CHAPTER 14

14.1. A pardllel-plate waveguide is known to have a cutoff wavelength for them = 1 TE and TM modes of

Ac1 = 0.4 cm. The guide is operated at wavelength 2 = 1 mm. How many modes propagate? The
cutoff wavelength for mode m is L., = 2nd/m, where n is the refractive index of the guide interior.
For the first mode, we are given

_ 2nd 04 0.2

A1 = — =04cm d=—=—20Ccm
cl 1 = 2n n

Now, for mode m to propagate, we require

2nd 0.4 0.4 0.4
< = m < = =

A _— = — =
~ m m - A 0.1

So, accounting for 2 modes (TE and TM) for each value of m, and the single TEM mode, we will have
atotal of 9 modes.

14.2. A paralel-plate guideisto be constructed for operationinthe TEM mode only over the frequency range

0 < f < 3GHz. The dielectric between plates is to be teflon (¢, = 2.1). Determine the maximum
allowable plate separation, d: Werequirethat f < f.1, which, using (7), becomes

1 8
¢ = 3x 10 = 3.45cm
2fmax  2+/2.1(3 x 109)

C
f<% = dmax:

14.3. A lossless parallel-plate waveguide is known to propagate them = 2 TE and TM modes at frequencies

as low as 10GHz. If the plate separation is 1 cm, determine the dielectric constant of the medium
between plates. Use

c _3x1010

— =10 =3 =9
nd n(1) = n or e =9

chZ

14.4. A d = 1 cm pardlel-plate guide is made with glass (n = 1.45) between plates. If the operating

14.5.

frequency is 32 GHz, which modes will propagate? For a propagating mode, we require f > f.
Using (7) and the given values, we write

me 2fnd  2(32 x 10°)(1.45)(.01)
> — < =
2nd "= 3 x 10°8

f —3.09

The maximum allowed m in this case is thus 3, and the propagating modes will be TM1, TE;, TMy,
TE», TM3, and TEs.

For the guide of Problem 14.4, and at the 32 GHz frequency, determinethe diff erence between the group
delays of the highest order mode (TE or TM) and the TEM mode. Assume a propagation distance of 10
cm: From Problem 14.4, we found m . = 3. The group velocity of aTE or TM modefor m = 3is

3(3 x 1019

=3.1x 10 = 31GHz
2(1.45)(1)

¢ Je3 2
Vg3 = ; 1-— <7) where fc3 =
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14.5. (continued) Thus
3x 101 31\? °
Vg3 = W — <3—2> =513x 10 Cm/S

For the TEM mode (assuming no material dispersion) ve 7y = ¢/n = 3 x 100/1.45 = 2.07 x 10'°
cm/s. The group delay difference is now

1 1 1 1
At, =z — — =10 - =15ns
g =% <vg3 vg,TEM> (5.13 % 10°  2.07 x 1010>

14.6. The cutoff frequency of them = 1 TE and TM modesin aparallel-plate guideisknowntobe f.1 = 7.5
GHz. The guideisused at wavelength » = 1.5 cm. Find the group velocity of them = 2 TEand TM
modes. First we know that f.» = 2f.1 = 15 GHz. Then f = ¢/1» = 3 x 108/.015 = 20 GHz. Now,

using (23),
N2 15\ 2
Vg2 = %,/1— (%) - %‘/1— (Z‘)) —2x10%/nm/s

n was not specified in the problem.

14.7. A parallel-plate guide is partialy filled with two lossless dielectrics (Fig. 14.23) where €},; = 4.0,
€ro = 2.1, and d = 1 cm. At acertain frequency, it is found that the TM1 mode propagates through
the guide without suffering any reflective loss at the dielectric interface.

a) Find thisfrequency: Theray angleis such that the wave isincident on the interface at Brewster’'s
angle. Inthiscase

2.1
= -1 —‘ = °©
0p = tan 20 35.9
Theray angleisthus = 90 — 35.9 = 54.1°. The cutoff frequency for them = 1 modeis

c 3 x 1010

24 . 2D@

Thefrequency isthus f = f.1/cosé = 7.5/ cos(54.1°) = 12.8 GHz.

faa= = 7.5GHz

b) Istheguide operating at asingle TM mode at the frequency found in part a? The cutoff frequency
for the next higher mode, TM2 is f.» = 2f.1 = 15 GHz. The 12.8 GHz operating frequency is
below this, so TM2 will not propagate. So the answer isyes.

