
CHAPTER 10

10.1. In Fig. 10.4, letB = 0.2 cos 120πt T, and assume that the conductor joining the two ends of the resistor
is perfect. It may be assumed that the magnetic field produced by I (t) is negligible. Find:

a) Vab(t): SinceB is constant over the loop area, the flux is� = π(0.15)2B = 1.41×10−2 cos 120πt
Wb. Now, emf = Vba(t) = −d�/dt = (120π)(1.41 × 10−2) sin 120πt . Then Vab(t) =
−Vba(t) = −5.33 sin 120πt V.

b) I (t) = Vba(t)/R = 5.33 sin(120πt)/250 = 21.3 sin(120πt) mA

10.2. Given the time-varying magnetic field, B = (0.5ax + 0.6ay − 0.3az) cos 5000t T, and a square fila-
mentary loop with its corners at (2,3,0), (2,-3,0), (-2,3,0), and (-2,-3,0), find the time-varying current
flowing in the general aφ direction if the total loop resistance is 400 k�: We write

emf =
∮

E · dL = −d�

dt
= − d

dt

∫ ∫
loop area

B · az da = d

dt
(0.3)(4)(6) cos 5000t

where the loop normal is chosen as positive az, so that the path integral for E is taken around the positive
aφ direction. Taking the derivative, we find

emf = −7.2(5000) sin 5000t so that I = emf

R
= −36000 sin 5000t

400 × 103 = −90 sin 5000t mA

10.3. Given H = 300 az cos(3 × 108t − y) A/m in free space, find the emf developed in the general aφ
direction about the closed path having corners at

a) (0,0,0), (1,0,0), (1,1,0), and (0,1,0): The magnetic flux will be:

� =
∫ 1

0

∫ 1

0
300µ0 cos(3 × 108t − y) dx dy = 300µ0 sin(3 × 108t − y)|10

= 300µ0

[
sin(3 × 108t − 1) − sin(3 × 108t)

]
Wb

Then

emf = −d�

dt
= −300(3 × 108)(4π × 10−7)

[
cos(3 × 108t − 1) − cos(3 × 108t)

]
= −1.13 × 105

[
cos(3 × 108t − 1) − cos(3 × 108t)

]
V

b) corners at (0,0,0), (2π ,0,0), (2π ,2π ,0), (0,2π ,0): In this case, the flux is

� = 2π × 300µ0 sin(3 × 108t − y)|2π0 = 0

The emf is therefore 0.
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10.4. Conductor surfaces are located at ρ = 1cm and ρ = 2cm in free space. The volume 1 cm < ρ < 2 cm
contains the fields Hφ = (2/ρ) cos(6×108πt −2πz)A/m and Eρ = (240π/ρ) cos(6×108πt −2πz)
V/m.

a) Show that these two fields satisfy Eq. (6), Sec. 10.1: Have

∇ × E = ∂Eρ

∂z
aφ = 2π(240π)

ρ
sin(6 × 108πt − 2πz) aφ = 480π2

ρ
sin(6 × 108πt − 2πz)aφ

Then

−∂B
∂t

= 2µ0(6 × 108)π

ρ
sin(6 × 108πt − 2πz) aφ

= (8π × 10−7)(6 × 108)π

ρ
sin(6 × 108πt − 2πz) = 480π2

ρ
sin(6 × 108πt − 2πz) aφ

b) Evaluate both integrals in Eq. (4) for the planar surface defined by φ = 0, 1cm < ρ < 2cm,
0 < z < 0.1m (note misprint in problem statement), and its perimeter, and show that the same
results are obtained: we take the normal to the surface as positive aφ , so the the loop surrounding
the surface (by the right hand rule) is in the negative aρ direction at z = 0, and is in the positive
aρ direction at z = 0.1. Taking the left hand side first, we find∮

E · dL =
∫ .01

.02

240π

ρ
cos(6 × 108πt) aρ · aρ dρ

+
∫ .02

.01

240π

ρ
cos(6 × 108πt − 2π(0.1)) aρ · aρ dρ

= 240π cos(6 × 108πt) ln

(
1

2

)
+ 240π cos(6 × 108πt − 0.2π) ln

(
2

1

)

= 240(ln 2)
[
cos(6 × 108πt − 0.2π) − cos(6 × 108πt)

