CHAPTER 6.

6.1 Construct a curvilinear square map for acoaxia capacitor of 3-cm inner radius and 8-cm outer radius.
These dimensions are suitable for the drawing.
a) Use your sketch to calculate the capacitance per meter length, assuming eg = 1: The sketch is
shown below. Notethat only a9° sector was drawn, since this would then be duplicated 40 times
around the circumference to compl ete the drawing. The capacitance is thus

NQ 40
C =ep— =e€o— =59pF/m
EONV €0 pF/

?o

b) Calculate an exact value for the capacitance per unit length: Thiswill be

2meg
= =57 pF
In(8/3) 5p—/m



6.2 Construct a curvilinear-square map of the potential field about two parallel circular cylinders, each of
2.5 cm radius, separated by a center-to-center distance of 13cm. These dimensions are suitable for the
actual sketchif symmetry isconsidered. Asacheck, compute the capacitance per meter both from your
sketch and from the exact formula. Assumeeg = 1.

Symmetry alows usto plot thefield linesand equipotentialsover just thefirst quadrant, asisdonein the
sketch below (shown to one-half scal€). The capacitance is found from the formula C = (Ng /Ny )eo,
where N istwice the number of squares around the perimeter of the half-circle and Ny is twice the
number of sguares between the half-circle and the left vertical plane. Theresult is

Ng 32
C=—=¢€=—€g=2¢g=17.7pF/m
Ny €0 = 7z€0 = 2€0 pF/

We check this result with that using the exact formula:

TE€Q T€Q
C = =
cosh™1(d/2a)  cosh~1(13/5)

— 1.95¢p = 17.3 pF/m
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6.3. Construct a curvilinear square map of the potential field between two parallel circular cylinders, one
of 4-cm radius inside one of 8-cm radius. The two axes are displaced by 2.5 cm. These dimensions
are suitable for the drawing. As a check on the accuracy, compute the capacitance per meter from the
sketch and from the exact expression:

C— 2me
~ cosh™1[(a2 + b2 — D?)/(2ab)]

where a and b are the conductor radii and D is the axis separation.

The drawing is shown below. Use of the exact expression above yields a capacitance value of C =
11.5¢9 F/m. Use of the drawing produces:

. 22x2
C =

€0 = 11g F/m

4
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6.4. A solid conducting cylinder of 4-cm radiusis centered within arectangular conducting cylinder with a
12-cm by 20-cm cross-section.

a) Make afull-size sketch of one quadrant of this configuration and construct a curvilinear-square
map for itsinterior: The result below could still be improved alittle, but is nevertheless sufficient
for areasonable capacitance estimate. Note that the five-sided region in the upper right corner has
been partially subdivided (dashed line) in anticipation of how it would look when the next-level
subdivision is done (doubling the number of field lines and equipotentials).

r-—""—-—-—-=

b) Assumee = ¢g and estimate C per meter length: Inthiscase N isthe number of squares around
the full perimeter of the circular conductor, or four times the number of sguares shown in the
drawing. Ny isthe number of squares between the circle and the rectangle, or 5. The capacitance

is estimated to be N 413
C="L¢= X5 €0 = 10.4¢0 = 90 pF/m
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6.5. The inner conductor of the transmission line shown in Fig. 6.12 has a sguare cross-section 2a x 2a,
while the outer square is 5a x 5a. The axes are displaced as shown. (@) Construct a good-sized
drawing of the transmission line, say with @ = 2.5 cm, and then prepare a curvilinear-square plot of
the electrostatic field between the conductors. (b) Use the map to calculate the capacitance per meter
length if ¢ = 1.6¢p. (¢) How would your result to part b changeif a = 0.6 cm?

a) Theplotisshownbelow. Someimprovement ispossible, depending on how much time onewishes
to spend.