14.8. Inthe guide of Problem 14.7, it isfound that m = 1 modes propagating from left to right totally reflect
at the interface, so that no power is transmitted into the region of dielectric constant €.,

a) Determine the range of frequencies over which thiswill occur: For total reflection, the ray angle
measured from the normal to the interface must be greater than or equal to the critical angle, 6.,
Wheresing. = (€p,/€r1)Y2. Theminimummoderay angleisthen 61, = 90° —6,.. Now, using
(5), wewrite

T C C
90° — 6, = cos 1 ( ) —cos ! (—) —cos ! ( )
kmind 2nfm,~nd\/71 4dfmin
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14.8a. (continued)
Now

€ c
cos(90 — 6,) =snf, = | K2 — ——
6;31 4dfmin
Therefore f.i, = ¢/(2+/2.1d) = (3 x 108)/(24/2.1(.01)) = 10.35GHz. The frequency rangeis
thus f > 10.35GHz.

b) Doesyour part a answer in any way relate to the cutoff frequency for m = 1 modesin any region?
We note that f,,i, = ¢/(2+/2.1d) = f.1 in guide 2. To summarize, as frequency is lowered, the
ray angle in guide 1 decreases, which leads to the incident angle at the interface increasing to
eventually reach and surpass the critical angle. At the critical angle, the refracted angle in guide 2
is90°, which correspondsto azero degreeray angleinthat guide. Thisdefinesthe cutoff condition
inguide 2. So it would make sensethat f,,;, = fc1(Quide 2).

14.9. A rectangular waveguide has dimensionsa = 6 cmand b = 4 cm.
a) Over what range of frequencies will the guide operate single mode? The cutoff frequency for

modemp is, using Eq. (54):
2 2
fc,mn = % (%) + (%)

where n isthe refractive index of the guide interior. We require that the frequency lie between the
cutoff frequencies of the T E1g and T Eg1 modes. These will be:

¢  3x10® 25x10°

fao=737= 2n(06)  n

c  3x10® 375x10°
2nb  2n(.04) n
Thus, the range of frequencies over which single mode operation will occur is

chl =

2. 7
—5 GHz < f < 3—5 GHz
n n

b) Over what frequency range will the guide support both T E1g and T Eg1 modes and no others? We
note first that f must be greater than f.01 to support both modes, but must be less than the cutoff
frequency for the next higher order mode. Thiswill be f.11, given by

e (L 2+ 1\? 30c 45x10°
T 20\ \ 06 04) T 20 T

The allowed frequency rangeis then

7 4.
3—5GHZ< f < —5GHZ
n n
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14.10.

Two rectangular waveguides are joined end-to-end. The guides have identical dimensions, where
a = 2b. One guideis air-filled; the other isfilled with alossless dielectric characterized by €/,
a) Determine the maximum allowable value of €, such that single mode operation can be simultane-
ously ensured in both guides at some frequency: Sincea = 2b, the cutoff frequency for any mode
in either guide is written using (54):

o = ()" + ()

wheren = linguidelandn = \/g inguide 2. We seethat, witha = 2b, the next modes (having
the next higher cutoff frequency) above TEjo with be TEzp and TEg;. We also seethat in general,
femp(Quide 2) < femp(guide 1). To assure single mode operation in both guides, the operating
frequency must be above cutoff for TE1g in both guides, and below cutoff for the next mode in
both guides. The alowed frequency range is therefore f.10(guidel) < f < f.oo(guide 2). This

leadsto c/(2a) < f < c/(a,/€y). For thisrangeto beviable, it isrequired that €, < 4.

b) Write an expression for the frequency range over which single mode operation will occur in both
guides; your answer should be in terms of €}, guide dimensions as needed, and other known
constants: Thiswas aready found in part a:

c c

— < f<

2a e a
R

where e, < 4.

14.11. An air-filled rectangular waveguide isto be constructed for single-mode operation at 15 GHz. Specify

14.12.

the guide dimensions, a and b, such that the design frequency is 10/while being 10% lower than the
cutoff frequency for the next higher-order mode: For an air-filled guide, we have

fom = (52) + (5

For TE1p we have f.10 = c¢/2a, while for the next mode (TEq1), fr01 = ¢/2b. Our requirements state
that f = 1.1f.10 = 0.9f.01. SO fe10 = 15/1.1 = 13.6 GHz and f.01 = 15/0.9 = 16.7 GHz. The
guide dimensions will be

c 3 x 1010 c 3 x 1010

= = =11cm and b = = —0.90cm
‘T 2% 2(136 x 109 21 2(16.7 x 109

Using therelation P, = (1/2)Re{E; x H}}, and Egs. (44) through (46), show that the average power
density in the TE1g mode in arectangular waveguide is given by

P,y = @Egsinz(xlox) a, W/m?
2w

(note that the sin term is erroneously to the first power in the original problem statement). Inspecting
(44) through (46), we see that (46) includes afactor of j, and so would lead to an imaginary part of the
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14.13.

