CHAPTER 11

11.1. Show that $E_{x s}=A e^{j k_{0} z+\phi}$ is a solution to the vector Helmholtz equation, Sec. 11.1, Eq. (16), for $k_{0}=\omega \sqrt{\mu_{0} \epsilon_{0}}$ and any ϕ and A : We take

$$
\frac{d^{2}}{d z^{2}} A e^{j k_{0} z+\phi}=\left(j k_{0}\right)^{2} A e^{j k_{0} z+\phi}=-k_{0}^{2} E_{x s}
$$

11.2. Let $\mathbf{E}(z, t)=200 \sin 0.2 z \cos 10^{8} t \mathbf{a}_{x}+500 \cos \left(0.2 z+50^{\circ}\right) \sin 10^{8} t \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$. Find:
a) \mathbf{E} at $P(0,2,0.6)$ at $t=25 \mathrm{~ns}$: Obtain

$$
\begin{aligned}
E_{P}(t=25) & =200 \sin [(0.2)(0.6)] \cos (2.5) \mathbf{a}_{x}+500 \cos [(0.2)(0.6)+50(2 \pi) / 360] \sin (2.5) \mathbf{a}_{y} \\
& =\underline{-19.2 \mathbf{a}_{x}+164 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}}
\end{aligned}
$$

b) $|\mathbf{E}|$ at P at $t=20 \mathrm{~ns}$:

$$
\begin{aligned}
E_{P}(t=20) & =200 \sin [(0.2)(0.6)] \cos (2.0) \mathbf{a}_{x}+500 \cos [(0.2)(0.6)+50(2 \pi) / 360] \sin (2.0) \mathbf{a}_{y} \\
& =-9.96 \mathbf{a}_{x}+248 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

Thus $\left|\mathbf{E}_{P}\right|=\sqrt{(9.96)^{2}+(248)^{2}}=\underline{249 \mathrm{~V} / \mathrm{m}}$.
c) E_{s} at $P: E_{S}=200 \sin 0.2 z \mathbf{a}_{x}-j 500 \cos \left(0.2 z+50^{\circ}\right) \mathbf{a}_{y}$. Thus

$$
\begin{aligned}
E_{S P} & =200 \sin [(0.2)(0.6)] \mathbf{a}_{x}-j 500 \cos [(0.2)(0.6)+2 \pi(50) / 360] \mathbf{a}_{y} \\
& =\underline{23.9 \mathbf{a}_{x}-j 273 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}}
\end{aligned}
$$

11.3. An \mathbf{H} field in free space is given as $\mathbf{H}(x, t)=10 \cos \left(10^{8} t-\beta x\right) \mathbf{a}_{y} \mathrm{~A} / \mathrm{m}$. Find
a) β : Since we have a uniform plane wave, $\beta=\omega / c$, where we identify $\omega=10^{8} \mathrm{sec}^{-1}$. Thus $\beta=10^{8} /\left(3 \times 10^{8}\right)=\underline{0.33 \mathrm{rad} / \mathrm{m} .}$
b) λ : We know $\lambda=2 \pi / \beta=\underline{18.9 \mathrm{~m}}$.
c) $\mathbf{E}(x, t)$ at $P(0.1,0.2,0.3)$ at $t=1 \mathrm{~ns}:$ Use $E(x, t)=-\eta_{0} H(x, t)=-(377)(10) \cos \left(10^{8} t-\right.$ $\beta x)=-3.77 \times 10^{3} \cos \left(10^{8} t-\beta x\right)$. The vector direction of \mathbf{E} will be $-\mathbf{a}_{z}$, since we require that $\mathbf{S}=\mathbf{E} \times \mathbf{H}$, where \mathbf{S} is x-directed. At the given point, the relevant coordinate is $x=0.1$. Using this, along with $t=10^{-9} \mathrm{sec}$, we finally obtain

$$
\begin{aligned}
\mathbf{E}(x, t) & =-3.77 \times 10^{3} \cos \left[\left(10^{8}\right)\left(10^{-9}\right)-(0.33)(0.1)\right] \mathbf{a}_{z}=-3.77 \times 10^{3} \cos \left(6.7 \times 10^{-2}\right) \mathbf{a}_{z} \\
& =-3.76 \times 10^{3} \mathbf{a}_{z} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

11.4. In phasor form, the electric field intensity of a uniform plane wave in free space is expressed as $\mathbf{E}_{s}=(40-j 30) e^{-j 20 z} \mathbf{a}_{x} \mathrm{~V} / \mathrm{m}$. Find:
a) ω : From the given expression, we identify $\beta=20 \mathrm{rad} / \mathrm{m}$. Then $\omega=c \beta=\left(3 \times 10^{8}\right)(20)=$ $\underline{6.0 \times 10^{9} \mathrm{rad} / \mathrm{s}}$
b) $\beta=\underline{20 \mathrm{rad} / \mathrm{m}}$ from part a.
11.4. (continued)
c) $f=\omega / 2 \pi=\underline{956 \mathrm{MHz}}$.
d) $\lambda=2 \pi / \beta=2 \pi / 20=\underline{0.314 \mathrm{~m}}$.
e) \mathbf{H}_{s} : In free space, we find \mathbf{H}_{s} by dividing \mathbf{E}_{s} by η_{0}, and assigning vector components such that $\mathbf{E}_{s} \times \mathbf{H}_{s}$ gives the required direction of wave travel: We find

$$
\mathbf{H}_{s}=\frac{40-j 30}{377} e^{-j 20 z} \mathbf{a}_{y}=\underline{(0.11-j 0.08) e^{-j 20 z} \mathbf{a}_{y} \mathrm{~A} / \mathrm{m}}
$$

f) $\mathbf{H}(z, t)$ at $P(6,-1,0.07), t=71 \mathrm{ps}$:

$$
\mathbf{H}(z, t)=\operatorname{Re}\left[\mathbf{H}_{s} e^{j \omega t}\right]=\left[0.11 \cos \left(6.0 \times 10^{9} t-20 z\right)+0.08 \sin \left(6.0 \times 10^{9} t-20 z\right)\right] \mathbf{a}_{y}
$$

Then

$$
\begin{aligned}
\mathbf{H}(.07, t=71 \mathrm{ps}) & =\left[0.11 \cos \left[\left(6.0 \times 10^{9}\right)\left(7.1 \times 10^{-11}\right)-20(.07)\right]\right. \\
& \left.+.08 \sin \left[\left(6.0 \times 10^{9}\right)\left(7.1 \times 10^{-11}\right)-20(.07)\right]\right] \mathbf{a}_{y} \\
& =[0.11(0.562)-0.08(0.827)] \mathbf{a}_{y}=-6.2 \times 10^{-3} \mathbf{a}_{y} \mathrm{~A} / \mathrm{m}
\end{aligned}
$$

11.5. A $150-\mathrm{MHz}$ uniform plane wave in free space is described by $\mathbf{H}_{s}=(4+j 10)\left(2 \mathbf{a}_{x}+j \mathbf{a}_{y}\right) e^{-j \beta z} \mathrm{~A} / \mathrm{m}$.
a) Find numerical values for ω, λ, and β : First, $\omega=2 \pi \times 150 \times 10^{6}=\underline{3 \pi \times 10^{8} \mathrm{sec}^{-1} \text {. Second, }}$ for a uniform plane wave in free space, $\lambda=2 \pi c / \omega=c / f=\left(3 \times \underline{\left.10^{8}\right) /\left(1.5 \times 10^{8}\right.}\right)=\underline{2 \mathrm{~m}}$. Third, $\beta=2 \pi / \lambda=\pi \mathrm{rad} / \mathrm{m}$.
b) Find $\mathbf{H}(z, t)$ at $t=1.5 \mathrm{~ns}, z=20 \mathrm{~cm}$: Use

$$
\begin{aligned}
\mathbf{H}(z, t) & =\operatorname{Re}\left\{\mathbf{H}_{s} e^{j \omega t}\right\}=\operatorname{Re}\left\{(4+j 10)\left(2 \mathbf{a}_{x}+j \mathbf{a}_{y}\right)(\cos (\omega t-\beta z)+j \sin (\omega t-\beta z)\}\right. \\
& =[8 \cos (\omega t-\beta z)-20 \sin (\omega t-\beta z)] \mathbf{a}_{x}-[10 \cos (\omega t-\beta z)+4 \sin (\omega t-\beta z)] \mathbf{a}_{y}
\end{aligned}
$$

. Now at the given position and time, $\omega t-\beta z=\left(3 \pi \times 10^{8}\right)\left(1.5 \times 10^{-9}\right)-\pi(0.20)=\pi / 4$. And $\cos (\pi / 4)=\sin (\pi / 4)=1 / \sqrt{2}$. So finally,

$$
\mathbf{H}(z=20 \mathrm{~cm}, t=1.5 \mathrm{~ns})=-\frac{1}{\sqrt{2}}\left(12 \mathbf{a}_{x}+14 \mathbf{a}_{y}\right)=\underline{-8.5 \mathbf{a}_{x}-9.9 \mathbf{a}_{y} \mathrm{~A} / \mathrm{m}}
$$

c) What is $|E|_{\max }$? Have $|E|_{\max }=\eta_{0}|H|_{\max }$, where

$$
|H|_{\max }=\sqrt{\mathbf{H}_{s} \cdot \mathbf{H}_{s}^{*}}=[4(4+j 10)(4-j 10)+(j)(-j)(4+j 10)(4-j 10)]^{1 / 2}=24.1 \mathrm{~A} / \mathrm{m}
$$