]
Now for the right hand side. First,∫

B · dS =
∫ 0.1

0

∫ .02

.01

8π × 10−7

ρ
cos(6 × 108πt − 2πz) aφ · aφ dρ dz

=
∫ 0.1

0
(8π × 10−7) ln 2 cos(6 × 108πt − 2πz) dz

= −4 × 10−7 ln 2
[
sin(6 × 108πt − 0.2π) − sin(6 × 108πt)

]
Then

− d

dt

∫
B · dS = 240π(ln 2)

[
cos(6 × 108πt − 0.2π) − cos(6 × 108πt)

]
(check)

10.5. The location of the sliding bar in Fig. 10.5 is given by x = 5t + 2t3, and the separation of the two rails
is 20 cm. Let B = 0.8x2az T. Find the voltmeter reading at:

a) t = 0.4 s: The flux through the loop will be

� =
∫ 0.2

0

∫ x

0
0.8(x′)2 dx′ dy = 0.16

3
x3 = 0.16

3
(5t + 2t3)3 Wb
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Then

emf = −d�

dt
= 0.16

3
(3)(5t+2t3)2(5+6t2) = −(0.16)[5(.4)+2(.4)3]2[5+6(.4)2] = −4.32 V

b) x = 0.6 m: Have 0.6 = 5t + 2t3, from which we find t = 0.1193. Thus

emf = −(0.16)[5(.1193) + 2(.1193)3]2[5 + 6(.1193)2] = −.293 V

10.6. A perfectly conducting filament containing a small 500-� resistor is formed into a square, as illustrated
in Fig. 10.6. Find I (t) if

a) B = 0.3 cos(120πt −30◦) az T: First the flux through the loop is evaluated, where the unit normal
to the loop is az. We find

� =
∫

loop
B · dS = (0.3)(0.5)2 cos(120πt − 30◦) Wb

Then the current will be

I (t) = emf

R
= − 1

R

d�

dt
= (120π)(0.3)(0.25)

500
sin(120πt − 30◦) = 57 sin(120πt − 30◦) mA

b) B = 0.4 cos[π(ct − y)] az µT where c = 3 × 108 m/s: Since the field varies with y, the flux is
now

� =
∫

loop
B · dS = (0.5)(0.4)

∫ .5

0
cos(πy − πct) dy = 0.2

π
[sin(πct − π/2) − sin(πct)] µWb

The current is then

I (t) = emf

R
= − 1

R

d�

dt
= −0.2c

500
[cos(πct − π/2) − cos(πct)] µA

= −0.2(3 × 108)

500
[sin(πct) − cos(πct)] µA = 120 [cos(πct) − sin(πct)] mA

10.7. The rails in Fig. 10.7 each have a resistance of 2.2 �/m. The bar moves to the right at a constant speed
of 9 m/s in a uniform magnetic field of 0.8 T. Find I (t), 0 < t < 1 s, if the bar is at x = 2 m at t = 0
and

a) a 0.3 � resistor is present across the left end with the right end open-circuited: The flux in the
left-hand closed loop is

�l = B × area = (0.8)(0.2)(2 + 9t)

Then, emf l = −d�l/dt = −(0.16)(9) = −1.44 V. With the bar in motion, the loop resistance is
increasing with time, and is given by Rl(t) = 0.3 + 2[2.2(2 + 9t)]. The current is now

Il(t) = emf l
Rl(t)

= −1.44

9.1 + 39.6t
A

Note that the sign of the current indicates that it is flowing in the direction opposite that shown in
the figure.
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b) Repeat part a, but with a resistor of 0.3 � across each end: In this case, there will be a contribution
to the current from the right loop, which is now closed. The flux in the right loop, whose area
decreases with time, is

�r = (0.8)(0.2)[(16 − 2) − 9t]

and emfr = −d�r/dt = (0.16)(9) = 1.44 V. The resistance of the right loop is Rr(t) =
0.3 + 2[2.2(14 − 9t)], and so the contribution to the current from the right loop will be

Ir (t) = −1.44

61.9 − 39.6t
A

The minus sign has been inserted because again the current must flow in the opposite direction
as that indicated in the figure, with the flux decreasing with time. The total current is found by
adding the part a result, or

