
CHAPTER 3

3.1. An empty metal paint can is placed on a marble table, the lid is removed, and both parts are discharged
(honorably) by touching them to ground. An insulating nylon thread is glued to the center of the lid,
and a penny, a nickel, and a dime are glued to the thread so that they are not touching each other. The
penny is given a charge of +5 nC, and the nickel and dime are discharged. The assembly is lowered
into the can so that the coins hang clear of all walls, and the lid is secured. The outside of the can is
again touched momentarily to ground. The device is carefully disassembled with insulating gloves and
tools.

a) What charges are found on each of the five metallic pieces? All coins were insulated during the
entire procedure, so they will retain their original charges: Penny: +5 nC; nickel: 0; dime: 0. The
penny’s charge will have induced an equal and opposite negative charge (-5 nC) on the inside wall
of the can and lid. This left a charge layer of +5 nC on the outside surface which was neutralized
by the ground connection. Therefore, the can retained a net charge of −5 nC after disassembly.

b) If the penny had been given a charge of +5 nC, the dime a charge of −2 nC, and the nickel a
charge of −1 nC, what would the final charge arrangement have been? Again, since the coins are
insulated, they retain their original charges. The charge induced on the inside wall of the can and
lid is equal to negative the sum of the coin charges, or −2 nC. This is the charge that the can/lid
contraption retains after grounding and disassembly.

3.2. A point charge of 12 nC is located at the origin. four uniform line charges are located in the x = 0
plane as follows: 80 nC/m at y = −1 and −5 m, −50 nC/m at y = −2 and −4 m.

a) Find D at P(0,−3, 2): Note that this point lies in the center of a symmetric arrangement of line
charges, whose fields will all cancel at that point. Thus D arise from the point charge alone, and
will be

D = 12 × 10−9(−3ay + 2az)
4π(32 + 22)1.5

= −6.11 × 10−11ay + 4.07 × 10−11az C/m2

= −61.1ay + 40.7az pC/m2

b) How much electric flux crosses the plane y = −3 and in what direction? The plane intercepts all
flux that enters the −y half-space, or exactly half the total flux of 12 nC. The answer is thus 6 nC
and in the −ay direction.

c) How much electric flux leaves the surface of a sphere, 4m in radius, centered at C(0,−3, 0)? This
sphere encloses the point charge, so its flux of 12 nC is included. The line charge contributions
are most easily found by translating the whole assembly (sphere and line charges) such that the
sphere is centered at the origin, with line charges now at y = ±1 and ±2. The flux from the line
charges will equal the total line charge that lies within the sphere. The length of each of the inner
two line charges (at y = ±1) will be

h1 = 2r cos θ1 = 2(4) cos

[
sin−1

(
1

4

)]
= 1.94 m

That of each of the outer two line charges (at y = ±2) will be

h2 = 2r cos θ2 = 2(4) cos

[
sin−1

(
2

4

)]
= 1.73 m
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3.2c. (continued) The total charge enclosed in the sphere (and the outward flux from it) is now

Ql +Qp = 2(1.94)(−50 × 10−9)+ 2(1.73)(80 × 10−9)+ 12 × 10−9 = 348 nC

3.3. The cylindrical surface ρ = 8 cm contains the surface charge density, ρs = 5e−20|z| nC/m2.
a) What is the total amount of charge present? We integrate over the surface to find:

Q = 2
∫ ∞

0

∫ 2π

0
5e−20z(.08)dφ dz nC = 20π(.08)

(−1

20

)
e−20z

∣∣∣∣∣
∞

0

= 0.25 nC

b) How much flux leaves the surface ρ = 8 cm, 1 cm < z < 5cm, 30◦ < φ < 90◦? We just integrate
the charge density on that surface to find the flux that leaves it.

� = Q′ =
∫ .05

.01

∫ 90◦

30◦
5e−20z(.08) dφ dz nC =

(
90 − 30

360

)
2π(5)(.08)

(−1

20

)
e−20z

∣∣∣∣∣
.05

.01

= 9.45 × 10−3 nC = 9.45 pC

3.4. The cylindrical surfaces ρ = 1, 2, and 3 cm carry uniform surface charge densities of 20, −8, and 5
nC/m2, respectively.

a) How much electric flux passes through the closed surface ρ = 5 cm, 0 < z < 1 m? Since the
densities are uniform, the flux will be

� = 2π(aρs1 + bρs2 + cρs3)(1 m) = 2π [(.01)(20)− (.02)(8)+ (.03)(5)] × 10−9 = 1.2 nC

b) Find D at P(1 cm, 2 cm, 3 cm): This point lies at radius
√

5 cm, and is thus inside the outermost
charge layer. This layer, being of uniform density, will not contribute to D at P . We know that in
cylindrical coordinates, the layers at 1 and 2 cm will produce the flux density:

D = Dρaρ = aρs1 + bρs2

ρ
aρ

or

Dρ = (.01)(20)+ (.02)(−8)√
.05

= 1.8 nC/m2

At P , φ = tan−1(2/1) = 63.4◦. Thus Dx = 1.8 cosφ = 0.8 and Dy = 1.8 sin φ = 1.6. Finally,

DP = (0.8ax + 1.6ay) nC/m2
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3.5. Let D = 4xyax + 2(x2 + z2)ay + 4yzaz C/m2 and evaluate surface integrals to find the total charge
enclosed in the rectangular parallelepiped 0 < x < 2, 0 < y < 3, 0 < z < 5 m: Of the 6 surfaces to
consider, only 2 will contribute to the net outward flux. Why? First consider the planes at y = 0 and 3.
The y component of D will penetrate those surfaces, but will be inward at y = 0 and outward at y = 3,
while having the same magnitude in both cases. These fluxes will thus cancel. At the x = 0 plane,
Dx = 0 and at the z = 0 plane, Dz = 0, so there will be no flux contributions from these surfaces.
This leaves the 2 remaining surfaces at x = 2 and z = 5. The net outward flux becomes:

� =
∫ 5

0

∫ 3

0
D

∣∣
x=2 · ax dy dz+

∫ 3

0

∫ 2

0
D

∣∣
z=5 · az dx dy

= 5
∫ 3

0
4(2)y dy + 2

∫ 3

0
4(5)y dy = 360 C

3.6. Two uniform line charges, each 20 nC/m, are located at y = 1, z = ±1 m. Find the total flux leaving a
sphere of radius 2 m if it is centered at

a) A(3, 1, 0): The result will be the same if we move the sphere to the origin and the line charges to
(0, 0,±1). The length of the line charge within the sphere is given by l = 4 sin[cos−1(1/2)] =
3.46. With two line charges, symmetrically arranged, the total charge enclosed is given by Q =
2(3.46)(20 nC/m) = 139 nC

b) B(3, 2, 0): In this case the result will be the same if we move the sphere to the origin and keep
the charges where they were. The length of the line joining the origin to the midpoint of the line
charge (in the yz plane) is l1 = √

2. The length of the line joining the origin to either endpoint
of the line charge is then just the sphere radius, or 2. The half-angle subtended at the origin by
the line charge is then ψ = cos−1(

√
2/2) = 45◦. The length of each line charge in the sphere

is then l2 = 2 × 2 sinψ = 2
√

2. The total charge enclosed (with two line charges) is now
Q′ = 2(2

√
2)(20 nC/m) = 113 nC

3.7. Volume charge density is located in free space as ρv = 2e−1000r nC/m3 for 0 < r < 1 mm, and ρv = 0
elsewhere.

a) Find the total charge enclosed by the spherical surface r = 1 mm: To find the charge we integrate:

Q =
∫ 2π

0

∫ π

0

∫ .001

0
2e−1000r r2 sin θ dr dθ dφ

Integration over the angles gives a factor of 4π . The radial integration we evaluate using tables;
we obtain

Q = 8π

[−r2e−1000r

1000

∣∣∣.001

0
+ 2

1000

e−1000r

(1000)2
(−1000r − 1)

∣∣∣.001

0

]
= 4.0 × 10−9 nC

b) By using Gauss’s law, calculate the value of Dr on the surface r = 1 mm: The gaussian surface
is a spherical shell of radius 1 mm. The enclosed charge is the result of part a. We thus write
4πr2Dr = Q, or

Dr = Q

4πr2 = 4.0 × 10−9

4π(.001)2
= 3.2 × 10−4 nC/m2
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3.8. Uniform line charges of 5 nC/m ar located in free space at x = 1, z = 1, and at y = 1, z = 0.
a) Obtain an expression for D in cartesian coordinates at P(0, 0, z). In general, we have

D(z) = ρs

2π

[
r1 − r′

1

|r1 − r′
1|2

+ r2 − r′
2

|r2 − r′
2|2

]

where r1 = r2 = zaz, r′
1 = ay , and r′

2 = ax + az. Thus

D(z) = ρs

2π

[
[zaz − ay]

[1 + z2]
+ [(z− 1)az − ax]

[1 + (z− 1)2]

]

= ρs

2π

[ −ax
[1 + (z− 1)2]

− ay
[1 + z2]

+
(

(z− 1)

[1 + (z− 1)2]
+ z

[1 + z2]

)
az

]

b) Plot |D| vs. z at P , −3 < z < 10: Using part a, we find the magnitude of D to be

|D| = ρs

2π

[
1

[1 + (z− 1)2]2 + 1

[1 + z2]2 +
(

(z− 1)

[1 + (z− 1)2]
+ z

[1 + z2]

)2
]1/2

A plot of this over the specified range is shown in Prob3.8.pdf.