Then $|E|_{\text {max }}=377(24.1)=\underline{9.08 \mathrm{kV} / \mathrm{m}}$.
11.6. Let $\mu_{R}=\epsilon_{R}=1$ for the field $\mathbf{E}(z, t)=\left(25 \mathbf{a}_{x}-30 \mathbf{a}_{y}\right) \cos (\omega t-50 z) \mathrm{V} / \mathrm{m}$.
a) Find $\omega: \omega=c \beta=\left(3 \times 10^{8}\right)(50)=\underline{15.0 \times 10^{9} \mathrm{~s}^{-1}}$.
b) Determine the displacement current density, $\mathbf{J}_{d}(z, t)$:

$$
\begin{aligned}
\mathbf{J}_{d}(z, t) & =\frac{\partial \mathbf{D}}{\partial t}=-\epsilon_{0} \omega\left(25 \mathbf{a}_{x}-30 \mathbf{a}_{y}\right) \sin (\omega t-50 z) \\
& =\underline{\left(-3.32 \mathbf{a}_{x}+3.98 \mathbf{a}_{y}\right) \sin \left(1.5 \times 10^{10} t-50 z\right) \mathrm{A} / \mathrm{m}^{2}}
\end{aligned}
$$

c) Find the total magnetic flux Φ passing through the rectangle defined by $0<x<1, y=0$, $0<z<1$, at $t=0$: In free space, the magnetic field of the uniform plane wave can be easily found using the intrinsic impedance:

$$
\mathbf{H}(z, t)=\left(\frac{25}{\eta_{0}} \mathbf{a}_{y}+\frac{30}{\eta_{0}} \mathbf{a}_{x}\right) \cos (\omega t-50 z) \mathrm{A} / \mathrm{m}
$$

Then $\mathbf{B}(z, t)=\mu_{0} \mathbf{H}(z, t)=(1 / c)\left(25 \mathbf{a}_{y}+30 \mathbf{a}_{x}\right) \cos (\omega t-50 z) \mathrm{Wb} / \mathrm{m}^{2}$, where $\mu_{0} / \eta_{0}=$ $\sqrt{\mu_{0} \epsilon_{0}}=1 / c$. The flux at $t=0$ is now

$$
\Phi=\int_{0}^{1} \int_{0}^{1} \mathbf{B} \cdot \mathbf{a} y d x d z=\int_{0}^{1} \frac{25}{c} \cos (50 z) d z=\frac{25}{50\left(3 \times 10^{8}\right)} \sin (50)=\underline{-0.44 \mathrm{nWb}}
$$

11.7. The phasor magnetic field intensity for a $400-\mathrm{MHz}$ uniform plane wave propagating in a certain lossless material is $\left(2 \mathbf{a}_{y}-j 5 \mathbf{a}_{z}\right) e^{-j 25 x} \mathrm{~A} / \mathrm{m}$. Knowing that the maximum amplitude of \mathbf{E} is $1500 \mathrm{~V} / \mathrm{m}$, find β, $\eta, \lambda, v_{p}, \epsilon_{R}, \mu_{R}$, and $\mathbf{H}(x, y, z, t)$: First, from the phasor expression, we identify $\beta=\underline{25 \mathrm{~m}^{-1}}$ from the argument of the exponential function. Next, we evaluate $H_{0}=|\mathbf{H}|=\sqrt{\mathbf{H} \cdot \mathbf{H}^{*}}=\sqrt{2^{2}+5^{2}}=\sqrt{29}$. Then $\eta=E_{0} / H_{0}=1500 / \sqrt{29}=\underline{278.5 \Omega}$. Then $\lambda=2 \pi / \beta=2 \pi / 25=.25 \mathrm{~m}=\underline{25 \mathrm{~cm}}$. Next,

$$
v_{p}=\frac{\omega}{\beta}=\frac{2 \pi \times 400 \times 10^{6}}{25}=\underline{1.01 \times 10^{8} \mathrm{~m} / \mathrm{s}}
$$

Now we note that

$$
\eta=278.5=377 \sqrt{\frac{\mu_{R}}{\epsilon_{R}}} \Rightarrow \frac{\mu_{R}}{\epsilon_{R}}=0.546
$$

And

$$
v_{p}=1.01 \times 10^{8}=\frac{c}{\sqrt{\mu_{R} \epsilon_{R}}} \Rightarrow \mu_{R} \epsilon_{R}=8.79
$$

We solve the above two equations simultaneously to find $\epsilon_{R}=\underline{4.01}$ and $\mu_{R}=\underline{2.19}$. Finally,

$$
\begin{aligned}
\mathbf{H}(x, y, z, t) & =\operatorname{Re}\left\{\left(2 \mathbf{a}_{y}-j 5 \mathbf{a}_{z}\right) e^{-j 25 x} e^{j \omega t}\right\} \\
& =2 \cos \left(2 \pi \times 400 \times 10^{6} t-25 x\right) \mathbf{a}_{y}+5 \sin \left(2 \pi \times 400 \times 10^{6} t-25 x\right) \mathbf{a}_{z} \\
& =\underline{2 \cos \left(8 \pi \times 10^{8} t-25 x\right) \mathbf{a}_{y}+5 \sin \left(8 \pi \times 10^{8} t-25 x\right) \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}}
\end{aligned}
$$

11.8. Let the fields, $\mathbf{E}(z, t)=1800 \cos \left(10^{7} \pi t-\beta z\right) \mathbf{a}_{x} \mathrm{~V} / \mathrm{m}$ and $\mathbf{H}(z, t)=3.8 \cos \left(10^{7} \pi t-\beta z\right) \mathbf{a}_{y} \mathrm{~A} / \mathrm{m}$, represent a uniform plane wave propagating at a velocity of $1.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in a perfect dielectric. Find:
a) $\beta=\omega / v=\left(10^{7} \pi\right) /\left(1.4 \times 10^{8}\right)=\underline{0.224 \mathrm{~m}^{-1}}$.
b) $\lambda=2 \pi / \beta=2 \pi / .224=28.0 \mathrm{~m}$.
c) $\eta=|\mathbf{E}| /|\mathbf{H}|=1800 / 3 \cdot 8=\underline{474 \Omega}$.
d) μ_{R} : Have two equations in the two unknowns, μ_{R} and $\epsilon_{R}: \eta=\eta_{0} \sqrt{\mu_{R} / \epsilon_{R}}$ and $\beta=\omega \sqrt{\mu_{R} \epsilon_{R}} / c$.

Eliminate ϵ_{R} to find

$$
\mu_{R}=\left[\frac{\beta c \eta}{\omega \eta_{0}}\right]^{2}=\left[\frac{(.224)\left(3 \times 10^{8}\right)(474)}{\left(10^{7} \pi\right)(377)}\right]^{2}=\underline{2.69}
$$

e) $\epsilon_{R}=\mu_{R}\left(\eta_{0} / \eta\right)^{2}=(2.69)(377 / 474)^{2}=\underline{1.70}$.
11.9. A certain lossless material has $\mu_{R}=4$ and $\epsilon_{R}=9$. A $10-\mathrm{MHz}$ uniform plane wave is propagating in the \mathbf{a}_{y} direction with $E_{x 0}=400 \mathrm{~V} / \mathrm{m}$ and $E_{y 0}=E_{z 0}=0$ at $P(0.6,0.6,0.6)$ at $t=60 \mathrm{~ns}$.
a) Find β, λ, v_{p}, and η : For a uniform plane wave,

$$
\beta=\omega \sqrt{\mu \epsilon}=\frac{\omega}{c} \sqrt{\mu_{R} \epsilon_{R}}=\frac{2 \pi \times 10^{7}}{3 \times 10^{8}} \sqrt{(4)(9)}=\underline{0.4 \pi \mathrm{rad} / \mathrm{m}}
$$

Then $\lambda=(2 \pi) / \beta=(2 \pi) /(0.4 \pi)=\underline{5 \mathrm{~m}}$. Next,

$$
v_{p}=\frac{\omega}{\beta}=\frac{2 \pi \times 10^{7}}{4 \pi \times 10^{-1}}=\underline{5 \times 10^{7} \mathrm{~m} / \mathrm{s}}
$$

Finally,

$$
\eta=\sqrt{\frac{\mu}{\epsilon}}=\eta_{0} \sqrt{\frac{\mu_{R}}{\epsilon_{R}}}=377 \sqrt{\frac{4}{9}}=\underline{251 \Omega}
$$

b) Find $E(t)$ (at P): We are given the amplitude at $t=60 \mathrm{~ns}$ and at $y=0.6 \mathrm{~m}$. Let the maximum amplitude be $E_{\max }$, so that in general, $E_{x}=E_{\max } \cos (\omega t-\beta y)$. At the given position and time,

$$
\begin{aligned}
E_{x} & =400=E_{\max } \cos \left[\left(2 \pi \times 10^{7}\right)\left(60 \times 10^{-9}\right)-\left(4 \pi \times 10^{-1}\right)(0.6)\right]=E_{\max } \cos (0.96 \pi) \\
& =-0.99 E_{\max }
\end{aligned}
$$

So $E_{\text {max }}=(400) /(-0.99)=-403 \mathrm{~V} / \mathrm{m}$. Thus at $\mathrm{P}, E(t)=-403 \cos \left(2 \pi \times 10^{7} t\right) \mathrm{V} / \mathrm{m}$.
c) Find $H(t)$: First, we note that if E at a given instant points in the negative x direction, while the wave propagates in the forward y direction, then H at that same position and time must point in the positive z direction. Since we have a lossless homogeneous medium, η is real, and we are allowed to write $H(t)=E(t) / \eta$, where η is treated as negative and real. Thus

$$
H(t)=H_{z}(t)=\frac{E_{x}(t)}{\eta}=\frac{-403}{-251} \cos \left(2 \pi \times 10^{-7} t\right)=\underline{1.61 \cos \left(2 \pi \times 10^{-7} t\right) \mathrm{A} / \mathrm{m}}
$$

