
CHAPTER 6.

6.1 Construct a curvilinear square map for a coaxial capacitor of 3-cm inner radius and 8-cm outer radius.
These dimensions are suitable for the drawing.

a) Use your sketch to calculate the capacitance per meter length, assuming εR = 1: The sketch is
shown below. Note that only a 9◦ sector was drawn, since this would then be duplicated 40 times
around the circumference to complete the drawing. The capacitance is thus

C
.= ε0

NQ

NV

= ε0
40

6
= 59 pF/m

b) Calculate an exact value for the capacitance per unit length: This will be

C = 2πε0

ln(8/3)
= 57 pF/m
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6.2 Construct a curvilinear-square map of the potential field about two parallel circular cylinders, each of
2.5 cm radius, separated by a center-to-center distance of 13cm. These dimensions are suitable for the
actual sketch if symmetry is considered. As a check, compute the capacitance per meter both from your
sketch and from the exact formula. Assume εR = 1.

Symmetry allows us to plot the field lines and equipotentials over just the first quadrant, as is done in the
sketch below (shown to one-half scale). The capacitance is found from the formula C = (NQ/NV )ε0,
where NQ is twice the number of squares around the perimeter of the half-circle and NV is twice the
number of squares between the half-circle and the left vertical plane. The result is

C = NQ

NV

ε0 = 32

16
ε0 = 2ε0 = 17.7 pF/m

We check this result with that using the exact formula:

C = πε0

cosh−1(d/2a)
= πε0

cosh−1(13/5)
= 1.95ε0 = 17.3 pF/m
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6.3. Construct a curvilinear square map of the potential field between two parallel circular cylinders, one
of 4-cm radius inside one of 8-cm radius. The two axes are displaced by 2.5 cm. These dimensions
are suitable for the drawing. As a check on the accuracy, compute the capacitance per meter from the
sketch and from the exact expression:

C = 2πε

cosh−1
[
(a2 + b2 − D2)/(2ab)

]

where a and b are the conductor radii and D is the axis separation.

The drawing is shown below. Use of the exact expression above yields a capacitance value of C =
11.5ε0 F/m. Use of the drawing produces:

C
.= 22 × 2

4
ε0 = 11ε0 F/m
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6.4. A solid conducting cylinder of 4-cm radius is centered within a rectangular conducting cylinder with a
12-cm by 20-cm cross-section.

a) Make a full-size sketch of one quadrant of this configuration and construct a curvilinear-square
map for its interior: The result below could still be improved a little, but is nevertheless sufficient
for a reasonable capacitance estimate. Note that the five-sided region in the upper right corner has
been partially subdivided (dashed line) in anticipation of how it would look when the next-level
subdivision is done (doubling the number of field lines and equipotentials).

b) Assume ε = ε0 and estimate C per meter length: In this case NQ is the number of squares around
the full perimeter of the circular conductor, or four times the number of squares shown in the
drawing. NV is the number of squares between the circle and the rectangle, or 5. The capacitance
is estimated to be

C = NQ

NV

ε0 = 4 × 13

5
ε0 = 10.4ε0

.= 90 pF/m
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6.5. The inner conductor of the transmission line shown in Fig. 6.12 has a square cross-section 2a × 2a,
while the outer square is 5a × 5a. The axes are displaced as shown. (a) Construct a good-sized
drawing of the transmission line, say with a = 2.5 cm, and then prepare a curvilinear-square plot of
the electrostatic field between the conductors. (b) Use the map to calculate the capacitance per meter
length if ε = 1.6ε0. (c) How would your result to part b change if a = 0.6 cm?

a) The plot is shown below. Some improvement is possible, depending on how much time one wishes
to spend.

b) From the plot, the capacitance is found to be

C
.= 16 × 2

4
(1.6)ε0 = 12.8ε0

.= 110 pF/m

c) If a is changed, the result of part b would not change, since all dimensions retain the same relative
scale.
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6.6. Let the inner conductor of the transmission line shown in Fig. 6.12 be at a potential of 100V, while the
outer is at zero potential. Construct a grid, 0.5a on a side, and use iteration to find V at a point that is
a units above the upper right corner of the inner conductor. Work to the nearest volt:

The drawing is shown below, and we identify the requested voltage as 38 V.
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6.7. Use the iteration method to estimate the potentials at points x and y in the triangular trough of Fig.
6.13. Work only to the nearest volt: The result is shown below. The mirror image of the values shown
occur at the points on the other side of the line of symmetry (dashed line). Note that Vx = 78 V and
Vy = 26 V.
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6.8. Use iteration methods to estimate the potential at point x in the trough shown in Fig. 6.14. Working to
the nearest volt is sufficient. The result is shown below, where we identify the voltage at x to be 40 V.
Note that the potentials in the gaps are 50 V.

