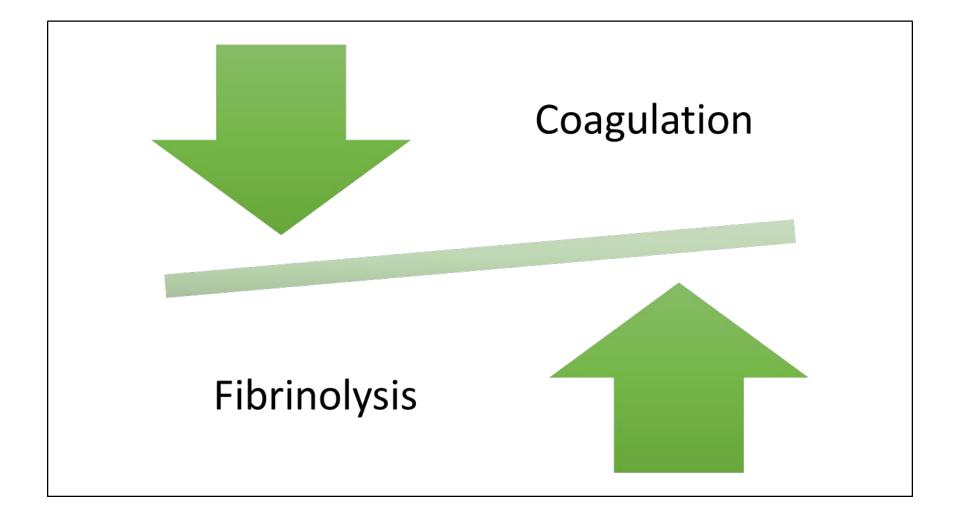
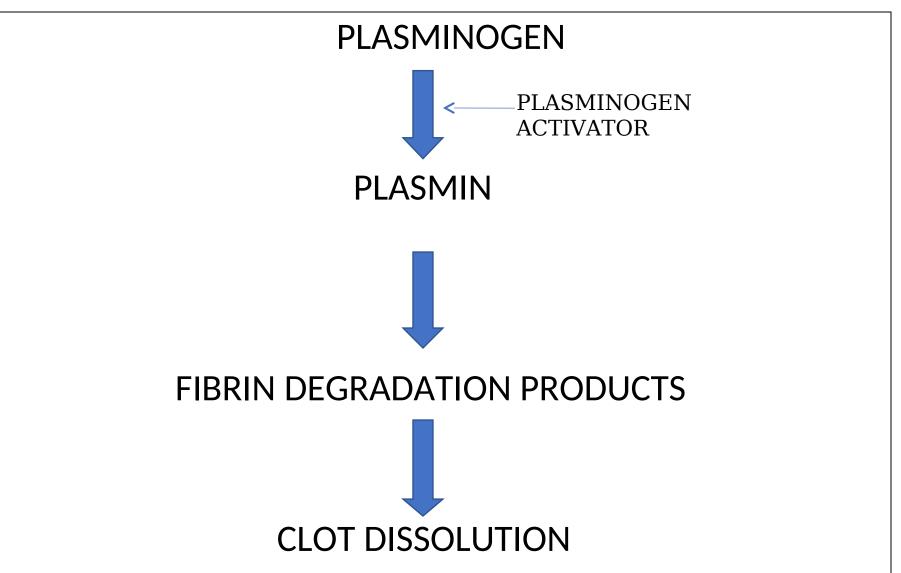