11.10. Given a 20 MHz uniform plane wave with $\mathbf{H}_{s}=\left(6 \mathbf{a}_{x}-j 2 \mathbf{a}_{y}\right) e^{-j z} \mathrm{~A} / \mathrm{m}$, assume propagation in a lossless medium characterized by $\epsilon_{R}=5$ and an unknown μ_{R}.
a) Find λ, v_{p}, μ_{R}, and η : First, $\beta=1$, so $\lambda=2 \pi / \beta=\underline{2 \pi \mathrm{~m}}$. Next, $v_{p}=\omega / \beta=2 \pi \times 20 \times 10^{6}=$ $4 \pi \times 10^{7} \mathrm{~m} / \mathrm{s}$. Then, $\mu_{R}=\left(\beta^{2} c^{2}\right) /\left(\omega^{2} \epsilon_{R}\right)=\left(3 \times 10^{8}\right)^{2} /\left(4 \pi \times 10^{7}\right)^{2}(5)=\underline{1.14}$.
Finally, $\eta=\eta_{0} \sqrt{\mu_{R} / \epsilon_{R}}=377 \sqrt{1.14 / 5}=\underline{180}$.
b) Determine \mathbf{E} at the origin at $t=20 \mathrm{~ns}$: We use the relation $|\mathbf{E}|=\eta|\mathbf{H}|$ and note that for positive z propagation, a positive x component of \mathbf{H} is coupled to a negative y component of \mathbf{E}, and a negative y component of \mathbf{H} is coupled to a negative x component of \mathbf{E}. We obtain $\mathbf{E}_{s}=-\eta\left(6 \mathbf{a}_{y}+j 2 \mathbf{a}_{x}\right) e^{-j z}$. Then $\mathbf{E}(z, t)=\operatorname{Re}\left\{\mathbf{E}_{s} e^{j \omega t}\right\}=-6 \eta \cos (\omega t-z) \mathbf{a}_{y}+2 \eta \sin (\omega t-z) \mathbf{a}_{x}=360 \sin (\omega t-z) \mathbf{a}_{x}-$ $1080 \cos (\omega t-z) \mathbf{a}_{y}$. With $\omega=4 \pi \times 10^{7} \sec ^{-1}, t=2 \times 10^{-8} \mathrm{~s}$, and $z=0, \mathbf{E}$ evaluates as $\mathbf{E}(0,20 \mathrm{~ns})=360(0.588) \mathbf{a}_{x}-1080(-0.809) \mathbf{a}_{y}=\underline{212 \mathbf{a}_{x}+874 \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}}$.
11.11. A $2-\mathrm{GHz}$ uniform plane wave has an amplitude of $E_{y 0}=1.4 \mathrm{kV} / \mathrm{m}$ at $(0,0,0, t=0)$ and is propagating in the \mathbf{a}_{z} direction in a medium where $\epsilon^{\prime \prime}=1.6 \times 10^{-11} \mathrm{~F} / \mathrm{m}, \epsilon^{\prime}=3.0 \times 10^{-11} \mathrm{~F} / \mathrm{m}$, and $\mu=2.5 \mu \mathrm{H} / \mathrm{m}$. Find:
a) E_{y} at $P(0,0,1.8 \mathrm{~cm})$ at 0.2 ns : To begin, we have the ratio, $\epsilon^{\prime \prime} / \epsilon^{\prime}=1.6 / 3.0=0.533$. So

$$
\begin{aligned}
\alpha & =\omega \sqrt{\frac{\mu \epsilon^{\prime}}{2}}\left[\sqrt{1+\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}}-1\right]^{1 / 2} \\
& =\left(2 \pi \times 2 \times 10^{9}\right) \sqrt{\frac{\left(2.5 \times 10^{-6}\right)\left(3.0 \times 10^{-11}\right)}{2}}\left[\sqrt{1+(.533)^{2}}-1\right]^{1 / 2}=28.1 \mathrm{~Np} / \mathrm{m}
\end{aligned}
$$

Then

$$
\beta=\omega \sqrt{\frac{\mu \epsilon^{\prime}}{2}}\left[\sqrt{1+\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}}+1\right]^{1 / 2}=112 \mathrm{rad} / \mathrm{m}
$$

Thus in general,

$$
E_{y}(z, t)=1.4 e^{-28.1 z} \cos \left(4 \pi \times 10^{9} t-112 z\right) \mathrm{kV} / \mathrm{m}
$$

Evaluating this at $t=0.2 \mathrm{~ns}$ and $z=1.8 \mathrm{~cm}$, find

$$
E_{y}(1.8 \mathrm{~cm}, 0.2 \mathrm{~ns})=\underline{0.74 \mathrm{kV} / \mathrm{m}}
$$

b) H_{x} at P at 0.2 ns : We use the phasor relation, $H_{x s}=-E_{y s} / \eta$ where

$$
\eta=\sqrt{\frac{\mu}{\epsilon^{\prime}}} \frac{1}{\sqrt{1-j\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)}}=\sqrt{\frac{2.5 \times 10^{-6}}{3.0 \times 10^{-11}}} \frac{1}{\sqrt{1-j(.533)}}=263+j 65.7=271 \angle 14^{\circ} \Omega
$$

So now

$$
H_{x s}=-\frac{E_{y s}}{\eta}=-\frac{\left(1.4 \times 10^{3}\right) e^{-28.1 z} e^{-j 112 z}}{271 e^{j 14^{\circ}}}=-5.16 e^{-28.1 z} e^{-j 112 z} e^{-j 14^{\circ}} \mathrm{A} / \mathrm{m}
$$

Then

$$
H_{x}(z, t)=-5.16 e^{-28.1 z} \cos \left(4 \pi \times 10^{-9} t-112 z-14^{\circ}\right)
$$

This, when evaluated at $t=0.2 \mathrm{~ns}$ and $z=1.8 \mathrm{~cm}$, yields

$$
H_{x}(1.8 \mathrm{~cm}, 0.2 \mathrm{~ns})=-3.0 \mathrm{~A} / \mathrm{m}
$$

11.12. The plane wave $\mathbf{E}_{s}=300 e^{-j k x} \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$ is propagating in a material for which $\mu=2.25 \mu \mathrm{H} / \mathrm{m}, \epsilon^{\prime}=9$ pF / m, and $\epsilon^{\prime \prime}=7.8 \mathrm{pF} / \mathrm{m}$. If $\omega=64 \mathrm{Mrad} / \mathrm{s}$, find:
a) α : We use the general formula, Eq. (35):

$$
\begin{aligned}
\alpha & =\omega \sqrt{\frac{\mu \epsilon^{\prime}}{2}}\left[\sqrt{1+\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}}-1\right]^{1 / 2} \\
& =\left(64 \times 10^{6}\right) \sqrt{\frac{\left(2.25 \times 10^{-6}\right)\left(9 \times 10^{-12}\right)}{2}}\left[\sqrt{1+(.867)^{2}}-1\right]^{1 / 2}=\underline{0.116 \mathrm{~Np} / \mathrm{m}}
\end{aligned}
$$

b) β : Using (36), we write

$$
\beta=\omega \sqrt{\frac{\mu \epsilon^{\prime}}{2}}\left[\sqrt{1+\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}}+1\right]^{1 / 2}=.311 \mathrm{rad} / \mathrm{m}
$$

c) $v_{p}=\omega / \beta=\left(64 \times 10^{6}\right) /(.311)=\underline{2.06 \times 10^{8} \mathrm{~m} / \mathrm{s}}$.
d) $\lambda=2 \pi / \beta=2 \pi /(.311)=\underline{20.2 \mathrm{~m}}$.
e) η : Using (39):

$$
\eta=\sqrt{\frac{\mu}{\epsilon^{\prime}}} \frac{1}{\sqrt{1-j\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)}}=\sqrt{\frac{2.25 \times 10^{-6}}{9 \times 10^{-12}}} \frac{1}{\sqrt{1-j(.867)}}=407+j 152=\underline{434.5 e^{j .36} \Omega}
$$

f) \mathbf{H}_{s} : With \mathbf{E}_{s} in the positive y direction (at a given time) and propagating in the positive x direction, we would have a positive z component of \mathbf{H}_{s}, at the same time. We write (with $j k=\alpha+j \beta$):

$$
\begin{aligned}
\mathbf{H}_{s} & =\frac{E_{s}}{\eta} \mathbf{a}_{z}=\frac{300}{434.5 e^{j .36}} e^{-j k x} \mathbf{a}_{z}=0.69 e^{-\alpha x} e^{-j \beta x} e^{-j .36} \mathbf{a}_{z} \\
& =\underline{0.69 e^{-.116 x} e^{-j .311 x} e^{-j .36} \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}}
\end{aligned}
$$

g) $\mathbf{E}(3,2,4,10 \mathrm{~ns})$: The real instantaneous form of \mathbf{E} will be

$$
\mathbf{E}(x, y, z, t)=\operatorname{Re}\left\{\mathbf{E}_{s} e^{j \omega t}\right\}=300 e^{-\alpha x} \cos (\omega t-\beta x) \mathbf{a}_{y}
$$

Therefore

$$
\mathbf{E}(3,2,4,10 \mathrm{~ns})=300 e^{-.116(3)} \cos \left[\left(64 \times 10^{6}\right)\left(10^{-8}\right)-.311(3)\right] \mathbf{a}_{y}=203 \mathrm{~V} / \mathrm{m}
$$

11.13. Let $j k=0.2+j 1.5 \mathrm{~m}^{-1}$ and $\eta=450+j 60 \Omega$ for a uniform plane wave propagating in the \mathbf{a}_{z} direction. If $\omega=300 \mathrm{Mrad} / \mathrm{s}$, find μ, ϵ^{\prime}, and $\epsilon^{\prime \prime}:$ We begin with

$$
\eta=\sqrt{\frac{\mu}{\epsilon^{\prime}}} \frac{1}{\sqrt{1-j\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)}}=450+j 60
$$

and

$$
j k=j \omega \sqrt{\mu \epsilon^{\prime}} \sqrt{1-j\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)}=0.2+j 1.5
$$