6.9. Using the grid indicated in Fig. 6.15, work to the nearest volt to estimate the potential at point A: The
voltages at the grid points are shown below, where VA is found to be 19 V. Half the figure is drawn
since mirror images of all values occur across the line of symmetry (dashed line).
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6.10. Conductors having boundaries that are curved or skewed usually do not permit every grid point to
coincide with the actual boundary. Figure 6.16a illustrates the situation where the potential at V0 is to
be estimated in terms of V1, V2, V3, and V4, and the unequal distances h1, h2, h3, and h4.

a) Show that

V0
.= V1(

1 + h1
h3

) (
1 + h1h3

h4h2

) + V2(
1 + h2

h4

) (
1 + h2h4

h1h3

) + V3(
1 + h3

h1

) (
1 + h1h3

h4h2

)

+ V4(
1 + h4

h2

) (
1 + h4h2

h3h1

) note error, corrected here, in the equation (second term)

Referring to the figure, we write:

∂V

∂x

∣∣∣
M1

.= V1 − V0

h1

∂V

∂x

∣∣∣
M3

.= V0 − V3

h3

Then

∂2V

∂x2

∣∣∣
V0

.= (V1 − V0)/h1 − (V0 − V3)/h3

(h1 + h3)/2
= 2V1

h1(h1 + h3)
+ 2V3

h3(h1 + h3)
− 2V0

h1h3

We perform the same procedure along the y axis to obtain:

∂2V

∂y2

∣∣∣
V0

.= (V2 − V0)/h2 − (V0 − V4)/h4

(h2 + h4)/2
= 2V2

h2(h2 + h4)
+ 2V4

h4(h2 + h4)
− 2V0

h2h4

Then, knowing that
∂2V

∂x2

∣∣∣
V0

+ ∂2V

∂y2

∣∣∣
V0

= 0

the two equations for the second derivatives are added to give

2V1

h1(h1 + h3)
+ 2V2

h2(h2 + h4)
+ 2V3

h3(h1 + h3)
+ 2V4

h4(h2 + h4)
= V0

(
h1h3 + h2h4

h1h2h3h4

)

Solve for V0 to obtain the given equation.

b) Determine V0 in Fig. 6.16b: Referring to the figure, we note that h1 = h2 = a. The other two
distances are found by writing equations for the circles:

(0.5a + h3)2 + a2 = (1.5a)2 and (a + h4)2 + (0.5a)2 = (1.5a)2

These are solved to find h3 = 0.618a and h4 = 0.414a. The four distances and potentials are now
substituted into the given equation:

V0
.= 80(

1 + 1
.618

) (
1 + .618

.414

) + 60(
1 + 1

.414

) (
1 + .414

.618

) + 100

(1 + .618)
(
1 + .618

.414

)
+ 100

(1 + .414)
(
1 + .414

.618

) = 90 V
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6.11. Consider the configuration of conductors and potentials shown in Fig. 6.17. Using the method described
in Problem 10, write an expression for Vx (not V0): The result is shown below, where Vx = 70 V.

6.12a) After estimating potentials for the configuation of Fig. 6.18, use the iteration method with a square grid
1 cm on a side to find better estimates at the seven grid points. Work to the nearest volt:

25 50 75 50 25

0 48 100 48 0

0 42 100 42 0

0 19 34 19 0

0 0 0 0 0

b) Construct a 0.5 cm grid, establish new rough estimates, and then use the iteration method on the
0.5 cm grid. Again, work to the nearest volt: The result is shown below, with values for the original
grid points underlined:

25 50 50 50 75 50 50 50 25

0 32 50 68 100 68 50 32 0

0 26 48 72 100 72 48 26 0

0 23 45 70 100 70 45 23 0

0 20 40 64 100 64 40 20 0

0 15 30 44 54 44 30 15 0

0 10 19 26 30 26 19 10 0

0 5 9 12 14 12 9 5 0

0 0 0 0 0 0 0 0 0
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6.12c. Use the computer to obtain values for a 0.25 cm grid. Work to the nearest 0.1 V: Values for the left
half of the configuration are shown in the table below. Values along the vertical line of symmetry are
included, and the original grid values are underlined.