IT (t) = −1.44

[
1

61.9 − 39.6t
+ 1

9.1 + 39.6t

]
A

10.8. Fig. 10.1 is modified to show that the rail separation is larger when y is larger. Specifically, let the
separation d = 0.2 + 0.02y. Given a uniform velocity vy = 8 m/s and a uniform magnetic flux density
Bz = 1.1 T, find V12 as a function of time if the bar is located at y = 0 at t = 0: The flux through the
loop as a function of y can be written as

� =
∫

B · dS =
∫ y

0

∫ .2+.02y′

0
1.1 dx dy′ =

∫ y

0
1.1(.2 + .02y′) dy′ = 0.22y(1 + .05y)

Now, with y = vt = 8t , the above becomes � = 1.76t (1 + .40t). Finally,

V12 = −d�

dt
= −1.76(1 + .80t) V

10.9. A square filamentary loop of wire is 25 cm on a side and has a resistance of 125� per meter length. The
loop lies in the z = 0 plane with its corners at (0, 0, 0), (0.25, 0, 0), (0.25, 0.25, 0), and (0, 0.25, 0) at
t = 0. The loop is moving with velocity vy = 50 m/s in the field Bz = 8 cos(1.5 × 108t − 0.5x) µT.
Develop a function of time which expresses the ohmic power being delivered to the loop: First, since
the field does not vary with y, the loop motion in the y direction does not produce any time-varying
flux, and so this motion is immaterial. We can evaluate the flux at the original loop position to obtain:

�(t) =
∫ .25

0

∫ .25

0
8 × 10−6 cos(1.5 × 108t − 0.5x) dx dy

= −(4 × 10−6)
[
sin(1.5 × 108t − 0.13x) − sin(1.5 × 108t)

]
Wb

Now, emf = V (t) = −d�/dt = 6.0 × 102
[
cos(1.5 × 108t − 0.13x) − cos(1.5 × 108t)

]
, The total

loop resistance is R = 125(0.25 + 0.25 + 0.25 + 0.25) = 125�. Then the ohmic power is

P(t) = V 2(t)

R
= 2.9 × 103

[
cos(1.5 × 108t − 0.13x) − cos(1.5 × 108t)

]
Watts
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10.10a. Show that the ratio of the amplitudes of the conduction current density and the displacement current
density is σ/ωε for the applied field E = Em cosωt . Assume µ = µ0. First, D = εE = εEm cosωt .
Then the displacement current density is ∂D/∂t = −ωεEm sinωt . Second, Jc = σE = σEm cosωt .
Using these results we find |Jc|/|Jd | = σ/ωε.

b. What is the amplitude ratio if the applied field is E = Eme
−t/τ , where τ is real? As before, find

D = εE = εEme
−t/τ , and so Jd = ∂D/∂t = −(ε/τ)Eme

−t/τ . Also, Jc = σEme
−t/τ . Finally,

|Jc|/|Jd | = στ/ε.

10.11. Let the internal dimension of a coaxial capacitor be a = 1.2 cm, b = 4 cm, and l = 40 cm. The
homogeneous material inside the capacitor has the parameters ε = 10−11 F/m, µ = 10−5 H/m, and
σ = 10−5 S/m. If the electric field intensity is E = (106/ρ) cos(105t)aρ V/m (note missing t in the
argument of the cosine in the book), find:

a) J: Use

J = σE =
(

10

ρ

)
cos(105t)aρ A/m2

b) the total conduction current, Ic, through the capacitor: Have

Ic =
∫ ∫

J · dS = 2πρlJ = 20πl cos(105t) = 8π cos(105t) A

c) the total displacement current, Id , through the capacitor: First find

Jd = ∂D
∂t

= ∂

∂t
(εE) = − (105)(10−11)(106)

ρ
sin(105t)aρ = − 1

ρ
sin(105t) A/m

Now
Id = 2πρlJd = −2πl sin(105t) = −0.8π sin(105t) A

d) the ratio of the amplitude of Id to that of Ic, the quality factor of the capacitor: This will be

|Id |
|Ic| = 0.8

8
= 0.1

10.12. Given a coaxial transmission line with b/a = e2.5, µR = εR = 1, and an electric field intensity
E = (200/ρ) cos(109t − 3.336z) aρ V/m, find:

a) Vab, the voltage between the conductors, if it is known that electrostatic relationship E = −∇V

is valid; We use

Vab = −
∫ a

b

200

ρ
cos(109t − 3.336z) dρ = 200 ln

(
b

a

)
cos(109t − 3.336z)

