
CHAPTER 4

4.1. The value of E at P(ρ = 2, φ = 40◦, z = 3) is given as E = 100aρ −200aφ +300az V/m. Determine
the incremental work required to move a 20µC charge a distance of 6 µm:

a) in the direction of aρ : The incremental work is given by dW = −q E · dL, where in this case,
dL = dρ aρ = 6 × 10−6 aρ . Thus

dW = −(20 × 10−6 C)(100 V/m)(6 × 10−6 m) = −12 × 10−9 J = −12 nJ

b) in the direction of aφ : In this case dL = 2 dφ aφ = 6 × 10−6 aφ , and so

dW = −(20 × 10−6)(−200)(6 × 10−6) = 2.4 × 10−8 J = 24 nJ

c) in the direction of az: Here, dL = dz az = 6 × 10−6 az, and so

dW = −(20 × 10−6)(300)(6 × 10−6) = −3.6 × 10−8 J = −36 nJ

d) in the direction of E: Here, dL = 6 × 10−6 aE , where

aE = 100aρ − 200aφ + 300az
[1002 + 2002 + 3002]1/2 = 0.267 aρ − 0.535 aφ + 0.802 az

Thus

dW = −(20 × 10−6)[100aρ − 200aφ + 300az] · [0.267 aρ − 0.535 aφ + 0.802 az](6 × 10−6)

= −44.9 nJ

e) In the direction of G = 2 ax − 3 ay + 4 az: In this case, dL = 6 × 10−6 aG, where

aG = 2ax − 3ay + 4az
[22 + 32 + 42]1/2 = 0.371 ax − 0.557 ay + 0.743 az

So now

dW = −(20 × 10−6)[100aρ − 200aφ + 300az] · [0.371 ax − 0.557 ay + 0.743 az](6 × 10−6)

= −(20 × 10−6)
[
37.1(aρ · ax)− 55.7(aρ · ay)− 74.2(aφ · ax)+ 111.4(aφ · ay)

+ 222.9] (6 × 10−6)

where, at P , (aρ · ax) = (aφ · ay) = cos(40◦) = 0.766, (aρ · ay) = sin(40◦) = 0.643, and
(aφ · ax) = − sin(40◦) = −0.643. Substituting these results in

dW = −(20 × 10−6)[28.4 − 35.8 + 47.7 + 85.3 + 222.9](6 × 10−6) = −41.8 nJ
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4.2. Let E = 400ax − 300ay + 500az in the neighborhood of point P(6, 2,−3). Find the incremental work
done in moving a 4-C charge a distance of 1 mm in the direction specified by:

a) ax + ay + az: We write

dW = −qE · dL = −4(400ax − 300ay + 500az) · (ax + ay + az)√
3

(10−3)

= − (4 × 10−3)√
3

(400 − 300 + 500) = −1.39 J

b) −2ax + 3ay − az: The computation is similar to that of part a, but we change the direction:

dW = −qE · dL = −4(400ax − 300ay + 500az) · (−2ax + 3ay − az)√
14

(10−3)

= − (4 × 10−3)√
14

(−800 − 900 − 500) = 2.35 J

4.3. If E = 120 aρ V/m, find the incremental amount of work done in moving a 50µm charge a distance
of 2 mm from:

a) P(1, 2, 3) toward Q(2, 1, 4): The vector along this direction will be Q − P = (1,−1, 1) from
which aPQ = [ax − ay + az]/

√
3. We now write

dW = −qE · dL = −(50 × 10−6)

[
120aρ · (ax − ay + az√

3

]
(2 × 10−3)

= −(50 × 10−6)(120)
[
(aρ · ax)− (aρ · ay)

] 1√
3
(2 × 10−3)

At P , φ = tan−1(2/1) = 63.4◦. Thus (aρ · ax) = cos(63.4) = 0.447 and (aρ · ay) = sin(63.4) =
0.894. Substituting these, we obtain dW = 3.1µJ.

b) Q(2, 1, 4) toward P(1, 2, 3): A little thought is in order here: Note that the field has only a radial
component and does not depend on φ or z. Note also that P and Q are at the same radius (

√
5)

from the z axis, but have different φ and z coordinates. We could just as well position the two
points at the same z location and the problem would not change. If this were so, then moving
along a straight line between P and Q would thus involve moving along a chord of a circle whose
radius is

√
5. Halfway along this line is a point of symmetry in the field (make a sketch to see

this). This means that when starting from either point, the initial force will be the same. Thus the
answer is dW = 3.1µJ as in part a. This is also found by going through the same procedure as
in part a, but with the direction (roles of P and Q) reversed.

4.4. Find the amount of energy required to move a 6-C charge from the origin to P(3, 1,−1) in the field
E = 2xax − 3y2ay + 4az V/m along the straight-line path x = −3z, y = x + 2z: We set up the
computation as follows, and find the the result does not depend on the path.