._1.—-4P—"’—
L

b) From the plot, the capacitance is found to be

L 16x2
T4

C (1.6)eo = 12.8¢0 = 110 pF/m

¢) If a ischanged, theresult of part b would not change, since al dimensions retain the samerelative
scale.
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6.6. Let theinner conductor of the transmission line shown in Fig. 6.12 be at a potential of 100V, while the
outer is at zero potential. Construct agrid, 0.5z on aside, and useiteration to find V at apoint that is
a units above the upper right corner of the inner conductor. Work to the nearest volt:

The drawing is shown below, and we identify the requested voltageas 38 V.
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6.7. Use the iteration method to estimate the potentials at points x and y in the triangular trough of Fig.
6.13. Work only to the nearest volt: The result is shown below. The mirror image of the values shown
occur at the points on the other side of the line of symmetry (dashed line). Note that V, = 78V and

V, = 26V.

V=0

V=0
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6.8. Useiteration methods to estimate the potential at point x in the trough shown in Fig. 6.14. Working to
the nearest volt is sufficient. The result is shown below, where we identify the voltage at x to be 40V.
Note that the potentials in the gaps are 50 V.
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6.9. Usingthe grid indicated in Fig. 6.15, work to the nearest volt to estimate the potential at point A: The
voltages at the grid points are shown below, where V4 isfound to be 19 V. Half the figure is drawn
since mirror images of all values occur across the line of symmetry (dashed line).
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6.10. Conductors having boundaries that are curved or skewed usualy do not permit every grid point to
coincide with the actual boundary. Figure 6.16aillustrates the situation where the potential at Vg isto
be estimated in terms of V1, Vo, V3, and V4, and the unequal distances i1, ko, h3, and hg.

a) Show that
Vo = h + Y2 + Vs
(1+Z—;)(1+%) (1+Z—§>(1+%> (1+Z—f)<1+%)
+ Va note error, corrected here, in the equation (second term)

(e 8) (o BE)

Referring to the figure, we write:

A% ;Vl—Vo A% ;Vo—Vg
ox My o h1 ox M3 B h3
Then
PV . (Vi—Vo/hi—Vo—Va)/h3 2% L 2V 2Vo
ax2 vy (h1 + h3)/2 "~ hi(h1+h3)  ha(hi+h3)  hihs

We perform the same procedure along the y axis to obtain:

0%V . Ve=Vo/he=Vo—Va/ha _ _ 2V2 __ 2Va 2Vo
ay? o (h2 +ha)/2 "~ ho(ho+ha)  ha(ho+hs)  hoha
Then, knowing that
Y Y
g — | =0
9x2 Vo 8y2 Vo

the two equations for the second derivatives are added to give

2V, n 2Vo n 2V3 4 2Vy _v <h1h3 + h2h4)
hi(hy +h3)  haotho+ha)  h3(h1i+h3)  ha(hz + ha) hihoh3ha
Solve for Vy to obtain the given equation.

b) Determine Vg in Fig. 6.16b: Referring to the figure, we note that 41 = ho = a. The other two
distances are found by writing equations for the circles:

(0.5a + h3)? + a? = (1.50)2 and (a + hs)? + (0.5a)2 = (1.5a)2

Thesearesolvedtofind 43 = 0.618a and 24 = 0.414a. Thefour distances and potentials are now
substituted into the given equation:

80 N 60 N 100
(1+ o) (1+28) 1+ 2 (1+:34) 1+ .618 (1+ £8)
100
+ =90V
(1+.414) (1+ -2y —

Vo =
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6.11. Consider the configuration of conductorsand potentialsshowninFig. 6.17. Usingthe method described
in Problem 10, write an expression for V, (not Vp): Theresult is shown below, where V, = 70V.

6.12a) After estimating potentialsfor the configuation of Fig. 6.18, use theiteration method with a square grid
1 cmon asideto find better estimates at the seven grid points. Work to the nearest volt:
25 50 75 50 25
48 100 48
42 100 42
19 34 19
0O 0 O

o O o o
o O o o

b) Construct a 0.5 cm grid, establish new rough estimates, and then use the iteration method on the
0.5cmgrid. Again, work to the nearest volt: Theresult isshown below, with valuesfor the original
grid points underlined:

25 50 50 50 75 50 50 50 25
0 32 50 68 100 68 50 32 O
0O 26 48 72 100 72 48 26 O
0 23 45 70 100 70 45 23 0O
0O 20 40 64 100 64 40 20 O
0 15 30 44 54 44 30 15 O
0O 10 19 26 30 26 19 10 O
0 5 9 12 14 12 9 5 0
O 0 0 0 0O 0O 0 0 O
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6.12c. Use the computer to obtain values for a 0.25 cm grid. Work to the nearest 0.1 V: Values for the left
half of the configuration are shown in the table below. Values along the vertical line of symmetry are
included, and the original grid values are underlined.