= 500 cos(109t − 3.336z) V

b) the displacement current density;

Jd = ∂D
∂t

= −200 × 109ε0

ρ
sin(109t − 3.336z)aρ = −1.77

ρ
sin(109t − 3.336z)aρ A/m2
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10.13. Consider the region defined by |x|, |y|, and |z| < 1. Let εR = 5, µR = 4, and σ = 0. If Jd =
20 cos(1.5 × 108t − bx)ay µA/m2;

a) find D and E: Since Jd = ∂D/∂t , we write

D =
∫

Jddt + C = 20 × 10−6

1.5 × 108 sin(1.5 × 108 − bx)ay

= 1.33 × 10−13 sin(1.5 × 108t − bx)ay C/m2

where the integration constant is set to zero (assuming no dc fields are present). Then

E = D
ε

= 1.33 × 10−13

(5 × 8.85 × 10−12)
sin(1.5 × 108t − bx)ay

= 3.0 × 10−3 sin(1.5 × 108t − bx)ay V/m

b) use the point form of Faraday’s law and an integration with respect to time to find B and H: In
this case,

∇ × E = ∂Ey

∂x
az = −b(3.0 × 10−3) cos(1.5 × 108t − bx)az = −∂B

∂t

Solve for B by integrating over time:

B = b(3.0 × 10−3)

1.5 × 108 sin(1.5 × 108t − bx)az = (2.0)b × 10−11 sin(1.5 × 108t − bx)az T

Now

H = B
µ

= (2.0)b × 10−11

4 × 4π × 10−7 sin(1.5 × 108t − bx)az

= (4.0 × 10−6)b sin(1.5 × 108t − bx)az A/m

c) use ∇ × H = Jd + J to find Jd : Since σ = 0, there is no conduction current, so in this case

∇ × H = −∂Hz

∂x
ay = 4.0 × 10−6b2 cos(1.5 × 108t − bx)ay A/m2 = Jd

d) What is the numerical value of b? We set the given expression for Jd equal to the result of part c
to obtain:

20 × 10−6 = 4.0 × 10−6b2 ⇒ b =
√

5.0 m−1

10.14. A voltage source, V0 sinωt , is connected between two concentric conducting spheres, r = a and r = b,
b > a, where the region between them is a material for which ε = εRε0, µ = µ0, and σ = 0. Find the
total displacement current through the dielectric and compare it with the source current as determined
from the capacitance (Sec. 5.10) and circuit analysis methods: First, solving Laplace’s equation, we
find the voltage between spheres (see Eq. 20, Chapter 7):

V (t) = (1/r) − (1/b)

(1/a) − (1/b)
V0 sinωt
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10.14 (continued) Then

E = −∇V = V0 sinωt

r2(1/a − 1/b)
ar ⇒ D = εRε0V0 sinωt

r2(1/a − 1/b)
ar

Now

Jd = ∂D
∂t

= εRε0ωV0 cosωt

r2(1/a − 1/b)
ar

The displacement current is then

Id = 4πr2Jd = 4πεRε0ωV0 cosωt

(1/a − 1/b)
= C

dV

dt

where, from Eq. 47, Chapter 5,

C = 4πεRε0

(1/a − 1/b)

The results are consistent.

10.15. Let µ = 3 × 10−5 H/m, ε = 1.2 × 10−10 F/m, and σ = 0 everywhere. If H = 2 cos(1010t −
βx)az A/m, use Maxwell’s equations to obtain expressions for B, D, E, and β: First, B = µH =
6 × 10−5 cos(1010t − βx)az T. Next we use

∇ × H = −∂H
∂x

ay = 2β sin(1010t − βx)ay = ∂D
∂t

from which

D =
∫

2β sin(1010t − βx) dt + C = − 2β

1010 cos(1010t − βx)ay C/m2

where the integration constant is set to zero, since no dc fields are presumed to exist. Next,

E = D
ε

= − 2β

(1.2 × 10−10)(1010)
cos(1010t − βx)ay = −1.67β cos(1010t − βx)ay V/m

Now

∇ × E = ∂Ey

∂x
az = 1.67β2 sin(1010t − βx)az = −∂B

∂t

So

B = −
∫

1.67β2 sin(1010t − βx)azdt = (1.67 × 10−10)β2 cos(1010t − βx)az

We require this result to be consistent with the expression for B originally found. So

