First year MBBS

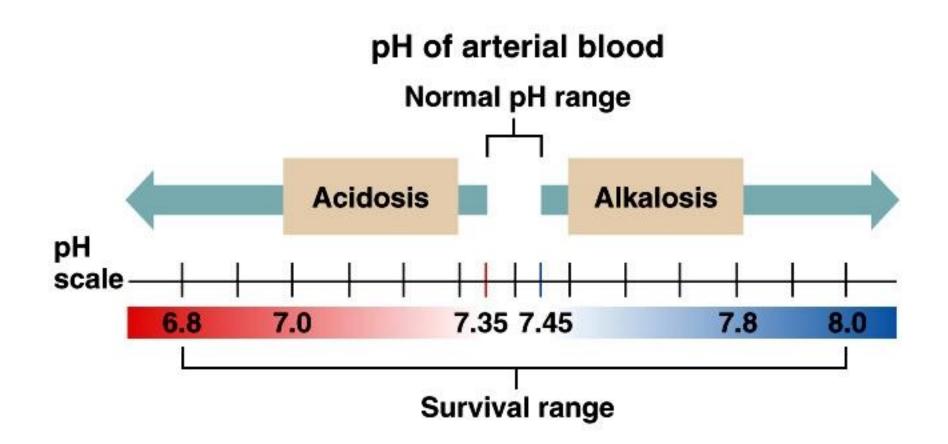
- FOUNDATION MODULE
- SUBJECT:BIOCHEMISTRY
- DATE : 16-3-2021
- TIMINGS : 9AM TO 10AM
- BY DR SAIMA SHAHEEN

Buffers: Chemistry of acids and bases (Acidosis and Alkalosis)

> Dr Saima Shaheen Demonstrator Biochemistry department KGMC

- Acids are H⁺ donors.
- Bases are H⁺ acceptors, or give up OH⁻ in solution.
- Acids and bases can be:
 - Strong dissociate completely in solution
 - HCI, NaOH
 - Weak dissociate only partially in solution
 - Lactic acid, carbonic acid

Model	Definition of Acid	Definition of Base
Arrhenius	H ⁺ producer	OH ⁻ producer
Bronsted-Lowry	H ⁺ donor	H⁺ acceptor
Lewis	Electron-pair acceptor	Electron-pair donor



pH Review

- pH = log [H⁺]
- H⁺ is really a proton
- Range is from 0 14
- If [H⁺] is high, the solution is acidic; pH < 7
- If [H⁺] is low, the solution is basic or alkaline ; pH > 7

The Body and pH

- Homeostasis of pH is tightly controlled
- Blood = 7.35 7.45
- < 6.8 or > 8.0 death occurs
- Acidosis (acidemia) below 7.35
- Alkalosis (alkalemia) above 7.45

Small changes in pH can produce major disturbances

- Most enzymes function only with narrow pH ranges
- Acid-base balance can also affect electrolytes (Na⁺, K⁺, Cl⁻)
- Can also affect hormones

The body produces more acids than bases

- Acids take in with foods
- Acids produced by metabolism of lipids and proteins
- Cellular metabolism produces CO₂.
- $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$

Control of Acids

1. Buffer systems

*A buffer solution is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. Its pH changes very little when a small amount of strong acid or base is added to it.

- *Take up H+ or release H+ as conditions change
- *Buffer pairs weak acid and a base
- *Exchange a strong acid or base for a weak one
- *Results in a much smaller pH change

Body buffers

- The three major buffer systems of our body are
- 1)carbonic acid bicarbonate buffer system
- 2) phosphate buffer system and
- 3)protein buffer system.

Bicarbonate buffer

- Sodium Bicarbonate (NaHCO₃) and carbonic acid (H₂CO₃)
- Maintain a 20:1 ratio : HCO_3^- : H_2CO_3
- $HCI + NaHCO_3 \leftrightarrow H_2CO_3 + NaCI$
- $NaOH + H_2CO_3 \leftrightarrow NaHCO_3 + H_2O$

