
CHAPTER 5

5.1. Given the current density J = −104[sin(2x)e−2yax + cos(2x)e−2yay] kA/m2:

a) Find the total current crossing the plane y = 1 in the ay direction in the region 0 < x < 1,
0 < z < 2: This is found through

I =
∫ ∫

S

J · n
∣∣∣
S
da =

∫ 2

0

∫ 1

0
J · ay

∣∣∣
y=1

dx dz =
∫ 2

0

∫ 1

0
−104 cos(2x)e−2 dx dz

= −104(2)
1

2
sin(2x)

∣∣∣1
0
e−2 = −1.23 MA

b) Find the total current leaving the region 0 < x, x < 1, 2 < z < 3 by integrating J · dS over
the surface of the cube: Note first that current through the top and bottom surfaces will not exist,
since J has no z component. Also note that there will be no current through the x = 0 plane, since
Jx = 0 there. Current will pass through the three remaining surfaces, and will be found through

I =
∫ 3

2

∫ 1

0
J · (−ay)

∣∣∣
y=0

dx dz +
∫ 3

2

∫ 1

0
J · (ay)

∣∣∣
y=1

dx dz +
∫ 3

2

∫ 1

0
J · (ax)

∣∣∣
x=1

dy dz

= 104
∫ 3

2

∫ 1

0

[
cos(2x)e−0 − cos(2x)e−2

]
dx dz − 104

∫ 3

2

∫ 1

0
sin(2)e−2y dy dz

= 104
(

1

2

)
sin(2x)

∣∣∣1
0
(3 − 2)

[
1 − e−2

]
+ 104

(
1

2

)
sin(2)e−2y

∣∣∣1
0
(3 − 2) = 0

c) Repeat part b, but use the divergence theorem: We find the net outward current through the surface
of the cube by integrating the divergence of J over the cube volume. We have

∇ · J = ∂Jx

∂x
+ ∂Jy

∂y
= −10−4

[
2 cos(2x)e−2y − 2 cos(2x)e−2y

]
= 0 as expected

5.2. Let the current density be J = 2φ cos2 φaρ − ρ sin 2φaφ A/m2 within the region 2.1 < ρ < 2.5,
0 < φ < 0.1 rad, 6 < z < 6.1. Find the total current I crossing the surface:

a) ρ = 2.2, 0 < φ < 0.1, 6 < z < 6.1 in the aρ direction: This is a surface of constant ρ, so only
the radial component of J will contribute: At ρ = 2.2 we write:

I =
∫

J · dS =
∫ 6.1

6

∫ 0.1

0
2(2) cos2 φ aρ · aρ 2dφdz = 2(2.2)2(0.1)

∫ 0.1

0

1

2
(1 + cos 2φ) dφ

= 0.2(2.2)2
[

1

2
(0.1) + 1

4
sin 2φ

∣∣∣0.1
0

]
= 97 mA

b) φ = 0.05, 2.2 < ρ < 2.5, 6 < z < 6.1 in the aφ direction: In this case only the φ component of
J will contribute:

I =
∫

J · dS =
∫ 6.1

6

∫ 2.5

2.2
−ρ sin 2φ

∣∣
φ=0.05 aφ · aφ dρ dz = −(0.1)2 ρ

2

2

∣∣∣2.5
2.2

= −7 mA
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5.2c. Evaluate ∇ · J at P(ρ = 2.4, φ = 0.08, z = 6.05):

∇ · J = 1

ρ

∂

∂ρ
(ρJρ) + 1

ρ

∂Jφ

∂φ
= 1

ρ

∂

∂ρ
(2ρ2 cos2 φ) − 1

ρ

∂

∂φ
(ρ sin 2φ) = 4 cos2 φ − 2 cos 2φ

∣∣∣
0.08

= 2.0 A/m3

5.3. Let

J = 400 sin θ

r2 + 4
ar A/m2

a) Find the total current flowing through that portion of the spherical surface r = 0.8, bounded by
0.1π < θ < 0.3π , 0 < φ < 2π : This will be

I =
∫ ∫

J · n
∣∣∣
S
da =

∫ 2π

0

∫ .3π

.1π

400 sin θ

(.8)2 + 4
(.8)2 sin θ dθ dφ = 400(.8)22π

4.64

∫ .3π

.1π
sin2 dθ

= 346.5
∫ .3π

.1π

1

2
[1 − cos(2θ)] dθ = 77.4 A

b) Find the average value of J over the defined area. The area is

Area =
∫ 2π

0

∫ .3π

.1π
(.8)2 sin θ dθ dφ = 1.46 m2

The average current density is thus Javg = (77.4/1.46) ar = 53.0 ar A/m2.

5.4. The cathode of a planar vacuum tube is at z = 0. Let E = −4 × 106 az V/m for z > 0. An electron
(e = 1.602 × 10−19 C, m = 9.11 × 10−31 kg) is emitted from the cathode with zero initial velocity at
t = 0.

a) Find v(t): Using Newton’s second law, we write:

F = ma = qE ⇒ a = (−1.602 × 10−19)(−4 × 106)az

(9.11 × 10−31)
= 7.0 × 1017az m/s2

Then v(t) = at = 7.0 × 1017t m/s.

b) Find z(t), the electron location as a function of time: Use

z(t) =
∫ t

0
v(t ′)dt ′ = 1

2
(7.0 × 1017)t2 = 3.5 × 1017t2 m

c) Determine v(z): Solve the result of part b for t , obtaining

t =
√
z√

3.5 × 1017
= 1.7 × 109√z

Substitute into the result of part a to find v(z) = 7.0 × 1017(1.7 × 10−9)
√
z = 1.2 × 109√z m/s.
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5.4d. Make the assumption that the electrons are emitted continuously as a beam with a 0.25 mm radius and
a total current of 60 µA. Find J(z) and ρ(z):

J(z) = −60 × 10−6

π(0.25)2(10−6)
az = −3.1 × 102 az A/m2

(negative since we have electrons flowing in the positive z direction) Next we use J(z) = ρv(z)v(z), or

ρv(z) = J

v
= −3.1 × 102

1.2 × 109√z
= −2.6 × 10−7

√
z

C/m3 = −26√
z

µC/m3

5.5. Let

J = 25

ρ
aρ − 20

ρ2 + 0.01
az A/m2

a) Find the total current crossing the plane z = 0.2 in the az direction for ρ < 0.4: Use

I =
∫ ∫

S

J · n
∣∣∣
z=.2

da =
∫ 2π

0

∫ .4

0

−20

ρ2 + .01
ρ dρ dφ

= −
(

1

2

)
20 ln(.01 + ρ2)

∣∣∣.4
0
(2π) = −20π ln(17) = −178.0 A

b) Calculate ∂ρv/∂t : This is found using the equation of continuity:

∂ρv

∂t
= −∇ · J = 1

ρ

∂

∂ρ
(ρJρ) + ∂Jz

∂z
= 1

ρ

∂

∂ρ
(25) + ∂

∂z

( −20

ρ2 + .01

)
= 0

c) Find the outward current crossing the closed surface defined by ρ = 0.01, ρ = 0.4, z = 0, and
z = 0.2: This will be

I =
∫ .2

0

∫ 2π

0

25

.01
aρ · (−aρ)(.01) dφ dz +

∫ .2

0

∫ 2π

0

25

.4
aρ · (aρ)(.4) dφ dz

+
∫ 2π

0

∫ .4

0

−20

ρ2 + .01
az · (−az) ρ dρ dφ +

∫ 2π

0

∫ .4

0

−20

ρ2 + .01
az · (az) ρ dρ dφ = 0

since the integrals will cancel each other.

d) Show that the divergence theorem is satisfied for J and the surface specified in part b. In part c,
the net outward flux was found to be zero, and in part b, the divergence of J was found to be zero
(as will be its volume integral). Therefore, the divergence theorem is satisfied.