(1.67 × 10−10)β2 = 6 × 10−5 ⇒ β = ±600 rad/m
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10.16a. A certain material has σ = 0 and εR = 1. If H = 4 sin(106t − 0.01z)ay A/m, make use of Maxwell’s
equations to find µR: First find

∇ × H = −∂Hy

∂z
ax = 0.04 cos(106t − 0.01z)ax = ε0

∂E
∂t

So

E =
∫

.04

ε0
cos(106t − 0.01z)ax dt = .04

106ε0
sin(106t − 0.01z)ax

where the integration constant is zero, since we assume no dc fields present. Next

∇ × E = ∂Ex

∂z
ay = − .04(.01)

106ε0
cos(106t − 0.01z)ay = −µRµ0

∂H
∂t

So

H =
∫

.04(.01)

106ε0µ0µR

cos(106t − 0.01z)ay dt = .04(.01)

1012ε0µ0µR

sin(106t − 0.01z)ay

= 4 sin(106t − 0.01z)ay

where the last equality is required for consistency. Therefore

.04(.01)

1012ε0µ0µR

= 4 ⇒ µR = (.01)2(9 × 1016)

1012 = 9

b) Find E(z, t): This we already found during the development in part a: We have

E(z, t) = .04

106ε0
sin(106t − 0.01z)ax V/m = 4.5 sin(106t − 0.01z)ax kV/m

10.17. The electric field intensity in the region 0 < x < 5, 0 < y < π/12, 0 < z < 0.06 m in free space is
given by E = C sin(12y) sin(az) cos(2 × 1010t) ax V/m. Beginning with the ∇ × E relationship, use
Maxwell’s equations to find a numerical value for a, if it is known that a is greater than zero: In this
case we find

∇ × E = ∂Ex

∂z
ay − ∂Ez

∂y
az

= C
[
a sin(12y) cos(az)ay − 12 cos(12y) sin(az)az

]
cos(2 × 1010t) = −∂B

∂t

Then

H = − 1

µ0

∫
∇ × E dt + C1

= − C

µ0(2 × 1010

[
a sin(12y) cos(az)ay − 12 cos(12y) sin(az)az

]
sin(2 × 1010t) A/m

where the integration constant, C1 = 0, since there are no initial conditions. Using this result, we now
find

∇ × H =
[
∂Hz

∂y
− ∂Hy

∂z

]
ax = − C(144 + a2)

µ0(2 × 1010)
sin(12y) sin(az) sin(2 × 1010t) ax = ∂D

∂t
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10.17. (continued) Now

E = D
ε0

=
∫

1

ε0
∇ × H dt + C2 = C(144 + a2)

µ0ε0(2 × 1010)2 sin(12y) sin(az) cos(2 × 1010t) ax

where C2 = 0. This field must be the same as the original field as stated, and so we require that

C(144 + a2)

µ0ε0(2 × 1010)2 = 1

Using µ0ε0 = (3 × 108)−2, we find

a =
[
(2 × 1010)2

(3 × 108)2 − 144

]1/2

= 66 m−1

10.18. The parallel plate transmission line shown in Fig. 10.8 has dimensions b = 4 cm and d = 8 mm, while
the medium between plates is characterized by µR = 1, εR = 20, and σ = 0. Neglect fields outside
the dielectric. Given the field H = 5 cos(109t − βz)ay A/m, use Maxwell’s equations to help find:

a) β, if β > 0: Take

∇ × H = −∂Hy

∂z
ax = −5β sin(109t − βz)ax = 20ε0

∂E
∂t

So

E =
∫ −5β

20ε0
sin(109t − βz)ax dt = β

(4 × 109)ε0
cos(109t − βz)ax

Then

∇ × E = ∂Ex

∂z
ay = β2

(4 × 109)ε0
sin(109t − βz)ay = −µ0

∂H
∂t

So that

H =
∫ −β2

(4 × 109)µ0ε0
sin(109t − βz)ax dt = β2

(4 × 1018)µ0ε0
cos(109t − βz)

= 5 cos(109t − βz)ay

where the last equality is required to maintain consistency. Therefore

β2

(4 × 1018)µ0ε0
= 5 ⇒ β = 14.9 m−1

b) the displacement current density at z = 0: Since σ = 0, we have

∇ × H = Jd = −5β sin(109t − βz) = −74.5 sin(109t − 14.9z)ax

= −74.5 sin(109t)ax A/m at z = 0

c) the total displacement current crossing the surface x = 0.5d, 0 < y < b, and 0 < z < 0.1 m in
the ax direction. We evaluate the flux integral of Jd over the given cross section:

Id = −74.5b
∫ 0.1

0
sin(109t − 14.9z) ax · ax dz = 0.20

[
cos(109t − 1.49) − cos(109t)

]
A
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10.19. In the first section of this chapter, Faraday’s law was used to show that the field E = − 1
2kB0ρe

ktaφ
results from the changing magnetic field B = B0e

ktaz (note that the factor of ρ appearing in E was
omitted from the original problem statement).

a) Show that these fields do not satisfy Maxwell’s other curl equation: Note that B as stated is constant
with position, and so will have zero curl. The electric field, however, varies with time, and so
∇ × H = ∂D

∂t
would have a zero left-hand side and a non-zero right-hand side. The equation is

thus not valid with these fields.

b) If we let B0 = 1 T and k = 106 s−1, we are establishing a fairly large magnetic flux density in 1
µs. Use the ∇ × H equation to show that the rate at which Bz should (but does not) change with
ρ is only about 5 × 10−6 T/m in free space at t = 0: Assuming that B varies with ρ, we write

∇ × H = −∂Hz

∂ρ
aφ = − 1

µ0

dB0

dρ
ekt = ε0

∂E
∂t

= −1

2
ε0k

2B0ρe
kt

Thus
dB0

dρ
= 1

2
µ0ε0k

2ρB0 = 1012(1)ρ

2(3 × 108)2 = 5.6 × 10−6ρ

which is near the stated value if ρ is on the order of 1m.

10.20. Point C(−0.1,−0.2, 0.3) lies on the surface of a perfect conductor. The electric field intensity at C is
(500ax − 300ay + 600az) cos 107t V/m, and the medium surrounding the conductor is characterized
by µR = 5, εR = 10, and σ = 0.

a) Find a unit vector normal to the conductor surface at C, if the origin lies within the conductor:
At t = 0, the field must be directed out of the surface, and will be normal to it, since we have a
perfect conductor. Therefore

n = +E(t = 0)

|E(t = 0)| = 5ax − 3ay + 6az√
25 + 9 + 36

= 0.60ax − 0.36ay + 0.72az

b) Find the surface charge density at C: Use

ρs = D · n|surf ace = 10ε0
[
500ax − 300ay + 600az

]
cos(107t) · [.60ax − .36ay + .72az

]
= 10ε0 [300 + 108 + 432] cos(107t) = 7.4 × 10−8 cos(107t) C/m2 = 74 cos(107t) nC/m2

10.21. The surfaces ρ = 3 and 10 mm, and z = 0 and 25 cm are perfect conductors. The region en-
closed by these surfaces has µ = 2.5 × 10−6 H/m, ε = 4 × 10−11 F/m, and σ = 0. Let H =
(2/ρ) cos(10πz) cos(ωt) aφ A/m. Make use of Maxwell’s equations to find

a) ω: We start with

∇ × H = −∂Hφ

∂z
aρ = 20π

ρ
sin(10πz) cos(ωt) aρ = ε

∂E
∂t

We then find

E =
∫

20π

ρε
sin(10πz) cos(ωt) dt aρ = 20π

ωρε
sin(10πz) sin(ωt) aρ
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10.21a. (continued) At this point, a flaw in the problem statement becomes apparent, since this field should
vanish on the surface of the perfect conductor located at z = 0.25m. This does not happen with the
sin(10πz) function. Nevertheless, we press on:

∇ × E = ∂Eρ

∂z
aφ = (20π)(10π)

ωρε
cos(10πz) sin(ωt) aφ = −µ

∂H
∂t

So

H =
∫ −200π2

ωρµε
cos(10πz) sin(ωt) aφ dt = 200π2

ω2µερ
cos(10πz) cos(ωt) aφ

This result must equal the given H field, so we require that

200π2

ω2µερ
= 2

ρ
⇒ ω = 10π√

µε
= 10π√

(2.5 × 10−6)(4 × 10−11)
= π × 109 sec−1

b) E: We use the result of part a:

E = 20π

ωρε
sin(10πz) sin(ωt) aρ = 500

ρ
sin(10πz) sin(ωt) aρ V/m

10.22. In free space, where ε = ε0, µ = µ0, σ = 0, J = 0, and ρv = 0, assume a cartesian coordinate system
in which E and H are both functions only of z and t .