11.13. (continued) Then

$$
\begin{equation*}
\eta \eta^{*}=\frac{\mu}{\epsilon^{\prime}} \frac{1}{\sqrt{1+\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)^{2}}}=(450+j 60)(450-j 60)=2.06 \times 10^{5} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(j k)(j k)^{*}=\omega^{2} \mu \epsilon^{\prime} \sqrt{1+\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)^{2}}=(0.2+j 1.5)(0.2-j 1.5)=2.29 \tag{2}
\end{equation*}
$$

Taking the ratio of (2) to (1),

$$
\frac{(j k)(j k)^{*}}{\eta \eta^{*}}=\omega^{2}\left(\epsilon^{\prime}\right)^{2}\left(1+\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)^{2}\right)=\frac{2.29}{2.06 \times 10^{5}}=1.11 \times 10^{-5}
$$

Then with $\omega=3 \times 10^{8}$,

$$
\begin{equation*}
\left(\epsilon^{\prime}\right)^{2}=\frac{1.11 \times 10^{-5}}{\left(3 \times 10^{8}\right)^{2}\left(1+\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)^{2}\right)}=\frac{1.23 \times 10^{-22}}{\left(1+\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)^{2}\right)} \tag{3}
\end{equation*}
$$

Now, we use Eqs. (35) and (36). Squaring these and taking their ratio gives

$$
\frac{\alpha^{2}}{\beta^{2}}=\frac{\sqrt{1+\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)^{2}}}{\sqrt{1+\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)^{2}}}=\frac{(0.2)^{2}}{(1.5)^{2}}
$$

We solve this to find $\epsilon^{\prime \prime} / \epsilon^{\prime}=0.271$. Substituting this result into (3) gives $\epsilon^{\prime}=1.07 \times 10^{-11} \mathrm{~F} / \mathrm{m}$. Since $\epsilon^{\prime \prime} / \epsilon^{\prime}=0.271$, we then find $\epsilon^{\prime \prime}=2.90 \times 10^{-12} \mathrm{~F} / \mathrm{m}$. Finally, using these results in either (1) or (2) we find $\mu=2.28 \times 10^{-6} \mathrm{H} / \mathrm{m}$. Summary: $\mu=\underline{2.28 \times 10^{-6} \mathrm{H} / \mathrm{m} \text {, }}$
$\epsilon^{\prime}=\underline{1.07 \times 10^{-11} \mathrm{~F} / \mathrm{m}}$, and $\epsilon^{\prime \prime}=\underline{2.90 \times 10^{-12} \mathrm{~F} / \mathrm{m}}$.
11.14. A certain nonmagnetic material has the material constants $\epsilon_{R}^{\prime}=2$ and $\epsilon^{\prime \prime} / \epsilon^{\prime}=4 \times 10^{-4}$ at $\omega=1.5$ $\mathrm{Grad} / \mathrm{s}$. Find the distance a uniform plane wave can propagate through the material before:
a) it is attenuated by 1 Np : First, $\epsilon^{\prime \prime}=\left(4 \times 10^{4}\right)(2)\left(8.854 \times 10^{-12}\right)=7.1 \times 10^{-15} \mathrm{~F} / \mathrm{m}$. Then, since $\epsilon^{\prime \prime} / \epsilon^{\prime} \ll 1$, we use the approximate form for α, given by Eq. (51) (written in terms of $\epsilon^{\prime \prime}$):

$$
\alpha \doteq \frac{\omega \epsilon^{\prime \prime}}{2} \sqrt{\frac{\mu}{\epsilon^{\prime}}}=\frac{\left(1.5 \times 10^{9}\right)\left(7.1 \times 10^{-15}\right)}{2} \frac{377}{\sqrt{2}}=1.42 \times 10^{-3} \mathrm{~Np} / \mathrm{m}
$$

The required distance is now $z_{1}=\left(1.42 \times 10^{-3}\right)^{-1}=\underline{706 \mathrm{~m}}$
b) the power level is reduced by one-half: The governing relation is $e^{-2 \alpha z_{1 / 2}}=1 / 2$, or $z_{1 / 2}=$ $\ln 2 / 2 \alpha=\ln 2 / 2\left(1.42 \times 10^{-} 3\right)=\underline{244 \mathrm{~m}}$.
c) the phase shifts 360° : This distance is defined as one wavelength, where $\lambda=2 \pi / \beta$

$$
=(2 \pi c) /\left(\omega \sqrt{\epsilon_{R}^{\prime}}\right)=\left[2 \pi\left(3 \times 10^{8}\right)\right] /\left[\left(1.5 \times 10^{9}\right) \sqrt{2}\right]=\underline{0.89 \mathrm{~m}} .
$$

11.15. A 10 GHz radar signal may be represented as a uniform plane wave in a sufficiently small region. Calculate the wavelength in centimeters and the attenuation in nepers per meter if the wave is propagating in a non-magnetic material for which
a) $\epsilon_{R}^{\prime}=1$ and $\epsilon_{R}^{\prime \prime}=0$: In a non-magnetic material, we would have:

$$
\alpha=\omega \sqrt{\frac{\mu_{0} \epsilon_{0} \epsilon_{R}^{\prime}}{2}}\left[\sqrt{1+\left(\frac{\epsilon_{R}^{\prime \prime}}{\epsilon_{R}^{\prime}}\right)^{2}}-1\right]^{1 / 2}
$$

11.15. (continued) and

$$
\beta=\omega \sqrt{\frac{\mu_{0} \epsilon_{0} \epsilon_{R}^{\prime}}{2}}\left[\sqrt{1+\left(\frac{\epsilon_{R}^{\prime \prime}}{\epsilon_{R}^{\prime}}\right)^{2}}+1\right]^{1 / 2}
$$

With the given values of ϵ_{R}^{\prime} and $\epsilon_{R}^{\prime \prime}$, it is clear that $\beta=\omega \sqrt{\mu_{0} \epsilon_{0}}=\omega / c$, and so $\lambda=2 \pi / \beta=2 \pi c / \omega=3 \times 10^{10} / 10^{10}=\underline{3 \mathrm{~cm}}$. It is also clear that $\alpha=\underline{0}$.
b) $\epsilon_{R}^{\prime}=1.04$ and $\epsilon_{R}^{\prime \prime}=9.00 \times 10^{-4}$: In this case $\epsilon_{R}^{\prime \prime} / \epsilon_{R}^{\prime} \ll 1$, and so $\beta \doteq \omega \sqrt{\epsilon_{R}^{\prime}} / c=2.13 \mathrm{~cm}^{-1}$. Thus $\lambda=2 \pi / \beta=\underline{2.95 \mathrm{~cm}}$. Then

$$
\begin{aligned}
\alpha & \doteq \frac{\omega \epsilon^{\prime \prime}}{2} \sqrt{\frac{\mu}{\epsilon^{\prime}}}=\frac{\omega \epsilon_{R}^{\prime \prime}}{2} \frac{\sqrt{\mu_{0} \epsilon_{0}}}{\sqrt{\epsilon_{R}^{\prime}}}=\frac{\omega}{2 c} \frac{\epsilon_{R}^{\prime \prime}}{\sqrt{\epsilon_{R}^{\prime}}}=\frac{2 \pi \times 10^{10}}{2 \times 3 \times 10^{8}} \frac{\left(9.00 \times 10^{-4}\right)}{\sqrt{1.04}} \\
& =\underline{9.24 \times 10^{-2} \mathrm{~Np} / \mathrm{m}}
\end{aligned}
$$

c) $\epsilon_{R}^{\prime}=2.5$ and $\epsilon_{R}^{\prime \prime}=7.2$: Using the above formulas, we obtain

$$
\beta=\frac{2 \pi \times 10^{10} \sqrt{2.5}}{\left(3 \times 10^{10}\right) \sqrt{2}}\left[\sqrt{1+\left(\frac{7.2}{2.5}\right)^{2}}+1\right]^{1 / 2}=4.71 \mathrm{~cm}^{-1}
$$

and so $\lambda=2 \pi / \beta=\underline{1.33 \mathrm{~cm}}$. Then

$$
\alpha=\frac{2 \pi \times 10^{10} \sqrt{2.5}}{\left(3 \times 10^{8}\right) \sqrt{2}}\left[\sqrt{1+\left(\frac{7.2}{2.5}\right)^{2}}-1\right]^{1 / 2}=335 \mathrm{~Np} / \mathrm{m}
$$

11.16. The power factor of a capacitor is defined as the cosine of the impedance phase angle, and its Q is $\omega C R$, where R is the parallel resistance. Assume an idealized parallel plate capacitor having a dielecric characterized by $\sigma, \epsilon^{\prime}$, and μ_{R}. Find both the power factor and Q in terms of the loss tangent: First, the impedance will be:

$$
Z=\frac{R\left(\frac{1}{j \omega C}\right)}{R+\left(\frac{1}{j \omega C}\right)}=R \frac{1-j R \omega C}{1+(R \omega C)^{2}}=R \frac{1-j Q}{1+Q^{2}}
$$

Now $R=d /(\sigma A)$ and $C=\epsilon^{\prime} A / d$, and so $Q=\omega \epsilon^{\prime} / \sigma=\underline{1 / l . t}$. Then the power factor is P.F $=$ $\cos \left[\tan ^{-1}(-Q)\right]=\underline{1 / \sqrt{1+Q^{2}}}$.
11.17. Let $\eta=250+j 30 \Omega$ and $j k=0.2+j 2 \mathrm{~m}^{-1}$ for a uniform plane wave propagating in the \mathbf{a}_{z} direction in a dielectric having some finite conductivity. If $\left|E_{s}\right|=400 \mathrm{~V} / \mathrm{m}$ at $z=0$, find:
a) $\mathbf{P}_{z, a v}$ at $z=0$ and $z=60 \mathrm{~cm}$: Assume x-polarization for the electric field. Then

$$
\begin{aligned}
\mathbf{P}_{z, a v} & =\frac{1}{2} \operatorname{Re}\left\{\mathbf{E}_{s} \times \mathbf{H}_{s}^{*}\right\}=\frac{1}{2} \operatorname{Re}\left\{400 e^{-\alpha z} e^{-j \beta z} \mathbf{a}_{x} \times \frac{400}{\eta^{*}} e^{-\alpha z} e^{j \beta z} \mathbf{a}_{y}\right\} \\
& =\frac{1}{2}(400)^{2} e^{-2 \alpha z} \operatorname{Re}\left\{\frac{1}{\eta^{*}}\right\} \mathbf{a}_{z}=8.0 \times 10^{4} e^{-2(0.2) z} \operatorname{Re}\left\{\frac{1}{250-j 30}\right\} \mathbf{a}_{z} \\
& =315 e^{-2(0.2) z} \mathbf{a}_{z} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