25 50 50 50 50 50 50 50 75

0 26.5 38.0 44.6 49.6 54.6 61.4 73.2 100

0 18.0 31.0 40.7 49.0 57.5 67.7 81.3 100

0 14.5 27.1 38.1 48.3 58.8 70.6 84.3 100

0 12.8 24.8 36.2 47.3 58.8 71.4 85.2 100

0 11.7 23.1 34.4 45.8 57.8 70.8 85.0 100

0 10.8 21.6 32.5 43.8 55.8 69.0 83.8 100

0 10.0 20.0 30.2 40.9 52.5 65.6 81.2 100

0 9.0 18.1 27.4 37.1 47.6 59.7 75.2 100

0 7.9 15.9 24.0 32.4 41.2 50.4 59.8 67.2

0 6.8 13.6 20.4 27.3 34.2 40.7 46.3 49.2

0 5.6 11.2 16.8 22.2 27.4 32.0 35.4 36.8

0 4.4 8.8 13.2 17.4 21.2 24.4 26.6 27.4

0 3.3 6.6 9.8 12.8 15.4 17.6 19.0 19.5

0 2.2 4.4 6.4 8.4 10.0 11.4 12.2 12.5

0 1.1 2.2 3.2 4.2 5.0 5.6 6.0 6.1

0 0 0 0 0 0 0 0 0
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6.13. Perfectly-conducting concentric spheres have radii of 2 and 6 cm. The region 2 < r < 3 cm is filled
with a solid conducting material for which σ = 100 S/m, while the portion for which 3 < r < 6 cm
has σ = 25 S/m. The inner sphere is held at 1 V while the outer is at V = 0.

a. Find E and J everywhere: From symmetry, E and J will be radially-directed, and we note the
fact that the current, I , must be constant at any cross-section; i.e., through any spherical surface
at radius r between the spheres. Thus we require that in both regions,

J = I

4πr2 ar

The fields will thus be

E1 = I

4πσ1r2 ar (2 < r < 3) and E2 = I

4πσ2r2 ar (3 < r < 6)

where σ1 = 100 S/m and σ2 = 25 S/m. Since we know the voltage between spheres (1V), we can
find the value of I through:

1 V = −
∫ .03

.06

I

4πσ2r2 dr −
∫ .02

.03

I

4πσ1r2 dr = I

0.24π

[
1

σ1
+ 1

σ2

]

and so

I = 0.24π

(1/σ1 + 1/σ2)
= 15.08 A

Then finally, with I = 15.08 A substituted into the field expressions above, we find

E1 = .012

r2 ar V/m (2 < r < 3)

and

E2 = .048

r2 ar V/m (3 < r < 6)

The current density is now

J = σ1E1 = σ2E2 = 1.2

r2 A/m (2 < r < 6)

b) What resistance would be measured between the two spheres? We use

R = V

I
= 1 V

15.08 A
= 6.63 × 10−2 �

c) What is V at r = 3 cm? This we find through

V = −
∫ .03

.06

.048

r2 dr = .048

(
1

.03
− 1

.06

)
= 0.8 V
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6.14. The cross-section of the transmission line shown in Fig. 6.12 is drawn on a sheet of conducting paper
with metallic paint. The sheet resistance is 2000 �/sq and the dimension a is 2 cm.

a) Assuming a result for Prob. 6b of 110 pF/m, what total resistance would be measured between
the metallic conductors drawn on the conducting paper? We assume a paper thickness of t m, so
that the capacitance is C = 110t pF, and the surface resistance is Rs = 1/(σ t) = 2000 �/sq. We
now use

RC = ε

σ
⇒ R = ε

σC
= εRst

110 × 10−12t
= (1.6 × 8.854 × 10−12)(2000)

110 × 10−12 = 257.6 �

b) What would the total resistance be if a = 2 cm? The result is independent of a, provided the
proportions are maintained. So again, R = 257.6 �.