a) If E = Eyay and H = Hxax , begin with Maxwell’s equations and determine the second order
partial differential equation that Ey must satisfy: The procedure here is similar to the development
that leads to Eq. 53. Begin by taking the curl of both sides of the Faraday law equation:

∇ × ∇ × E = ∇ ×
(

−µ0
∂H
∂t

)
= −µ0

∂

∂t
(∇ × H)

where ∇ × H = ε0∂E/∂t . Therefore

∇ × ∇ × E = ∇(∇ · E) − ∇2E = −µ0ε0
∂2E
∂t2

where the first equality is found from Eq. 52. Noting that in free space, ∇ · D = ε0∇ · E = 0, we
obtain,

∇2E = µ0ε0
∂2E
∂t2

⇒ ∂2Ey

∂z2 = µ0ε0
∂2Ey

∂t2

since E varies only with z and t , and is y-directed.

b) Show that Ey = 5(300t + bz)2 is a solution of that equation for a particular value of b, and find
that value: Substituting, we find

∂2Ey

∂z2 = 10b2 = µ0ε0
∂Ey

∂t2
= 9 × 105µ0ε0

Therefore
10b2 = 9 × 105µ0ε0 → b = 1.0 × 10−6 m−1
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10.23. In region 1, z < 0, ε1 = 2 × 10−11 F/m, µ1 = 2 × 10−6 H/m, and σ1 = 4 × 10−3 S/m; in region 2,
z > 0, ε2 = ε1/2, µ2 = 2µ1, and σ2 = σ1/4. It is known that E1 = (30ax + 20ay + 10az) cos(109t)

V/m at P1(0, 0, 0−).

a) Find EN1, Et1, DN1, and Dt1: These will be

EN1 = 10 cos(109t)az V/m Et1 = (30ax + 20ay) cos(109t) V/m

DN1 = ε1EN1 = (2 × 10−11)(10) cos(109t)az C/m2 = 200 cos(109t)az pC/m2

Dt1 = ε1Et1 = (2 × 10−11)(30ax + 20ay) cos(109t) = (600ax + 400ay) cos(109t) pC/m2

b) Find JN1 and Jt1 at P1:

JN1 = σ1EN1 = (4 × 10−3)(10 cos(109t))az = 40 cos(109t)az mA/m2

Jt1 = σ1Et1 = (4 × 10−3)(30ax + 20ay) cos(109t) = (120ax + 80ay) cos(109t) mA/m2

c) Find Et2, Dt2, and Jt2 at P1: By continuity of tangential E,

Et2 = Et1 = (30ax + 20ay) cos(109t) V/m

Then

Dt2 = ε2Et2 = (10−11)(30ax + 20ay) cos(109t) = (300ax + 200ay) cos(109t) pC/m2

Jt2 = σ2Et2 = (10−3)(30ax + 20ay) cos(109t) = (30ax + 20ay) cos(109t) mA/m2

d) (Harder) Use the continuity equation to help show that JN1 − JN2 = ∂DN2/∂t − ∂DN1/∂t (note
misprint in problem statement) and then determine EN2, DN2, and JN2: We assume the existence of a
surface charge layer at the boundary having density ρs C/m2. If we draw a cylindrical “pillbox” whose
top and bottom surfaces (each of area 1a) are on either side of the interface, we may use the continuity
condition to write

(JN2 − JN1)1a = −∂ρs

∂t
1a

where ρs = DN2 − DN1. Therefore,

JN1 − JN2 = ∂

∂t
(DN2 − DN1)

In terms of the normal electric field components, this becomes

σ1EN1 − σ2EN2 = ∂

∂t
(ε2EN2 − ε1EN1)

Now let EN2 = A cos(109t) + B sin(109t), while from before, EN1 = 10 cos(109t).
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10.23. (continued)

These, along with the permittivities and conductivities, are substituted to obtain

(4 × 10−3)(10) cos(109t) − 10−3[A cos(109t) + B sin(109t)]

= ∂

∂t

[
10−11[A cos(109t) + B sin(109t)] − (2 × 10−11)(10) cos(109t)

]
= −(10−2A sin(109t) + 10−2B cos(109t) + (2 × 10−1) sin(109t)