25 50 50 50 50 50 50 50 75
0 26.5 38.0 44.6 49.6 54.6 61.4 73.2 100
0 18.0 31.0 40.7 49.0 57.5 67.7 81.3 100
0 145 271 38.1 48.3 58.8 70.6 84.3 100
0 12.8 24.8 36.2 47.3 58.8 714 85.2 100
0 11.7 231 34.4 45.8 57.8 70.8 85.0 100
0 10.8 21.6 325 43.8 55.8 69.0 83.8 100
0 10.0 20.0 30.2 40.9 52.5 65.6 81.2 100
0 9.0 18.1 274 37.1 47.6 59.7 75.2 100
0 7.9 159 24.0 324 41.2 50.4 59.8 67.2
0 6.8 13.6 204 27.3 34.2 40.7 46.3 49.2
0 5.6 11.2 16.8 222 274 32.0 354 36.8
0 4.4 8.8 13.2 174 21.2 244 26.6 274
0 3.3 6.6 9.8 12.8 154 17.6 19.0 195
0 2.2 4.4 6.4 8.4 10.0 114 12.2 125
0 11 22 3.2 4.2 50 5.6 6.0 6.1
0 0 0 0 0 0 0 0 0
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6.13. Perfectly-conducting concentric spheres have radii of 2 and 6 cm. Theregion 2 < r < 3 cmiisfilled
with a solid conducting material for which o = 100 S/m, while the portion for which3 < » < 6 cm
haso = 25 S/m. Theinner sphereisheld at 1V whilethe outerisat V = 0.

a Find E and J everywhere: From symmetry, E and J will be radially-directed, and we note the
fact that the current, I, must be constant at any cross-section; i.e., through any spherical surface
at radius r between the spheres. Thus we require that in both regions,

I

J=——
47rr2ar

The fields will thus be

1
Ei=——>a 2<r <3 and Ex= a (3<r <6

" Amorr

4 oor?

where o1 = 100 S/m and o2 = 25 S/m. Since we know the voltage between spheres (1V), we can
find the value of I through:

BT 02 I [1 1
1V = — dr — dr = — 4+ —
06 Amoor? 03 Amoyr? 0247 |01 o2

_ 0.24x
 (L/o1+1/02)
Then finally, with I = 15.08 A substituted into the field expressions above, we find

and so
= 15.08 A

.012
E1:0—2a,V/m 2<r<?3
r-

and 048
Ex=-—%a&V/m 3<r<6
r=

The current density is now
12
J=01E1=02E2=—2A/m 2<r <6
r-

b) What resistance would be measured between the two spheres? We use

Vv

. __~—Y _&. 1072 Q
7 = 15.08A 6.63 x 10" Q@

c) WhatisV atr = 3cm? Thiswe find through
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6.14. The cross-section of the transmission line shown in Fig. 6.12 is drawn on a sheet of conducting paper
with metallic paint. The sheet resistance is 2000 2 /sq and the dimension a is2 cm.

a) Assuming aresult for Prob. 6b of 110 pF/m, what total resistance would be measured between
the metallic conductors drawn on the conducting paper? We assume a paper thickness of ¢+ m, so
that the capacitanceis C = 110¢ pF, and the surface resistanceis Ry = 1/(ot) = 2000 2/sq. We
now use

€ €Rgt  (16x 8854 x1071%)(2000)

RC = _—= —
oC 110 x 1012 110 x 1012

~ R=— 257.6 Q

€
o

b) What would the total resistance be if @ = 2 cm? The result is independent of a, provided the
proportions are maintained. So again, R = 257.6 2.