6.15. two concentric annular rings are painted on a sheet of conducting paper with a highly conducting metal
paint. The four radii are 1, 1.2, 3.5, and 3.7 cm. Connections made to the two rings show a resistance
of 215 ohms between them.

a) What is Rs for the conducting paper? Using the two radii (1.2 and 3.5 cm) at which the rings are
at their closest separation, we first evaluate the capacitance:

C = 2πε0t

ln(3.5/1.2)
= 5.19 × 10−11t F

where t is the unknown paper coating thickness. Now use

RC = ε0

σ
⇒ R = 8.85 × 10−12

5.19 × 10−11σ t
= 215

Thus

Rs = 1

σ t
= (51.9)(215)

8.85
= 1.26 k�/sq

b) If the conductivity of the material used as the surface of the paper is 2 S/m, what is the thickness
of the coating? We use

t = 1

σRs

= 1

2 × 1.26 × 103 = 3.97 × 10−4 m = 0.397 mm
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6.16. The square washer shown in Fig. 6.19 is 2.4 mm thick and has outer dimensions of 2.5 × 2.5 cm
and inner dimensions of 1.25 × 1.25 cm. The inside and outside surfaces are perfectly-conducting. If
the material has a conductivity of 6 S/m, estimate the resistance offered between the inner and outer
surfaces (shown shaded in Fig. 6.19). A few curvilinear squares are suggested: First we find the surface
resistance, Rs = 1/(σ t) = 1/(6 × 2.4 × 10−3) = 69.4 �/sq. Having found this, we can construct
the total resistance by using the fundamental square as a building block. Specifically, R = Rs(Nl/Nw)

where Nl is the number of squares between the inner and outer surfaces and Nw is the number of squares
around the perimeter of the washer. These numbers are found from the curvilinear square plot shown
below, which covers one-eighth the washer. The resistance is thus R

.= 69.4[4/(8 × 5)]
.= 6.9 �.

6.17. A two-wire transmission line consists of two parallel perfectly-conducting cylinders, each having a
radius of 0.2 mm, separated by center-to-center distance of 2 mm. The medium surrounding the wires
has εR = 3 and σ = 1.5 mS/m. A 100-V battery is connected between the wires. Calculate:

a) the magnitude of the charge per meter length on each wire: Use

C = πε

cosh−1(h/b)
= π × 3 × 8.85 × 10−12

cosh−1 (1/0.2)
= 3.64 × 10−9 C/m

Then the charge per unit length will be

Q = CV0 = (3.64 × 10−11)(100) = 3.64 × 10−9 C/m = 3.64 nC/m

b) the battery current: Use

RC = ε

σ
⇒ R = 3 × 8.85 × 10−12

(1.5 × 10−3)(3.64 × 10−11)
= 486 �

Then

I = V0

R
= 100

486
= 0.206 A = 206 mA
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6.18. A coaxial transmission line is modelled by the use of a rubber sheet having horizontal dimensions that
are 100 times those of the actual line. Let the radial coordinate of the model be ρm. For the line itself,
let the radial dimension be designated by ρ as usual; also, let a = 0.6 mm and b = 4.8 mm. The model
is 8 cm in height at the inner conductor and zero at the outer. If the potential of the inner conductor is
100 V:

a) Find the expression for V (ρ): Assuming charge density ρs on the inner conductor, we use Gauss’
Law to find 2πρD = 2πaρs , from which E = D/ε = aρs/(ερ) in the radial direction. The
potential difference between inner and outer conductors is

Vab = V0 = −
∫ a

b

aρs

ερ
dρ = aρs

ε
ln

(
b

a

)

from which

ρs = εV0

a ln(b/a)
⇒ E = V0

ρ ln(b/a)

Now, as a function of radius, and assuming zero potential on the outer conductor, the potential
function will be:

V (ρ) = −
∫ ρ

b

V0

ρ′ ln(b/a)
dρ′ = V0

ln(b/ρ)

ln(b/a)
= 100

ln(.0048/ρ)

ln(.0048/.0006)
= 48.1 ln

(
.0048

ρ

)
V

b) Write the model height as a function of ρm (not ρ): We use the part a result, since the gravitational
function must be the same as that for the electric potential. We replace V0 by the maximum height,
and multiply all dimensions by 100 to obtain:

h(ρm) = 0.08
ln(.48/ρm)

ln(.48/.06)
= 0.038 ln

(
.48

ρm

)
m
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