5.6. Let ε = ε0 and V = 90z4/3 in the region z = 0.
a) Obtain expressions for E, D, and ρv as functions of z: First,

E = −∇V = − dV

dz
az = − 4

3
(90)z1/3az = −120z1/3az V/m
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5.6a. (continued)
Next, D = ε0E = 1.06z1/3az nC/m2. Then

ρv = ∇ · D = dDz

dz
= − 1

3
(120)ε0z

−2/3 = −354z−2/3 pC/m3

b) If the velocity of the charge density is given as vz = 5×106z2/3 m/s, find Jz at z = 0 and z = 0.1
m (note that vz is written as vx through a missprint): Use Jz = ρvvz = (−354 × 10−12)z−2/3(5 ×
106)z2/3 = −1.8 mA/m2 at any z.

5.7. Assuming that there is no transformation of mass to energy or vice-versa, it is possible to write a
continuity equation for mass.

a) If we use the continuity equation for charge as our model, what quantities correspond to J and ρv?
These would be, respectively, mass flux density in (kg/m2 − s) and mass density in (kg/m3).

b) Given a cube 1 cm on a side, experimental data show that the rates at which mass is leaving each
of the six faces are 10.25, -9.85, 1.75, -2.00, -4.05, and 4.45 mg/s. If we assume that the cube is
an incremental volume element, determine an approximate value for the time rate of change of
density at its center. We may write the continuity equation for mass as follows, also invoking the
divergence theorem: ∫

v

∂ρm

∂t
dv = −

∫
v

∇ · Jm dv = −
∮
s

Jm · dS

where ∮
s

Jm · dS = 10.25 − 9.85 + 1.75 − 2.00 − 4.05 + 4.45 = 0.550 mg/s

Treating our 1 cm3 volume as differential, we find

∂ρm

∂t

.= −0.550 × 10−3 g/s

10−6 m3 = −550 g/m3 − s

5.8. The continuity equation for mass equates the divergence of the mass rate of flow (mass per second
per square meter) to the negative of the density (mass per cubic meter). After setting up a cartesian
coordinate system inside a star, Captain Kirk and his intrepid crew make measurements over the faces
of a cube centered at the origin with edges 40 km long and parallel to the coordinate axes. They find
the mass rate of flow of material outward across the six faces to be -1112, 1183, 201, -196, 1989, and
-1920 kg/m2 · s.

a) Estimate the divergence of the mass rate of flow at the origin: We make the estimate using the
definition of divergence, but without taking the limit as the volume shrinks to zero:

Div Jm
.=
∮

Jm · dS
$v

= (−1112 + 1183 + 201 − 196 + 1989 − 1920)(40)2

(40)3 = 3.63 kg/km3 · s

b) Estimate the rate of change of the density at the origin: The continuity equation for mass reads:
Div Jm = − ∂ρm/∂t . Therefore, the rate of change of density at the origin will be just the negative
of the part a result, or ∂ρm/∂t

.= − 3.63 kg/km3 · s.
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5.9a. Using data tabulated in Appendix C, calculate the required diameter for a 2-m long nichrome wire that
will dissipate an average power of 450 W when 120 V rms at 60 Hz is applied to it:

The required resistance will be

R = V 2

P
= l

σ (πa2)

Thus the diameter will be

d = 2a = 2

√
lP

σπV 2 = 2

√
2(450)

(106)π(120)2 = 2.8 × 10−4 m = 0.28 mm

b) Calculate the rms current density in the wire: The rms current will be I = 450/120 = 3.75 A.
Thus

J = 3.75

π
(
2.8 × 10−4/2

)2 = 6.0 × 107 A/m2

5.10. A steel wire has a radius of 2 mm and a conductivity of 2 × 106 S/m. The steel wire has an aluminum
(σ = 3.8 × 107 S/m) coating of 2 mm thickness. Let the total current carried by this hybrid conductor
be 80 A dc. Find:

a) Jst . We begin with the fact that electric field must be the same in the aluminum and steel regions.
This comes from the requirement that E tangent to the boundary between two media must be
continuous, and from the fact that when integrating E over the wire length, the applied voltage
value must be obtained, regardless of the medium within which this integral is evaluated. We can
therefore write

EAl = Est = JAl

σAl

= Jst

σst

⇒ JAl = σAl

σst

Jst

The net current is now expressed as the sum of the currents in each region, written as the sum of
the products of the current densities in each region times the appropriate cross-sectional area:

I = π(2 × 10−3)2Jst + π [(4 × 10−3)2 − (2 × 10−3)2]JAl = 80 A

Using the above relation between Jst and JAl , we find

80 = π

[
(2 × 10−3)2

[
1 −

(
3.8 × 107

6 × 106

)]
+ (4 × 10−3)2

(
3.8 × 107

6 × 106

)]
Jst

Solve for Jst to find Jst = 3.2 × 105 A/m2.

b)

JAl = 3.8 × 107

6 × 106 (3.2 × 105) = 2.0 × 106 A/m2

c,d) Est = EAl = Jst /σst = JAl/σAl = 5.3 × 10−2 V/m.

e) the voltage between the ends of the conductor if it is 1 mi long: Using the fact that 1 mi = 1.61×103

m, we have V = El = (5.3 × 10−2)(1.61 × 103) = 85.4 V.
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5.11. Two perfectly-conducting cylindrical surfaces are located at ρ = 3 and ρ = 5 cm. The total current
passing radially outward through the medium between the cylinders is 3 A dc. Assume the cylinders
are both of length l.

a) Find the voltage and resistance between the cylinders, and E in the region between the cylinders,
if a conducting material having σ = 0.05 S/m is present for 3 < ρ < 5 cm: Given the current,
and knowing that it is radially-directed, we find the current density by dividing it by the area of a
cylinder of radius ρ and length l:

J = 3

2πρl
aρ A/m2

Then the electric field is found by dividing this result by σ :

E = 3

2πσρl
aρ = 9.55

ρl
aρ V/m

The voltage between cylinders is now:

V = −
∫ 3

5
E · dL =

∫ 5

3

9.55

ρl
aρ · aρdρ = 9.55

l
ln

(
5

3

)
= 4.88

l
V

Now, the resistance will be

R = V

I
= 4.88

3l
= 1.63

l
*

b) Show that integrating the power dissipated per unit volume over the volume gives the total dissipated
power: We calculate

P =
∫
v

E · J dv =
∫ l

0

∫ 2π

0

∫ .05

.03

32

(2π)2ρ2(.05)l2
ρ dρ dφ dz = 32

2π(.05)l
ln

(
5

3

)
= 14.64

l
W

We also find the power by taking the product of voltage and current:

P = V I = 4.88

l
(3) = 14.64

l
W

which is in agreement with the power density integration.

