
CHAPTER 14

14.1. A parallel-plate waveguide is known to have a cutoff wavelength for the m = 1 TE and TM modes of
λc1 = 0.4 cm. The guide is operated at wavelength λ = 1 mm. How many modes propagate? The
cutoff wavelength for mode m is λcm = 2nd/m, where n is the refractive index of the guide interior.
For the first mode, we are given

λc1 = 2nd

1
= 0.4 cm ⇒ d = 0.4

2n
= 0.2

n
cm

Now, for mode m to propagate, we require

λ ≤ 2nd

m
= 0.4

m
⇒ m ≤ 0.4

λ
= 0.4

0.1
= 4

So, accounting for 2 modes (TE and TM) for each value of m, and the single TEM mode, we will have
a total of 9 modes.

14.2. A parallel-plate guide is to be constructed for operation in the TEM mode only over the frequency range
0 < f < 3 GHz. The dielectric between plates is to be teflon (ε′

R = 2.1). Determine the maximum
allowable plate separation, d: We require that f < fc1, which, using (7), becomes

f <
c

2nd
⇒ dmax = c

2nfmax

= 3 × 108

2
√

2.1 (3 × 109)
= 3.45 cm

14.3. A lossless parallel-plate waveguide is known to propagate the m = 2 TE and TM modes at frequencies
as low as 10GHz. If the plate separation is 1 cm, determine the dielectric constant of the medium
between plates: Use

fc2 = c

nd
= 3 × 1010

n(1)
= 1010 ⇒ n = 3 or εR = 9

14.4. A d = 1 cm parallel-plate guide is made with glass (n = 1.45) between plates. If the operating
frequency is 32 GHz, which modes will propagate? For a propagating mode, we require f > fcm

Using (7) and the given values, we write

f >
mc

2nd
⇒ m <

2f nd

c
= 2(32 × 109)(1.45)(.01)

3 × 108 = 3.09

The maximum allowed m in this case is thus 3, and the propagating modes will be TM1, TE1, TM2,
TE2, TM3, and TE3.

14.5. For the guide of Problem 14.4, and at the 32 GHz frequency, determine the difference between the group
delays of the highest order mode (TE or TM) and the TEM mode. Assume a propagation distance of 10
cm: From Problem 14.4, we found mmax = 3. The group velocity of a TE or TM mode for m = 3 is

vg3 = c

n

√
1 −

(
fc3

f

)2

where fc3 = 3(3 × 1010)

2(1.45)(1)
= 3.1 × 1010 = 31 GHz
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14.5. (continued) Thus

vg3 = 3 × 1010

1.45

√
1 −

(
31

32

)2

= 5.13 × 109 cm/s

For the TEM mode (assuming no material dispersion) vg,T EM = c/n = 3 × 1010/1.45 = 2.07 × 1010

cm/s. The group delay difference is now

�tg = z

(
1

vg3
− 1

vg,T EM

)
= 10

(
1

5.13 × 109 − 1

2.07 × 1010

)
= 1.5 ns

14.6. The cutoff frequency of the m = 1 TE and TM modes in a parallel-plate guide is known to be fc1 = 7.5
GHz. The guide is used at wavelength λ = 1.5 cm. Find the group velocity of the m = 2 TE and TM
modes. First we know that fc2 = 2fc1 = 15 GHz. Then f = c/λ = 3 × 108/.015 = 20 GHz. Now,
using (23),

vg2 = c

n

√
1 −

(
fc2

f

)2

= c

n

√
1 −

(
15

20

)2

= 2 × 108/n m/s

n was not specified in the problem.