3.9. A uniform volume charge density of 80µC/m3 is present throughout the region 8 mm < r < 10 mm.
Let ρv = 0 for 0 < r < 8 mm.

a) Find the total charge inside the spherical surface r = 10 mm: This will be

Q =
∫ 2π

0

∫ π

0

∫ .010

.008
(80 × 10−6)r2 sin θ dr dθ dφ = 4π × (80 × 10−6)

r3

3

∣∣∣.010

.008

= 1.64 × 10−10 C = 164 pC

b) Find Dr at r = 10 mm: Using a spherical gaussian surface at r = 10, Gauss’ law is written as
4πr2Dr = Q = 164 × 10−12, or

Dr(10 mm) = 164 × 10−12

4π(.01)2
= 1.30 × 10−7 C/m2 = 130 nC/m2

c) If there is no charge for r > 10 mm, find Dr at r = 20 mm: This will be the same computation
as in part b, except the gaussian surface now lies at 20 mm. Thus

Dr(20 mm) = 164 × 10−12

4π(.02)2
= 3.25 × 10−8 C/m2 = 32.5 nC/m2

3.10. Let ρs = 8µC/m2 in the region where x = 0 and −4 < z < 4 m, and let ρs = 0 elsewhere. Find D at
P(x, 0, z), where x > 0: The sheet charge can be thought of as an assembly of infinitely-long parallel
strips that lie parallel to the y axis in the yz plane, and where each is of thickness dz. The field from
each strip is that of an infinite line charge, and so we can construct the field at P from a single strip as:

dDP = ρs dz
′

2π

r − r′

|r − r′|2
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3.10 (continued) where r = xax + zaz and r′ = z′az We distinguish between the fixed coordinate of P , z,
and the variable coordinate, z′, that determines the location of each charge strip. To find the net field at
P , we sum the contributions of each strip by integrating over z′:

DP =
∫ 4

−4

8 × 10−6 dz′ (xax + (z− z′)az)
2π [x2 + (z− z′)2]

We can re-arrange this to determine the integral forms:

DP = 8 × 10−6

2π

[
(xax + zaz)

∫ 4

−4

dz′

(x2 + z2)− 2zz′ + (z′)2
− az

∫ 4

−4

z′ dz′

(x2 + z2)− 2zz′ + (z′)2

]

Using integral tables, we find

DP = 4 × 10−6

π

[
(xax + zaz)

1

x
tan−1

(
2z′ − 2z

2x

)

−
[

1

2
ln(x2 + z2 − 2zz′ + (z′)2)+ 2z

2

1

x
tan−1

(
2z′ − 2z

2x

)]
az

]4

−4

which evaluates as

DP = 4 × 10−6

π

{[
tan−1

(
z+ 4

x

)
− tan−1

(
z− 4

x

)]
ax + 1

2
ln

[
x2 + (z+ 4)2

x2 + (z− 4)2

]
az

}
C/m2

The student is invited to verify that for very small x or for a very large sheet (allowing z′ to approach
infinity), the above expression reduces to the expected form, DP = ρs/2. Note also that the expression
is valid for all x (positive or negative values).

3.11. In cylindrical coordinates, let ρv = 0 for ρ < 1 mm, ρv = 2 sin(2000πρ) nC/m3 for 1 mm < ρ <

1.5 mm, and ρv = 0 for ρ > 1.5 mm. Find D everywhere: Since the charge varies only with radius,
and is in the form of a cylinder, symmetry tells us that the flux density will be radially-directed and will
be constant over a cylindrical surface of a fixed radius. Gauss’ law applied to such a surface of unit
length in z gives:

a) for ρ < 1 mm, Dρ = 0, since no charge is enclosed by a cylindrical surface whose radius lies
within this range.

b) for 1 mm < ρ < 1.5 mm, we have

2πρDρ = 2π
∫ ρ

.001
2 × 10−9 sin(2000πρ′)ρ′ dρ′

= 4π × 10−9
[

1

(2000π)2
sin(2000πρ)− ρ

2000π
cos(2000πρ)

]ρ
.001

or finally,

Dρ = 10−15

2π2ρ

[
sin(2000πρ)+ 2π

[
1 − 103ρ cos(2000πρ)

] ]
C/m2 (1 mm < ρ < 1.5 mm)
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3.11. (continued)
c) for ρ > 1.5 mm, the gaussian cylinder now lies at radius ρ outside the charge distribution, so

the integral that evaluates the enclosed charge now includes the entire charge distribution. To
accomplish this, we change the upper limit of the integral of part b from ρ to 1.5 mm, finally
obtaining:

Dρ = 2.5 × 10−15

πρ
C/m2 (ρ > 1.5 mm)

3.12. A nonuniform volume charge density, ρv = 120r C/m3, lies within the spherical surface r = 1 m, and
ρv = 0 everywhere else.