W = −q
∫

E · dL = −6
∫
(2xax − 3y2ay + 4az) · (dxax + dyay + dzaz)

= −6
∫ 3

0
2xdx + 6

∫ 1

0
3y2dy − 6

∫ −1

0
4dz = −24 J
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4.5. Compute the value of
∫ P
A

G · dL for G = 2yax with A(1,−1, 2) and P(2, 1, 2) using the path:
a) straight-line segments A(1,−1, 2) to B(1, 1, 2) to P(2, 1, 2): In general we would have

∫ P

A

G · dL =
∫ P

A

2y dx

The change in x occurs when moving between B and P , during which y = 1. Thus

∫ P

A

G · dL =
∫ P

B

2y dx =
∫ 2

1
2(1)dx = 2

b) straight-line segmentsA(1,−1, 2) toC(2,−1, 2) toP(2, 1, 2): In this case the change in x occurs
when moving from A to C, during which y = −1. Thus

∫ P

A

G · dL =
∫ C

A

2y dx =
∫ 2

1
2(−1)dx = −2

4.6. Let G = 4xax+2zay+2yaz. Given an initial pointP(2, 1, 1) and a final pointQ(4, 3, 1), find
∫

G ·dL
using the path: a) straight line: y = x − 1, z = 1; b) parabola: 6y = x2 + 2, z = 1:

With G as given, the line integral will be

∫
G · dL =

∫ 4

2
4x dx +

∫ 3

1
2z dy +

∫ 1

1
2y dz

Clearly, we are going nowhere in z, so the last integral is zero. With z = 1, the first two evaluate as

∫
G · dL = 2x2

∣∣∣4
2
+ 2y

∣∣∣3
1

= 28

The paths specified in parts a and b did not play a role, meaning that the integral between the specified
points is path-independent.

4.7. Repeat Problem 4.6 for G = 3xy3ax + 2zay . Now things are different in that the path does matter:

a) straight line: y = x − 1, z = 1: We obtain:

∫
G · dL =

∫ 4

2
3xy2 dx +

∫ 3

1
2z dy =

∫ 4

2
3x(x − 1)2 dx +

∫ 3

1
2(1) dy = 90

b) parabola: 6y = x2 + 2, z = 1: We obtain:

∫
G · dL =

∫ 4

2
3xy2 dx +

∫ 3

1
2z dy =

∫ 4

2

1

12
x(x2 + 2)2 dx +

∫ 3

1
2(1) dy = 82
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4.8. A point chargeQ1 is located at the origin in free space. Find the work done in carrying a chargeQ2 from:
(a) B(rB, θB, φB) to C(rA, θB, φB) with θ and φ held constant; (b) C(rA, θB, φB) to D(rA, θA, φB)
with r and φ held constant; (c)D(rA, θA, φB) toA(rA, θA, φA)with r and θ held constant: The general
expression for the work done in this instance is

W = −Q2

∫
E · dL = −Q2

∫
Q1

4πε0r2 ar · (drar + rdθaθ + r sin θdφaφ) = −Q1Q2

4πε0

∫
dr

r2

We see that only changes in r will produce non-zero results. Thus for part a we have

W = −Q1Q2

4πε0

∫ rA

rB

dr

r2 = Q1Q2

4πε0

[
1

rA
− 1

rB

]
J

The answers to parts b and c (involving paths over which r is held constant) are both 0.

4.9. A uniform surface charge density of 20 nC/m2 is present on the spherical surface r = 0.6 cm in free
space.

a) Find the absolute potential at P(r = 1 cm, θ = 25◦, φ = 50◦): Since the charge density
is uniform and is spherically-symmetric, the angular coordinates do not matter. The potential
function for r > 0.6 cm will be that of a point charge of Q = 4πa2ρs , or

V (r) = 4π(0.6 × 10−2)2(20 × 10−9)

4πε0r
= 0.081

r
V with r in meters

At r = 1 cm, this becomes V (r = 1 cm) = 8.14 V

b) Find VAB given points A(r = 2 cm, θ = 30◦, φ = 60◦) and B(r = 3 cm, θ = 45◦, φ = 90◦):
Again, the angles do not matter because of the spherical symmetry. We use the part a result to
obtain

VAB = VA − VB = 0.081

[
1

0.02
− 1

0.03

]
= 1.36 V

4.10. Given a surface charge density of 8 nC/m2 on the plane x = 2, a line charge density of 30 nC/m on
the line x = 1, y = 2, and a 1-µC point charge at P(−1,−1, 2), find VAB for points A(3, 4, 0) and
B(4, 0, 1): We need to find a potential function for the combined charges. That for the point charge we
know to be

Vp(r) = Q

4πε0r

Potential functions for the sheet and line charges can be found by taking indefinite integrals of the
electric fields for those distributions. For the line charge, we have

Vl(ρ) = −
∫

ρl

2πε0ρ
dρ + C1 = − ρl

2πε0
ln(ρ)+ C1

For the sheet charge, we have

Vs(x) = −
∫

ρs

2ε0
dx + C2 = − ρs

2ε0
x + C2
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4.10. (continued) The total potential function will be the sum of the three. Combining the integration con-
stants, we obtain:

V = Q

4πε0r
− ρl

2πε0
ln(ρ)− ρs

2ε0
x + C

The terms in this expression are not referenced to a common origin, since the charges are at different
positions. The parameters r , ρ, and x are scalar distances from the charges, and will be treated
as such here. For point A we have rA =