14.7. A parallel-plate guide is partially filled with two lossless dielectrics (Fig. 14.23) where ε′
R1 = 4.0,

ε′
R2 = 2.1, and d = 1 cm. At a certain frequency, it is found that the TM1 mode propagates through

the guide without suffering any reflective loss at the dielectric interface.
a) Find this frequency: The ray angle is such that the wave is incident on the interface at Brewster’s

angle. In this case

θB = tan−1

√
2.1

4.0
= 35.9◦

The ray angle is thus θ = 90 − 35.9 = 54.1◦. The cutoff frequency for the m = 1 mode is

fc1 = c

2d

√
ε′
R1

= 3 × 1010

2(1)(2)
= 7.5 GHz

The frequency is thus f = fc1/ cos θ = 7.5/ cos(54.1◦) = 12.8 GHz.

b) Is the guide operating at a single TM mode at the frequency found in part a? The cutoff frequency
for the next higher mode, TM2 is fc2 = 2fc1 = 15 GHz. The 12.8 GHz operating frequency is
below this, so TM2 will not propagate. So the answer is yes.

14.8. In the guide of Problem 14.7, it is found that m = 1 modes propagating from left to right totally reflect
at the interface, so that no power is transmitted into the region of dielectric constant ε′

R2.
a) Determine the range of frequencies over which this will occur: For total reflection, the ray angle

measured from the normal to the interface must be greater than or equal to the critical angle, θc,
where sin θc = (ε′

R2/ε
′
R1)

1/2. The minimum mode ray angle is then θ1 min = 90◦ −θc. Now, using
(5), we write

90◦ − θc = cos−1
(

π

kmind

)
= cos−1

(
πc

2πfmind
√

4

)
= cos−1

(
c

4dfmin

)
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14.8a. (continued)
Now

cos(90 − θc) = sin θc =
√

ε′
R2

ε′
R1

= c

4dfmin

Therefore fmin = c/(2
√

2.1d) = (3 × 108)/(2
√

2.1(.01)) = 10.35 GHz. The frequency range is
thus f > 10.35 GHz.

b) Does your part a answer in any way relate to the cutoff frequency for m = 1 modes in any region?
We note that fmin = c/(2

√
2.1d) = fc1 in guide 2. To summarize, as frequency is lowered, the

ray angle in guide 1 decreases, which leads to the incident angle at the interface increasing to
eventually reach and surpass the critical angle. At the critical angle, the refracted angle in guide 2
is 90◦, which corresponds to a zero degree ray angle in that guide. This defines the cutoff condition
in guide 2. So it would make sense that fmin = fc1(guide 2).

14.9. A rectangular waveguide has dimensions a = 6 cm and b = 4 cm.
a) Over what range of frequencies will the guide operate single mode? The cutoff frequency for

mode mp is, using Eq. (54):

fc,mn = c

2n

√(m

a

)2 +
(p

b

)2

where n is the refractive index of the guide interior. We require that the frequency lie between the
cutoff frequencies of the T E10 and T E01 modes. These will be:

fc10 = c

2na
= 3 × 108

2n(.06)
= 2.5 × 109

n

fc01 = c

2nb
= 3 × 108

2n(.04)
= 3.75 × 109

n

Thus, the range of frequencies over which single mode operation will occur is

2.5

n
GHz < f <

3.75

n
GHz

b) Over what frequency range will the guide support both T E10 and T E01 modes and no others? We
note first that f must be greater than fc01 to support both modes, but must be less than the cutoff
frequency for the next higher order mode. This will be fc11, given by

fc11 = c

2n

√(
1

.06

)2

+
(

1

.04

)2

= 30c

2n
= 4.5 × 109

n

The allowed frequency range is then

3.75

n
GHz < f <

4.5

n
GHz
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14.10. Two rectangular waveguides are joined end-to-end. The guides have identical dimensions, where
a = 2b. One guide is air-filled; the other is filled with a lossless dielectric characterized by ε′

R .
a) Determine the maximum allowable value of ε′

R such that single mode operation can be simultane-
ously ensured in both guides at some frequency: Since a = 2b, the cutoff frequency for any mode
in either guide is written using (54):

fcmp =
√( mc

4nb

)2 +
( pc

2nb

)2

where n = 1 in guide 1 and n =
√

ε′
R in guide 2. We see that, with a = 2b, the next modes (having

the next higher cutoff frequency) above TE10 with be TE20 and TE01. We also see that in general,
fcmp(guide 2) < fcmp(guide 1). To assure single mode operation in both guides, the operating
frequency must be above cutoff for TE10 in both guides, and below cutoff for the next mode in
both guides. The allowed frequency range is therefore fc10(guide 1) < f < fc20(guide 2). This

leads to c/(2a) < f < c/(a

√
ε′
R). For this range to be viable, it is required that ε′

R < 4.

b) Write an expression for the frequency range over which single mode operation will occur in both
guides; your answer should be in terms of ε′

R , guide dimensions as needed, and other known
constants: This was already found in part a:

c

2a
< f <

c√
ε′
R a

where ε′
R < 4.