a) Find Dr everywhere. For r < 1 m, we apply Gauss’ law to a spherical surface of radius r within
this range to find

4πr2Dr = 4π
∫ r

0
120r ′(r ′)2 dr ′ = 120πr4

Thus Dr = (30r2) for r < 1 m. For r > 1 m, the gaussian surface lies outside the charge
distribution. The set up is the same, except the upper limit of the above integral is 1 instead of r .
This results in Dr = (30/r2) for r > 1 m.

b) What surface charge density, ρs2, should be on the surface r = 2 such that Dr,r=2− = 2Dr,r=2+?
At r = 2−, we have Dr,r=2− = 30/22 = 15/2, from part a. The flux density in the region r > 2
arising from a surface charge at r = 2 is found from Gauss’ law through

4πr2Drs = 4π(2)2ρs2 ⇒ Drs = 4ρs2
r2

The total flux density in the region r > 2 arising from the two distributions is

DrT = 30

r2 + 4ρs2
r2

Our requirement that Dr,r=2− = 2Dr,r=2+ becomes

30

22 = 2

(
30

22 + ρs2

)
⇒ ρs2 = −15

4
C/m2

c) Make a sketch of Dr vs. r for 0 < r < 5 m with both distributions present. With both charges,
Dr(r < 1) = 30r2, Dr(1 < r < 2) = 30/r2, and Dr(r > 2) = 15/r2. These are plotted on the
next page.

32



.

3.13. Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge densities of 20 nC/m2, −4 nC/m2,
and ρs0, respectively.

a) Find D at r = 1, 3 and 5 m: Noting that the charges are spherically-symmetric, we ascertain that
D will be radially-directed and will vary only with radius. Thus, we apply Gauss’ law to spherical
shells in the following regions: r < 2: Here, no charge is enclosed, and so Dr = 0.

2 < r < 4 : 4πr2Dr = 4π(2)2(20 × 10−9) ⇒ Dr = 80 × 10−9

r2 C/m2

So Dr(r = 3) = 8.9 × 10−9 C/m2.

4 < r < 6 : 4πr2Dr = 4π(2)2(20 × 10−9)+ 4π(4)2(−4 × 10−9) ⇒ Dr = 16 × 10−9

r2

So Dr(r = 5) = 6.4 × 10−10 C/m2.

b) Determine ρs0 such that D = 0 at r = 7 m. Since fields will decrease as 1/r2, the question could
be re-phrased to ask for ρs0 such that D = 0 at all points where r > 6 m. In this region, the total
field will be

Dr(r > 6) = 16 × 10−9

r2 + ρs0(6)2

r2

Requiring this to be zero, we find ρs0 = −(4/9)× 10−9 C/m2.

3.14. If ρv = 5 nC/m3 for 0 < ρ < 1 mm and no other charges are present:
a) find Dρ for ρ < 1 mm: Applying Gauss’ law to a cylindrical surface of unit length in z, and of

radius ρ < 1 mm, we find

2πρDρ = πρ2(5 × 10−9) ⇒ Dρ = 2.5 ρ × 10−9 C/m2

33



3.14b. find Dρ for ρ > 1 mm: The Gaussian cylinder now lies outside the charge, so

2πρDρ = π(.001)2(5 × 10−9) ⇒ Dρ = 2.5 × 10−15

ρ
C/m2

c) What line charge ρL at ρ = 0 would give the same result for part b? The line charge field will be

Dr = ρL

2πρ
= 2.5 × 10−15

ρ
(part b)

Thus ρL = 5π × 10−15 C/m. In all answers, ρ is expressed in meters.

3.15. Volume charge density is located as follows: ρv = 0 for ρ < 1 mm and for ρ > 2 mm, ρv = 4ρ µC/m3

for 1 < ρ < 2 mm.

a) Calculate the total charge in the region 0 < ρ < ρ1, 0 < z < L, where 1 < ρ1 < 2 mm: We find

Q =
∫ L

0

∫ 2π

0

∫ ρ1

.001
4ρ ρ dρ dφ dz = 8πL

3
[ρ3

1 − 10−9] µC

where ρ1 is in meters.

b) Use Gauss’ law to determine Dρ at ρ = ρ1: Gauss’ law states that 2πρ1LDρ = Q, where Q is
the result of part a. Thus

Dρ(ρ1) = 4(ρ3
1 − 10−9)

3ρ1
µC/m2

where ρ1 is in meters.

c) Evaluate Dρ at ρ = 0.8 mm, 1.6 mm, and 2.4 mm: At ρ = 0.8 mm, no charge is enclosed by a
cylindrical gaussian surface of that radius, so Dρ(0.8mm) = 0. At ρ = 1.6 mm, we evaluate the
part b result at ρ1 = 1.6 to obtain:

Dρ(1.6mm) = 4[(.0016)3 − (.0010)3]

3(.0016)
= 3.6 × 10−6 µC/m2

At ρ = 2.4, we evaluate the charge integral of part a from .001 to .002, and Gauss’ law is written
as

2πρLDρ = 8πL

3
[(.002)2 − (.001)2] µC

from which Dρ(2.4mm) = 3.9 × 10−6 µC/m2.