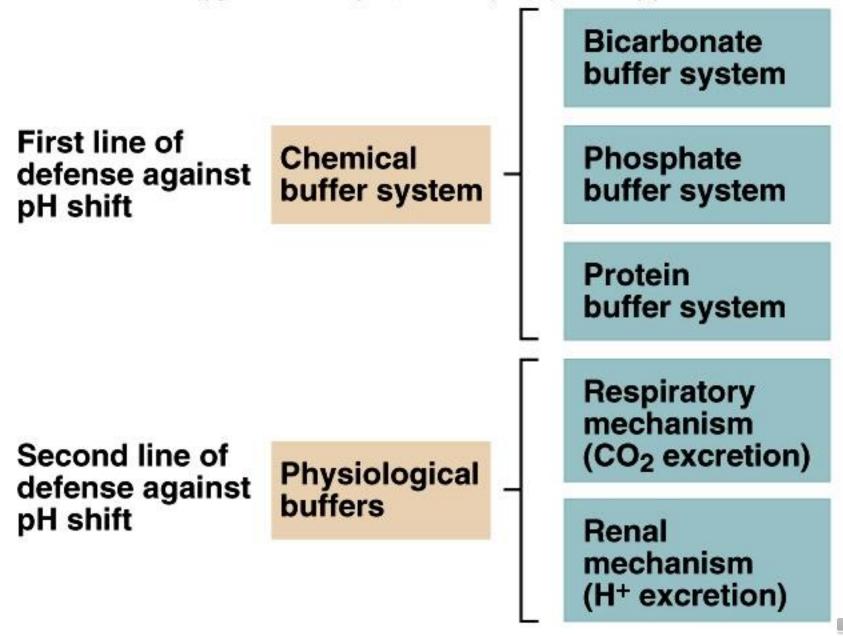
Phosphate buffer

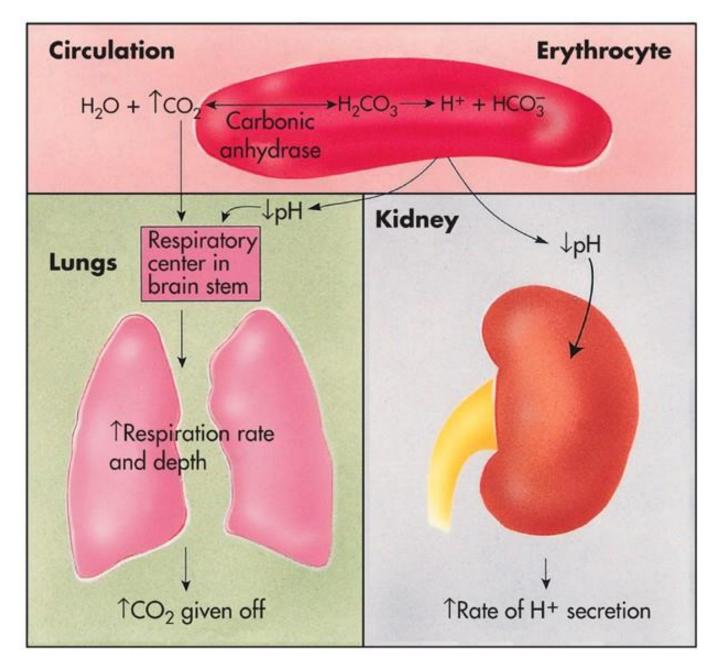
- Major intracellular buffer
- $H^+ + HPO_4^{2-} \leftrightarrow H_2PO4^{-1}$
- $OH^- + H_2PO_4^- \leftrightarrow H_2O + H_2PO_4^{2-}$

Protein Buffers

- Includes hemoglobin, works in blood.
- Carboxyl group gives up H⁺
- Amino Group accepts H⁺
- Side chains that can buffer H⁺ are present on most of the amino acids.

2. Respiratory mechanisms


- Exhalation of carbon dioxide
- Powerful, but only works with volatile acids
- Doesn't affect fixed acids like lactic acid
- $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
- Body pH can be adjusted by changing rate and depth of breathing


3. Kidney excretion

- Can eliminate large amounts of fixed acid
- Can also excrete base
- Can conserve and produce bicarbonate ions
- Most effective regulator of pH
- If kidneys fail, pH balance fails

Rates of correction

- Buffers function almost instantaneously
- Respiratory mechanisms take several minutes to hours
- Renal mechanisms may take several hours to days

From Thibodeau GA, Patton KT: Anatomy & physiology, ed 5, St Louis, 2003, Mosby. Mosby items and derived items copyright @ 2004, 2000 by Mosby, Inc.