Evaluating at $z=0$, obtain $\mathbf{P}_{z, a v}(z=0)=315 \mathbf{a}_{z} \mathrm{~W} / \mathrm{m}^{2}$,
and at $z=60 \mathrm{~cm}, \mathbf{P}_{z, a v}(z=0.6)=315 e^{-2(0.2)(0.6)} \mathbf{a}_{z}=248 \mathbf{a}_{z} \mathrm{~W} / \mathrm{m}^{2}$.
b) the average ohmic power dissipation in watts per cubic meter at $z=60 \mathrm{~cm}$: At this point a flaw becomes evident in the problem statement, since solving this part in two different ways gives results that are not the same. I will demonstrate: In the first method, we use Poynting's theorem in point form (first equation at the top of p. 366), which we modify for the case of time-average fields to read:

$$
-\nabla \cdot \mathbf{P}_{z, a v}=<\mathbf{J} \cdot \mathbf{E}>
$$

where the right hand side is the average power dissipation per volume. Note that the additional right-hand-side terms in Poynting's theorem that describe changes in energy stored in the fields will both be zero in steady state. We apply our equation to the result of part a :

$$
\langle\mathbf{J} \cdot \mathbf{E}\rangle=-\nabla \cdot \mathbf{P}_{z, a v}=-\frac{d}{d z} 315 e^{-2(0.2) z}=(0.4)(315) e^{-2(0.2) z}=126 e^{-0.4 z} \mathrm{~W} / \mathrm{m}^{3}
$$

At $z=60 \mathrm{~cm}$, this becomes $<\mathbf{J} \cdot \mathbf{E}>=99.1 \mathrm{~W} / \mathrm{m}^{3}$. In the second method, we solve for the conductivity and evaluate $\langle\mathbf{J} \cdot \mathbf{E}\rangle=\sigma\left\langle E^{2}\right\rangle$. We use

$$
j k=j \omega \sqrt{\mu \epsilon^{\prime}} \sqrt{1-j\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)}
$$

and

$$
\eta=\sqrt{\frac{\mu}{\epsilon^{\prime}}} \frac{1}{\sqrt{1-j\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)}}
$$

We take the ratio,

$$
\frac{j k}{\eta}=j \omega \epsilon^{\prime}\left[1-j\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)\right]=j \omega \epsilon^{\prime}+\omega \epsilon^{\prime \prime}
$$

Identifying $\sigma=\omega \epsilon^{\prime \prime}$, we find

$$
\sigma=\operatorname{Re}\left\{\frac{j k}{\eta}\right\}=\operatorname{Re}\left\{\frac{0.2+j 2}{250+j 30}\right\}=1.74 \times 10^{-3} \mathrm{~S} / \mathrm{m}
$$

Now we find the dissipated power per volume:

$$
\sigma<E^{2}>=1.74 \times 10^{-3}\left(\frac{1}{2}\right)\left(400 e^{-0.2 z}\right)^{2}
$$

11.17b. (continued) At $z=60 \mathrm{~cm}$, this evaluates as $109 \mathrm{~W} / \mathrm{m}^{3}$. One can show that consistency between the two methods requires that

$$
\operatorname{Re}\left\{\frac{1}{\eta^{*}}\right\}=\frac{\sigma}{2 \alpha}
$$

This relation does not hold using the numbers as given in the problem statement and the value of σ found above. Note that in Problem 11.13, where all values are worked out, the relation does hold and consistent results are obtained using both methods.
11.18a. Find $P(\mathbf{r}, t)$ if $\mathbf{E}_{S}=400 e^{-j 2 x} \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$ in free space: A positive y component of \mathbf{E} requires a positive z component of \mathbf{H} for propagation in the forward x direction. Thus $\mathbf{H}_{s}=\left(400 / \eta_{0}\right) e^{-j 2 x} \mathbf{a}_{z}=$ $1.06 e^{-j 2 x} \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}$. In real form, the field are $\mathbf{E}(x, t)=400 \cos (\omega t-2 x) \mathbf{a}_{y}$ and $\mathbf{H}(x, t)=1.06 \cos (\omega t-$ $2 x) \mathbf{a}_{z}$. Now $P(\mathbf{r}, t)=P(x, t)=\mathbf{E}(x, t) \times \mathbf{H}(x, t)=424.4 \cos ^{2}(\omega t-2 x) \mathbf{a}_{x} \mathrm{~W} / \mathrm{m}^{2}$.
b) Find P at $t=0$ for $\mathbf{r}=(a, 5,10)$, where $a=0,1,2$, and 3: At $t=0$, we find from part a, $P(a, 0)=424.4 \cos ^{2}(2 a)$, which leads to the values (in $\left.\mathrm{W} / \mathrm{m}^{2}\right): \underline{424.4}$ at $a=0, \underline{73.5}$ at $a=1$, 181.3 at $a=2$, and 391.3 at $a=3$.
c) Find P at the origin for $T=0,0.2 T, 0.4 T$, and $0.6 T$, where T is the oscillation period. At the origin, we have $P(0, t)=424.4 \cos ^{2}(\omega t)=424.4 \cos ^{2}(2 \pi t / T)$. Using this, we obtain the following values (in $\mathrm{W} / \mathrm{m}^{2}$): 424.4 at $t=0,42.4$ at $t=0.2 T, \underline{277.8 \text { at } t=0.4 T \text {, and }}$ 277.8 at $t=0.6 T$.
11.19. Perfectly-conducting cylinders with radii of 8 mm and 20 mm are coaxial. The region between the cylinders is filled with a perfect dielectric for which $\epsilon=10^{-9} / 4 \pi \mathrm{~F} / \mathrm{m}$ and $\mu_{R}=1$. If \mathbf{E} in this region is $(500 / \rho) \cos (\omega t-4 z) \mathbf{a}_{\rho} \mathrm{V} / \mathrm{m}$, find:
a) ω, with the help of Maxwell's equations in cylindrical coordinates: We use the two curl equations, beginning with $\nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial t$, where in this case,

$$
\nabla \times \mathbf{E}=\frac{\partial E_{\rho}}{\partial z} \mathbf{a}_{\phi}=\frac{2000}{\rho} \sin (\omega t-4 z) \mathbf{a}_{\phi}=-\frac{\partial B_{\phi}}{\partial t} \mathbf{a}_{\phi}
$$

So

$$
B_{\phi}=\int \frac{2000}{\rho} \sin (\omega t-4 z) d t=\frac{2000}{\omega \rho} \cos (\omega t-4 z) \mathrm{T}
$$

Then

$$
H_{\phi}=\frac{B_{\phi}}{\mu_{0}}=\frac{2000}{\left(4 \pi \times 10^{-7}\right) \omega \rho} \cos (\omega t-4 z) \mathrm{A} / \mathrm{m}
$$

We next use $\nabla \times \mathbf{H}=\partial \mathbf{D} / \partial t$, where in this case

$$
\nabla \times \mathbf{H}=-\frac{\partial H_{\phi}}{\partial z} \mathbf{a}_{\rho}+\frac{1}{\rho} \frac{\partial\left(\rho H_{\phi}\right)}{\partial \rho} \mathbf{a}_{z}
$$

where the second term on the right hand side becomes zero when substituting our H_{ϕ}. So

$$
\nabla \times \mathbf{H}=-\frac{\partial H_{\phi}}{\partial z} \mathbf{a}_{\rho}=-\frac{8000}{\left(4 \pi \times 10^{-7}\right) \omega \rho} \sin (\omega t-4 z) \mathbf{a}_{\rho}=\frac{\partial D_{\rho}}{\partial t} \mathbf{a}_{\rho}
$$

And

$$
D_{\rho}=\int-\frac{8000}{\left(4 \pi \times 10^{-7}\right) \omega \rho} \sin (\omega t-4 z) d t=\frac{8000}{\left(4 \pi \times 10^{-7}\right) \omega^{2} \rho} \cos (\omega t-4 z) \mathrm{C} / \mathrm{m}^{2}
$$

11.19a. (continued) Finally, using the given ϵ,

$$
E_{\rho}=\frac{D_{\rho}}{\epsilon}=\frac{8000}{\left(10^{-16}\right) \omega^{2} \rho} \cos (\omega t-4 z) \mathrm{V} / \mathrm{m}
$$