14.11. An air-filled rectangular waveguide is to be constructed for single-mode operation at 15 GHz. Specify
the guide dimensions, a and b, such that the design frequency is 10/while being 10% lower than the
cutoff frequency for the next higher-order mode: For an air-filled guide, we have

fc,mp =
√(mc

2a

)2 +
(pc

2b

)2

For TE10 we have fc10 = c/2a, while for the next mode (TE01), fc01 = c/2b. Our requirements state
that f = 1.1fc10 = 0.9fc01. So fc10 = 15/1.1 = 13.6 GHz and fc01 = 15/0.9 = 16.7 GHz. The
guide dimensions will be

a = c

2fc10
= 3 × 1010

2(13.6 × 109)
= 1.1 cm and b = c

2fc01
= 3 × 1010

2(16.7 × 109)
= 0.90 cm

14.12. Using the relation Pav = (1/2)Re{Es × H∗
s }, and Eqs. (44) through (46), show that the average power

density in the TE10 mode in a rectangular waveguide is given by

Pav = β10

2ωµ
E2

0 sin2(κ10x) az W/m2

(note that the sin term is erroneously to the first power in the original problem statement). Inspecting
(44) through (46), we see that (46) includes a factor of j , and so would lead to an imaginary part of the
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total power when the cross product with Ey is taken. Therefore, the real power in this case is found
through the cross product of (44) with the complex conjugate of (45), or

Pav = 1

2
Re

{
Eys × H∗

xs

} = β10

2ωµ
E2

0 sin2(κ10x) az W/m2

14.13. Integrate the result of Problem 14.12 over the guide cross-section 0 < x < a, 0 < y < b, to show that
the power in Watts transmitted down the guide is given as

P = β10ab

4ωµ
E2

0 = ab

4η
E2

0 sin θ10 W

where η = √
µ/ε (note misprint in problem statement), and θ10 is the wave angle associated with the

TE10 mode. Interpret. First, the integration:

P =
∫ b

0

∫ a

0

β10

2ωµ
E2

0 sin2(κ10x) az · az dx dy = β10ab

4ωµ
E2

0

Next, from (20), we have β10 = ω
√

µε sin θ10, which, on substitution, leads to

P = ab

4η
E2

0 sin θ10 W with η =
√

µ

ε

The sin θ10 dependence demonstrates the principle of group velocity as energy velocity (or power).
This was considered in the discussion leading to Eq. (23).

14.14. Show that the group dispersion parameter, d2β/dω2, for given mode in a parallel-plate or rectangular
waveguide is given by

d2β

dω2 = − n

ωc

(ωc

ω

)2
[

1 −
(ωc

ω

)2
]−3/2

where ωc is the radian cutoff frequency for the mode in question (note that the first derivative form was
already found, resulting in Eq. (23)). First, taking the reciprocal of (23), we find

dβ

dω
= n

c

[
1 −

(ωc

ω

)2
]−1/2

Taking the derivative of this equation with respect to ω leads to

d2β

dω2 = n

c

(
−1

2

) [
1 −

(ωc

ω

)2
]−3/2 (

2ω2
c

ω3

)
= − n

ωc

(ωc

ω

)2
[

1 −
(ωc

ω

)2
]−3/2

14.15. Consider a transform-limited pulse of center frequency f = 10 GHz and of full-width 2T = 1.0 ns.
The pulse propagates in a lossless single mode rectangular guide which is air-filled and in which the
10 GHz operating frequency is 1.1 times the cutoff frequency of the T E10 mode. Using the result of
Problem 14.14, determine the length of the guide over which the pulse broadens to twice its initial
width: The broadened pulse will have width given by T ′ =