14.14.

14.15.

total power when the cross product with E, is taken. Therefore, the real power in this case is found
through the cross product of (44) with the complex conjugate of (45), or

1 B10 .
Pav = ERe{EyS X H:s} = mEgsnz(Klox) az W/m2

Integrate the result of Problem 14.12 over the guide cross-section 0 < x < a,0 < y < b, to show that
the power in Watts transmitted down the guide is given as

p— Bioab Eg _ %

dou 4n

where n = /u/e (hote misprint in problem statement), and 619 is the wave angle associated with the
TE10 mode. Interpret. First, the integration:

E(%Sinelo W

b a
B0 o . > Bioab -
P = ——E§sn a-a,dxdy = E
/O L 20011 0 (k10x) @; - a; dx dy Aot 0

Next, from (20), we have 810 = w. /i€ Sin61g, which, on substitution, leads to

b : .
P = a—E(Z)smalo W withy = /2
4n €

The sinf,p dependence demonstrates the principle of group velocity as energy velocity (or power).
Thiswas considered in the discussion leading to Eq. (23).

Show that the group dispersion parameter, d28/dw?, for given mode in a parallel-plate or rectangular
waveguide is given by
2 2 27173/2
Th_ () [1_ () ]
dw wc \ w w

where w, isthe radian cutoff frequency for the mode in question (note that the first derivative form was
aready found, resulting in Eq. (23)). First, taking the reciprocal of (23), we find

-1/2
&t ()]

Taking the derivative of this equation with respect to » leads to
2 1 21-3/2 /9,2 N2 07-3/2
@B _n( 1 1_(&) W :_1(‘0_) 1_(&)
dw? c 2 w w3 wc \ w w

Consider a transform-limited pulse of center frequency f = 10 GHz and of full-width 27 = 1.0 ns.
The pulse propagates in a lossless single mode rectangular guide which is air-filled and in which the
10 GHz operating frequency is 1.1 times the cutoff frequency of the T E1p mode. Using the result of
Problem 14.14, determine the length of the guide over which the pulse broadens to twice its initial
width: The broadened pulse will have width givenby 7' = /T2 + (A1)2, where At = B,L/T for a
transform limited pulse (assumed gaussian). 2 isthe Problem 14.14 result evaluated at the operating
frequency, or

d2p 1 1\? 1\2]%?
= —5|w= = — _ 1 — _
P2 = alo=106H = — 5 = 510) 3 % 108) (1.1) <1.1)

=6.1x 107 ¢?/m = 0.61 n’/m
Now At = 0.61L/0.5 = 1.2L ns. For the pulse width to double, we have T’ = 1 ns, and
V(0524 (1202 =1 = L=072m=72cm
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14.15.

14.16.

14.17.

14.18.

14.19.

14.20.

(continued)

What simple step can betaken to reduce the amount of pulse broadening in thisguide, whilemaintaining
thesameinitial pulsewidth? It can be seenthat 82 can bereduced by increasing the operating frequency
relative to the cutoff frequency; i.e., operate as far above cutoff as possible, without allowing the next
higher-order modes to propagate.

A symmetric dielectric slab waveguide hasaslab thicknessd = 10 um, withny = 1.48andny = 1.45.
If the operating wavelengthis A = 1.3 um, what modeswill propagate? We use the condition expressed

through (77): kod\/n% — n3 > (m — 1)x. Since ko = 27/, the condition becomes

2d 2(10
— n2—n3>m-1 = %\/(1.48)2 — (1452 =456>m—1

Therefore, m,,., = 5, and we have TE and TM modes for whichm = 1, 2, 3, 4, 5 propagating (ten
total).