5.12. The spherical surfaces r = 3 and r = 5 cm are perfectly conducting, and the total current passing
radially outward through the medium between the surfaces is 3 A dc.

a) Find the voltage and resistance between the spheres, and E in the region between them, if a
conducting material having σ = 0.05 S/m is present for 3 < r < 5 cm. We first find J as a
function of radius by dividing the current by the area of a sphere of radius r:

J = I

4πr2 ar = 3

4πr2 ar A/m2

Then

E = J
σ

= 3

4πr2(0.05)
ar = 4.77

r2 ar V/m
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5.12a. (continued)

V = −
∫ r1

r2

E · dL = −
∫ .03

.05

4.77

r2 dr = 4.77

[
1

.03
− 1

.05

]
= 63.7 V

Finally, R = V/I = 63.7/3 = 21.2 *.

b) Repeat if σ = 0.0005/r for 3 < r < 5 cm: First, J = 3ar/(4πr2) as before. The electric field is
now

E = J
σ

= 3rar

4π(.0005)r2 = 477

r
ar V/m

Now

V = −
∫ r1

r2

E · dL = −
∫ .03

.05

477

r
dr = −477 ln

(
.03

.05

)
= 244 V

Finally, R = V/I = 244/3 = 81.3 *.

c) Show that integrating the power dissipated per unit volume in part b over the volume gives the
total dissipated power: The dissipated power density is

pd = E · J =
(

3

4π(.0005)r

)(
3

4πr2

)
= 114

r3 W/m2

We integrate this over the volume between spheres:

Pd =
∫ 2π

0

∫ π

0

∫ .05

.03

114

r3 r2 sin θ dr dθ dφ = 4π(114) ln

(
5

3

)
= 732 W

The dissipated power should be just I 2R = (3)2(81.3) = 732 W. So it works.

5.13. A hollow cylindrical tube with a rectangular cross-section has external dimensions of 0.5 in by 1 in and
a wall thickness of 0.05 in. Assume that the material is brass, for which σ = 1.5 × 107 S/m. A current
of 200 A dc is flowing down the tube.

a) What voltage drop is present across a 1m length of the tube? Converting all measurements to
meters, the tube resistance over a 1 m length will be:

R1 = 1

(1.5 × 107)
[
(2.54)(2.54/2) × 10−4 − 2.54(1 − .1)(2.54/2)(1 − .2) × 10−4

]
= 7.38 × 10−4 *

The voltage drop is now V = IR1 = 200(7.38 × 10−4 = 0.147 V.

b) Find the voltage drop if the interior of the tube is filled with a conducting material for which
σ = 1.5 × 105 S/m: The resistance of the filling will be:

R2 = 1

(1.5 × 105)(1/2)(2.54)2 × 10−4(.9)(.8)
= 2.87 × 10−2 *

The total resistance is now the parallel combination of R1 and R2:
RT = R1R2/(R1 + R2) = 7.19 × 10−4 *, and the voltage drop is now V = 200RT = .144 V.
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5.14. Find the magnitude of the electric field intensity in a conductor if:
a) the current density is 5 MA/m2, the electron mobility is 3×10−3 m2/V · s, and the volume charge

density is −2.4 × 1010 C/m3: In magnitude, we have

E = J

µeρv

= 5 × 106

(2.4 × 1010)(3 × 10−3)
= 6.9 × 10−2 V/m

b) J = 3 MA/m2 and the resistivity is 3 × 10−8 * · m: E = Jρ = (3 × 106)(3 × 10−8) =
9 × 10−2 V/m.

5.15. Let V = 10(ρ + 1)z2 cosφ V in free space.

a) Let the equipotential surface V = 20 V define a conductor surface. Find the equation of the
conductor surface: Set the given potential function equal to 20, to find:

(ρ + 1)z2 cosφ = 2

b) Find ρ and E at that point on the conductor surface where φ = 0.2π and z = 1.5: At the given
values of φ and z, we solve the equation of the surface found in part a for ρ, obtaining ρ = .10.
Then

E = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ − ∂V

∂z
az

= −10z2 cosφ aρ + 10
ρ + 1

ρ
z2 sin φ aφ − 20(ρ + 1)z cosφ az

Then
E(.10, .2π, 1.5) = −18.2 aρ + 145 aφ − 26.7 az V/m

c) Find |ρs | at that point: Since E is at the perfectly-conducting surface, it will be normal to the
surface, so we may write:

ρs = ε0E · n
∣∣∣
surface

= ε0
E · E
|E| = ε0

√
E · E = ε0

√
(18.2)2 + (145)2 + (26.7)2 = 1.32 nC/m2

5.16. A potential field in free space is given asV = (80 cos θ sin φ)/r3 V. PointP(r = 2, θ = π/3, φ = π/2)
lies on a conducting surface.

a) Write the equation of the conducting surface: The surface will be an equipotential, where the value
of the potential is VP :

VP = 80 cos(π/3) sin(π/2)

(2)3 = 5

So the equation of the surface is

80 cos θ sin φ

r3 = 5 or 16 cos θ sin φ = r3

67



5.16c. (I will work parts b and c in reverse order)
Find E at P :

E = −∇V = −∂V

∂r
ar − 1

r

∂V

∂θ
aθ − 1

r sin θ

∂V

∂φ
aφ

= 80(3) cos θ sin φ

r4 ar + 80 sin θ sin φ

r4 aθ − 80 cos θ cosφ

r4 sin θ
aφ

Now

EP = 80(1/2)(1)(3)

16
ar + 80(

√
3/2)(1)

16
aθ − 0 aφ = 7.5 ar + 4.3 aθ V/m

b) Find a unit vector directed outward to the surface, assuming the origin is inside the surface: Such
a unit normal can be construced from the result of part c:

aN = 7.5 ar + 4.3 aθ

4.33
= 0.87 ar + 0.50 aθ

5.17. Given the potential field

V = 100xz

x2 + 4
V

in free space:
a) Find D at the surface z = 0: Use

E = −∇V = −100z
∂

∂x

(
x

x2 + 4

)
ax − 0 ay − 100x

x2 + 4
az V/m

At z = 0, we use this to find

D(z = 0) = ε0E(z = 0) = −100ε0x

x2 + 4
az C/m2

b) Show that the z = 0 surface is an equipotential surface: There are two reasons for this: 1) E at
z = 0 is everywhere z-directed, and so moving a charge around on the surface involves doing no
work; 2) When evaluating the given potential function at z = 0, the result is 0 for all x and y.

c) Assume that the z = 0 surface is a conductor and find the total charge on that portion of the
conductor defined by 0 < x < 2, −3 < y < 0: We have

ρs = D · az

∣∣∣
z=0

= −100ε0x

x2 + 4
C/m2

So

Q =
∫ 0

−3

∫ 2

0
−100ε0x

x2 + 4
dx dy = −(3)(100)ε0

(
1

2

)
ln(x2 + 4)

∣∣∣2
0

= −150ε0 ln 2 = −0.92 nC
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5.18. Let us assume a field E = 3y2z3 ax + 6xyz3 ay + 9xy2z2 az V/m in free space, and also assume that
point P(2, 1, 0) lies on a conducting surface.

a) Find ρv just adjacent to the surface at P :

ρv = ∇ · D = ε0∇ · E = 6xz3 + 18xy2z C/m3

Then at P , ρv = 0, since z = 0.

b) Find ρs at P :

ρs = D · n
∣∣∣
P

= ε0Eṅ
∣∣∣
P

Note however, that this computation involves evaluating E at the surface, yielding a value of 0.
Therefore the surface charge density at P is 0.