6.15. two concentric annular rings are painted on a sheet of conducting paper with ahighly conducting metal
paint. The four radii are 1, 1.2, 3.5, and 3.7 cm. Connections made to the two rings show a resistance
of 215 ohms between them.

a) What is R; for the conducting paper? Using the two radii (1.2 and 3.5 cm) at which therings are
at their closest separation, we first evaluate the capacitance:

2meqt

=~ =519x10%F
In(35/1.2) *

where ¢ isthe unknown paper coating thickness. Now use

€0 8.85 x 10712
RC = — R=—"—""_ 215
=5 = 5.19 x 10 o7
Thus 1 51.9)(215
R, =~ = GLIELS) 1.26kQ2/sq

ot 8.85

b) If the conductivity of the material used as the surface of the paper is2 S/m, what is the thickness
of the coating? We use

1 1

= =
oR, 2x1.26x 103

= 3.97 x 1074 m = 0.397 mm
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6.16. The square washer shown in Fig. 6.19 is 2.4 mm thick and has outer dimensions of 2.5 x 2.5 cm
and inner dimensions of 1.25 x 1.25 cm. The inside and outside surfaces are perfectly-conducting. If
the material has a conductivity of 6 S/m, estimate the resistance offered between the inner and outer
surfaces (shown shaded in Fig. 6.19). A few curvilinear squares are suggested: First wefind the surface
resistance, Ry = 1/(o1) = 1/(6 x 2.4 x 10~3) = 69.4 Q/sq. Having found this, we can construct
thetotal resistance by using the fundamental square asabuilding block. Specifically, R = Ry (N;/Ny,)
where N; isthe number of squares between theinner and outer surfacesand N, isthe number of squares
around the perimeter of the washer. These numbers are found from the curvilinear square plot shown
below, which covers one-eighth the washer. Theresistanceisthus R = 69.4[4/(8 x 5)] = 6.9 Q.

6.17. A two-wire transmission line consists of two parallel perfectly-conducting cylinders, each having a
radius of 0.2 mm, separated by center-to-center distance of 2 mm. The medium surrounding the wires
haser = 3and o = 1.5 mS/m. A 100-V battery is connected between the wires. Calculate:

a) the magnitude of the charge per meter length on each wire: Use

C— e _7'[X3X8.85X 10712
~ coshi(h/b)  cosh1(1/0.2)

=3.64x 107°C/m

Then the charge per unit length will be

0 = CVp = (3.64 x 10711)(100) = 3.64 x 1072 C/m = 3.64nC/m

b) the battery current: Use

RC — € ~ R= 3x885x 10712 T
o "~ (L5x 10-3)(3.64 x 10~11)
Then Vo 100
0
I = ~ =18 = 0.206 A = 206 mA
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6.18. A coaxial transmission lineis modelled by the use of arubber sheet having horizontal dimensions that
are 100 times those of the actual line. Let the radial coordinate of the model be p,,,. For the line itsdlf,
let theradial dimension be designated by p asusual; also, leta = 0.6 mmand b = 4.8 mm. The model
is8 cmin height at the inner conductor and zero at the outer. If the potential of the inner conductor is
100V:

a) Findthe expressionfor V (p): Assuming charge density p; on the inner conductor, we use Gauss
Law to find 2rpD = 2map,, from which E = D/e = ap,/(ep) in the radia direction. The
potential difference between inner and outer conductorsis

b
Vap = Vo= — / %d ——apsl ( >
a

Vo £ Vo
aln(b/a) = ~ pln®/a)

Now, as a function of radius, and assuming zero potential on the outer conductor, the potential
function will be:

Vi) — _/p Vo ' = v/ In(b/p) — 100 In(.0048/p) 48.1|n('0048) v
b

o in/a) = Cinw/a) In(.0048/.0006) P

from which
Ps =

b) Writethe model height asafunction of p,, (not p): We usethe part a result, since the gravitational
function must be the same asthat for the el ectric potential. We replace Vg by the maximum height,
and multiply all dimensions by 100 to obtain:

IN(.48/ om)

48
h(oy) = 0.08—————= = 0.038| —
(om) In(.48/.06) ”(pm) "
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