A symmetric slab waveguide is known to support only asingle pair of TE and TM modes at wavel ength
A = 155 um. If the dab thicknessis 5 um, what is the maximum value of n1 if no = 3.3 (assume
3.30)? Using (78) we have

2d [ A /1.55
> n1 n%<7r = n1< ﬁ—i_ 2(5)—i-(330)2—332

n1 = 1.50,ny = 1.45, and d = 10 um in asymmetric slab waveguide (note that the index values were
reversed in the original problem statement).

a) What isthe phase velocity of them = 1 TE or TM mode at cutoff? At cutoff, the mode propagates
in the slab at the critical angle, which means that the phase velocity will be equal to that of a
planewavein the upper or lower mediaof index n,. Phase velocity will therefore be v, (cutoff) =
c/n> = 3 x 108/1.45 = 2.07 x 108 m/s.

b) What is the phase velocity of the m = 2 TE or TM modes at cutoff? The reasoning of part a
appliesto all modes, so the answer isthe same, or 2.07 x 108 m/s.

An asymmetric slab waveguide is shown in Fig. 14.24. In this case, the regions above and below the
dlab have unequal refractive indices, where n, > n3 > no (note error in problem statement).

a) Write, interms of the appropriate indices, an expression for the minimum possiblewave angle, 61,
that a guided mode may have: The wave angle must be equal to or greater than the critical angle
of total reflection at both interfaces. The minimum wave angle is thus determined by the greater
of thetwo critical angles. Sincenz > np, wefind 6,,;, = 6,13 = sin*l(ng/nl).

b) Write an expression for the maximum phase velocity a guided mode may have in this structure,
using given or known parameters. We have vy, jax = ©/Bmin, Where Bpin = nikoSinéy in =
nikonz/ny = nzko. ThUS v, ax = w/(n3ko) = c/n3.

A step index optical fiber is known to be single mode at wavelengths A > 1.2 um. Another fiber is
to be fabricated from the same materials, but is to be single mode at wavelengths A > 0.63 um. By
what percentage must the core radius of the new fiber differ from the old one, and should it be larger or
smaller? We use the cutoff condition, given by (80):

2ra 5 5

b > a0V
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14.20. (continued) With A reduced, the core radius, a, must aso be reduced by the same fraction. Therefore,
the percentage reduction required in the core radius will be
1.2 - .63

% = T x 100 = 47.5%

14.21. A short dipole carrying current Io coswt in the a, direction islocated at the origin in free space.
a) Ifg=1rad/m,r =2m,0 = 45°, ¢ = 0,and ¢ = 0, giveaunit vector in rectangular components
that shows the instantaneous direction of E: In spherical coordinates, the components of E are
given by (82) and (83):

E, = ——cosfe /¥ = 4
" 2n ¢ r2 + j2mr3

Iodn . _i2 27T 1 A
Eg = ——sin@e /7 [ j— + S 4 ——
0= "4 e L

Since we want aunit vector at ¢+ = 0, we need only the relative amplitudes of the two components,
but we need the absolute phases. Since § = 45°, sing = cosf = 1/4/2. Also, with p = 1 =
27 /A, itfollowsthat A = 27 m. The above two equations can be smplified by these substitutions,
while dropping all amplitude terms that are common to both. Obtain

101\
Ar= r—2+1?€

A—l .1+1+1 —jr
9_2 Jr r2 jr3 ¢

Now with » = 2 m, we obtain

1 1\ _. 1 SOV
Ay = (Z - é) e % = Z(l.lZ)e j26.6° =2
1 1 1 . 1 emo
Ap = iZ+Z— i )e 72 = =(0.90)/%3 /2
0 <]4+8 ]16)6 4( )e e
The total vector isnow A = A,a. + Agpay. We can normalize the vector by first finding the

magnitude:

1
Al = VA A* = 21\/(1.12)2 + (0.90)2 = 0.359

Dividing thefield vector by this magnitude and converting 2 rad to 114.6°, wewritethe normalized

Vector as )
Ay, = 0.780e /14125 1 0.627¢ 8% 5,

In real instantaneous form, this becomes
Ay (f) = Re (A Nsefwf) = 0.780 cos(wt — 141.2°)a, + 0.627 cos(wt — 58.3%)ay

We evaluate thisat + = O to find

Ay (0) = 0.780cos(141.2°)a, + 0.627 cos(58.3%)as = —0.608a, + 0.330ay
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14.21a. (continued)

Dividing by the magnitude, \/ (0.608)2 + (0.330)2 = 0.692, we obtain the unit vector at t = O:
ay (0) = —0.879a, + 0.477a9. We next convert thisto cartesian components:

. 1
ayy = ay(0)-a, = —0.879sn0 cos¢ + 0.477 cosé cos¢ = ﬁ (—0.879+ 0.477) = —0.284

ayy = ay(0) -a, = —0.879sin6 sing + 0.477cosf singp =0 since¢ =0
1
an, = ay(0) -a, = —0.879cos6 — 0.477sin6 = 72 (—0.879 — 0.477) = —0.959

Thefinal result isthen
ay(0) = —0.284a, — 0.959a,

b) What fraction of the total average power is radiated in the belt, 80° < 6 < 100°? We use the
far-zone phasor fields, (84) and (85), and first find the average power density:

2

1 i
Pavg = SRl Egs Hj,] = 80

d*n
2smGW/m

We integrate this over the given belt, an at radius r:

P / /100 lod®n g2, 25n60.do dep = mlgd®n flooosin%de
belt = o 812r2 " T T2 Jy

Evaluating the integral, we find

1 100 2d2
— = cosf (sinze +2)] — (0.3a4) 0% 1

7 12d%n
Ppety = —2 [3
80

4.2

The total power is found by performing the same integral over 6, where 0 < 6 < 180°. Doing
this, it isfound that

JTIOd2

Pror = (1.333) —5—

The fraction of the total power in the belt isthen f = 0.344/ 1.333 = 0.258.

14.22. Prepareacurve, r vs. 6 in polar coordinates, showing the locusin the ¢ = 0 plane where;
a) theradiation field |Ey,| is one-half of itsvalueat r = 10* m, 6 = 7/2: Assuming the far field
approximation, we use (84) to set up the equation:
Todn 1 lodn

Eoyl = 2 Ging = = x 1041 _ _ 2% 10%sing
EBosl = 55 2 X ox108 T

b) the average radiated power density, P, ., isone-half of itsvalueat r = 10* m, 6 = 7/2. Tofind
the average power, we use (84) and (85) in

1 L L118d%n _, 1 1 I3d% 4
Pr’avzéRe{EQSH¢s}:§4)\,2r2 :é XEW = r=\/§x10 sné
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14.22. (continued) The polar plots for field (- = 2 x 10%sin®) and power (r = /2 x 10* sin) are shown
below. Both arecircles.

Problem 14.22

180

210

240 : 300

270
= |E| x 10,000

------- IPI X 10,000

14.23. Two short antennas at the origin in free space carry identical currents of 5coswt A, one in the &,
direction, oneinthe a, direction. Let A = 27 mandd = 0.1 m. Find E; at the distant point:

@ (x = 0,y = 1000,z = 0): This point lies aong the axial direction of the a, antenna, o its
contribution to the field will be zero. This leavesthe a, antenna, and since 8 = 90°, only the Egy,
component will be present (as (82) and (83) show). Since we arein the far zone, (84) applies. We
used =90° d = 0.1, A = 27, n = no = 120, and r = 1000 to write;

lodn . /5(0.1)(1207) _ .
snde’ Tr/A — j1000

20 onve % = 4ra000) ¢

= j(15x 1072 /1005, = _j (1.5 x 1072)¢ /1003 v/m

Es = Egsa9 = J

b) (O, 0, 1000): Along the z axis, only the a, antennawill contribute to the field. Since the distance
is the same, we can apply the part a result, modified such the the field direction is in —a,:
Ey = —j(L5x 1072)e=/10%03, v/m

€) (1000, 0, 0): Here, both antennas will contribute. Applying the results of parts a and b, we find
E, = —j(L5x 107%)(ay + &,).

d) Find E at (1000, 0, 0) at = 0: Thisisfound through

E(r) = Re(Esej‘”’> = (1.5 x 10-2) sin(ewr — 1000)(a, + a;)
Evaluating at r = 0, wefind
E(0) = (1.5 x 1072)[— sin(1000)](a, + a;) = —(1.24 x 10~2)(a, + a;) V/m.

e) Find |E| at (1000, 0,0) at ¢+ = 0: Taking the magnitude of the part d result, we find |[E| =
1.75x 1072 V/m.
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14.24. A short current element has d = 0.03A. Calculate the radiation resistance for each of the following
current distributions:
a) uniform: In this case, (86) applies directly and we find

d 2
Ryaq = 802 (X) = 8072(.03)> = 0.711Q

b) linear, I(z) = I0(0.5d — |z])/0.5d: Here, the average current is 0.51p, and so the average power
drops by afactor of 0.25. Theradiation resistance therefore is down to one-fourth the value found
inpart a, or R,qq = (0.25)(0.711) = 0.178 Q2.