c) Show that V = −3xy2z3 V: The simplest way to show this is just to take −∇V , which yields the
given field: A more general method involves deriving the potential from the given field: We write

Ex = −∂V

∂x
= 3y2z3 ⇒ V = −3xy2z3 + f (y, z)

Ey = −∂V

∂y
= 6xyz3 ⇒ V = −3xy2z3 + f (x, z)

Ez = −∂V

∂z
= 9xy2z2 ⇒ V = −3xy2z3 + f (x, y)

where the integration “constants” are functions of all variables other than the integration variable.
The general procedure is to adjust the functions, f , such that the result for V is the same in all
three integrations. In this case we see that f (x, y) = f (x, z) = f (y, z) = 0 accomplishes this,
and the potential function is V = −3xy2z3 as given.

d) Determine VPQ, given Q(1, 1, 1): Using the potential function of part c, we have

VPQ = VP − VQ = 0 − (−3) = 3 V

5.19. Let V = 20x2yz − 10z2 V in free space.

a) Determine the equations of the equipotential surfaces on which V = 0 and 60 V: Setting the given
potential function equal to 0 and 60 and simplifying results in:

At 0 V : 2x2y − z = 0

At 60 V : 2x2y − z = 6

z

b) Assume these are conducting surfaces and find the surface charge density at that point on the
V = 60 V surface where x = 2 and z = 1. It is known that 0 ≤ V ≤ 60 V is the field-containing
region: First, on the 60 V surface, we have

2x2y − z − 6

z
= 0 ⇒ 2(2)2y(1) − 1 − 6 = 0 ⇒ y = 7

8
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5.19b. (continued) Now

E = −∇V = −40xyz ax − 20x2z ay − [20xy − 20z] az

Then, at the given point, we have

D(2, 7/8, 1) = ε0E(2, 7/8, 1) = −ε0[70 ax + 80 ay + 50 az] C/m2

We know that since this is the higher potential surface, D must be directed away from it, and so
the charge density would be positive. Thus

ρs =
√

D · D = 10ε0

√
72 + 82 + 52 = 1.04 nC/m2

c) Give the unit vector at this point that is normal to the conducting surface and directed toward the
V = 0 surface: This will be in the direction of E and D as found in part b, or

an = −
[

7ax + 8ay + 5az√
72 + 82 + 52

]
= −[0.60ax + 0.68ay + 0.43az]

5.20. A conducting plane is located at z = 0 in free space, and a 20 nC point charge is present at Q(2, 4, 6).
a) If V = 0 at z = 0, find V at P(5, 3, 1): The plane can be replaced by an image charge of -20 nC

at Q′(2, 4,−6). Vectors R and R′ directed from Q and Q′ to P are R = (5, 3, 1) − (2, 4, 6) =
(3,−1,−5) and R′ = (5, 3, 1) − (2, 4,−6) = (3,−1, 7). Their magnitudes are R = √

35 and
R′ = √

59. The potential at P is given by

VP = q

4πε0R
− q

4πε0R′ = 20 × 10−9

4πε0
√

35
− 20 × 10−9

4πε0
√

59
= 7.0 V

b) Find E at P :

EP = qR
4πε0R3 − qR′

4πε0(R′)3 = (20 × 10−9)(3,−1,−5)

4πε0(35)3/2 − (20 × 10−9)(3,−1, 7)

4πε0(59)3/2

= 20 × 10−9

4πε0

[
(3ax − ay)

(
1

(35)3/2 − 1

(59)3/2

)
−
(

7

(59)3/2 + 5

(35)3/2

)
az

]
= 1.4ax − 0.47ay − 7.1az V/m

c) Find ρs at A(5, 3, 0): First, find the electric field there:

EA = 20 × 10−9

4πε0

[
(5, 3, 0) − (2, 4, 6)

(46)3/2 − (5, 3, 0) − (2, 4,−6)

(46)3/2

]
= −6.9az V/m

Then ρs = D · n
∣∣∣
surf ace

= −6.9ε0az · az = −61 pC/m2.
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5.21. Let the surface y = 0 be a perfect conductor in free space. Two uniform infinite line charges of 30
nC/m each are located at x = 0, y = 1, and x = 0, y = 2.

a) Let V = 0 at the plane y = 0, and find V at P(1, 2, 0): The line charges will image across the
plane, producing image line charges of -30 nC/m each at x = 0, y = −1, and x = 0, y = −2.
We find the potential at P by evaluating the work done in moving a unit positive charge from the
y = 0 plane (we choose the origin) to P : For each line charge, this will be:

VP − V0,0,0 = − ρl

2πε0
ln

[
final distance from charge

initial distance from charge

]

where V0,0,0 = 0. Considering the four charges, we thus have

VP = − ρl

2πε0

[
ln

(
1

2

)
+ ln

(√
2

1

)
− ln

(√
10

1

)
− ln

(√
17

2

)]

= ρl

2πε0

[
ln (2) + ln

(
1√
2

)
+ ln

(√
10
)

+ ln

(√
17

2

)]
= 30 × 10−9

2πε0
ln

[√
10

√
17√

2

]

= 1.20 kV

b) Find E at P : Use

EP = ρl

2πε0

[
(1, 2, 0) − (0, 1, 0)

|(1, 1, 0)|2 + (1, 2, 0) − (0, 2, 0)

|(1, 0, 0)|2

− (1, 2, 0) − (0,−1, 0)

|(1, 3, 0)|2 − (1, 2, 0) − (0,−2, 0)

|(1, 4, 0)|2
]

= ρl

2πε0

[
(1, 1, 0)

2
+ (1, 0, 0)

1
− (1, 3, 0)

10
− (1, 4, 0)

17

]
= 723 ax − 18.9 ay V/m

5.22. Let the plane x = 0 be a perfect conductor in free space. Locate a point charge of 4nC at P1(7, 1,−2)
and a point charge of −3nC at P2(4, 2, 1).

a) Find E at A(5, 0, 0): Image charges will be located at P ′
1(−7, 1,−2) (-4nC) and at P ′

2(−4, 2, 1)
(3nC). Vectors from all four charges to point A are:

R1 = (5, 0, 0) − (7, 1,−2) = (−2,−1, 2)

R′
1 = (5, 0, 0) − (−7, 1,−2) = (12,−1, 2)

R2 = (5, 0, 0) − (4, 2, 1) = (1,−2,−1)

and
R′

2 = (5, 0, 0) − (−4, 2, 1) = (9,−2,−1)

Replacing the plane by the image charges enables the field at A to be calculated through:

EA = 10−9

4πε0

[
(4)(−2,−1, 2)

93/2 − (3)(1,−2,−1)

63/2 − (4)(12,−1, 2)

(149)3/2 + (3)(9,−2,−1)

(86)3/2

]
= −4.43ax + 2.23ay + 4.42az V/m
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5.22b. Find |ρs | at B(0, 0, 0) (note error in problem statement): First, E at the origin is done as per the setup
in part a, except the vectors are directed from the charges to the origin:

EB = 10−9

4πε0

[
(4)(−7,−1, 2)

(54)3/2 − (3)(−4,−2,−1)

(21)3/2 − (4)(7,−1, 2)

(54)3/2 + (3)(4,−2,−1)

(21)3/2

]

Now ρs = D · n|surf ace = D · ax in our case (note the other components cancel anyway as they must,
but we still need to express ρs as a scalar):