√
T 2 + (�τ)2, where �τ = β2L/T for a

transform limited pulse (assumed gaussian). β2 is the Problem 14.14 result evaluated at the operating
frequency, or

β2 = d2β

dω2 |ω=10 GHz = − 1

(2π × 1010)(3 × 108)

(
1

1.1

)2
[

1 −
(

1

1.1

)2
]−3/2

= 6.1 × 10−19 s2/m = 0.61 ns2/m

Now �τ = 0.61L/0.5 = 1.2L ns. For the pulse width to double, we have T ′ = 1 ns, and√
(.05)2 + (1.2L)2 = 1 ⇒ L = 0.72 m = 72 cm
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14.15. (continued)

What simple step can be taken to reduce the amount of pulse broadening in this guide, while maintaining
the same initial pulse width? It can be seen that β2 can be reduced by increasing the operating frequency
relative to the cutoff frequency; i.e., operate as far above cutoff as possible, without allowing the next
higher-order modes to propagate.

14.16. A symmetric dielectric slab waveguide has a slab thickness d = 10 µm, with n1 = 1.48 and n2 = 1.45.
If the operating wavelength is λ = 1.3 µm, what modes will propagate? We use the condition expressed

through (77): k0d

√
n2

1 − n2
2 ≥ (m − 1)π . Since k0 = 2π/λ, the condition becomes

2d

λ

√
n2

1 − n2
2 ≥ (m − 1) ⇒ 2(10)

1.3

√
(1.48)2 − (1.45)2 = 4.56 ≥ m − 1

Therefore, mmax = 5, and we have TE and TM modes for which m = 1, 2, 3, 4, 5 propagating (ten
total).

14.17. A symmetric slab waveguide is known to support only a single pair of TE and TM modes at wavelength
λ = 1.55 µm. If the slab thickness is 5 µm, what is the maximum value of n1 if n2 = 3.3 (assume
3.30)? Using (78) we have

2πd

λ

√
n2

1 − n2
2 < π ⇒ n1 <

√
λ

2d
+ n2

2 =
√

1.55

2(5)
+ (3.30)2 = 3.32

14.18. n1 = 1.50, n2 = 1.45, and d = 10 µm in a symmetric slab waveguide (note that the index values were
reversed in the original problem statement).

a) What is the phase velocity of the m = 1 TE or TM mode at cutoff? At cutoff, the mode propagates
in the slab at the critical angle, which means that the phase velocity will be equal to that of a
plane wave in the upper or lower media of index n2. Phase velocity will therefore be vp(cutoff) =
c/n2 = 3 × 108/1.45 = 2.07 × 108 m/s.

b) What is the phase velocity of the m = 2 TE or TM modes at cutoff? The reasoning of part a

applies to all modes, so the answer is the same, or 2.07 × 108 m/s.

14.19. An asymmetric slab waveguide is shown in Fig. 14.24. In this case, the regions above and below the
slab have unequal refractive indices, where n1 > n3 > n2 (note error in problem statement).

a) Write, in terms of the appropriate indices, an expression for the minimum possible wave angle, θ1,
that a guided mode may have: The wave angle must be equal to or greater than the critical angle
of total reflection at both interfaces. The minimum wave angle is thus determined by the greater
of the two critical angles. Since n3 > n2, we find θmin = θc,13 = sin−1(n3/n1).

b) Write an expression for the maximum phase velocity a guided mode may have in this structure,
using given or known parameters: We have vp,max = ω/βmin, where βmin = n1k0 sin θ1,min =
n1k0n3/n1 = n3k0. Thus vp,max = ω/(n3k0) = c/n3.