3.16. Given the electric flux density, D = 2xy ax + x2 ay + 6z3 az C/m2:
a) use Gauss’ law to evaluate the total charge enclosed in the volume 0 < x, y, z < a: We call the

surfaces at x = a and x = 0 the front and back surfaces respectively, those at y = a and y = 0
the right and left surfaces, and those at z = a and z = 0 the top and bottom surfaces. To evaluate
the total charge, we integrate D · n over all six surfaces and sum the results:

� = Q =
∮

D · n da =
∫ a

0

∫ a

0
2ay dy dz︸ ︷︷ ︸

front

+
∫ a

0

∫ a

0
−2(0)y dy dz︸ ︷︷ ︸

back

+
∫ a

0

∫ a

0
−x2 dx dz︸ ︷︷ ︸
left

+
∫ a

0

∫ a

0
x2 dx dz︸ ︷︷ ︸

right

+
∫ a

0

∫ a

0
−6(0)3 dx dy︸ ︷︷ ︸
bottom

+
∫ a

0

∫ a

0
6a3 dx dy︸ ︷︷ ︸
top
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3.16a. (continued) Noting that the back and bottom integrals are zero, and that the left and right integrals
cancel, we evaluate the remaining two (front and top) to obtain Q = 6a5 + a4.

b) use Eq. (8) to find an approximate value for the above charge. Evaluate the derivatives at
P(a/2, a/2, a/2): In this application, Eq. (8) states that Q

.= (∇ · D
∣∣
P
)�v. We find ∇ · D =

2x+18z2, which when evaluated at P becomes ∇ ·D
∣∣
P

= a+4.5a2. ThusQ
.= (a+4.5a2)a3 =

4.5a5 + a4

c) Show that the results of parts a and b agree in the limit as a → 0. In this limit, both expressions
reduce to Q = a4, and so they agree.

3.17. A cube is defined by 1 < x, y, z < 1.2. If D = 2x2yax + 3x2y2ay C/m2:

a) apply Gauss’ law to find the total flux leaving the closed surface of the cube. We call the surfaces
at x = 1.2 and x = 1 the front and back surfaces respectively, those at y = 1.2 and y = 1 the
right and left surfaces, and those at z = 1.2 and z = 1 the top and bottom surfaces. To evaluate
the total charge, we integrate D · n over all six surfaces and sum the results. We note that there
is no z component of D, so there will be no outward flux contributions from the top and bottom
surfaces. The fluxes through the remaining four are

� = Q =
∮

D · n da =
∫ 1.2

1

∫ 1.2

1
2(1.2)2y dy dz︸ ︷︷ ︸
front

+
∫ 1.2

1

∫ 1.2

1
−2(1)2y dy dz︸ ︷︷ ︸
back

+
∫ 1.2

1

∫ 1.2

1
−3x2(1)2 dx dz︸ ︷︷ ︸

left

+
∫ 1.2

1

∫ 1.2

1
3x2(1.2)2 dx dz︸ ︷︷ ︸
right

= 0.1028 C

b) evaluate ∇ · D at the center of the cube: This is

∇ · D =
[
4xy + 6x2y

]
(1.1,1.1)

= 4(1.1)2 + 6(1.1)3 = 12.83

c) Estimate the total charge enclosed within the cube by using Eq. (8): This is

Q
.= ∇ · D

∣∣
center ×�v = 12.83 × (0.2)3 = 0.1026 Close!

3.18. Let a vector field by given by G = 5x4y4z4 ay . Evaluate both sides of Eq. (8) for this G field and the
volume defined by x = 3 and 3.1, y = 1 and 1.1, and z = 2 and 2.1. Evaluate the partial derivatives at
the center of the volume. First find

∇ · G = ∂Gy

∂y
= 20x4y3z4

The center of the cube is located at (3.05,1.05,2.05), and the volume is �v = (0.1)3 = 0.001. Eq. (8)
then becomes

�
.= 20(3.05)4(1.05)3(2.05)4(0.001) = 35.4
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3.19. A spherical surface of radius 3 mm is centered at P(4, 1, 5) in free space. Let D = xax C/m2. Use the
results of Sec. 3.4 to estimate the net electric flux leaving the spherical surface: We use�

.= ∇ · D�v,
where in this case ∇ · D = (∂/∂x)x = 1 C/m3. Thus

�
.= 4

3
π(.003)3(1) = 1.13 × 10−7 C = 113 nC

3.20. A cube of volume a3 has its faces parallel to the cartesian coordinate surfaces. It is centered at
P(3,−2, 4). Given the field D = 2x3ax C/m2:

a) calculate div D at P : In the present case, this will be

∇ · D = ∂Dx

∂x
= dDx

dx
= 54 C/m3

b) evaluate the fraction in the rightmost side of Eq. (13) for a = 1 m, 0.1 m, and 1 mm: With the
field having only an x component, flux will pentrate only the two surfaces at x = 3 ± a/2, each
of which has surface area a2. The cube volume is �v = a3. The equation reads:∮

D · dS
�v

= 1

a3

[
2

(
3 + a

2

)3
a2 − 2

(
3 − a

2

)3
a2

]
= 2

a

[
(3 + a

2
)3 − (3 − a

2
)3

]
evaluating the above formula at a = 1 m, .1 m, and 1 mm, yields respectively

54.50, 54.01, and 54.00 C/m3,

thus demonstrating the approach to the exact value as �v gets smaller.

3.21. Calculate the divergence of D at the point specified if
a) D = (1/z2)

[
10xyz ax + 5x2z ay + (2z3 − 5x2y) az

]
at P(−2, 3, 5): We find

∇ · D =
[

10y

z
+ 0 + 2 + 10x2y

z3

]
(−2,3,5)

= 8.96

b) D = 5z2aρ + 10ρz az at P(3,−45◦, 5): In cylindrical coordinates, we have

∇ · D = 1

ρ

∂

∂ρ
(ρDρ)+ 1

ρ

∂Dφ

∂φ
+ ∂Dz

∂z
=

[
5z2

ρ
+ 10ρ

]
(3,−45◦,5)

= 71.67

c) D = 2r sin θ sin φ ar + r cos θ sin φ aθ + r cosφ aφ at P(3, 45◦,−45◦): In spherical coordinates,
we have

∇ · D = 1

r2

∂

∂r
(r2Dr)+ 1

r sin θ

∂

∂θ
(sin θDθ)+ 1

r sin θ

∂Dφ

∂φ

=
[

6 sin θ sin φ + cos 2θ sin φ

sin θ
− sin φ

sin θ

]
(3,45◦,−45◦)

= −2

36



3.22. Let D = 8ρ sin φ aρ + 4ρ cosφ aφ C/m2.
a) Find div D: Using the divergence formula for cylindrical coordinates (see problem 3.21), we find

∇ · D = 12 sin φ.

b) Find the volume charge density at P(2.6, 38◦,−6.1): Since ρv = ∇ · D, we evaluate the result of
part a at this point to find ρvP = 12 sin 38◦ = 7.39 C/m3.

c) How much charge is located inside the region defined by 0 < ρ < 1.8, 20◦ < φ < 70◦,
2.4 < z < 3.1? We use

Q =
∫
vol

ρvdv =
∫ 3.1

2.4

∫ 70◦

20◦

∫ 1.8

0
12 sin φρ dρ dφ dz = −(3.1 − 2.4)12 cosφ

∣∣∣70◦

20◦
ρ2

2

∣∣∣1.8

0

= 8.13 C

3.23. a) A point charge Q lies at the origin. Show that div D is zero everywhere except at the origin. For
a point charge at the origin we know that D = Q/(4πr2) ar . Using the formula for divergence in
spherical coordinates (see problem 3.21 solution), we find in this case that

∇ · D = 1

r2

d

dr

(
r2 Q

4πr2

)
= 0

The above is true provided r > 0. When r = 0, we have a singularity in D, so its divergence is not
defined.

b) Replace the point charge with a uniform volume charge density ρv0 for 0 < r < a. Relate ρv0
to Q and a so that the total charge is the same. Find div D everywhere: To achieve the same net
charge, we require that (4/3)πa3ρv0 = Q, so ρv0 = 3Q/(4πa3) C/m3. Gauss’ law tells us that
inside the charged sphere

4πr2Dr = 4

3
πr3ρv0 = Qr3

a3

Thus

Dr = Qr

4πa3 C/m2 and ∇ · D = 1

r2

d

dr

(
Qr3

4πa3

)
= 3Q

4πa3

as expected. Outside the charged sphere, D = Q/(4πr2) ar as before, and the divergence is zero.

3.24. Inside the cylindrical shell, 3 < ρ < 4 m, the electric flux density is given as

D = 5(ρ − 3)3 aρ C/m2

a) What is the volume charge density at ρ = 4 m? In this case we have

ρv = ∇ · D = 1

ρ

d

dρ
(ρDρ) = 1

ρ

d

dρ
[5ρ(ρ − 3)3] = 5(ρ − 3)2

ρ
(4ρ − 3) C/m3

Evaluating this at ρ = 4 m, we find ρv(4) = 16.25 C/m3

b) What is the electric flux density at ρ = 4 m? We evaluate the given D at this point to find
D(4) = 5 aρ C/m2
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3.24c. How much electric flux leaves the closed surface 3 < ρ < 4, 0 < φ < 2π , −2.5 < z < 2.5? We note
that D has only a radial component, and so flux would leave only through the cylinder sides. Also, D
does not vary with φ or z, so the flux is found by a simple product of the side area and the flux density.
We further note that D = 0 at ρ = 3, so only the outer side (at ρ = 4) will contribute. We use the result
of part b, and write the flux as

� = [2.5 − (−2.5)]2π(4)(5) = 200π C

d) How much charge is contained within the volume used in part c? By Gauss’ law, this will be the
same as the net outward flux through that volume, or again, 200π C.