√
(3 − (−1))2 + (4 − (−1))2 + (−2)2 = √

45, ρA =√
(3 − 1)2 + (4 − 2)2 = √

8, and its distance from the sheet charge is xA = 3 − 2 = 1. The potential
at A is then

VA = 10−6

4πε0
√

45
− 30 × 10−9

2πε0
ln

√
8 − 8 × 10−9

2ε0
(1)+ C

At point B, rB =
√
(4 − (−1))2 + (0 − (−1))2 + (1 − 2)2 = √

27,
ρB =

√
(4 − 1)2 + (0 − 2)2 = √

13, and the distance from the sheet charge is xB = 4 − 2 = 2.
The potential at A is then

VB = 10−6

4πε0
√

27
− 30 × 10−9

2πε0
ln

√
13 − 8 × 10−9

2ε0
(2)+ C

Then

VA − VB = 10−6

4πε0

[
1√
45

− 1√
27

]
− 30 × 10−9

2πε0
ln

(√
8

13

)
− 8 × 10−9

2ε0
(1 − 2) = 193 V

4.11. Let a uniform surface charge density of 5 nC/m2 be present at the z = 0 plane, a uniform line charge
density of 8 nC/m be located at x = 0, z = 4, and a point charge of 2µC be present at P(2, 0, 0).
If V = 0 at M(0, 0, 5), find V at N(1, 2, 3): We need to find a potential function for the combined
charges which is zero at M . That for the point charge we know to be

Vp(r) = Q

4πε0r

Potential functions for the sheet and line charges can be found by taking indefinite integrals of the
electric fields for those distributions. For the line charge, we have

Vl(ρ) = −
∫

ρl

2πε0ρ
dρ + C1 = − ρl

2πε0
ln(ρ)+ C1

For the sheet charge, we have

Vs(z) = −
∫

ρs

2ε0
dz+ C2 = − ρs

2ε0
z+ C2

The total potential function will be the sum of the three. Combining the integration constants, we
obtain:

V = Q

4πε0r
− ρl

2πε0
ln(ρ)− ρs

2ε0
z+ C
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4.11. (continued) The terms in this expression are not referenced to a common origin, since the charges are
at different positions. The parameters r , ρ, and z are scalar distances from the charges, and will be
treated as such here. To evaluate the constant, C, we first look at point M , where VT = 0. At M ,
r = √

22 + 52 = √
29, ρ = 1, and z = 5. We thus have

0 = 2 × 10−6

4πε0
√

29
− 8 × 10−9

2πε0
ln(1)− 5 × 10−9

2ε0
5 + C ⇒ C = −1.93 × 103 V

At point N , r = √
1 + 4 + 9 = √

14, ρ = √
2, and z = 3. The potential at N is thus

VN = 2 × 10−6

4πε0
√

14
− 8 × 10−9

2πε0
ln(

√
2)− 5 × 10−9

2ε0
(3)− 1.93 × 103 = 1.98 × 103 V = 1.98 kV

4.12. Three point charges, 0.4µC each, are located at (0, 0,−1), (0, 0, 0), and (0, 0, 1), in free space.
a) Find an expression for the absolute potential as a function of z along the line x = 0, y = 1:

From a point located at position z along the given line, the distances to the three charges are
R1 =

√
(z− 1)2 + 1, R2 = √

z2 + 1, and R3 =
√
(z+ 1)2 + 1. The total potential will be

V (z) = q

4πε0

[
1

R1
+ 1

R2
+ 1

R3

]

Using q = 4 × 10−7 C, this becomes

V (z) = (3.6 × 103)

[
1√

(z− 1)2 + 1
+ 1√

z2 + 1
+ 1√

(z+ 1)2 + 1

]
V

b) Sketch V (z). The sketch will show that V maximizes to a value of 8.68 × 103 at z = 0, and then
monotonically decreases with increasing |z| symmetrically on either side of z = 0.

4.13. Three identical point charges of 4 pC each are located at the corners of an equilateral triangle 0.5 mm
on a side in free space. How much work must be done to move one charge to a point equidistant from
the other two and on the line joining them? This will be the magnitude of the charge times the potential
difference between the finishing and starting positions, or

W = (4 × 10−12)2

2πε0

[
1

2.5
− 1

5

]
× 104 = 5.76 × 10−10 J = 576 pJ

4.14. two 6-nC point charges are located at (1, 0, 0) and (−1, 0, 0) in free space.
a) Find V at P(0, 0, z): Since the charges are positioned symmetrically about the z axis, the potential

at z will be double that from one charge. This becomes:

V (z) = (2)
q

4πε0
√
z2 + 1

= q

2πε0
√
z2 + 1

b) Find Vmax : It is clear from the part a result that V will maximize at z = 0, or vmax = q/(2πε0) =
108 V.
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4.14. (continued)
c) Calculate |dV/dz| on the z axis: Differentiating the part a result, we find

∣∣∣dV
dz

∣∣∣ = qz

πε0(z2 + 1)3/2 V/m

d) Find |dV/dz|max : To find this we need to differentiate the part c result and find its zero:

d

dz

∣∣∣dV
dz

∣∣∣ = q(1 − 2z2)