ρsB = ε0EB · ax = 10−9

4π

[
(4)(−7)

(54)3/2 − (3)(−4)

(21)3/2 − (4)(7)

(54)3/2 + (3)(4)

(21)3/2

]
= 8.62 pC/m2

5.23. A dipole with p = 0.1az µC · m is located at A(1, 0, 0) in free space, and the x = 0 plane is perfectly-
conducting.

a) Find V at P(2, 0, 1). We use the far-field potential for a z-directed dipole:

V = p cos θ

4πε0r2 = p

4πε0

z

[x2 + y2 + z2]1.5

The dipole at x = 1 will image in the plane to produce a second dipole of the opposite orientation
at x = −1. The potential at any point is now:

V = p

4πε0

[
z

[(x − 1)2 + y2 + z2]1.5
− z

[(x + 1)2 + y2 + z2]1.5

]

Substituting P(2, 0, 1), we find

V = .1 × 106

4πε0

[
1

2
√

2
− 1

10
√

10

]
= 289.5 V

b) Find the equation of the 200-V equipotential surface in cartesian coordinates: We just set the
potential exression of part a equal to 200 V to obtain:

[
z

[(x − 1)2 + y2 + z2]1.5
− z

[(x + 1)2 + y2 + z2]1.5

]
= 0.222

5.24. The mobilities for intrinsic silicon at a certain temperature are µe = 0.14 m2/V · s and µh =
0.035 m2/V · s. The concentration of both holes and electrons is 2.2 × 1016 m−3. Determine both
the conductivity and the resistivity of this silicon sample: Use

σ = −ρeµe + ρhµh = (1.6 × 10−19C)(2.2 × 1016 m−3)(0.14 m2/V · s + 0.035 m2/V · s)

= 6.2 × 10−4 S/m

Conductivity is ρ = 1/σ = 1.6 × 103 * · m.
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5.25. Electron and hole concentrations increase with temperature. For pure silicon, suitable expressions are
ρh = −ρe = 6200T 1.5e−7000/T C/m3. The functional dependence of the mobilities on temperature is
given by µh = 2.3 × 105T −2.7 m2/V · s and µe = 2.1 × 105T −2.5 m2/V · s, where the temperature,
T , is in degrees Kelvin. The conductivity will thus be

σ = −ρeµe + ρhµh = 6200T 1.5e−7000/T
[
2.1 × 105T −2.5 + 2.3 × 105T −2.7

]
= 1.30 × 109

T
e−7000/T

[
1 + 1.095T −.2

]
S/m

Find σ at:
a) 0◦ C: With T = 273◦K, the expression evaluates as σ(0) = 4.7 × 10−5 S/m.

b) 40◦ C: With T = 273 + 40 = 313, we obtain σ(40) = 1.1 × 10−3 S/m.

c) 80◦ C: With T = 273 + 80 = 353, we obtain σ(80) = 1.2 × 10−2 S/m.

5.26. A little donor impurity, such as arsenic, is added to pure silicon so that the electron concentration
is 2 × 1017 conduction electrons per cubic meter while the number of holes per cubic meter is only
1.1×1015. Ifµe = 0.15 m2/V · s for this sample, andµh = 0.045 m2/V · s, determine the conductivity
and resistivity:

σ = −ρeµe + ρhµh = (1.6 × 10−19)
[
(2 × 1017)(0.15) + (1.1 × 1015)(0.045)

]
= 4.8 × 10−3 S/m

Then ρ = 1/σ = 2.1 × 102 * · m.

5.27. Atomic hydrogen contains 5.5×1025 atoms/m3 at a certain temperature and pressure. When an electric
field of 4 kV/m is applied, each dipole formed by the electron and positive nucleus has an effective
length of 7.1 × 10−19 m.

a) Find P: With all identical dipoles, we have

P = Nqd = (5.5 × 1025)(1.602 × 10−19)(7.1 × 10−19) = 6.26 × 10−12 C/m2 = 6.26 pC/m2

b) Find εR: We use P = ε0χeE, and so

χe = P

ε0E
= 6.26 × 10−12

(8.85 × 10−12)(4 × 103)
= 1.76 × 10−4

Then εR = 1 + χe = 1.000176.

5.28. In a certain region where the relative permittivity is 2.4, D = 2ax − 4ay + 5az nC/m2. Find:

a) E = D
ε

= (2ax − 4ay + 5az) × 10−9

(2.4)(8.85 × 10−12)
= 94ax − 188ay + 235az V/m

b) P = D − ε0E = ε0E(εR − 1) = (2ax − 4ay + 5az) × 10−9

2.4
(2.4 − 1)

= 1.2ax − 2.3ay + 2.9az nC/m2

c) |∇V | = |E| = [(94.1)2 + (188)2 + (235)2]1/2 = 315 V/m
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5.29. A coaxial conductor has radii a = 0.8 mm and b = 3 mm and a polystyrene dielectric for which
εR = 2.56. If P = (2/ρ)aρ nC/m2 in the dielectric, find:

a) D and E as functions of ρ: Use

E = P
ε0(εR − 1)

= (2/ρ) × 10−9aρ

(8.85 × 10−12)(1.56)
= 144.9

ρ
aρ V/m

Then

D = ε0E + P = 2 × 10−9aρ

ρ

[
1

1.56
+ 1

]
= 3.28 × 10−9aρ

ρ
C/m2 = 3.28aρ

ρ
nC/m2

b) Find Vab and χe: Use

Vab = −
∫ 0.8

3

144.9

ρ
dρ = 144.9 ln

(
3

0.8

)
= 192 V

χe = εr − 1 = 1.56, as found in part a.

c) If there are 4 × 1019 molecules per cubic meter in the dielectric, find p(ρ): Use

p = P
N

= (2 × 10−9/ρ)

4 × 1019 aρ = 5.0 × 10−29

ρ
aρ C · m

5.30. Given the potential field V = 200 − 50x + 20y V in a dielectric material for which εR = 2.1, find:
a) E = −∇V = 50ax − 20ay V/m.

b) D = εE = (2.1)(8.85 × 10−12)(50ax − 20ay) = 930ax − 372ay pC/m2.

c) P = ε0E(εR − 1) = (8.85 × 10−12)(50ax − 20ay)(1.1) = 487ax − 195ay pC/m2.

d) ρv = ∇ · D = 0.

e) ρb = −∇ · P = 0

f) ρT = ∇ · ε0E = 0

5.31. The surface x = 0 separates two perfect dielectrics. For x > 0, let εR = εR1 = 3, while εR2 = 5
where x < 0. If E1 = 80ax − 60ay − 30az V/m, find:

a) EN1: This will be E1 · ax = 80 V/m.

b) ET 1. This consists of components of E1 not normal to the surface, or ET 1 = −60ay − 30az V/m.

c) ET 1 =
√
(60)2 + (30)2 = 67.1 V/m.

d) E1 =
√
(80)2 + (60)2 + (30)2 = 104.4 V/m.

e) The angle θ1 between E1 and a normal to the surface: Use

cos θ1 = E1 · ax

E1
= 80

104.4
⇒ θ1 = 40.0◦
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5.31 (continued)

f) DN2 = DN1 = εR1ε0EN1 = 3(8.85 × 10−12)(80) = 2.12 nC/m2.

g) DT 2 = εR2ε0ET 1 = 5(8.85 × 10−12)(67.1) = 2.97 nC/m2.

h) D2 = εR1ε0EN1ax + εR2ε0ET 1 = 2.12ax − 2.66ay − 1.33az nC/m2.

i) P2 = D2 − ε0E2 = D2 [1 − (1/εR2)] = (4/5)D2 = 1.70ax − 2.13ay − 1.06az nC/m2.

j) the angle θ2 between E2 and a normal to the surface: Use

cos θ2 = E2 · ax

E2
= D2 · ax

D2
= 2.12√

(2.12)2 = (2.66)2 + (1.33)2
= .581

Thus θ2 = cos−1(.581) = 54.5◦.

