
Embedding User Interactivity

Lecture no:

Today’s Aim:

• Interacting with the users using HTML forms

• Using various HTML form elements

User Interactivity

• Earlier websites were one-sided, i-e we could
view the content available at different web-
servers but we couldn’t give any feedback.

• User Interactivity adds to the efficiency of a
website and makes the whole internet process
a two way mechanism, i-e the User can not
only retrieve data but it can also send data to
the server.

HTML Forms

• There might be many types of data that the user would send,
the most common however is text and files.

• HTML forms allow web-designers to interact with their users
by providing simple controls such as text boxes, combo boxes
(Also called combination boxes and they are used when you set up a form where a question should normally be answered by
selecting one of given alternatives but it is possible that none applies, in which case you'd like to ask the user to type his

choice in his own words.), radio controls (<input type="radio"> is used to display a radio button, and are

arranged in groups of two or more and displayed on screen as, for example, a list of circular holes that can contain white

space (for unselected) or a dot (for selected)).

• The user fills the form and clicks on a ‘Submit’ element and
the form gets processed.

• Everyone who has used the Internet should have filled and
submitted HTML forms.

HTML Form: Example

How do Forms Work

• HTML forms work in a four step process.

i. The user fills the form and clicks on submit.

ii. A client side script checks for validity of the data (optional).

iii. Data is sent to the server using eighter POST or GET(this is an

initial version of HyperText Transfer protocol and the requests send using GET should only retrieve the
data, it has no other effect).

iv. A server side script handles the data accordingly and a
response is sent to the user.

Using HTML forms

• To construct an HTML form we use the <form>
tag, and the ‘action’ attribute specifies the
server side script, while ‘method’ specifies the
data delivery method ‘post’ or ‘get’.

• Example: <form action=“somescript.php”
method=“post”> ….all the form
elements…</form>

Form submission methods

• There are three methods:

a. GET

b. POST

c. HEAD

GET sends the data by embedding it in the URL (Uniform Resource Locator. A URL

is a formatted text string used by Web browsers, email clients and other software to identify a network resource on the

Internet.) [or] the Address,

POST sends it as hidden in the actual HTTP message,

and HEAD only gets information about documents located on the
server, not the actual document.

HTML Form: Example

<form action=“somescript.php” method=“post”>

Enter your name: <input type=“text” name=“name”>

Enter your father’s name: <input type=“text”
name=“fname”>

Enter your Roll number: <input type=“text” name=“rollno”>

<input type=“submit” value=“Find!”>

</form>

HTML Form: Output

Note: The ‘Find’ submit element will not work as we have not

defined the script ‘somescript.php’ yet, server side scripting is

beyond the scope of this course, you can study it yourself once

you are familiarized with web-designing.

HTML Form elements or tags

• Common form elements include:
i. Text fields (<input type=“text”...)

• ii. Text area (<textarea name=“…”) (The <textarea> tag defines a multi-line text input

control. A text area can hold an unlimited number of characters)
)

iii. Checkbox(<input type=“checkbox”…)
iv. Button (<input type=“button”..)
v. Radio (<input type=“radio”..)
vi. Password(<input type=“password”..)
vii. File (<input type=“file”..)
viii. Hidden(<input type=“hidden”..)
ix. Submit & Reset (<input type=“submit/reset”)

HTML Form elements

• Note that constructing an HTML form does
NOT give it any functionality, we have to do
that manually, by creating a server side or
client side script to handle the form before
and/or after submission.