We now equate coefficients of the sin and cos terms to obtain two equations:

4 × 10−2 − 10−3A = 10−2B

−10−3B = −10−2A + 2 × 10−1

These are solved together to find A = 20.2 and B = 2.0. Thus

EN2 =
[
20.2 cos(109t) + 2.0 sin(109t)

]
az = 20.3 cos(109t + 5.6◦)az V/m

Then
DN2 = ε2EN2 = 203 cos(109t + 5.6◦)az pC/m2

and
JN2 = σ2EN2 = 20.3 cos(109t + 5.6◦)az mA/m2

10.24. Given the fields V = 80z cos x cos 3 × 108t . kV and A = 26.7z sin x sin 3 × 108t ax mWb/m in free
space, find E and H: First, find E through

E = −∇V − ∂A
∂t

where
−∇V = 80 cos(3 × 108t)[z sin xax − cos xaz] kV/m

and
−∂A/∂t = −(3 × 108)(26.7)z sin x cos(3 × 108t)ax mV/m

Finally,

E = −
[
7.9 × 106z sin x ax + 8.0 × 104 cos x az

]
cos(3 × 108t) V/m

Now

B = ∇ × A = ∂Ax

∂z
ay = 26.7 sin x sin(3 × 108t)ay mWb/m2

Then

H = B
µ0

= 2.12 × 104 sin x sin(3 × 108t) ay A/m
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10.25. In a region where µR = εR = 1 and σ = 0, the retarded potentials are given by V = x(z − ct) V and
A = x[(z/c) − t]az Wb/m, where c = 1/

√
µ0ε0.

a) Show that ∇ · A = −µε(∂V/∂t):

First,

∇ · A = ∂Az

∂z
= x

c
= x

√
µ0ε0

Second,
∂V

∂t
= −cx = − x√

µ0ε0

so we observe that ∇ · A = −µ0ε0(∂V/∂t) in free space, implying that the given statement would
hold true in general media.

b) Find B, H, E, and D:

Use

B = ∇ × A = −∂Ax

∂x
ay =

(
t − z

c

)
ay T

Then

H = B
µ0

= 1

µ0

(
t − z

c

)
ay A/m

Now,

E = −∇V − ∂A
∂t

= −(z − ct)ax − xaz + xaz = (ct − z)ax V/m

Then
D = ε0E = ε0(ct − z)ax C/m2

c) Show that these results satisfy Maxwell’s equations if J and ρv are zero:
i. ∇ · D = ∇ · ε0(ct − z)ax = 0

ii. ∇ · B = ∇ · (t − z/c)ay = 0

iii.

∇ × H = −∂Hy

∂z
ax = 1

µ0c
ax =

√
ε0

µ0
ax

which we require to equal ∂D/∂t :

∂D
∂t

= ε0cax =
√
ε0

µ0
ax

iv.

∇ × E = ∂Ex

∂z
ay = −ay

which we require to equal −∂B/∂t :
∂B
∂t

= ay

So all four Maxwell equations are satisfied.
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10.26. Let the current I = 80t A be present in the az direction on the z axis in free space within the interval
−0.1 < z < 0.1 m.

a) Find Az at P(0, 2, 0): The integral for the retarded vector potential will in this case assume the form

A =
∫ .1

−.1

µ080(t − R/c)

4πR
az dz

where R = √
z2 + 4 and c = 3 × 108 m/s. We obtain

Az = 80µ0

4π

[∫ .1

−.1

t√
z2 + 4

dz −
∫ .1

−.1

1

c
dz

]
= 8 × 10−6t ln(z +

√
z2 + 4)

∣∣∣.1−.1
− 8 × 10−6

3 × 108 z

∣∣∣.1−.1

= 8 × 10−6 ln

(
.1 + √

4.01

−.1 + √
4.01

)
− 0.53 × 10−14 = 8.0 × 10−7t − 0.53 × 10−14

So finally, A = [
8.0 × 10−7t − 5.3 × 10−15

]
az Wb/m.

b) Sketch Az versus t over the time interval −0.1 < t < 0.1 µs: The sketch is linearly increasing with
time, beginning with Az = −8.53 × 10−14 Wb/m at t = −0.1 µs, crossing the time axis and going
positive at t = 6.6 ns, and reaching a maximum value of 7.46 × 10−14 Wb/m at t = 0.1 µs.
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