3.25. Within the spherical shell, 3 < r < 4 m, the electric flux density is given as

D = 5(r − 3)3 ar C/m2

a) What is the volume charge density at r = 4? In this case we have

ρv = ∇ · D = 1

r2

d

dr
(r2Dr) = 5

r
(r − 3)2(5r − 6) C/m3

which we evaluate at r = 4 to find ρv(r = 4) = 17.50 C/m3.

b) What is the electric flux density at r = 4? Substitute r = 4 into the given expression to
find D(4) = 5 ar C/m2

c) How much electric flux leaves the sphere r = 4? Using the result of part b, this will be � =
4π(4)2(5) = 320π C

d) How much charge is contained within the sphere, r = 4? From Gauss’ law, this will be the same
as the outward flux, or again, Q = 320π C.

3.26. Given the field

D = 5 sin θ cosφ

r
ar C/m2,

find:
a) the volume charge density: Use

ρv = ∇ · D = 1

r2

d

dr
(r2Dr) = 5 sin θ cosφ

r2 C/m3

b) the total charge contained within the region r < 2 m: To find this, we integrate over the volume:

Q =
∫ 2π

0

∫ π

0

∫ 2

0

5 sin θ cosφ

r2 r2 sin θ dr dθ dφ

Before plunging into this one notice that the φ integration is of cosφ from zero to 2π . This yields
a zero result, and so the total enclosed charge is Q = 0.

c) the value of D at the surface r = 2: Substituting r = 2 into the given field produces

D(r = 2) = 5

2
sin θ cosφ ar C/m2
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3.26d. the total electric flux leaving the surface r = 2 Since the total enclosed charge is zero (from part b), the
net outward flux is also zero, from Gauss’ law.

3.27. Let D = 5.00r2ar mC/m2 for r ≤ 0.08 m and D = 0.205 ar/r2 µC/m2 for r ≥ 0.08 m (note error in
problem statement).

a) Find ρv for r = 0.06 m: This radius lies within the first region, and so

ρv = ∇ · D = 1

r2

d

dr
(r2Dr) = 1

r2

d

dr
(5.00r4) = 20r mC/m3

which when evaluated at r = 0.06 yields ρv(r = .06) = 1.20 mC/m3.

b) Find ρv for r = 0.1 m: This is in the region where the second field expression is valid. The 1/r2

dependence of this field yields a zero divergence (shown in Problem 3.23), and so the volume
charge density is zero at 0.1 m.

c) What surface charge density could be located at r = 0.08 m to cause D = 0 for r > 0.08 m? The
total surface charge should be equal and opposite to the total volume charge. The latter is

Q =
∫ 2π

0

∫ π

0

∫ .08

0
20r(mC/m3) r2 sin θ dr dθ dφ = 2.57 × 10−3 mC = 2.57µC

So now

ρs = −
[

2.57

4π(.08)2

]
= −32µC/m2

3.28. The electric flux density is given as D = 20ρ3 aρ C/m2 for ρ < 100µm, and k aρ/ρ for ρ > 100µm.
a) Find k so that D is continuous at ρ = 100µm: We require

20 × 10−12 = k

10−4 ⇒ k = 2 × 10−15 C/m

b) Find and sketch ρv as a function of ρ: In cylindrical coordinates, with only a radial component of D,
we use

ρv = ∇ · D = 1

ρ

∂

∂ρ
(ρDρ) = 1

ρ

∂

∂ρ
(20ρ4) = 80ρ2 C/m3 (ρ < 100µm)

For ρ > 100µm, we obtain

ρv = 1

ρ

∂

∂ρ
(ρ
k

ρ
) = 0

The sketch of ρv vs. ρ would be a parabola, starting at the origin, reaching a maximum value of
8 × 10−7 C/m3 at ρ = 100 µm. The plot is zero at larger radii.

