}$.
b) Find $|\mathbf{E}|$ at $P:|\mathbf{E}|=\sqrt{1.10^{2}+2.21^{2}}=\underline{2.47}$.
c) Find a unit vector in the direction of \mathbf{E} at P :

$$
\mathbf{a}_{E}=\frac{\mathbf{E}}{|\mathbf{E}|}=\underline{0.45 \mathbf{a}_{r}+0.89 \mathbf{a}_{\phi}}
$$

1.26. a) Determine an expression for \mathbf{a}_{y} in spherical coordinates at $P(r=4, \theta=0.2 \pi, \phi=0.8 \pi)$: Use $\mathbf{a}_{y} \cdot \mathbf{a}_{r}=\sin \theta \sin \phi=0.35, \mathbf{a}_{y} \cdot \mathbf{a}_{\theta}=\cos \theta \sin \phi=0.48$, and $\mathbf{a}_{y} \cdot \mathbf{a}_{\phi}=\cos \phi=-0.81$ to obtain

$$
\mathbf{a}_{y}=\underline{0.35 \mathbf{a}_{r}+0.48 \mathbf{a}_{\theta}-0.81 \mathbf{a}_{\phi}}
$$

b) Express \mathbf{a}_{r} in cartesian components at P : Find $x=r \sin \theta \cos \phi=-1.90, y=r \sin \theta \sin \phi=1.38$, and $z=r \cos \theta=-3.24$. Then use $\mathbf{a}_{r} \cdot \mathbf{a}_{x}=\sin \theta \cos \phi=-0.48, \mathbf{a}_{r} \cdot \mathbf{a}_{y}=\sin \theta \sin \phi=0.35$, and $\mathbf{a}_{r} \cdot \mathbf{a}_{z}=\cos \theta=0.81$ to obtain

$$
\mathbf{a}_{r}=\underline{-0.48 \mathbf{a}_{x}+0.35 \mathbf{a}_{y}+0.81 \mathbf{a}_{z}}
$$

1.27. The surfaces $r=2$ and $4, \theta=30^{\circ}$ and 50°, and $\phi=20^{\circ}$ and 60° identify a closed surface.
a) Find the enclosed volume: This will be

$$
\mathrm{Vol}=\int_{20^{\circ}}^{60^{\circ}} \int_{30^{\circ}}^{50^{\circ}} \int_{2}^{4} r^{2} \sin \theta d r d \theta d \phi=\underline{2.91}
$$

where degrees have been converted to radians.
b) Find the total area of the enclosing surface:

$$
\begin{aligned}
\text { Area }=\int_{20^{\circ}}^{60^{\circ}} \int_{30^{\circ}}^{50^{\circ}}\left(4^{2}+2^{2}\right) \sin \theta d \theta d \phi & +\int_{2}^{4} \int_{20^{\circ}}^{60^{\circ}} r\left(\sin 30^{\circ}+\sin 50^{\circ}\right) d r d \phi \\
& +2 \int_{30^{\circ}}^{50^{\circ}} \int_{2}^{4} r d r d \theta=\underline{12.61}
\end{aligned}
$$

c) Find the total length of the twelve edges of the surface:

$$
\begin{aligned}
\text { Length } & =4 \int_{2}^{4} d r+2 \int_{30^{\circ}}^{50^{\circ}}(4+2) d \theta+\int_{20^{\circ}}^{60^{\circ}}\left(4 \sin 50^{\circ}+4 \sin 30^{\circ}+2 \sin 50^{\circ}+2 \sin 30^{\circ}\right) d \phi \\
& =\underline{17.49}
\end{aligned}
$$

1.27. (continued)
d) Find the length of the longest straight line that lies entirely within the surface: This will be from $A\left(r=2, \theta=50^{\circ}, \phi=20^{\circ}\right)$ to $B\left(r=4, \theta=30^{\circ}, \phi=60^{\circ}\right)$ or

$$
A\left(x=2 \sin 50^{\circ} \cos 20^{\circ}, y=2 \sin 50^{\circ} \sin 20^{\circ}, z=2 \cos 50^{\circ}\right)
$$

to

$$
B\left(x=4 \sin 30^{\circ} \cos 60^{\circ}, y=4 \sin 30^{\circ} \sin 60^{\circ}, z=4 \cos 30^{\circ}\right)
$$

or finally $A(1.44,0.52,1.29)$ to $B(1.00,1.73,3.46)$. Thus $\mathbf{B}-\mathbf{A}=(-0.44,1.21,2.18)$ and