πε0(z2 + 1)5/2
= 0 ⇒ z = ± 1√

2

Substituting z = 1/
√

2 into the part c result, we find

∣∣∣dV
dz

∣∣∣
max

= q√
2πε0(3/2)3/2

= 83.1 V/m

4.15. Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at x = −1, y = 2 in free
space. If the potential at the origin is 100 V, find V at P(4, 1, 3): The net potential function for the two
charges would in general be:

V = − ρl

2πε0
ln(R1)− ρl

2πε0
ln(R2)+ C

At the origin, R1 = R2 = √
5, and V = 100 V. Thus, with ρl = 8 × 10−9,

100 = −2
(8 × 10−9)

2πε0
ln(

√
5)+ C ⇒ C = 331.6 V

At P(4, 1, 3), R1 = |(4, 1, 3)− (1, 1, 2)| = √
10 and R2 = |(4, 1, 3)− (−1, 2, 3)| = √

26. Therefore

VP = − (8 × 10−9)

2πε0

[
ln(

√
10)+ ln(

√
26)
]

+ 331.6 = −68.4 V
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4.16. Uniform surface charge densities of 6, 4, and 2 nC/m2 are present at r = 2, 4, and 6 cm, respectively,
in free space.

a) Assume V = 0 at infinity, and find V (r). We keep in mind the definition of absolute potential
as the work done in moving a unit positive charge from infinity to location r . At radii outside all
three spheres, the potential will be the same as that of a point charge at the origin, whose charge
is the sum of the three sphere charges:

V (r) (r > 6 cm) = q1 + q2 + q3

4πε0r
= [4π(.02)2(6)+ 4π(.04)2(4)+ 4π(.06)2(2)] × 10−9

4πε0r

= (96 + 256 + 288)π × 10−13

4π(8.85 × 10−12)r
= 1.81

r
V where r is in meters

As the unit charge is moved inside the outer sphere to positions 4 < r < 6 cm, the outer sphere
contribution to the energy is fixed at its value at r = 6. Therefore,

V (r) (4 < r < 6 cm) = q1 + q2

4πε0r
+ q3

4πε0(.06)
= 0.994

r
+ 13.6 V

In moving inside the sphere at r = 4 cm, the contribution from that sphere becomes fixed at its
potential function at r = 4:

V (r) (2 < r < 4 cm) = q1

4πε0r
+ q2

4πε0(.04)
+ q3

4πε0(.06)
= 0.271

r
+ 31.7 V

Finally, using the same reasoning, the potential inside the inner sphere becomes

V (r) (r < 2 cm) = 0.271

.02
+ 31.7 = 45.3 V

b) Calculate V at r = 1, 3, 5, and 7 cm: Using the results of part a, we substitute these distances (in
meters) into the appropriate formulas to obtain: V (1) = 45.3 V,
V (3) = 40.7 V, V (5) = 33.5 V, and V (7) = 25.9 V.

c) Sketch V versus r for 0 < r < 10 cm.
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4.17. Uniform surface charge densities of 6 and 2 nC/m2 are present at ρ = 2 and 6 cm respectively, in free
space. Assume V = 0 at ρ = 4 cm, and calculate V at:

a) ρ = 5 cm: Since V = 0 at 4 cm, the potential at 5 cm will be the potential difference between
points 5 and 4:

V5 = −
∫ 5

4
E · dL = −

∫ 5

4

aρsa

ε0ρ
dρ = − (.02)(6 × 10−9)

ε0
ln

(
5

4

)
= −3.026 V

b) ρ = 7 cm: Here we integrate piecewise from ρ = 4 to ρ = 7:

V7 = −
∫ 6

4

aρsa

ε0ρ
dρ −

∫ 7

6

(aρsa + bρsb)

ε0ρ
dρ

With the given values, this becomes

V7 = −
[
(.02)(6 × 10−9)

ε0

]
ln

(
6

4

)
−
[
(.02)(6 × 10−9)+ (.06)(2 × 10−9)

ε0

]
ln

(
7

6

)
= −9.678 V

4.18. A nonuniform linear charge density, ρL = 8/(z2 + 1) nC/m lies along the z axis. Find the potential at
P(ρ = 1, 0, 0) in free space if V = 0 at infinity: This last condition enables us to write the potential
at P as a superposition of point charge potentials. The result is the integral:

VP =
∫ ∞

−∞
ρLdz

4πε0R

where R = √
z2 + 1 is the distance from a point z on the z axis to P . Substituting the given charge

distribution and R into the integral gives us

VP =
∫ ∞

−∞
8 × 10−9dz

4πε0(z2 + 1)3/2 = 2 × 10−9

πε0

z√
z2 + 1

∣∣∣∞−∞
= 144 V

4.19. The annular surface, 1 cm < ρ < 3 cm, z = 0, carries the nonuniform surface charge density ρs =
5ρ nC/m2. Find V at P(0, 0, 2 cm) if V = 0 at infinity: We use the superposition integral form:

VP =
∫ ∫

ρs da

4πε0|r − r′|
where r = zaz and r′ = ρaρ . We integrate over the surface of the annular region, with da = ρ dρ dφ.
Substituting the given values, we find

VP =
∫ 2π

0

∫ .03

.01

(5 × 10−9)ρ2 dρ dφ

4πε0
√
ρ2 + z2

Substituting z = .02, and using tables, the integral evaluates as

VP =
[
(5 × 10−9)

2ε0

] [
ρ

2

√
ρ2 + (.02)2 − (.02)2

2
ln(ρ +

√
ρ2 + (.02)2)

].03

.01
= .081 V
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4.20. Fig. 4.11 shows three separate charge distributions in the z = 0 plane in free space.
a) find the total charge for each distribution: Line charge along the y axis:

Q1 =
∫ 5

3
π × 10−9dy = 2π × 10−9 C = 6.28 nC

Line charge in an arc at radius ρ = 3:

Q2 =
∫ 70◦

10◦
(10−9) 3 dφ = 4.5 × 10−9 (70 − 10)

2π

360
= 4.71 × 10−9 C = 4.71 nC

Sheet charge:

Q3 =
∫ 70◦

10◦

∫ 3.5

1.6
(10−9) ρ dρ dφ = 5.07 × 10−9 C = 5.07 nC

b) Find the potential at P(0, 0, 6) caused by each of the three charge distributions acting alone: Line
charge along y axis:

VP1 =
∫ 5

3

ρLdL

4πε0R
=
∫ 5

3

π × 10−9dy

4πε0
√
y2 + 62

= 103

4 × 8.854
ln(y +

√
y2 + 62)

∣∣∣5
3

= 7.83 V

Line charge in an arc a radius ρ = 3:

VP2 =
∫ 70◦

10◦

(1.5 × 10−9) 3 dφ

4πε0
√

32 + 62
= Q2

4πε0
√

45
= 6.31 V

Sheet charge:

VP3 =
∫ 70◦

10◦

∫ 3.5

1.6

(10−9) ρ dρ dφ

4πε0
√
ρ2 + 62

= 60 × 10−9

4π(8.854 × 10−12

(
2π

360

)∫ 3.5

1.6

ρ dρ√
ρ2 + 36

= 9.42
√
ρ2 + 36

∣∣∣3.5
1.6

= 6.93 V

c) Find VP : This will be the sum of the three results of part b, or

VP = VP1 + VP 2 + VP 3 = 7.83 + 6.31 + 6.93 = 21.1 V

4.21. Let V = 2xy2z3 + 3 ln(x2 + 2y2 + 3z2)V in free space. Evaluate each of the following quantities at
P(3, 2,−1):

a) V : Substitute P directly to obtain: V = −15.0 V
b) |V |. This will be just 15.0 V.
c) E: We have

E
∣∣∣
P

= −∇V
∣∣∣
P

= −
[(

2y2z3 + 6x

x2 + 2y2 + 3z2

)
ax +

(
4xyz3 + 12y

x2 + 2y2 + 3z2

)
ay

+
(

6xy2z2 + 18z

x2 + 2y2 + 3z2

)
az

]
P

= 7.1ax + 22.8ay − 71.1az V/m
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4.21d. |E|P : taking the magnitude of the part c result, we find |E|P = 75.0 V/m.

e) aN : By definition, this will be

aN
∣∣∣
P

= − E
|E| = −0.095 ax − 0.304 ay + 0.948 az

f) D: This is D
∣∣∣
P

= ε0E
∣∣∣
P

= 62.8 ax + 202 ay − 629 az pC/m2.

4.22. It is known that the potential is given as V = 80r0.6 V. Assuming free space conditions, find:
a) E: We use

E = −∇V = −dV

dr
ar = −(0.6)80r−0.4 ar = −48r−0.4 ar V/m

b) the volume charge density at r = 0.5 m: Begin by finding

D = ε0E = −48r−0.4ε0 ar C/m2

We next find

ρv = ∇ · D = 1

r2

d

dr

(
r2Dr

)
= 1

r2

d

dr

(
−48ε0r

1.6
)

= −76.8ε0

r1.4 C/m3

Then at r = 0.5 m,

ρv(0.5) = −76.8(8.854 × 10−12)

(0.5)1.4
= −1.79 × 10−9 C/m3 = −1.79 nC/m3

c) the total charge lying within the surface r = 0.6: The easiest way is to use Gauss’ law, and integrate
the flux density over the spherical surface r = 0.6. Since the field is constant at constant radius,
we obtain the product:

Q = 4π(0.6)2(−48ε0(0.6)
−0.4) = −2.36 × 10−9 C = −2.36 nC

4.23. It is known that the potential is given as V = 80ρ.6 V. Assuming free space conditions, find:

a) E: We find this through

E = −∇V = −dV

dρ
aρ = −48ρ−.4 V/m

b) the volume charge density at ρ = .5 m: Using D = ε0E, we find the charge density through

ρv

∣∣∣
.5

= [∇ · D].5 =
(

1

ρ

)
d

dρ

(
ρDρ

) ∣∣∣
.5

= −28.8ε0ρ
−1.4

∣∣∣
.5

= −673 pC/m3
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4.23c. the total charge lying within the closed surface ρ = .6, 0 < z < 1: The easiest way to do this calculation
is to evaluateDρ at ρ = .6 (noting that it is constant), and then multiply by the cylinder area: Using part

a, we haveDρ

∣∣∣
.6

= −48ε0(.6)−.4 = −521 pC/m2. ThusQ = −2π(.6)(1)521×10−12 C = −1.96 nC.