This must be the same as the given field, so we require

$$
\frac{8000}{\left(10^{-16}\right) \omega^{2} \rho}=\frac{500}{\rho} \Rightarrow \omega=\underline{4 \times 10^{8} \mathrm{rad} / \mathrm{s}}
$$

b) $\mathbf{H}(\rho, z, t)$: From part a, we have

$$
\mathbf{H}(\rho, z, t)=\frac{2000}{\left(4 \pi \times 10^{-7}\right) \omega \rho} \cos (\omega t-4 z) \mathbf{a}_{\phi}=\underline{\underline{\frac{4.0}{\rho}} \cos \left(4 \times 10^{8} t-4 z\right) \mathbf{a}_{\phi} \mathrm{A} / \mathrm{m}}
$$

c) $\mathbf{P}(\rho, \phi, z)$: This will be

$$
\begin{aligned}
\mathbf{P}(\rho, \phi, z) & =\mathbf{E} \times \mathbf{H}=\frac{500}{\rho} \cos \left(4 \times 10^{8} t-4 z\right) \mathbf{a}_{\rho} \times \frac{4.0}{\rho} \cos \left(4 \times 10^{8} t-4 z\right) \mathbf{a}_{\phi} \\
& =\frac{2.0 \times 10^{-3}}{\rho^{2}} \cos ^{2}\left(4 \times 10^{8} t-4 z\right) \mathbf{a}_{z} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

d) the average power passing through every cross-section $8<\rho<20 \mathrm{~mm}, 0<\phi<2 \pi$. Using the result of part c, we find $\mathbf{P}_{\text {avg }}=\left(1.0 \times 10^{3}\right) / \rho^{2} \mathbf{a}_{z} \mathrm{~W} / \mathrm{m}^{2}$. The power through the given cross-section is now

$$
\mathrm{P}=\int_{0}^{2 \pi} \int_{.008}^{.020} \frac{1.0 \times 10^{3}}{\rho^{2}} \rho d \rho d \phi=2 \pi \times 10^{3} \ln \left(\frac{20}{8}\right)=\underline{5.7 \mathrm{~kW}}
$$

11.20. If $\mathbf{E}_{s}=(60 / r) \sin \theta e^{-j 2 r} \mathbf{a}_{\theta} \mathrm{V} / \mathrm{m}$, and $\mathbf{H}_{s}=(1 / 4 \pi r) \sin \theta e^{-j 2 r} \mathbf{a}_{\phi} \mathrm{A} / \mathrm{m}$ in free space, find the average power passing outward through the surface $r=10^{6}, 0<\theta<\pi / 3$, and $0<\phi<2 \pi$.

$$
P_{\text {avg }}=\frac{1}{2} \operatorname{Re}\left\{\mathbf{E}_{s} \times \mathbf{H}_{s}^{*}\right\}=\frac{15 \sin ^{2} \theta}{2 \pi r^{2}} \mathbf{a}_{r} \mathrm{~W} / \mathrm{m}^{2}
$$

Then, the requested power will be

$$
\begin{aligned}
\Phi & =\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \frac{15 \sin ^{2} \theta}{2 \pi r^{2}} \mathbf{a}_{r} \cdot \mathbf{a}_{r} r^{2} \sin \theta d \theta d \phi=15 \int_{0}^{\pi / 3} \sin ^{3} \theta d \theta \\
& =\left.15\left(-\frac{1}{3} \cos \theta\left(\sin ^{2} \theta+2\right)\right)\right|_{0} ^{\pi / 3}=\frac{25}{8}=\underline{3.13 \mathrm{~W}}
\end{aligned}
$$

Note that the radial distance at the surface, $r=10^{6} \mathrm{~m}$, makes no difference, since the power density dimishes as $1 / r^{2}$.
11.21. The cylindrical shell, $1 \mathrm{~cm}<\rho<1.2 \mathrm{~cm}$, is composed of a conducting material for which $\sigma=10^{6}$ S / m. The external and internal regions are non-conducting. Let $H_{\phi}=2000 \mathrm{~A} / \mathrm{m}$ at $\rho=1.2 \mathrm{~cm}$.
a) Find \mathbf{H} everywhere: Use Ampere's circuital law, which states:

$$
\oint \mathbf{H} \cdot d \mathbf{L}=2 \pi \rho(2000)=2 \pi\left(1.2 \times 10^{-2}\right)(2000)=48 \pi \mathrm{~A}=I_{\text {encl }}
$$

Then in this case

$$
\mathbf{J}=\frac{I}{\text { Area }} \mathbf{a}_{z}=\frac{48}{(1.44-1.00) \times 10^{-4}} \mathbf{a}_{z}=1.09 \times 10^{6} \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}^{2}
$$

With this result we again use Ampere's circuital law to find \mathbf{H} everywhere within the shell as a function of ρ (in meters):

$$
H_{\phi 1}(\rho)=\frac{1}{2 \pi \rho} \int_{0}^{2 \pi} \int_{.01}^{\rho} 1.09 \times 10^{6} \rho d \rho d \phi=\underline{\frac{54.5}{\rho}\left(10^{4} \rho^{2}-1\right) \mathrm{A} / \mathrm{m}(.01<\rho<.012)}
$$

Outside the shell, we would have

$$
H_{\phi 2}(\rho)=\frac{48 \pi}{2 \pi \rho}=\underline{24 / \rho \mathrm{A} / \mathrm{m}(\rho>.012)}
$$

Inside the shell $(\rho<.01 \mathrm{~m}), H_{\phi}=0$ since there is no enclosed current.
b) Find \mathbf{E} everywhere: We use

$$
\mathbf{E}=\frac{\mathbf{J}}{\sigma}=\frac{1.09 \times 10^{6}}{10^{6}} \mathbf{a}_{z}=\underline{1.09 \mathbf{a}_{z} \mathrm{~V} / \mathrm{m}}
$$

which is valid, presumeably, outside as well as inside the shell.
c) Find \mathbf{P} everywhere: Use

$$
\begin{aligned}
\mathbf{P} & =\mathbf{E} \times \mathbf{H}=1.09 \mathbf{a}_{z} \times \frac{54.5}{\rho}\left(10^{4} \rho^{2}-1\right) \mathbf{a}_{\phi} \\
& =-\underline{-\frac{59.4}{\rho}\left(10^{4} \rho^{2}-1\right) \mathbf{a}_{\rho} \mathrm{W} / \mathrm{m}^{2} \quad(.01<\rho<.012 \mathrm{~m})}
\end{aligned}
$$

Outside the shell,

$$
\mathbf{P}=1.09 \mathbf{a}_{z} \times \frac{24}{\rho} \mathbf{a}_{\phi}=-\frac{26}{\rho} \mathbf{a}_{\rho} \mathrm{W} / \mathrm{m}^{2}(\rho>.012 \mathrm{~m})
$$

11.22. The inner and outer dimensions of a copper coaxial transmission line are 2 and 7 mm , respectively. Both conductors have thicknesses much greater than δ. The dielectric is lossless and the operating frequency is 400 MHz . Calculate the resistance per meter length of the:
a) inner conductor: First

$$
\delta=\frac{1}{\sqrt{\pi f \mu \sigma}}=\frac{1}{\sqrt{\pi\left(4 \times 10^{8}\right)\left(4 \pi \times 10^{-7}\right)\left(5.8 \times 10^{7}\right)}}=3.3 \times 10^{-6} \mathrm{~m}=3.3 \mu \mathrm{~m}
$$

Now, using (70) with a unit length, we find

$$
R_{i n}=\frac{1}{2 \pi a \sigma \delta}=\frac{1}{2 \pi\left(2 \times 10^{-3}\right)\left(5.8 \times 10^{7}\right)\left(3.3 \times 10^{-6}\right)}=\underline{0.42 \mathrm{ohms} / \mathrm{m}}
$$

b) outer conductor: Again, (70) applies but with a different conductor radius. Thus

$$
R_{\text {out }}=\frac{a}{b} R_{\text {in }}=\frac{2}{7}(0.42)=\underline{0.12 \mathrm{ohms} / \mathrm{m}}
$$

c) transmission line: Since the two resistances found above are in series, the line resistance is their sum, or $R=R_{\text {in }}+R_{\text {out }}=\underline{0.54 \mathrm{ohms} / \mathrm{m}}$.
11.23. A hollow tubular conductor is constructed from a type of brass having a conductivity of $1.2 \times 10^{7} \mathrm{~S} / \mathrm{m}$. The inner and outer radii are 9 mm and 10 mm respectively. Calculate the resistance per meter length at a frequency of
a) dc: In this case the current density is uniform over the entire tube cross-section. We write:

$$
R(\mathrm{dc})=\frac{L}{\sigma A}=\frac{1}{\left(1.2 \times 10^{7}\right) \pi\left(.01^{2}-.009^{2}\right)}=\underline{1.4 \times 10^{-3} \Omega / \mathrm{m}}
$$

b) 20 MHz : Now the skin effect will limit the effective cross-section. At 20 MHz , the skin depth is

$$
\delta(20 \mathrm{MHz})=\left[\pi f \mu_{0} \sigma\right]^{-1 / 2}=\left[\pi\left(20 \times 10^{6}\right)\left(4 \pi \times 10^{-7}\right)\left(1.2 \times 10^{7}\right)\right]^{-1 / 2}=3.25 \times 10^{-5} \mathrm{~m}
$$

This is much less than the outer radius of the tube. Therefore we can approximate the resistance using the formula:

$$
R(20 \mathrm{MHz})=\frac{L}{\sigma A}=\frac{1}{2 \pi b \delta}=\frac{1}{\left(1.2 \times 10^{7}\right)(2 \pi(.01))\left(3.25 \times 10^{-5}\right)}=\underline{4.1 \times 10^{-2} \Omega / \mathrm{m}}
$$

c) 2 GHz : Using the same formula as in part b, we find the skin depth at 2 GHz to be $\delta=3.25 \times 10^{-6}$ m . The resistance (using the other formula) is $R(2 \mathrm{GHz})=\underline{4.1 \times 10^{-1} \Omega / \mathrm{m}}$.
11.24a. Most microwave ovens operate at 2.45 GHz . Assume that $\sigma=1.2 \times 10^{6} \mathrm{~S} / \mathrm{m}$ and $\mu_{R}=500$ for the stainless steel interior, and find the depth of penetration:

$$
\delta=\frac{1}{\sqrt{\pi f \mu \sigma}}=\frac{1}{\sqrt{\pi\left(2.45 \times 10^{9}\right)\left(4 \pi \times 10^{-7}\right)\left(1.2 \times 10^{6}\right)}}=9.28 \times 10^{-6} \mathrm{~m}=9.28 \mu \mathrm{~m}
$$

b) Let $E_{s}=50 \angle 0^{\circ} \mathrm{V} / \mathrm{m}$ at the surface of the conductor, and plot a curve of the amplitude of $E_{S} \mathrm{vs}$. the angle of E_{s} as the field propagates into the stainless steel: Since the conductivity is high, we use (62) to write $\alpha \doteq \beta \doteq \sqrt{\pi f \mu \sigma}=1 / \delta$. So, assuming that the direction into the conductor is z, the depth-dependent field is written as

$$
E_{S}(z)=50 e^{-\alpha z} e^{-j \beta z}=50 e^{-z / \delta} e^{-j z / \delta}=\underbrace{50 \exp (-z / 9.28)}_{\text {amplitude }} \exp (-j \underbrace{z / 9.28}_{\text {angle }})
$$

where z is in microns. Therefore, the plot of amplitude versus angle is simply a plot of e^{-x} versus x, where $x=z / 9.28$; the starting amplitude is 50 and the $1 / e$ amplitude (at $z=9.28 \mu \mathrm{~m}$) is 18.4.
11.25. A good conductor is planar in form and carries a uniform plane wave that has a wavelength of 0.3 mm and a velocity of $3 \times 10^{5} \mathrm{~m} / \mathrm{s}$. Assuming the conductor is non-magnetic, determine the frequency and the conductivity: First, we use

$$
f=\frac{v}{\lambda}=\frac{3 \times 10^{5}}{3 \times 10^{-4}}=10^{9} \mathrm{~Hz}=\underline{1 \mathrm{GHz}}
$$