14.20. A step index optical fiber is known to be single mode at wavelengths λ > 1.2 µm. Another fiber is
to be fabricated from the same materials, but is to be single mode at wavelengths λ > 0.63 µm. By
what percentage must the core radius of the new fiber differ from the old one, and should it be larger or
smaller? We use the cutoff condition, given by (80):

λ >
2πa

2.405

√
n2

1 − n2
2
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14.20. (continued) With λ reduced, the core radius, a, must also be reduced by the same fraction. Therefore,
the percentage reduction required in the core radius will be

% = 1.2 − .63

1.2
× 100 = 47.5%

14.21. A short dipole carrying current I0 cos ωt in the az direction is located at the origin in free space.
a) If β = 1 rad/m, r = 2 m, θ = 45◦, φ = 0, and t = 0, give a unit vector in rectangular components

that shows the instantaneous direction of E: In spherical coordinates, the components of E are
given by (82) and (83):

Er = I0dη

2π
cos θe−j2πr/λ

(
1

r2 + λ

j2πr3

)

Eθ = I0dη

4π
sin θe−j2πr/λ

(
j

2π

λr
+ 1

r2 + λ

j2πr3

)
Since we want a unit vector at t = 0, we need only the relative amplitudes of the two components,
but we need the absolute phases. Since θ = 45◦, sin θ = cos θ = 1/

√
2. Also, with β = 1 =

2π/λ, it follows that λ = 2π m. The above two equations can be simplified by these substitutions,
while dropping all amplitude terms that are common to both. Obtain

Ar =
(

1

r2 + 1

jr3

)
e−jr

Aθ = 1

2

(
j

1

r
+ 1

r2 + 1

jr3

)
e−jr

Now with r = 2 m, we obtain

Ar =
(

1

4
− j

1

8

)
e−j2 = 1

4
(1.12)e−j26.6◦

e−j2

Aθ =
(

j
1

4
+ 1

8
− j

1

16

)
e−j2 = 1

4
(0.90)ej56.3◦

e−j2

The total vector is now A = Arar + Aθ aθ . We can normalize the vector by first finding the
magnitude:

|A| =
√

A · A∗ = 1

4

√
(1.12)2 + (0.90)2 = 0.359

Dividing the field vector by this magnitude and converting 2 rad to 114.6◦, we write the normalized
vector as

ANs = 0.780e−j141.2◦
ar + 0.627e−58.3◦

aθ

In real instantaneous form, this becomes

AN(t) = Re
(

ANse
jωt

)
= 0.780 cos(ωt − 141.2◦)ar + 0.627 cos(ωt − 58.3◦)aθ

We evaluate this at t = 0 to find

AN(0) = 0.780 cos(141.2◦)ar + 0.627 cos(58.3◦)aθ = −0.608ar + 0.330aθ
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14.21a. (continued)

Dividing by the magnitude,
√

(0.608)2 + (0.330)2 = 0.692, we obtain the unit vector at t = 0:
aN(0) = −0.879ar + 0.477aθ . We next convert this to cartesian components:

aNx = aN(0) · ax = −0.879 sin θ cos φ + 0.477 cos θ cos φ = 1√
2

(−0.879 + 0.477) = −0.284

aNy = aN(0) · ay = −0.879 sin θ sin φ + 0.477 cos θ sin φ = 0 since φ = 0

aNz = aN(0) · az = −0.879 cos θ − 0.477 sin θ = 1√
2

(−0.879 − 0.477) = −0.959

The final result is then
aN(0) = −0.284ax − 0.959az

b) What fraction of the total average power is radiated in the belt, 80◦ < θ < 100◦? We use the
far-zone phasor fields, (84) and (85), and first find the average power density:

Pavg = 1

2
Re[EθsH

∗
φs] = I 2

0 d2η

8λ2r2 sin2 θ W/m2

We integrate this over the given belt, an at radius r:

Pbelt =
∫ 2π

0

∫ 100◦

80◦

I 2
0 d2η

8λ2r2 sin2 θ r2 sin θ dθ dφ = πI 2
0 d2η

4λ2

∫ 100◦

80◦
sin3 θ dθ

Evaluating the integral, we find

Pbelt = πI 2
0 d2η

4λ2

[
−1

3
cos θ

(
sin2 θ + 2

)]100

80
= (0.344)

πI 2
0 d2η

4λ2

The total power is found by performing the same integral over θ , where 0 < θ < 180◦. Doing
this, it is found that

Ptot = (1.333)
πI 2

0 d2η

4λ2

The fraction of the total power in the belt is then f = 0.344/1.333 = 0.258.