4.24. Given the potential field V = 80r2 cos θ and a point P(2.5, θ = 30◦, φ = 60◦) in free space, find at P :
a) V : Substitute the coordinates into the function and find VP = 80(2.5)2 cos(30) = 433 V.

b) E:

E = −∇V = −∂V

∂r
ar − 1

r

∂V

∂θ
aθ = −160r cos θar + 80r sin θaθ V/m

Evaluating this at P yields Ep = −346ar + 100aθ V/m.

c) D: In free space, DP = ε0EP = (−346ar + 100aθ )ε0 = −3.07 ar + 0.885 aθ nC/m2.

d) ρv:

ρv = ∇ · D = ε0∇ · E = ε0

[
1

r2

∂

∂r

(
r2Er

)
+ 1

r2 sin θ

∂

∂θ
(Eθ sin θ)

]

Substituting the components of E, we find

ρv =
[
−160 cos θ

r2 3r2 + 1

r sin θ
80r(2 sin θ cos θ)

]
ε0 = −320ε0 cos θ = −2.45 nC/m3

with θ = 30◦.

e) dV/dN : This will be just |E| evaluated at P , which is

dV

dN

∣∣∣
P

= | − 346ar + 100aθ | =
√
(346)2 + (100)2 = 360 V/m

f) aN : This will be

aN = − EP

|EP | = −
[

−346ar + 100aθ√
(346)2 + (100)2

]
= 0.961 ar − 0.278 aθ

4.25. Within the cylinder ρ = 2, 0 < z < 1, the potential is given by V = 100 + 50ρ + 150ρ sin φ V.
a) Find V , E, D, and ρv at P(1, 60◦, 0.5) in free space: First, substituting the given point, we find

VP = 279.9 V. Then,

E = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ = − [50 + 150 sin φ] aρ − [150 cosφ] aφ

Evaluate the above at P to find EP = −179.9aρ − 75.0aφ V/m

Now D = ε0E, so DP = −1.59aρ − .664aφ nC/m2. Then

ρv = ∇ ·D =
(

1

ρ

)
d

dρ

(
ρDρ

)+ 1

ρ

∂Dφ

∂φ
=
[
− 1

ρ
(50 + 150 sin φ)+ 1

ρ
150 sin φ

]
ε0 = −50

ρ
ε0 C

At P , this is ρvP = −443 pC/m3.

53



4.25b. How much charge lies within the cylinder? We will integrate ρv over the volume to obtain:

Q =
∫ 1

0

∫ 2π

0

∫ 2

0
−50ε0

ρ
ρ dρ dφ dz = −2π(50)ε0(2) = −5.56 nC

4.26. A dipole having Qd/(4πε0) = 100 V · m2 is located at the origin in free space and aligned so that its
moment is in the az direction. a) Sketch |V (r = 1, θ, φ = 0)| versus θ on polar graph paper (homemade
if you wish). b) Sketch |E(r = 1, θ, φ = 0)| versus θ on polar graph paper:

V = Qd cos θ

4πε0r2 = 100 cos θ

r2 ⇒ |V (r = 1, θ, φ = 0)| = |100 cos θ |

E = Qd

4πε0r3 (2 cos θ ar + sin θ aθ ) = 100

r3 (2 cos θ ar + sin θ aθ )

|E(r = 1, θ, φ = 0)| = 100
(

4 cos2 θ + sin2 θ
)1/2 = 100

(
1 + 3 cos2 θ

)1/2

These results are plotted below:
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4.27. Two point charges, 1 nC at (0, 0, 0.1) and −1 nC at (0, 0,−0.1), are in free space.
a) Calculate V at P(0.3, 0, 0.4): Use

VP = q

4πε0|R+| − q

4πε0|R−|

where R+ = (.3, 0, .3) and R− = (.3, 0, .5), so that |R+| = 0.424 and |R−| = 0.583. Thus

VP = 10−9

4πε0

[
1

.424
− 1

.583

]
= 5.78 V

b) Calculate |E| at P : Use

EP = q(.3ax + .3az)
4πε0(.424)3

− q(.3ax + .5az)
4πε0(.583)3

= 10−9

4πε0

[
2.42ax + 1.41az

]
V/m

Taking the magnitude of the above, we find |EP | = 25.2 V/m.

c) Now treat the two charges as a dipole at the origin and find V at P : In spherical coordinates, P
is located at r = √

.32 + .42 = .5 and θ = sin−1(.3/.5) = 36.9◦. Assuming a dipole in far-field,
we have