Next, for a good conductor,

$$
\delta=\frac{\lambda}{2 \pi}=\frac{1}{\sqrt{\pi f \mu \sigma}} \Rightarrow \sigma=\frac{4 \pi}{\lambda^{2} f \mu}=\frac{4 \pi}{\left(9 \times 10^{-8}\right)\left(10^{9}\right)\left(4 \pi \times 10^{-7}\right)}=\underline{1.1 \times 10^{5} \mathrm{~S} / \mathrm{m}}
$$

11.26. The dimensions of a certain coaxial transmission line are $a=0.8 \mathrm{~mm}$ and $b=4 \mathrm{~mm}$. The outer conductor thickness is 0.6 mm , and all conductors have $\sigma=1.6 \times 10^{7} \mathrm{~S} / \mathrm{m}$.
a) Find R, the resistance per unit length, at an operating frequency of 2.4 GHz : First

$$
\delta=\frac{1}{\sqrt{\pi f \mu \sigma}}=\frac{1}{\sqrt{\pi\left(2.4 \times 10^{8}\right)\left(4 \pi \times 10^{-7}\right)\left(1.6 \times 10^{7}\right)}}=2.57 \times 10^{-6} \mathrm{~m}=2.57 \mu \mathrm{~m}
$$

Then, using (70) with a unit length, we find

$$
R_{i n}=\frac{1}{2 \pi a \sigma \delta}=\frac{1}{2 \pi\left(0.8 \times 10^{-3}\right)\left(1.6 \times 10^{7}\right)\left(2.57 \times 10^{-6}\right)}=4.84 \mathrm{ohms} / \mathrm{m}
$$

The outer conductor resistance is then found from the inner through

$$
R_{\text {out }}=\frac{a}{b} R_{\text {in }}=\frac{0.8}{4}(4.84)=0.97 \mathrm{ohms} / \mathrm{m}
$$

The net resistance per length is then the sum, $R=R_{\text {in }}+R_{\text {out }}=\underline{5.81 \mathrm{ohms} / \mathrm{m}}$.
11.26b. Use information from Secs. 5.10 and 9.10 to find C and L, the capacitance and inductance per unit length, respectively. The coax is air-filled. From those sections, we find (in free space)

$$
\begin{gathered}
C=\frac{2 \pi \epsilon_{0}}{\ln (b / a)}=\frac{2 \pi\left(8.854 \times 10^{-12}\right)}{\ln (4 / .8)}=3.46 \times 10^{-11} \mathrm{~F} / \mathrm{m} \\
L=\frac{\mu_{0}}{2 \pi} \ln (b / a)=\frac{4 \pi \times 10^{-7}}{2 \pi} \ln (4 / .8)=3.22 \times 10^{-7} \mathrm{H} / \mathrm{m}
\end{gathered}
$$

c) Find α and β if $\alpha+j \beta=\sqrt{j \omega C(R+j \omega L)}$: Taking real and imaginary parts of the given expression, we find

$$
\alpha=\operatorname{Re}\{\sqrt{j \omega C(R+j \omega L)}\}=\frac{\omega \sqrt{L C}}{\sqrt{2}}\left[\sqrt{1+\left(\frac{R}{\omega L}\right)^{2}}-1\right]^{1 / 2}
$$

and

$$
\beta=\operatorname{Im}\{\sqrt{j \omega C(R+j \omega L)}\}=\frac{\omega \sqrt{L C}}{\sqrt{2}}\left[\sqrt{1+\left(\frac{R}{\omega L}\right)^{2}}+1\right]^{1 / 2}
$$

These can be found by writing out $\alpha=\operatorname{Re}\{\sqrt{j \omega C(R+j \omega L)}\}=(1 / 2) \sqrt{j \omega C(R+j \omega L)}+c . c$., where $c . c$ denotes the complex conjugate. The result is squared, terms collected, and the square root taken. Now, using the values of R, C, and L found in parts a and b, we find $\alpha=3.0 \times 10^{-2} \mathrm{~Np} / \mathrm{m}$ and $\beta=50.3 \mathrm{rad} / \mathrm{m}$.
11.27. The planar surface at $z=0$ is a brass-Teflon interface. Use data available in Appendix C to evaluate the following ratios for a uniform plane wave having $\omega=4 \times 10^{10} \mathrm{rad} / \mathrm{s}$:
a) $\alpha_{\text {Tef }} / \alpha_{\text {brass }}$: From the appendix we find $\epsilon^{\prime \prime} / \epsilon^{\prime}=.0003$ for Teflon, making the material a good dielectric. Also, for Teflon, $\epsilon_{R}^{\prime}=2.1$. For brass, we find $\sigma=1.5 \times 10^{7} \mathrm{~S} / \mathrm{m}$, making brass a good conductor at the stated frequency. For a good dielectric (Teflon) we use the approximations:

$$
\begin{aligned}
\alpha \doteq \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon^{\prime}}}=\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)\left(\frac{1}{2}\right) \omega \sqrt{\mu \epsilon^{\prime}}=\frac{1}{2}\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right) \frac{\omega}{c} \sqrt{\epsilon_{R}^{\prime}} \\
\beta \doteq \omega \sqrt{\mu \epsilon^{\prime}}\left[1+\frac{1}{8}\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)\right] \doteq \omega \sqrt{\mu \epsilon^{\prime}}=\frac{\omega}{c} \sqrt{\epsilon_{R}^{\prime}}
\end{aligned}
$$

For brass (good conductor) we have

$$
\alpha \doteq \beta \doteq \sqrt{\pi f \mu \sigma_{\text {brass }}}=\sqrt{\pi\left(\frac{1}{2 \pi}\right)\left(4 \times 10^{10}\right)\left(4 \pi \times 10^{-7}\right)\left(1.5 \times 10^{7}\right)}=6.14 \times 10^{5} \mathrm{~m}^{-1}
$$

Now

$$
\frac{\alpha_{\text {Tef }}}{\alpha_{\text {brass }}}=\frac{1 / 2\left(\epsilon^{\prime \prime} / \epsilon^{\prime}\right)(\omega / c) \sqrt{\epsilon_{R}^{\prime}}}{\sqrt{\pi f \mu \sigma_{\text {brass }}}}=\frac{(1 / 2)(.0003)\left(4 \times 10^{10} / 3 \times 10^{8}\right) \sqrt{2.1}}{6.14 \times 10^{5}}=\underline{4.7 \times 10^{-8}}
$$

b)

$$
\frac{\lambda_{\text {Tef }}}{\lambda_{\text {brass }}}=\frac{\left(2 \pi / \beta_{\text {Tef }}\right)}{\left(2 \pi / \beta_{\text {brass }}\right)}=\frac{\beta_{\text {brass }}}{\beta_{\text {Tef }}}=\frac{c \sqrt{\pi f \mu \sigma_{\text {brass }}}}{\omega \sqrt{\epsilon_{R \text { Tef }}^{\prime}}}=\frac{\left(3 \times 10^{8}\right)\left(6.14 \times 10^{5}\right)}{\left(4 \times 10^{10}\right) \sqrt{2.1}}=\underline{3.2 \times 10^{3}}
$$

11.27. (continued)
c)

$$
\frac{v_{\text {Tef }}}{v_{\text {brass }}}=\frac{\left(\omega / \beta_{\text {Tef }}\right)}{\left(\omega / \beta_{\text {brass }}\right)}=\frac{\beta_{\text {brass }}}{\beta_{\text {Tef }}}=\underline{3.2 \times 10^{3}} \text { as before }
$$

11.28. A uniform plane wave in free space has electric field given by $\mathbf{E}_{s}=10 e^{-j \beta x} \mathbf{a}_{z}+15 e^{-j \beta x} \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$.
a) Describe the wave polarization: Since the two components have a fixed phase difference (in this case zero) with respect to time and position, the wave has linear polarization, with the field vector in the $y z$ plane at angle $\phi=\tan ^{-1}(10 / 15)=33.7^{\circ}$ to the y axis.
b) Find \mathbf{H}_{s} : With propagation in forward x, we would have

$$
\mathbf{H}_{s}=\frac{-10}{377} e^{-j \beta x} \mathbf{a}_{y}+\frac{15}{377} e^{-j \beta x} \mathbf{a}_{z} \mathrm{~A} / \mathrm{m}=\underline{-26.5 e^{-j \beta x} \mathbf{a}_{y}+39.8 e^{-j \beta x} \mathbf{a}_{z} \mathrm{~mA} / \mathrm{m}}
$$

c) determine the average power density in the wave in $\mathrm{W} / \mathrm{m}^{2}$: Use

$$
\mathbf{P}_{a v g}=\frac{1}{2} \operatorname{Re}\left\{\mathbf{E}_{s} \times \mathbf{H}_{s}^{*}\right\}=\frac{1}{2}\left[\frac{(10)^{2}}{377} \mathbf{a}_{x}+\frac{(15)^{2}}{377} \mathbf{a}_{x}\right]=0.43 \mathbf{a}_{x} \mathrm{~W} / \mathrm{m}^{2} \text { or } P_{\text {avg }}=\underline{0.43 \mathrm{~W} / \mathrm{m}^{2}}
$$