14.22. Prepare a curve, r vs. θ in polar coordinates, showing the locus in the φ = 0 plane where:
a) the radiation field |Eθs | is one-half of its value at r = 104 m, θ = π/2: Assuming the far field

approximation, we use (84) to set up the equation:

|Eθs | = I0dη

2λr
sin θ = 1

2
× I0dη

2 × 104λ
⇒ r = 2 × 104 sin θ

b) the average radiated power density, Pr,av , is one-half of its value at r = 104 m, θ = π/2. To find
the average power, we use (84) and (85) in

Pr,av = 1

2
Re{EθsH

∗
φs} = 1

2

I 2
0 d2η

4λ2r2 sin2 θ = 1

2
× 1

2

I 2
0 d2η

4λ2(108)
⇒ r =

√
2 × 104 sin θ
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14.22. (continued) The polar plots for field (r = 2 × 104 sin θ ) and power (r = √
2 × 104 sin θ ) are shown

below. Both are circles.

14.23. Two short antennas at the origin in free space carry identical currents of 5 cos ωt A, one in the az

direction, one in the ay direction. Let λ = 2π m and d = 0.1 m. Find Es at the distant point:
a) (x = 0, y = 1000, z = 0): This point lies along the axial direction of the ay antenna, so its

contribution to the field will be zero. This leaves the az antenna, and since θ = 90◦, only the Eθs

component will be present (as (82) and (83) show). Since we are in the far zone, (84) applies. We
use θ = 90◦, d = 0.1, λ = 2π , η = η0 = 120π , and r = 1000 to write:

Es = Eθsaθ = j
I0dη

2λr
sin θe−j2πr/λ aθ = j

5(0.1)(120π)

4π(1000)
e−j1000 aθ

= j (1.5 × 10−2)e−j1000 aθ = −j (1.5 × 10−2)e−j1000 az V/m

b) (0, 0, 1000): Along the z axis, only the ay antenna will contribute to the field. Since the distance
is the same, we can apply the part a result, modified such the the field direction is in −ay :
Es = −j (1.5 × 10−2)e−j1000 ay V/m

c) (1000, 0, 0): Here, both antennas will contribute. Applying the results of parts a and b, we find
Es = −j (1.5 × 10−2)(ay + az).

d) Find E at (1000, 0, 0) at t = 0: This is found through

E(t) = Re
(

Ese
jωt

)
= (1.5 × 10−2) sin(ωt − 1000)(ay + az)

Evaluating at t = 0, we find
E(0) = (1.5 × 10−2)[− sin(1000)](ay + az) = −(1.24 × 10−2)(ay + az) V/m.

e) Find |E| at (1000, 0, 0) at t = 0: Taking the magnitude of the part d result, we find |E| =
1.75 × 10−2 V/m.
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14.24. A short current element has d = 0.03λ. Calculate the radiation resistance for each of the following
current distributions:

a) uniform: In this case, (86) applies directly and we find

Rrad = 80π2
(

d

λ

)2

= 80π2(.03)2 = 0.711 �

b) linear, I (z) = I0(0.5d − |z|)/0.5d: Here, the average current is 0.5I0, and so the average power
drops by a factor of 0.25. The radiation resistance therefore is down to one-fourth the value found
in part a, or Rrad = (0.25)(0.711) = 0.178 �.

c) step, I0 for 0 < |z| < 0.25d and 0.5I0 for 0.25d < |z| < 0.5d: In this case the average current on
the wire is 0.75I0. The radiated power (and radiation resistance) are down to a factor of (0.75)2

times their values for a uniform current, and so Rrad = (0.75)2(0.711) = 0.400 �.