$$
\text { Length }=|\mathbf{B}-\mathbf{A}|=\underline{2.53}
$$

1.28. a) Determine the cartesian components of the vector from $A\left(r=5, \theta=110^{\circ}, \phi=200^{\circ}\right)$ to $B(r=$ $7, \theta=30^{\circ}, \phi=70^{\circ}$): First transform the points to cartesian: $x_{A}=5 \sin 110^{\circ} \cos 200^{\circ}=-4.42$, $y_{A}=5 \sin 110^{\circ} \sin 200^{\circ}=-1.61$, and $z_{A}=5 \cos 110^{\circ}=-1.71 ; x_{B}=7 \sin 30^{\circ} \cos 70^{\circ}=1.20$, $y_{B}=7 \sin 30^{\circ} \sin 70^{\circ}=3.29$, and $z_{B}=7 \cos 30^{\circ}=6.06$. Now

$$
\mathbf{R}_{A B}=\mathbf{B}-\mathbf{A}=5.62 \mathbf{a}_{\mathbf{x}}+4.90 \mathbf{a}_{y}+7.77 \mathbf{a}_{z}
$$

b) Find the spherical components of the vector at $P(2,-3,4)$ extending to $Q(-3,2,5)$: First, $\mathbf{R}_{P Q}=$ $\mathbf{Q}-\mathbf{P}=(-5,5,1)$. Then at $P, r=\sqrt{4+9+16}=5.39, \theta=\cos ^{-1}(4 / \sqrt{29})=42.0^{\circ}$, and $\phi=$ $\tan ^{-1}(-3 / 2)=-56.3^{\circ}$. Now

$$
\begin{gathered}
\mathbf{R}_{P Q} \cdot \mathbf{a}_{r}=-5 \sin \left(42^{\circ}\right) \cos \left(-56.3^{\circ}\right)+5 \sin \left(42^{\circ}\right) \sin \left(-56.3^{\circ}\right)+1 \cos \left(42^{\circ}\right)=-3.90 \\
\mathbf{R}_{P Q} \cdot \mathbf{a}_{\theta}=-5 \cos \left(42^{\circ}\right) \cos \left(-56.3^{\circ}\right)+5 \cos \left(42^{\circ}\right) \sin \left(-56.3^{\circ}\right)-1 \sin \left(42^{\circ}\right)=-5.82 \\
\quad \mathbf{R}_{P Q} \cdot \mathbf{a}_{\phi}=-(-5) \sin \left(-56.3^{\circ}\right)+5 \cos \left(-56.3^{\circ}\right)=-1.39
\end{gathered}
$$

So finally,

$$
\mathbf{R}_{P Q}=\underline{-3.90 \mathbf{a}_{r}-5.82 \mathbf{a}_{\theta}-1.39 \mathbf{a}_{\phi}}
$$

c) If $\mathbf{D}=5 \mathbf{a}_{r}-3 \mathbf{a}_{\theta}+4 \mathbf{a}_{\phi}$, find $\mathbf{D} \cdot \mathbf{a}_{\rho}$ at $M(1,2,3)$: First convert \mathbf{a}_{ρ} to cartesian coordinates at the specified point. Use $\mathbf{a}_{\rho}=\left(\mathbf{a}_{\rho} \cdot \mathbf{a}_{x}\right) \mathbf{a}_{x}+\left(\mathbf{a}_{\rho} \cdot \mathbf{a}_{y}\right) \mathbf{a}_{y}$. At $A(1,2,3), \rho=\sqrt{5}, \phi=\tan ^{-1}(2)=63.4^{\circ}$, $r=\sqrt{14}$, and $\theta=\cos ^{-1}(3 / \sqrt{14})=36.7^{\circ}$. So $\mathbf{a}_{\rho}=\cos \left(63.4^{\circ}\right) \mathbf{a}_{x}+\sin \left(63.4^{\circ}\right) \mathbf{a}_{y}=0.45 \mathbf{a}_{x}+0.89 \mathbf{a}_{y}$. Then

$$
\begin{aligned}
& \left(5 \mathbf{a}_{r}-3 \mathbf{a}_{\theta}+4 \mathbf{a}_{\phi}\right) \cdot\left(0.45 \mathbf{a}_{x}+0.89 \mathbf{a}_{y}\right)= \\
& 5(0.45) \sin \theta \cos \phi+5(0.89) \sin \theta \sin \phi-3(0.45) \cos \theta \cos \phi \\
& -3(0.89) \cos \theta \sin \phi+4(0.45)(-\sin \phi)+4(0.89) \cos \phi=\underline{0.59}
\end{aligned}
$$