5.32. In Fig. 5.18, let D = 3ax − 4ay + 5az nC/m2 and find:
a) D2: First, the electric field in region 1 is

E1 =
[

3

2ε0
ax − 4

2ε0
ay + 5

2ε0
az

]
× 10−9 V/m

Since, at the dielectric interface, tangential electric field and normal electric flux density are
continuous, we may write

D2 = εR2ε0ET 1 + DN1 =
(

5

2

)
3ax −

(
5

2

)
4ay + 5az = 7.5ax − 10ay + 5az nC/m2

b) DN2 = 5az, as explained above.

c) DT 2 = εR2ε0ET 2 = εR2ε0ET 1 = 7.5ax − 10ay nC/m2.

d) the energy density in each region:

we1 = 1

2
εR1ε0E1 · E1 = 1

2
(2)ε0

[(
3

2ε0

)2

+
(

4

2ε0

)2

+
(

5

2ε0

)2
]

× 10−18 = 1.41 µJ/m3

we2 = 1

2
εR2ε0E2 · E2 = 1

2
(5)ε0

[(
3

2ε0

)2

+
(

4

2ε0

)2

+
(

5

5ε0

)2
]

× 10−18 = 2.04 µJ/m3

e) the angle that D2 makes with az: Use D2 · az = |D2| cos θ = Dz = 5. where |D2| =[
(7.5)2 + (10)2 + (5)2

]1/2 = 13.5. So θ = cos−1(5/13.5) = 68◦.

f) D2/D1 = [
(7.5)2 + (10)2 + (5)2

]1/2
/
[
(3)2 + (4)2 + (5)2

]1/2 = 1.91.

g) P2/P1: First P1 = ε0E1(εR1 − 1) = 1.5ax − 2ay + 2.5az nC/m2.
Then P2 = ε0E2(εR2 − 1) = 6ax − 8ay + 4az nC/m2. So

P2

P1
= [(6)2 + (8)2 + (4)2]1/2

[(1.5)2 + (2)2 + (2.5)2]1/2 = 3.04
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5.33. Two perfect dielectrics have relative permittivities εR1 = 2 and εR2 = 8. The planar interface between
them is the surface x − y + 2z = 5. The origin lies in region 1. If E1 = 100ax + 200ay − 50az

V/m, find E2: We need to find the components of E1 that are normal and tangent to the boundary, and
then apply the appropriate boundary conditions. The normal component will be EN1 = E1 · n. Taking
f = x − y + 2z, the unit vector that is normal to the surface is

n = ∇f

|∇f | = 1√
6

[
ax − ay + 2az

]
This normal will point in the direction of increasing f , which will be away from the origin, or into region
2 (you can visualize a portion of the surface as a triangle whose vertices are on the three coordinate
axes at x = 5, y = −5, and z = 2.5). So EN1 = (1/

√
6)[100 − 200 − 100] = −81.7 V/m. Since the

magnitude is negative, the normal component points into region 1 from the surface. Then

EN1 = −81.65

(
1√
6

)
[ax − ay + 2az] = −33.33ax + 33.33ay − 66.67az V/m

Now, the tangential component will be

ET 1 = E1 − EN1 = 133.3ax + 166.7ay + 16.67az

Our boundary conditions state that ET 2 = ET 1 and EN2 = (εR1/εR2)EN1 = (1/4)EN1. Thus

E2 = ET 2 + EN2 = ET 1 + 1

4
EN1 = 133.3ax + 166.7ay + 16.67az − 8.3ax + 8.3ay − 16.67az

= 125ax + 175ay V/m

5.34. Let the spherical surfaces r = 4 cm and r = 9 cm be separated by two perfect dielectric shells, εR1 = 2
for 4 < r < 6 cm and εR2 = 5 for 6 < r < 9 cm. If E1 = (2000/r2)ar V/m, find:

a) E2: Since E is normal to the interface between εR1 and εR2, D will be continuous across the
boundary, and so

D1 = 2ε0(2000)

r2 ar = D2

Then

E2 = D2

5ε0
=
(

2

5

)
2000

r2 ar = 800

r2 ar V/m

b) the total electrostatic energy stored in each region: In region 1, the energy density is

we1 = 1

2
εR1ε0|E1|2 = 1

2
(2)ε0

(2000)2

r4 J/m3

In region 2:

we2 = 1

2
εR2ε0|E2|2 = 1

2
(5)ε0

(800)2

r4 J/m3
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5.34. (continued)
The energies in each region are then

Region 1 : We1 = (2000)2ε0

∫ 2π

0

∫ π

0

∫ .06

.04

1

r2 r2 sin θ dr dθ dφ

= 4πε0(2000)2
[

1

.04
− 1

.06

]
= 3.7 mJ

Region 2 : We2 = (800)2
(

5

2

)
ε0

∫ 2π

0

∫ π

0

∫ .09

.06

1

r2 r2 sin θ dr dθ dφ

= 4πε0(800)2
(

5

2

)[
1

.06
− 1

.09

]
= 0.99 mJ

5.35. Let the cylindrical surfaces ρ = 4 cm and ρ = 9 cm enclose two wedges of perfect dielectrics, εR1 = 2
for 0 < φ < π/2, and εR2 = 5 for π/2 < φ < 2π . If E1 = (2000/ρ)aρ V/m, find:

a) E2: The interfaces between the two media will lie on planes of constant φ, to which E1 is parallel.
Thus the field is the same on either side of the boundaries, and so E2 = E1.

b) the total electrostatic energy stored in a 1m length of each region: In general we have wE =
(1/2)εRε0E

2. So in region 1:

WE1 =
∫ 1

0

∫ π/2

0

∫ 9

4

1

2
(2)ε0

(2000)2

ρ2
ρ dρ dφ dz = π

2
ε0(2000)2 ln

(
9

4

)
= 45.1µJ

In region 2, we have

WE2 =
∫ 1

0

∫ 2π

π/2

∫ 9

4

1

2
(5)ε0

(2000)2

ρ2
ρ dρ dφ dz = 15π

4
ε0(2000)2 ln

(
9

4

)
= 338µJ

5.36. Let S = 120 cm2, d = 4 mm, and εR = 12 for a parallel-plate capacitor.

a) Calculate the capacitance:
C = εRε0S/d = [12ε0(120 × 10−4)]/[4 × 10−3] = 3.19 × 10−10 = 319 pF.

b) After connecting a 40 V battery across the capacitor, calculate E, D, Q, and the total stored
electrostatic energy: E = V/d = 40/(4 × 10−3) = 104 V/m. D = εRε0E = 12ε0 × 104 =
1.06µC/m2. Then Q = D · n|surf ace × S = 1.06 × 10−6 × (120 × 10−4) = 1.27 × 10−8C =
12.7 nC. Finally We = (1/2)CV 2

0 = (1/2)(319 × 10−12)(40)2 = 255 nJ.

c) The source is now removed and the dielectric is carefully withdrawn from between the plates. Again
calculate E, D, Q, and the energy: With the source disconnected, the charge is constant, and thus
so is D: Therefore, Q = 12.7 nC, D = 1.06µC/m2, and E = D/ε0 = 104/8.85 × 10−12 =
1.2 × 105 V/m. The energy is then

We = 1

2
D · E × S = 1

2
(1.06 × 10−6)(1.2 × 105)(120 × 10−4)(4 × 10−3) = 3.05µJ

d) What is the voltage between the plates? V = E × d = (1.2 × 105)(4 × 10−3) = 480 V.