11.29. Consider a left-circularly polarized wave in free space that propagates in the forward z direction. The electric field is given by the appropriate form of Eq. (80).
a) Determine the magnetic field phasor, \mathbf{H}_{s} :

We begin, using (80), with $\mathbf{E}_{s}=E_{0}\left(\mathbf{a}_{x}+j \mathbf{a}_{y}\right) e^{-j \beta z}$. We find the two components of \mathbf{H}_{s} separately, using the two components of \mathbf{E}_{s}. Specifically, the x component of \mathbf{E}_{s} is associated with a y component of \mathbf{H}_{s}, and the y component of \mathbf{E}_{s} is associated with a negative x component of \mathbf{H}_{s}. The result is

$$
\mathbf{H}_{s}=\frac{E_{0}}{\eta_{0}}\left(\mathbf{a}_{y}-j \mathbf{a}_{x}\right) e^{-j \beta z}
$$

b) Determine an expression for the average power density in the wave in $\mathrm{W} / \mathrm{m}^{2}$ by direct application of Eq. (57): We have

$$
\begin{aligned}
\mathbf{P}_{z, a v g} & =\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{s} \times \mathbf{H}_{s}^{*}\right)=\frac{1}{2} \operatorname{Re}\left(E_{0}\left(\mathbf{a}_{x}+j \mathbf{a}_{y}\right) e^{-j \beta z} \times \frac{E_{0}}{\eta_{0}}\left(\mathbf{a}_{y}-j \mathbf{a}_{x}\right) e^{+j \beta z}\right) \\
& =\frac{E_{0}^{2}}{\eta_{0}} \mathbf{a}_{z} \mathrm{~W} / \mathrm{m}^{2} \text { (assuming } E_{0} \text { is real) }
\end{aligned}
$$

11.30. The electric field of a uniform plane wave in free space is given by $\mathbf{E}_{s}=10\left(\mathbf{a}_{y}+j \mathbf{a}_{z}\right) e^{-j 25 x}$.
a) Determine the frequency, f : Use

$$
f=\frac{\beta c}{2 \pi}=\frac{(25)\left(3 \times 10^{8}\right)}{2 \pi}=1.2 \mathrm{GHz}
$$

b) Find the magnetic field phasor, \mathbf{H}_{s} : With the Poynting vector in the positive x direction, a positive y component for \mathbf{E} requires a positive z component for \mathbf{H}. Similarly, a positive z component for \mathbf{E} requires a negative y component for \mathbf{H}. Therefore,

$$
\mathbf{H}_{s}=\frac{10}{\eta_{0}}\left[\mathbf{a}_{z}-j \mathbf{a}_{y}\right] e^{-j 25 x}
$$

c) Describe the polarization of the wave: This is most clearly seen by first converting the given field to real instantaneous form:

$$
\mathbf{E}(x, t)=\operatorname{Re}\left\{\mathbf{E}_{s} e^{j \omega t}\right\}=10\left[\cos (\omega t-25 x) \mathbf{a}_{y}-\sin (\omega t-25 x) \mathbf{a}_{z}\right]
$$

At $x=0$, this becomes,

$$
\mathbf{E}(0, t)=10\left[\cos (\omega t) \mathbf{a}_{y}-\sin (\omega t) \mathbf{a}_{z}\right]
$$

With the wave traveling in the forward x direction, we recognize the polarization as left circular.
11.31. A linearly-polarized uniform plane wave, propagating in the forward z direction, is input to a lossless anisotropic material, in which the dielectric constant encountered by waves polarized along y ($\epsilon_{R y}$) differs from that seen by waves polarized along $x\left(\epsilon_{R x}\right)$. Suppose $\epsilon_{R x}=2.15, \epsilon_{R y}=2.10$, and the wave electric field at input is polarized at 45° to the positive x and y axes. Assume free space wavelength λ.
a) Determine the shortest length of the material such that the wave as it emerges from the output end is circularly polarized: With the input field at 45°, the x and y components are of equal magnitude, and circular polarization will result if the phase difference between the components is $\pi / 2$. Our requirement over length L is thus $\beta_{x} L-\beta_{y} L=\pi / 2$, or

$$
L=\frac{\pi}{2\left(\beta_{x}-\beta_{y}\right)}=\frac{\pi c}{2 \omega\left(\sqrt{\epsilon_{R x}}-\sqrt{\epsilon_{R y}}\right)}
$$

With the given values, we find,

$$
L=\frac{(58.3) \pi c}{2 \omega}=58.3 \frac{\lambda}{4}=\underline{14.6 \lambda}
$$

b) Will the output wave be right- or left-circularly-polarized? With the dielectric constant greater for x-polarized waves, the x component will lag the y component in time at the output. The field can thus be written as $\mathbf{E}=E_{0}\left(\mathbf{a}_{y}-j \mathbf{a}_{x}\right)$, which is left circular polarization.
11.32. Suppose that the length of the medium of Problem 11.31 is made to be twice that as determined in the problem. Describe the polarization of the output wave in this case: With the length doubled, a phase shift of π radians develops between the two components. At the input, we can write the field as $\mathbf{E}_{s}(0)=E_{0}\left(\mathbf{a}_{x}+\mathbf{a}_{y}\right)$. After propagating through length L, we would have,

$$
\mathbf{E}_{s}(L)=E_{0}\left[e^{-j \beta_{x} L} \mathbf{a}_{x}+e^{-j \beta_{y} L} \mathbf{a}_{y}\right]=E_{0} e^{-j \beta_{x} L}\left[\mathbf{a}_{x}+e^{-j\left(\beta_{y}-\beta_{x}\right) L} \mathbf{a}_{y}\right]
$$

where $\left(\beta_{y}-\beta_{x}\right) L=-\pi$ (since $\beta_{x}>\beta_{y}$), and so $\mathbf{E}_{s}(L)=E_{0} e^{-j \beta_{x} L}\left[\mathbf{a}_{x}-\mathbf{a}_{y}\right]$. With the reversal of the y component, the wave polarization is rotated by 90°, but is still linear polarization.
11.33. Given a wave for which $\mathbf{E}_{s}=15 e^{-j \beta z} \mathbf{a}_{x}+18 e^{-j \beta z} e^{j \phi} \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}$, propagating in a medium characterized by complex intrinsic impedance, η.
a) Find \mathbf{H}_{s} : With the wave propagating in the forward z direction, we find:

$$
\mathbf{H}_{s}=\underline{\frac{1}{\eta}\left[-18 e^{j \phi} \mathbf{a}_{x}+15 \mathbf{a}_{y}\right] e^{-j \beta z} \mathrm{~A} / \mathrm{m}}
$$

b) Determine the average power density in $\mathrm{W} / \mathrm{m}^{2}$: We find

$$
P_{z, a v g}=\frac{1}{2} \operatorname{Re}\left\{\mathbf{E}_{s} \times \mathbf{H}_{s}^{*}\right\}=\frac{1}{2} \operatorname{Re}\left\{\frac{(15)^{2}}{\eta^{*}}+\frac{(18)^{2}}{\eta^{*}}\right\}=275 \operatorname{Re}\left\{\frac{1}{\eta^{*}}\right\} \mathrm{W} / \mathrm{m}^{2}
$$

11.34. Given the general elliptically-polarized wave as per Eq. (73):

$$
\mathbf{E}_{s}=\left[E_{x 0} \mathbf{a}_{x}+E_{y 0} e^{j \phi} \mathbf{a}_{y}\right] e^{-j \beta z}
$$

a) Show, using methods similar to those of Example 11.7, that a linearly polarized wave results when superimposing the given field and a phase-shifted field of the form:

$$
\mathbf{E}_{s}=\left[E_{x 0} \mathbf{a}_{x}+E_{y 0} e^{-j \phi} \mathbf{a}_{y}\right] e^{-j \beta z} e^{j \delta}
$$

where δ is a constant: Adding the two fields gives

$$
\begin{aligned}
\mathbf{E}_{s, t o t} & =\left[E_{x 0}\left(1+e^{j \delta}\right) \mathbf{a}_{x}+E_{y 0}\left(e^{j \phi}+e^{-j \phi} e^{j \delta}\right) \mathbf{a}_{y}\right] e^{-j \beta z} \\
& =[E_{x 0} e^{j \delta / 2} \underbrace{\left(e^{-j \delta / 2}+e^{j \delta / 2}\right)}_{2 \cos (\delta / 2)} \mathbf{a}_{x}+E_{y 0} e^{j \delta / 2} \underbrace{\left(e^{-j \delta / 2} e^{j \phi}+e^{-j \phi} e^{j \delta / 2}\right)}_{2 \cos (\phi-\delta / 2)} \mathbf{a}_{y}] e^{-j \beta z}
\end{aligned}
$$

This simplifies to $\mathbf{E}_{s, \text { tot }}=2\left[E_{x 0} \cos (\delta / 2) \mathbf{a}_{x}+E_{y 0} \cos (\phi-\delta / 2) \mathbf{a}_{y}\right] e^{j \delta / 2} e^{-j \beta z}$, which is linearly polarized.
b) Find δ in terms of ϕ such that the resultant wave is polarized along x : By inspecting the part a result, we achieve a zero y component when $2 \phi-\delta=\pi$ (or odd multiples of π).