VP = qd cos θ

4πε0r2 = 10−9(.2) cos(36.9◦)
4πε0(.5)2

= 5.76 V

4.28. A dipole located at the origin in free space has a moment p2 × 10−9 az C · m. At what points on the
line y = z, x = 0 is:

a) |Eθ | = 1 mV/m? We note that the line y = z lies at θ = 45◦. Begin with

E = 2 × 10−9

4πε0r3 (2 cos θ ar + sin θ aθ ) = 10−9

2
√

2πε0r3
(2ar + aθ ) at θ = 45◦

from which

Eθ = 10−9

2πε0r3 = 10−3 V/m (required) ⇒ r3 = 1.27 × 10−4 or r = 23.3 m

The y and z values are thus y = z = ±23.3/
√

2 = ±16.5 m

b) |Er | = 1 mV/m? From the above field expression, the radial component magnitude is twice that
of the theta component. Using the same development, we then find

Er = 2
10−9

2πε0r3 = 10−3 V/m (required) ⇒ r3 = 2(1.27 × 10−4) or r = 29.4 m

The y and z values are thus y = z = ±29.4/
√

2 = ±20.8 m
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4.29. A dipole having a moment p = 3ax − 5ay + 10az nC · m is located at Q(1, 2,−4) in free space. Find
V at P(2, 3, 4): We use the general expression for the potential in the far field:

V = p · (r − r′)
4πε0|r − r′|3

where r − r′ = P −Q = (1, 1, 8). So

VP = (3ax − 5ay + 10az) · (ax + ay + 8az)× 10−9

4πε0[12 + 12 + 82]1.5
= 1.31 V

4.30. A dipole, having a moment p = 2az nC · m is located at the origin in free space. Give the magnitude
of E and its direction aE in cartesian components at r = 100 m, φ = 90◦, and θ =: a) 0◦; b) 30◦; c)
90◦. Begin with

E = p

4πε0r3 [2 cos θ ar + sin θ aθ ]

from which

|E| = p

4πε0r3

[
4 cos2 θ + sin2 θ

]1/2 = p

4πε0r3

[
1 + 3 cos2 θ

]1/2

Now

Ex = E · ax = p

4πε0r3 [2 cos θ ar · ax + sin θ aθ · ax] = p

4πε0r3 [3 cos θ sin θ cosφ]

then

Ey = E · ay = p

4πε0r3

[
2 cos θ ar · ay + sin θ aθ · ay

] = p

4πε0r3 [3 cos θ sin θ sin φ]

and

Ez = E · az = p

4πε0r3

[
2 cos θ ar · az + sin θ aθ · az

] = p

4πε0r3

[
2 cos2 θ − sin2 θ

]
Since φ is given as 90◦, Ex = 0, and the field magnitude becomes

|E(φ = 90◦)| =
√
E2
y + E2

z = p

4πε0r3

[
9 cos2 θ sin2 θ + (2 cos2 θ − sin2 θ)2

]1/2

Then the unit vector becomes (again at φ = 90◦):

aE = 3 cos θ sin θ ay + (2 cos2 θ − sin2 θ) az[
9 cos2 θ sin2 θ + (2 cos2 θ − sin2 θ)2

]1/2

Now with r = 100 m and p = 2 × 10−9,

p

4πε0r3 = 2 × 10−9

4π(8.854 × 10−12)106 = 1.80 × 10−5

Using the above formulas, we find at θ = 0◦, |E| = (1.80 × 10−5)(2) = 36.0µV/m and aE = az.
At θ = 30◦, we find |E| = (1.80 × 10−5)[1.69 + 1.56]1/2 = 32.5µV/m and aE = (1.30ay +
1.25az)/1.80 = 0.72 ax + 0.69 az. At θ = 90◦, |E| = (1.80×10−5)(1) = 18.0 µV/m and aE = −az.
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4.31. A potential field in free space is expressed as V = 20/(xyz)V.

a) Find the total energy stored within the cube 1 < x, y, z < 2. We integrate the energy density over
the cube volume, where wE = (1/2)ε0E · E, and where

E = −∇V = 20

[
1

x2yz
ax + 1

xy2z
ay + 1

xyz2 az

]
V/m

The energy is now

WE = 200ε0

∫ 2

1

∫ 2

1

∫ 2

1

[
1

x4y2z2 + 1

x2y4z2 + 1

x2y2z4

]
dx dy dz

The integral evaluates as follows:

WE = 200ε0

∫ 2

1

∫ 2

1

[
−
(

1

3

)
1

x3y2z2 − 1

xy4z2 − 1

xy2z4

]2

1
dy dz

= 200ε0

∫ 2

1

∫ 2

1

[(
7

24

)
1

y2z2 +
(

1

2

)
1

y4z2 +
(

1

2

)
1

y2z4

]
dy dz

= 200ε0

∫ 2

1

[
−
(

7

24

)
1

yz2 −
(

1

6

)
1

y3z2 −
(

1

2

)
1

yz4

]2

1
dz

= 200ε0

∫ 2

1

[(
7

48

)
1

z2 +
(

7

48

)
1

z2 +
(

1

4

)
1

z4

]
dz

= 200ε0(3)

[
7

96

]
= 387 pJ

b) What value would be obtained by assuming a uniform energy density equal to the value at the
center of the cube? At C(1.5, 1.5, 1.5) the energy density is

wE = 200ε0(3)

[
1

(1.5)4(1.5)2(1.5)2

]
= 2.07 × 10−10 J/m3

This, multiplied by a cube volume of 1, produces an energy value of 207 pJ.