77



5.37. Capacitors tend to be more expensive as their capacitance and maximum voltage, Vmax , increase. The
voltage Vmax is limited by the field strength at which the dielectric breaks down, EBD . Which of
these dielectrics will give the largest CVmax product for equal plate areas: (a) air: εR = 1, EBD = 3
MV/m; (b) barium titanate: εR = 1200, EBD = 3 MV/m; (c) silicon dioxide: εR = 3.78, EBD = 16
MV/m; (d) polyethylene: εR = 2.26, EBD = 4.7 MV/m? Note that Vmax = EBDd, where d is the
plate separation. Also, C = εRε0A/d, and so VmaxC = εRε0AEBD , where A is the plate area. The
maximum CVmax product is found through the maximum εREBD product. Trying this with the given
materials yields the winner, which is barium titanate.

5.38. A dielectric circular cylinder used between the plates of a capacitor has a thickness of 0.2 mm and a
radius of 1.4 cm. The dielectric properties are εR = 400 and σ = 10−5 S/m.

a) Calculate C:

C = εRε0S

d
= (400)(8.854 × 10−12)π(1.4 × 10−2)2

2 × 10−4 = 1.09 × 10−8 = 10.9 nF

b) Find the quality factor QQF (QQF = ωRC) of the capacitor at f = 10 kHz: Use the relation
RC = ε/σ to write

QQF = ωRC = 2πf ε

σ
= (2π × 104)(400)(8.854 × 10−12)

10−5
= 22.3

c) If the maximum field strength permitted in the dielectric is 2 MV/m, what is the maximum per-
missible voltage across the capacitor? Vmax = EBDd = (2 × 106)(2 × 10−4) = 400 V.

d) What energy is stored when this voltage is applied?

We,max = 1

2
CV 2

max = 1

2
(10.9 × 10−9)(400)2 = 8.7 × 10−4 = 0.87 mJ

5.39. A parallel plate capacitor is filled with a nonuniform dielectric characterized by εR = 2 + 2 × 106x2,
where x is the distance from one plate. If S = 0.02 m2, and d = 1 mm, find C: Start by assuming
charge density ρs on the top plate. D will, as usual, be x-directed, originating at the top plate and
terminating on the bottom plate. The key here is that D will be constant over the distance between
plates. This can be understood by considering the x-varying dielectric as constructed of many thin
layers, each having constant permittivity. The permittivity changes from layer to layer to approximate
the given function of x. The approximation becomes exact as the layer thicknesses approach zero.
We know that D, which is normal to the layers, will be continuous across each boundary, and so D is
constant over the plate separation distance, and will be given in magnitude by ρs . The electric field
magnitude is now

E = D

ε0εR
= ρs

ε0(2 + 2 × 106x2)

The voltage beween plates is then

V0 =
∫ 10−3

0

ρs dx

ε0(2 + 2 × 106x2)
= ρs

ε0

1√
4 × 106

tan−1

(
x
√

4 × 106

2

) ∣∣∣10−3

0
= ρs

ε0

1

2 × 103

(π
4

)

Now Q = ρs(.02), and so

C = Q

V0
= ρs(.02)ε0(2 × 103)(4)

ρsπ
= 4.51 × 10−10 F = 451 pF
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5.40a. The width of the region containing εR1 in Fig. 5.19 is 1.2 m. Find εR1 if εR2 = 2.5 and the total
capacitance is 60 nF: The plate areas associated with each capacitor are A1 = 1.2(2) = 2.4 m2 and
A2 = 0.8(2) = 1.6 m2. Having parallel capacitors, the capacitances will add, so

C = C1 + C2 ⇒ 60 × 10−9 = εR1ε0(2.4)

2 × 10−3 + 2.5ε0(1.6)

2 × 10−3

Solve this to obtain εR1 = 4.0.

b) Find the width of each region (containing εR1 and εR2) if Ctotal = 80 nF, εR2 = 3εR1, and C1 = 2C2:
Let w1 be the width of region 1. The above conditions enable us to write:[

εR1ε0w1(2)

2 × 10−3

]
= 2

[
3εR1ε0(2 − w1)(2)

2 × 10−3

]
⇒ w1 = 6(2 − w1)

So that w1 = 12/7 = 1.7 m and w2 = 0.3 m.

5.41. Let εR1 = 2.5 for 0 < y < 1 mm, εR2 = 4 for 1 < y < 3 mm, and εR3 for 3 < y < 5 mm. Conducting
surfaces are present at y = 0 and y = 5 mm. Calculate the capacitance per square meter of surface
area if: a) εR3 is that of air; b) εR3 = εR1; c) εR3 = εR2; d) εR3 is silver: The combination will be three
capacitors in series, for which

1

C
= 1

C1
+ 1

C2
+ 1

C3
= d1

εR1ε0(1)
+ d2

εR2ε0(1)
+ d3

εR3ε0(1)
= 10−3

ε0

[
1

2.5
+ 2

4
+ 2

εR3

]

So that

C = (5 × 10−3)ε0εR3

10 + 4.5εR3

Evaluating this for the four cases, we find a) C = 3.05 nF for εR3 = 1, b) C = 5.21 nF for εR3 = 2.5,
c) C = 6.32 nF for εR3 = 4, and d) C = 9.83 nF if silver (taken as a perfect conductor) forms region
3; this has the effect of removing the term involving εR3 from the original formula (first equation line),
or equivalently, allowing εR3 to approach infinity.

5.42. Cylindrical conducting surfaces are located at ρ = 0.8 cm and 3.6 cm. The region 0.8 < ρ < a

contains a dielectric for which εR = 4, while εR = 2 for a < ρ < 3.6.
a) Find a so that the voltage across each dielectric layer is the same: Assuming charge density ρs on

the inner cylinder, we have D = ρs(0.8)/ρ aρ , which gives E(0.8 < ρ < a) = (0.8ρs)/(4ε0ρ)aρ

and E(a < ρ < 3.6) = (0.8ρs)/(2ε0ρ)aρ . The voltage between conductors is now

V0 = −
∫ a

3.6

0.8ρs

2ε0ρ
dρ −

∫ 0.8

a

0.8ρs

4ε0ρ
dρ = 0.8ρs

2ε0

[
ln

(
3.6

a

)
+ 1

2
ln
( a

0.8

)]

We require

ln

(
3.6

a

)
= 1

2
ln
( a

0.8

)
⇒ 3.6

a
=
√

a

0.8
⇒ a = 2.2 cm

b) Find the total capacitance per meter: Using the part a result, have

V0 = 0.8ρs

2ε0

[
ln

(
3.6

2.2

)
+ 1

2
ln

(
2.2

0.8

)]
= 0.4ρs

ε0
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5.42b. (continued) The charge on a unit length of the inner conductor is Q = 2π(0.8)(1)ρs . The capacitance
is now

C = Q

V0
= 2π(0.8)(1)ρs

0.4ρs/ε0
= 4πε0 = 111 pF/m

Note that throughout this problem, I left all dimensions in cm, knowing that all cm units would cancel,
leaving the units of capacitance to be those used for ε0.