3.29. In the region of free space that includes the volume 2 < x, y, z < 3,

D = 2

z2 (yz ax + xz ay − 2xy az) C/m2

a) Evaluate the volume integral side of the divergence theorem for the volume defined above: In
cartesian, we find ∇ · D = 8xy/z3. The volume integral side is now∫

vol

∇ · D dv =
∫ 3

2

∫ 3

2

∫ 3

2

8xy

z3 dxdydz = (9 − 4)(9 − 4)

(
1

4
− 1

9

)
= 3.47 C
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3.29b. Evaluate the surface integral side for the corresponding closed surface: We call the surfaces at x = 3
and x = 2 the front and back surfaces respectively, those at y = 3 and y = 2 the right and left surfaces,
and those at z = 3 and z = 2 the top and bottom surfaces. To evaluate the surface integral side, we
integrate D · n over all six surfaces and sum the results. Note that since the x component of D does not
vary with x, the outward fluxes from the front and back surfaces will cancel each other. The same is
true for the left and right surfaces, since Dy does not vary with y. This leaves only the top and bottom
surfaces, where the fluxes are:∮

D · dS =
∫ 3

2

∫ 3

2

−4xy

32 dxdy︸ ︷︷ ︸
top

−
∫ 3

2

∫ 3

2

−4xy

22 dxdy︸ ︷︷ ︸
bottom

= (9 − 4)(9 − 4)

(
1

4
− 1

9

)
= 3.47 C

3.30. If D = 15ρ2 sin 2φ aρ + 10ρ2 cos 2φ aφ C/m2, evaluate both sides of the divergence theorem for the
region 1 < ρ < 2 m, 1 < φ < 2 rad, 1 < z < 2 m: Taking the surface integral side first, the six sides
over which the flux must be evaluated are only four, since there is no z component of D. We are left
with the sides at φ = 1 and φ = 2 rad (left and right sides, respectively), and those at ρ = 1 and ρ = 2
(back and front sides). We evaluate∮

D · dS =
∫ 2

1

∫ 2

1
15(2)2 sin(2φ) (2)dφdz︸ ︷︷ ︸

front

−
∫ 2

1

∫ 2

1
15(1)2 sin(2φ) (1)dφdz︸ ︷︷ ︸

back

−
∫ 2

1

∫ 2

1
10ρ2 cos(2) dρdz︸ ︷︷ ︸

left

+
∫ 2

1

∫ 2

1
10ρ2 cos(4) dρdz︸ ︷︷ ︸

right

= 6.93 C

For the volume integral side, we first evaluate the divergence of D, which is

∇ · D = 1

ρ

∂

∂ρ
(15ρ3 sin 2φ)+ 1

ρ

∂

∂φ
(10ρ2 cos 2φ) = 25ρ sin 2φ

Next ∫
vol

∇ · D dv =
∫ 2

1

∫ 2

1

∫ 2

1
25ρ sin(2φ) ρdρ dφ dz = 25

3
ρ3

∣∣∣2

1

[− cos(2φ)

2

]2

1
= 6.93 C

3.31. Given the flux density

D = 16

r
cos(2θ) aθ C/m2,

use two different methods to find the total charge within the region 1 < r < 2 m, 1 < θ < 2 rad,
1 < φ < 2 rad: We use the divergence theorem and first evaluate the surface integral side. We are
evaluating the net outward flux through a curvilinear “cube”, whose boundaries are defined by the
specified ranges. The flux contributions will be only through the surfaces of constant θ , however, since
D has only a θ component. On a constant-theta surface, the differential area is da = r sin θdrdφ,
where θ is fixed at the surface location. Our flux integral becomes∮

D · dS = −
∫ 2

1

∫ 2

1

16

r
cos(2) r sin(1) drdφ︸ ︷︷ ︸

θ=1

+
∫ 2

1

∫ 2

1

16

r
cos(4) r sin(2) drdφ︸ ︷︷ ︸

θ=2

= −16 [cos(2) sin(1)− cos(4) sin(2)] = −3.91 C
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3.31. (continued) We next evaluate the volume integral side of the divergence theorem, where in this case,

∇ · D = 1

r sin θ

d

dθ
(sin θ Dθ) = 1

r sin θ

d

dθ

[
16

r
cos 2θ sin θ

]
= 16

r2

[
cos 2θ cos θ

sin θ
− 2 sin 2θ

]

We now evaluate:∫
vol

∇ · D dv =
∫ 2

1

∫ 2

1

∫ 2

1

16

r2

[
cos 2θ cos θ

sin θ
− 2 sin 2θ

]
r2 sin θ drdθdφ

The integral simplifies to

∫ 2

1

∫ 2

1

∫ 2

1
16[cos 2θ cos θ − 2 sin 2θ sin θ ] drdθdφ = 8

∫ 2

1
[3 cos 3θ − cos θ ] dθ = −3.91 C

3.32. If D = 2r ar C/m2, find the total electric flux leaving the surface of the cube, 0 < x, y, z < 0.4: This
is where the divergence theorem really saves you time! First find

∇ · D = 1

r2

d

dr
(r2 × 2r) = 6

Then the net outward flux will be ∫
vol

∇ · D dv = 6(0.4)3 = 0.38 C
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