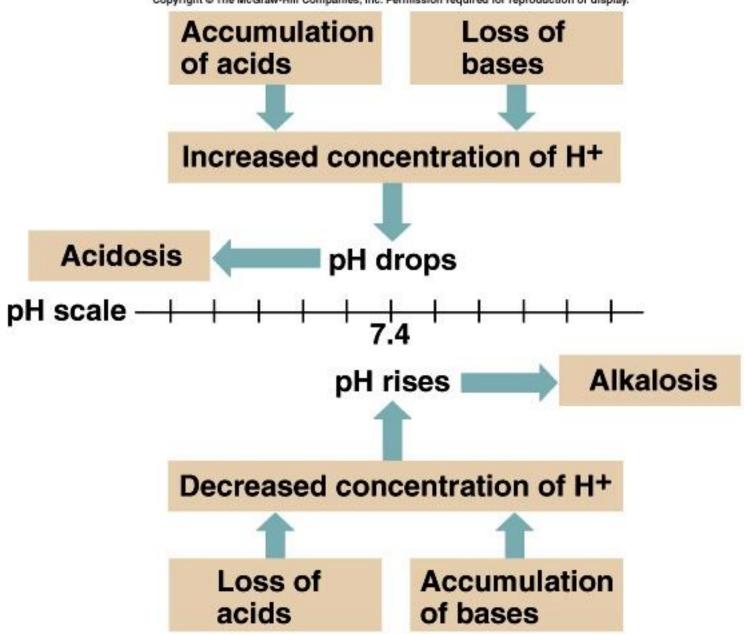
Acid-Base Imbalances

- pH< 7.35 acidosis
- pH > 7.45 alkalosis
- The body response to acid-base imbalance is called compensation
- May be complete if brought back within normal limits
- Partial compensation if range is still outside norms.

Compensation

- If underlying problem is metabolic, hyperventilation or hypoventilation can help : respiratory compensation.
- If problem is respiratory, renal mechanisms can bring about metabolic compensation.

Acidosis


- Principal effect of acidosis is depression of the CNS through ↓ in synaptic transmission.
- Generalized weakness
- Deranged CNS function the greatest threat
- Severe acidosis causes
 - -Disorientation
 - -coma
 - -death

Alkalosis

- Alkalosis causes over excitability of the central and peripheral nervous systems.
- Numbness
- Dizziness
- It can cause :
 - Nervousness
 - muscle spasms or tetany
 - Convulsions
 - Loss of consciousness
 - Death

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Respiratory Acidosis

- Carbonic acid excess caused by blood levels of CO₂ above 45 mm Hg.
- Hypercapnia high levels of CO₂ in blood
- Chronic conditions:
 - Depression of respiratory center in brain that controls breathing rate – drugs or head trauma
 - Paralysis of respiratory or chest muscles
 - Emphysema

Respiratory Acidosis

- Acute conditons:
 - Adult Respiratory Distress Syndrome
 - Pulmonary edema
 - Pneumothorax

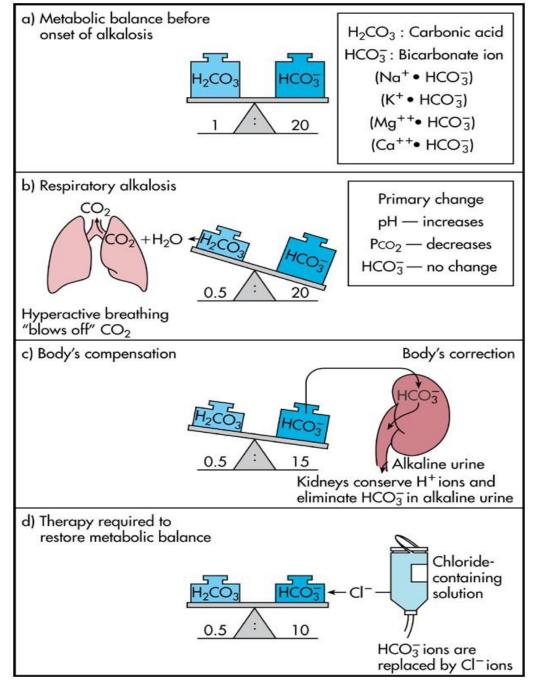
Compensation for Respiratory Acidosis

- There is no respiratory compensation for respiratory acidosis.
- Renal compensation: Kidneys eliminate hydrogen ion in form of NH4 and H2PO4 and increase absorption of bicarbonate ion.

Signs and Symptoms of Respiratory Acidosis

- Breathlessness
- Restlessness
- Lethargy and disorientation
- Tremors, convulsions, coma
- Respiratory rate rapid, then gradually depressed
- Skin warm and flushed due to vasodilation caused by excess CO₂

Respiratory Alkalosis


- Carbonic acid deficit
- pCO₂ less than 35 mm Hg (hypocapnea)
- Most common acid-base imbalance
- Primary cause is hyperventilation

Respiratory Alkalosis

- Conditions that stimulate respiratory center:
 - Oxygen deficiency at high altitudes
 - Pulmonary disease and Congestive heart failure – caused by hypoxia
 - Acute anxiety
 - Fever, anemia
 - Cirrhosis
 - hysteria ,tension ,pain, hypoxia , CNS injury