5.43. Two coaxial conducting cylinders of radius 2 cm and 4 cm have a length of 1m. The region between
the cylinders contains a layer of dielectric from ρ = c to ρ = d with εR = 4. Find the capacitance if

a) c = 2 cm, d = 3 cm: This is two capacitors in series, and so

1

C
= 1

C1
+ 1

C2
= 1

2πε0

[
1

4
ln

(
3

2

)
+ ln

(
4

3

)]
⇒ C = 143 pF

b) d = 4 cm, and the volume of the dielectric is the same as in part a: Having equal volumes requires
that 32 − 22 = 42 − c2, from which c = 3.32 cm. Now

1

C
= 1

C1
+ 1

C2
= 1

2πε0

[
ln

(
3.32

2

)
+ 1

4
ln

(
4

3.32

)]
⇒ C = 101 pF

5.44. Conducting cylinders lie at ρ = 3 and ρ = 12 mm; both extend from z = 0 to z = 1 m. Perfect
dielectrics occupy the interior region: εR = 1 for 3 < ρ < 6 mm, εR = 4 for 6 < ρ < 9 mm, and
εR = 8 for 9 < ρ < 12 mm.

a) Calculate C: First we know that D = (3ρs/ρ)aρ C/m2, with ρ expressed in mm. Then, with ρ in
mm,

E1 = 3ρs

ε0ρ
aρ V/m (3 < ρ < 6)

E2 = 3ρs

4ε0ρ
aρ V/m (6 < ρ < 9)

and

E3 = 3ρs

8ε0ρ
aρ V/m (9 < ρ < 12)

The voltage between conductors will be:

V0 =
[
−
∫ 9

12

3ρs

8ε0ρ
dρ −

∫ 6

9

3ρs

4ε0ρ
dρ −

∫ 3

6

3ρs

ε0ρ
dρ

]
× 10−3(m/mm)

= .003ρs

ε0

[
1

8
ln

(
12

9

)
+ 1

4
ln

(
9

6

)
+ ln

(
6

3

)]
= .003ρs

ε0
(0.830) V

Now, the charge on the 1 m length of the inner conductor is Q = 2π(.003)(1)ρs . The capacitance
is then

C = Q

V0
= 2π(.003)(1)ρs

(.003)ρs(.830)/ε0
= 2πε0

.830
= 67 pF
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5.44b. If the voltage between the cylinders is 100 V, plot |Eρ | vs. ρ:
Have Q = CV0 = (67 × 10−12)(100) = 6.7nC. Then

ρs = 6.7 × 10−9

2π(.003)(1)
= 355 nC/m2

Then, using the electric field expressions from part a, we find

E1 =
(

3

ρ

)
355 × 10−9

8.854 × 10−12 = 12 × 104

ρ
V/m = 120

ρ
kV/m (3 < ρ < 6)

where ρ is expressed in mm. Similarly, we find E2 = E1/4 = 30/ρ kV/m (6 < ρ < 9) and
E3 = E1/8 = 15 kV/m (9 < ρ < 12). These fields are plotted below.
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5.45. Two conducting spherical shells have radii a = 3 cm and b = 6 cm. The interior is a perfect dielectric
for which εR = 8.

a) Find C: For a spherical capacitor, we know that:

C = 4πεRε0
1
a

− 1
b

= 4π(8)ε0( 1
3 − 1

6

)
(100)

= 1.92πε0 = 53.3 pF

b) A portion of the dielectric is now removed so that εR = 1.0, 0 < φ < π/2, and εR = 8,
π/2 < φ < 2π . Again, find C: We recognize here that removing that portion leaves us with two
capacitors in parallel (whose C’s will add). We use the fact that with the dielectric completely
removed, the capacitance would be C(εR = 1) = 53.3/8 = 6.67 pF. With one-fourth the
dielectric removed, the total capacitance will be

C = 1

4
(6.67) + 3

4
(53.4) = 41.7 pF

5.46. (see Problem 5.44).

5.47. With reference to Fig. 5.17, let b = 6 m, h = 15 m, and the conductor potential be 250 V. Take ε = ε0.
Find values for K1, ρL, a, and C: We have

K1 =
[
h + √

h2 + b2

b

]2

=
[

15 +
√
(15)2 + (6)2

6

]2

= 23.0

We then have

ρL = 4πε0V0

ln K1
= 4πε0(250)

ln(23)
= 8.87 nC/m

Next, a = √
h2 − b2 =

√
(15)2 − (6)2 = 13.8 m. Finally,

C = 2πε

cosh−1(h/b)
= 2πε0

cosh−1(15/6)
= 35.5 pF
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5.48. A potential function in free space is given by

V = −20 + 10 ln

[
(5 + y)2 + x2

(5 − y)2 + x2

]

a) Describe the 0-V equipotential surface: Setting the given expression equal to zero, we find

[
(5 + y)2 + x2

(5 − y)2 + x2

]
= e2 = 7.39

So 6.39x2 + 6.39y2 − 83.9y + 160 = 0. Completing the square in the y trinomial leads to
x2 + (y − 6.56)2 = 18.1 = (4.25)2, which we recognize as a right circular cylinder whose axis
is located at x = 0, y = 6.56, and whose radius is 4.25.

b) Describe the 10-V equipotential surface: In this case, the given expression is set equal to ten,
leading to [

(5 + y)2 + x2

(5 − y)2 + x2

]
= e3 = 20.1

So 19.1x2 + 19.1y2 − 211y + 477 = 0. Following the same procedure as in part a, this becomes
x2 + (y − 5.52)2 = 5.51 = (2.35)2, which we recognize again as a right circular cylinder with
axis at x = 0, y = 5.52, and of radius 2.35.

5.49. A 2 cm diameter conductor is suspended in air with its axis 5 cm from a conducting plane. Let the
potential of the cylinder be 100 V and that of the plane be 0 V. Find the surface charge density on the:

a) cylinder at a point nearest the plane: The cylinder will image across the plane, producing an
equivalent two-cylinder problem, with the second one at location 5 cm below the plane. We will
take the plane as the zy plane, with the cylinder positions at x = ±5. Now b = 1 cm, h = 5
cm, and V0 = 100 V. Thus a = √

h2 − b2 = 4.90 cm. Then K1 = [(h + a)/b]2 = 98.0, and
ρL = (4πε0V0)/ ln K1 = 2.43 nC/m. Now

D = ε0E = −ρL

2π

[
(x + a)ax + yay

(x + a)2 + y2 − (x − a)ax + yay

(x − a)2 + y2

]

and

ρs,max = D · (−ax)

∣∣∣
x=h−b,y=0

= ρL

2π

[
h − b + a

(h − b + a)2 − h − b − a

(h − b − a)2

]
= 473 nC/m2

b) plane at a point nearest the cylinder: At x = y = 0,

D(0, 0) = −ρL

2π

[
aax

a2 − −aax

a2

]
= −ρL

2π

2

a
ax

from which
ρs = D(0, 0) · ax = − ρL

πa
= −15.8 nC/m2
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