14.25. A dipole antenna in free space has a linear current distribution. If the length is 0.02λ, what value of I0
is required to:

a) provide a radiation-field amplitude of 100 mV/m at a distance of one mile, at θ = 90◦: With a
linear current distribution, the peak current, I0, occurs at the center of the dipole; current decreases
linearly to zero at the two ends. The average current is thus I0/2, and we use Eq. (84) to write:

|Eθ | = I0dη0

4λr
sin(90◦) = I0(0.02)(120π)

(4)(5280)(12)(0.0254)
= 0.1 ⇒ I0 = 85.4 A

b) radiate a total power of 1 watt? We use

Pavg =
(

1

4

) (
1

2
I 2

0 Rrad

)

where the radiation resistance is given by Eq. (86), and where the factor of 1/4 arises from the
average current of I0/2: We obtain Pavg = 10π2I 2

0 (0.02)2 = 1 ⇒ I0 = 5.03 A.

14.26. A monopole antenna in free space, extending vertically over a perfectly conducting plane, has a linear
current distribution. If the length of the antenna is 0.01λ, what value of I0 is required to

a) provide a radiation field amplitude of 100 mV/m at a distance of 1 mi, at θ = 90◦: The image
antenna below the plane provides a radiation pattern that is identical to a dipole antenna of length
0.02λ. The radiation field is thus given by (84) in free space, where θ = 90◦, and with an additional
factor of 1/2 included to account for the linear current distribution:

|Eθ | = 1

2

I0dη0

2λr
⇒ I0 = 4r|Eθ |

(d/λ)η0
= 4(5289)(12 × .0254)(100 × 10−3)

(.02)(377)
= 85.4 A

b) radiate a total power of 1W: For the monopole over the conducting plane, power is radiated only
over the upper half-space. This reduces the radiation resistance of the equivalent dipole antenna
by a factor of one-half. Additionally, the linear current distribution reduces the radiation resistance
of a dipole having uniform current by a factor of one-fourth. Therefore, Rrad is one-eighth the
value obtained from (86), or Rrad = 10π2(d/λ)2. The current magnitude is now

I0 =
[

2Pav

Rrad

]1/2

=
[

2(1)

10π2(d/λ)2

]1/2

=
√

2√
10 π(.02)

= 7.1 A
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14.27. The radiation field of a certain short vertical current element is Eθs = (20/r) sin θ e−j10πr V/m if it is
located at the origin in free space.

a) Find Eθs at P(r = 100, θ = 90◦, φ = 30◦): Substituting these values into the given formula, find

Eθs = 20

100
sin(90◦)e−j10π(100) = 0.2e−j1000π V/m

b) Find Eθs at P if the vertical element is located at A(0.1, 90◦, 90◦): This places the element on
the y axis at y = 0.1. As a result of moving the antenna from the origin to y = 0.1, the change in
distance to point P is negligible when considering the change in field amplitude, but is not when
considering the change in phase. Consider lines drawn from the origin to P and from y = 0.1
to P . These lines can be considered essentially parallel, and so the difference in their lengths is
l

.= 0.1 sin(30◦), with the line from y = 0.1 being shorter by this amount. The construction and
arguments are similar to those used in the discussion of the electric dipole in Sec. 4.7. The electric
field is now the result of part a, modified by including a shorter distance, r , in the phase term only.
We show this as an additional phase factor:

Eθs = 0.2e−j1000πej10π(0.1 sin 30 = 0.2e−j1000πej0.5π V/m

c) Find Eθs at P if identical elements are located at A(0.1, 90◦, 90◦) and B(0.1, 90◦, 270◦): The
original element of part b is still in place, but a new one has been added at y = −0.1. Again,
constructing a line between B and P , we find, using the same arguments as in part b, that the
length of this line is approximately 0.1 sin(30◦) longer than the distance from the origin to P . The
part b result is thus modified to include the contribution from the second element, whose field will
add to that of the first:

Eθs = 0.2e−j1000π
(
ej0.5π + e−j0.5π

)
= 0.2e−j1000π2 cos(0.5π) = 0

The two fields are out of phase at P under the approximations we have used.
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