4.32. In the region of free space where 2 < r < 3, 0.4π < θ < 0.6π , 0 < φ < π/2, let E = k/r2 ar .
a) Find a positive value for k so that the total energy stored is exactly 1 J: The energy is found through

WE =
∫
v

1

2
ε0E

2 dv =
∫ π/2

0

∫ 0.6π

0.4π

∫ 3

2

1

2
ε0
k2

r2 r
2 sin θ dr dθ dφ

= π

2
(− cos θ)

∣∣∣.6π
.4π

(
1

2

)
ε0k

2
(

−1

r

) ∣∣∣3
2

= 0.616π

24
ε0k

2 = 1 J

Solve for k to find k = 1.18 × 106 V · m.
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4.32b. Show that the surface θ = 0.6π is an equipotential surface: This will be the surface of a cone, centered
at the origin, along which E, in the ar direction, will exist. Therefore, the given surface cannot be an
equipotential (the problem was ill-conceived). Only a surface of constant r could be an equipotential
in this field.

c) Find VAB , given points A(2, θ = π/2, φ = π/3) and B(3, π/2, π/4): Use

VAB = −
∫ A

B

E · dL = −
∫ 3

2

k

r2 ar · ar dr = k

(
1

2
− 1

3

)
= k

6

Using the result of part a, we find VAB = (1.18 × 106)/6 = 197 kV.

4.33. A copper sphere of radius 4 cm carries a uniformly-distributed total charge of 5µC in free space.
a) Use Gauss’ law to find D external to the sphere: with a spherical Gaussian surface at radius r , D

will be the total charge divided by the area of this sphere, and will be ar -directed. Thus

D = Q

4πr2 ar = 5 × 10−6

4πr2 ar C/m2

b) Calculate the total energy stored in the electrostatic field: Use

WE =
∫
vol

1

2
D · E dv =

∫ 2π

0

∫ π

0

∫ ∞

.04

1

2

(5 × 10−6)2

16π2ε0r4 r2 sin θ dr dθ dφ

= (4π)

(
1

2

)
(5 × 10−6)2

16π2ε0

∫ ∞

.04

dr

r2 = 25 × 10−12

8πε0

1

.04
= 2.81 J

c) Use WE = Q2/(2C) to calculate the capacitance of the isolated sphere: We have

C = Q2

2WE

= (5 × 10−6)2

2(2.81)
= 4.45 × 10−12 F = 4.45 pF

4.34. Given the potential field in free space, V = 80φ V (note that aphi should not be present), find:
a) the energy stored in the region 2 < ρ < 4 cm, 0 < φ < 0.2π , 0 < z < 1 m: First we find

E = −∇V = − 1

ρ

dV

dφ
aφ = −80

ρ
aφ V/m

Then

WE =
∫
v

wEdv =
∫ 1

0

∫ 0.2π

0

∫ .04

.02

1

2
ε0
(80)2

ρ2 ρ dρ dφ dz = 640πε0 ln

(
.04

.02

)
= 12.3 nJ

b) the potential difference, VAB , for A(3 cm, φ = 0, z = 0) and B(3cm, 0.2π, 1m): Use

VAB = −
∫ A

B

E · dL = −
∫ 0

.2π
−80

ρ
aφ · aφ ρ dφ = −80(0.2π) = −16π V
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4.34c. the maximum value of the energy density in the specified region: The energy density is

wE = 1

2
ε0E

2 = 1

2
ε0

6400

ρ2

This will maximize at the lowest value of ρ in the specified range, which is ρ = 2 cm. So

wE,max = 1

2
ε0

6400

.022 = 7.1 × 10−5 J/m3 = 71 µJ/m3

4.35. Four 0.8 nC point charges are located in free space at the corners of a square 4 cm on a side.
a) Find the total potential energy stored: This will be given by

WE = 1

2

4∑
n=1

qnVn

where Vn in this case is the potential at the location of any one of the point charges that arises from
the other three. This will be (for charge 1)

V1 = V21 + V31 + V41 = q

4πε0

[
1

.04
+ 1

.04
+ 1

.04
√

2

]

Taking the summation produces a factor of 4, since the situation is the same at all four points.
Consequently,

WE = 1

2
(4)q1V1 = (.8 × 10−9)2

2πε0(.04)

[
2 + 1√

2

]
= 7.79 × 10−7 J = 0.779µJ

b) A fifth 0.8µC charge is installed at the center of the square. Again find the total stored energy:
This will be the energy found in part a plus the amount of work done in moving the fifth charge
into position from infinity. The latter is just the potential at the square center arising from the
original four charges, times the new charge value, or

2WE = 4(.8 × 10−9)2

4πε0(.04
√

2/2)
= .813µJ

The total energy is now

WEnet = WE(part a)+2WE = .779 + .813 = 1.59µJ
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