Compensation of Respiratory Alkalosis

- Kidneys conserve hydrogen ion
- Excrete bicarbonate ion

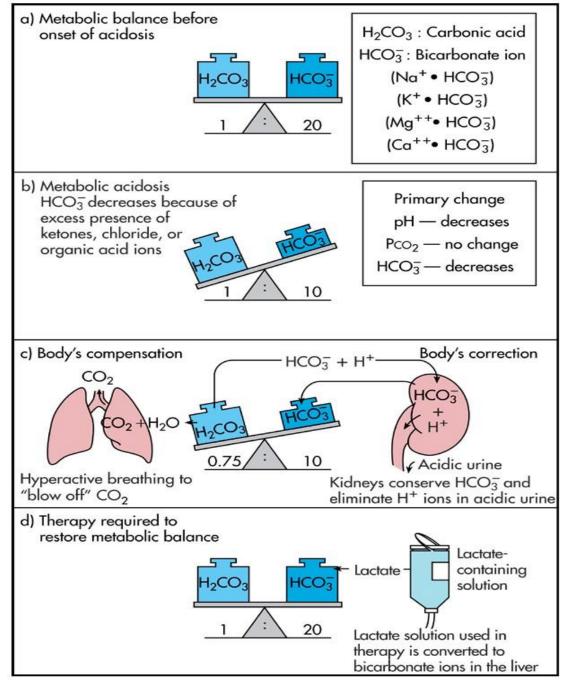
From Thibodeau GA, Patton KT: Anatomy & physiology, ed 5, St Louis, 2003, Mosby. Mosby items and derived items copyright © 2004, 2000 by Mosby, Inc. 31

Metabolic Acidosis

- Bicarbonate deficit blood concentrations of bicarb drop below 22mEq/L
- Causes:
 - Loss of bicarbonate through diarrhea or renal dysfunction
 - Accumulation of acids (lactic acid or ketones)
 - Failure of kidneys to excrete H+

Symptoms of Metabolic Acidosis

- Headache, lethargy
- Nausea, vomiting, diarrhea
- Coma
- Death


Compensation for Metabolic Acidosis

- Increased ventilation (repiratory comp)
- Renal excretion of hydrogen ions if possible
- K⁺ exchanges with excess H⁺ in ECF
- (H⁺ into cells, K⁺ out of cells)

Treatment of Metabolic Acidosis

• IV lactate solution

From Thibodeau GA, Patton KT: Anatomy & physiology, ed 5, St Louis, 2003, Mosby.

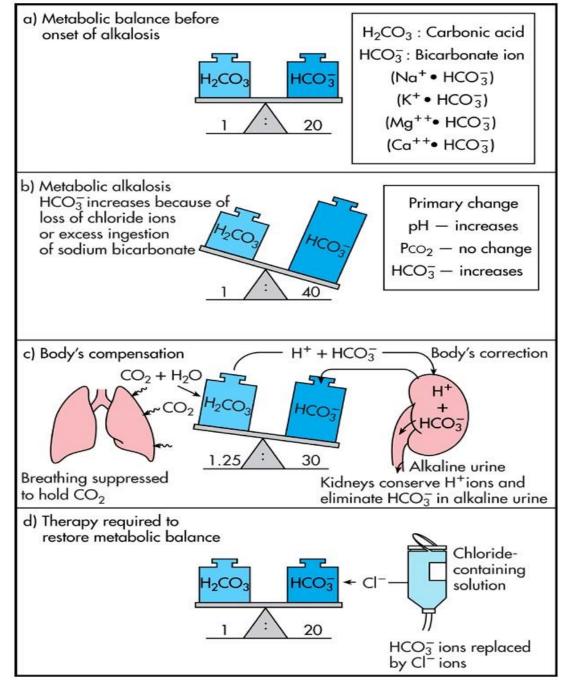
Mosby items and derived items copyright \circledast 2004, 2000 by Mosby, Inc.

Metabolic Alkalosis

- Bicarbonate excess concentration in blood is greater than 26 mEq/L
- Causes:
 - Excess vomiting = loss of stomach acid
 - Excessive use of alkaline drugs
 - Certain diuretics
 - Endocrine disorders
 - Severe dehydration

Compensation for Metabolic Alkalosis

- Alkalosis most commonly occurs with renal dysfunction, so can't count on kidneys
- Respiratory compensation



Symptoms of Metabolic Alkalosis

- Respiration slow and shallow
- Hyperactive reflexes ; tetany
- Often related to depletion of electrolytes
- Atrial tachycardia
- Dysrhythmias

Treatment of Metabolic Alkalosis

- Electrolytes to replace those lost
- IV chloride containing solution
- Treat underlying disorder

From Thibodeau GA, Patton KT: *Anatomy & physiology*, ed 5, St Louis, 2003, Mosby. Mosby items and derived items copyright © 2004, 2000 by Mosby, Inc.

Diagnosis of Acid-Base Imbalances

- 1. Note whether the pH is low (acidosis) or high (alkalosis)
- 2. Decide which value, pCO_2 or HCO_3^- , is outside the normal range **and** could be the **cause** of the problem. If the cause is a change in pCO_2 , the problem is respiratory. If the cause is HCO_3^- the problem is metabolic.

THANKS