Basic Computing and Programming

Lecture \# 7
Computer Networks

Today's Aim

- What is a 'Computer Network'
- Advantages \& Disadvantages of Networks
- Types of Networks
- Components of a Network
- Communication Media

Computer Network

- System of independent but linked computers
- sharing
- data and Resources
- Hard disks
- Printers and scanners
- Electronic Communication

Advantages of a Network

- Speed
- Cost
- Centralized Software Management
- Resource Sharing
- Electronic Mail
- Flexible Access
- Workgroup Computing

Disadvantages

- Initial Costs
- Administrative Support needs to be provided
- A single point of Failure (e.g., File Server Failure)
- Cables Breakage

Types of Networks (According to N/W Access Policy)

- Private
- Privately owned by Organizations
- Only Authorized Computer gain Access
- Information is Protected
- Public
- Shared by Organizations and Individuals
- Virtual Private Networks (VPN)
- Uses Public Network
- Seems like a Secure Private Network

Types of Networks

(According to N/W Access Policy)

- VPN is Used for:
- LAN-to-LAN Internetworking
- Remote Access Client Connections
- Shared resource (Internet) is used for connecting remote parts of the private network

Types of Networks (According to N/W Access Policy)

- Advantages of VPN:
- Lower Cost
- Network Scalability
- Ease of Use
- Disadvantages of VPN:
- Complex Security Procedure
- Reliability and Performance
- Equipment Compatibility

Types of Networks (According to Scale)

- PAN (Personal Area Network)
- Limited to a very few users
- No centralized control
- Examples:
- Bluetooth, Infra Red Communication
- LAN (Local Area Network)
- Limited to a Small Area
- few offices, a building or two.
- Owned and Managed by an Individual or Organization
- Protocols Used:
- Ethernet, Token Ring, FDDI (Fast Distributed Data Interface)
- Building block for larger networks.

Types of Networks (According to Scale)

- MAN (Metropolitan Area Network)
- Spread over cities
- Owned by a single organization
- Consisting of several LANs
- WAN
- Covers Larger Geographical Area
- Uses Transoceanic Cabling (were coaxial cables that transmitted frequency-multiplexed voiceband signals) or Satellite Links
- Collective/Distributive Management and Ownership
- Protocols Used: ATM, Frame Relays, X. 25 etc.
- Internet is the ultimate WAN

Components of a Network

- End devices (Hosts)
- PCs, Workstations, Printers, IP phones \& IP cameras etc.
- To communicate over a network, an end device must have a special Network-Hardware, called NIC
- Network Access Devices
- Where the end devices get connected to the network
- Hubs \& Switches
- Inter-Network Devices
- They serve to inter-connect the LANs for inter-LAN communication
- Bridges \& Routers

Ethernet Card

- Fast Data Transfer (10 to 100 Mbps)
- Expensive-Bought Separately
- Requires a Computer Slot
- Major Types:
- Ethernet Cards
- Token Ring Cards

Network Access Devices

- Hub
- Connection Point b/w several Networked Devices
- Have 8, 12, 16, 24, 32, or 48 Ports for Connecting Devices
- These ports may be active or blocked as per requirement
- Work normally with star or star-wired ring topology
- Broadcasts the received Message
- That's why collision rate is very high
- Switches subside the collision issue

Network Access Devices

- Switch
- Works on the principal of selective forwarding rather than broadcast
- Reduced collision to an extent
- More Intelligent than Hubs
- RJ-45 interface with 8, 4 or 12 ports
- Specialized softwares for Port Management

- Used with Star or Star-Wired Ring Topology

Inter-Network Devices

- Bridge
- Used to Connect Smaller Networks together
- Manages Traffic for Optimum Performance on Two sides of the N/W
- "Listens" to N/W on both sides
- If necessary, transmits data from one side of the N/W to the other
- Used to Route Messages Across:
- Different Cables
- Different Topologies

Inter-Network Devices

- Router
- A Super-Intelligent Bridge
- Selects best Route
- Helps Prevents Head-on Collisions
- Knows Addresses of all Devices on the Network
- Listens to Entire N/W
- Can Route Messages Across:

- Different Cables
- Different Topologies
- Different Protocols

Gateways

- serves as entry or exit point of the network - data sent outside the LAN, must pass through the gateway
- Routers are gateways usually
- Enforces the security policies

Repeater

- Electrical Amplification of the traveling Signal
- Extended data transmission range (virtually infinite)
- May be Separate or Built into the Concentrator e.g. Active Switch

Modem

- Used for Connection over Telephone Lines
- modem (modulator-demodulator) is a device that modulates an analog carrier signal to encode digital information, and also demodulates such a carrier signal to decode the transmitted information. The goal is to produce a signal that can be transmitted easily and decoded to reproduce the original digital data.

Communication Media

- Electrical Conductors
- Copper e.g., Twisted Pair (UTP, STP)
- Coaxial Cable
- Optical Media
- Glass Fiber tubes with repeaters
- Photonic Devices
- Wireless
- Infrared
- Light
- Microwave
- Radio Carriers

UTP (unshielded twisted pair) Cable

 and Connector- The most popular cables used for LAN and consisting of four twisted pairs of metal wires
- Five Categories Depending on Data Rates

- Maximum Segment Length100 to 220 meter
- Susceptible (Capable of change) to Radio and Electric Frequency Interference
- Connector Type - RJ-45

Coaxial Cable and Connector

- Difficult to Install
- Highly resistant to Interference
- Thinnet-200 Meters
- Thicket-500 Meters
- Good for Linear Bus N/W
- BNC (Bayonet NeillConcelman) is a quick connect/disconnect RF connector used for coaxial cable) Connector

Fiber Optic Cable

- Transmits Light
- Eliminates Electrical Interference
- Immune to Moisture
- Costs Comparable to Copper Cabling

- Higher Speeds
- Maximum Segment Length2000 Meters
- Difficult installation