C) step, Ipfor 0 < |z| < 0.25d and 0.51 for 0.25d < |z| < 0.5d: Inthis casethe average current on
the wireis 0.751p. The radiated power (and radiation resistance) are down to afactor of (0.75)2
times their values for a uniform current, and so R4y = (0.75)%(0.711) = 0.400 2.

14.25. A dipole antennain free space has alinear current distribution. If the length is 0.02, what value of Iy
isrequired to:

a) provide aradiation-field amplitude of 100 mV/m at a distance of one mile, at 6 = 90°: With a
linear current distribution, the peak current, I, occursat the center of the dipole; current decreases
linearly to zero at the two ends. The average current isthus /Io/2, and we use Eq. (84) to write:

lodn

_ 0 . on 10(0.02)(1207)
Eol = 5, SO0 = 0 5280) (12)(0.0254)

—01 = Iop=854A

b) radiate atotal power of 1 watt? We use

1\ /1,
Pavg: Z EIoRrad

where the radiation resistance is given by Eqg. (86), and where the factor of 1/4 arises from the
average current of Io/2: We obtain Pay, = 107212(0.02)> =1 = Io=5.03A.

14.26. A monopole antenna in free space, extending vertically over a perfectly conducting plane, has alinear
current distribution. If the length of the antennais 0.011, what value of I isrequired to
a) provide aradiation field amplitude of 100 mV/m at a distance of 1 mi, at 6 = 90°: The image
antenna below the plane provides aradiation pattern that isidentical to a dipole antenna of length
0.021. Theradiationfield isthusgiven by (84) in free space, where6 = 90°, and with an additional
factor of 1/2 included to account for the linear current distribution:

—3
1 Todno L e 4r|Eg| _ 4(5289)(12 x .0254)(100 x 10~%) _ g5 4 A
2 2ur (d/Mno (.02)(377)

b) radiate atotal power of 1W: For the monopole over the conducting plane, power is radiated only
over the upper half-space. This reduces the radiation resistance of the equivalent dipole antenna
by afactor of one-half. Additionally, thelinear current distribution reducesthe radiation resistance
of a dipole having uniform current by a factor of one-fourth. Therefore, R, .4 IS one-eighth the
value obtained from (86), or R,.q = 107r%(d/2)?. The current magnitude is now

Io= [Zpﬂv]l/z_ [L}m_i
"7 Raa] ~ L1022@/02] T J107(02)

=7.1A
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14.27. Theradiation field of acertain short vertical current element is Eg, = (20/r) sin6 e /1977 Vimifitis
located at the origin in free space.

a)

b)

Find Eg, a P(r = 100, 6 = 90°, ¢ = 30°): Substituting these valuesinto the given formula, find

20 . .
Eps = H) Sin(QOO)e—]lOn(loo) — 0.26_]1000” V/m

Find Ey; at P if the vertical element is located at A(0.1, 90°, 90°): This places the element on
they axisat y = 0.1. Asaresult of moving the antennafrom the originto y = 0.1, the changein
distance to point P is negligible when considering the changein field amplitude, but is not when
considering the change in phase. Consider lines drawn from the origin to P and from y = 0.1
to P. These lines can be considered essentially parallel, and so the difference in their lengths is
[ = 0.1sin(30°), with the line from y = 0.1 being shorter by this amount. The construction and
arguments are similar to those used in the discussion of the electric dipolein Sec. 4.7. Theelectric
field isnow the result of part a, modified by including a shorter distance, r, in the phase term only.
We show this as an additional phase factor:

Epy = 0.2¢710007 ,j107(0.18n30 _ () 5,—j10007 ,jO57 \/ /pmy

Find Ey, a P if identica elements are located at A(0.1, 90°, 90°) and B(0.1, 90°, 270°): The
origina element of part b is till in place, but a new one has been added at y = —0.1. Again,
constructing a line between B and P, we find, using the same arguments as in part b, that the
length of thislineisapproximately 0.1 sin(30°) longer than the distance from the originto P. The
part b result isthus modified to include the contribution from the second el ement, whose field will
add to that of thefirst:

Eps = 0.2¢7 /10007 (o108 . (=J05T) — 0.2¢=/10007 2 cog(0.57) = 0

The two fields are out of phase at P under the approximations we have used.
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