1.29. Express the unit vector \mathbf{a}_{x} in spherical components at the point:
a) $r=2, \theta=1 \mathrm{rad}, \phi=0.8 \mathrm{rad}:$ Use

$$
\begin{aligned}
\mathbf{a}_{x} & =\left(\mathbf{a}_{x} \cdot \mathbf{a}_{r}\right) \mathbf{a}_{r}+\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\theta}\right) \mathbf{a}_{\theta}+\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}\right) \mathbf{a}_{\phi}
\end{aligned}=-\underline{0.59 \mathbf{a}_{r}+0.38 \mathbf{a}_{\theta}-0.72 \mathbf{a}_{\phi}} .
$$

1.29 (continued) Express the unit vector \mathbf{a}_{x} in spherical components at the point:
b) $x=3, y=2, z=-1$: First, transform the point to spherical coordinates. Have $r=\sqrt{14}$, $\theta=\cos ^{-1}(-1 / \sqrt{14})=105.5^{\circ}$, and $\phi=\tan ^{-1}(2 / 3)=33.7^{\circ}$. Then

$$
\begin{aligned}
\mathbf{a}_{x} & =\sin \left(105.5^{\circ}\right) \cos \left(33.7^{\circ}\right) \mathbf{a}_{r}+\cos \left(105.5^{\circ}\right) \cos \left(33.7^{\circ}\right) \mathbf{a}_{\theta}+\left(-\sin \left(33.7^{\circ}\right)\right) \mathbf{a}_{\phi} \\
& =\underline{0.80 \mathbf{a}_{r}-0.22 \mathbf{a}_{\theta}-0.55 \mathbf{a}_{\phi}}
\end{aligned}
$$

c) $\rho=2.5, \phi=0.7 \mathrm{rad}, z=1.5$: Again, convert the point to spherical coordinates. $r=\sqrt{\rho^{2}+z^{2}}=$ $\sqrt{8.5}, \theta=\cos ^{-1}(z / r)=\cos ^{-1}(1.5 / \sqrt{8.5})=59.0^{\circ}$, and $\phi=0.7 \mathrm{rad}=40.1^{\circ}$. Now

$$
\begin{aligned}
\mathbf{a}_{x} & =\sin \left(59^{\circ}\right) \cos \left(40.1^{\circ}\right) \mathbf{a}_{r}+\cos \left(59^{\circ}\right) \cos \left(40.1^{\circ}\right) \mathbf{a}_{\theta}+\left(-\sin \left(40.1^{\circ}\right)\right) \mathbf{a}_{\phi} \\
& =\underline{0.66 \mathbf{a}_{r}+0.39 \mathbf{a}_{\theta}-0.64 \mathbf{a}_{\phi}}
\end{aligned}
$$

1.30. Given $A\left(r=20, \theta=30^{\circ}, \phi=45^{\circ}\right)$ and $B\left(r=30, \theta=115^{\circ}, \phi=160^{\circ}\right)$, find:
a) $\left|\mathbf{R}_{A B}\right|$: First convert A and B to cartesian: Have $x_{A}=20 \sin \left(30^{\circ}\right) \cos \left(45^{\circ}\right)=7.07, y_{A}=$ $20 \sin \left(30^{\circ}\right) \sin \left(45^{\circ}\right)=7.07$, and $z_{A}=20 \cos \left(30^{\circ}\right)=17.3 . x_{B}=30 \sin \left(115^{\circ}\right) \cos \left(160^{\circ}\right)=-25.6$, $y_{B}=30 \sin \left(115^{\circ}\right) \sin \left(160^{\circ}\right)=9.3$, and $z_{B}=30 \cos \left(115^{\circ}\right)=-12.7$. Now $\mathbf{R}_{A B}=\mathbf{R}_{B}-\mathbf{R}_{A}=$ ($-32.6,2.2,-30.0$), and so $\left|\mathbf{R}_{A B}\right|=44.4$.
b) $\left|\mathbf{R}_{A C}\right|$, given $C\left(r=20, \theta=90^{\circ}, \phi=45^{\circ}\right)$. Again, converting C to cartesian, obtain $x_{C}=$ $20 \sin \left(90^{\circ}\right) \cos \left(45^{\circ}\right)=14.14, y_{C}=20 \sin \left(90^{\circ}\right) \sin \left(45^{\circ}\right)=14.14$, and $z_{C}=20 \cos \left(90^{\circ}\right)=0$. So $\mathbf{R}_{A C}=\mathbf{R}_{C}-\mathbf{R}_{A}=(7.07,7.07,-17.3)$, and $\left|\mathbf{R}_{A C}\right|=\underline{20.0}$.
c) the distance from A to C on a great circle path: Note that A and C share the same r and ϕ coordinates; thus moving from A to C involves only a change in θ of 60°. The requested arc length is then

$$
\text { distance }=20 \times\left[60\left(\frac{2 \pi}{360}\right)\right]=\underline{20.9}
$$