THROMBOLYTICS OR FIBRINOLYTICS

By Prof. Dr Abdul Hameed Chairman pharmacology Deptt

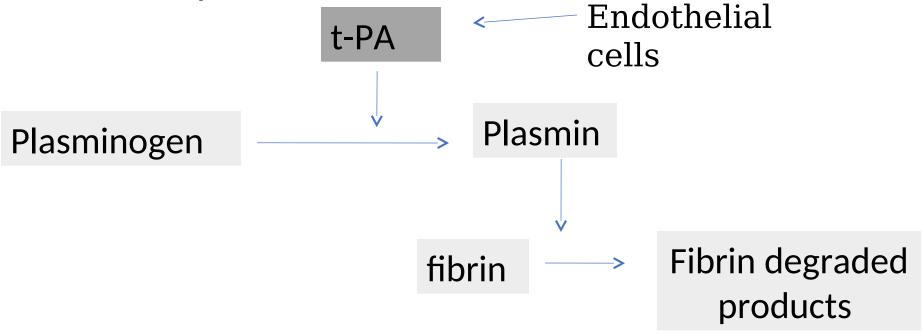


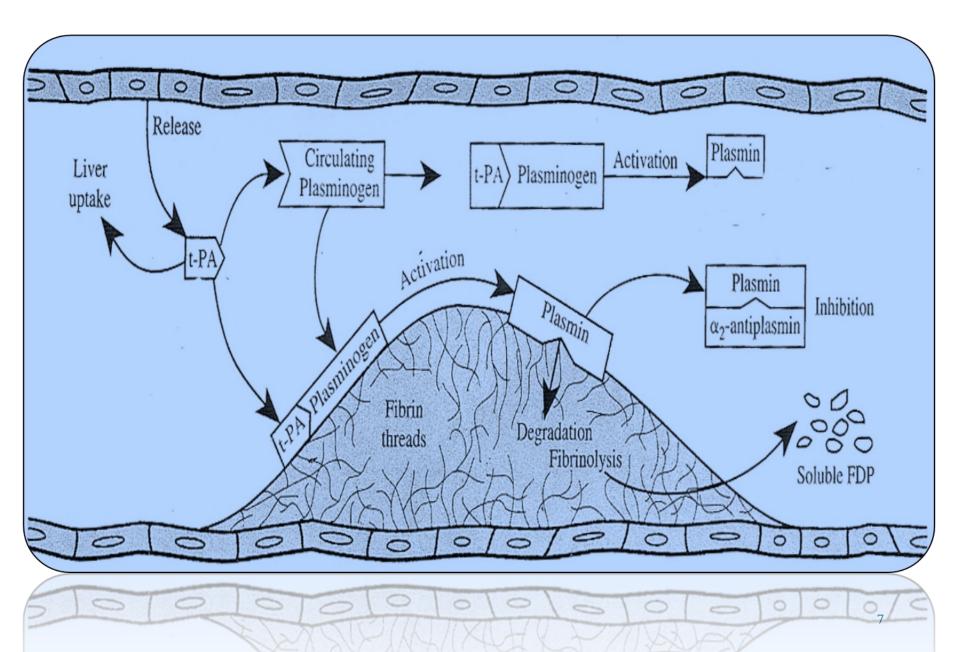
Objectives


- •At the end of the class 3rd yr students should be able to;
- •Describe **mechanism of action** of Anti-plasmin (antifibrinolytic) drugs.
- •Describe **clinical uses** and **adverse effects** of Anti-plasmin (antifibrinolytic) drugs

INTRODUCTION

- •Blood clots (thrombus/thrombi)
 - Vascular bed/Blood vessels
 - Coronary thrombi cause myocardial infarctions
 - Cerebrovascular thrombi produce strokes
 - Pulmonary thromboemboli
 - Can lead to respiratory and cardiac failure
- •So it is important to rapidly diagnose and treat blood clots.




THROMBOLYSIS

FIBRINOLYTIC SYSTEM

• The process of dissolution of clot is called fibrinolysis

THROMBOLYTIC DRUGS

Thrombolytic drugs

Dissolve blood clots

By activating plasminogen

Which forms a cleaved product called plasmin.

Plasmin is

A proteolytic enzyme

That is capable of breaking cross-links

Between fibrin molecules.

which provide the structural integrity of blood clots.

Because of these actions, thrombolytic drugs are

Also called "plasminogen activators" and "fibrinolytic drugs."

MOA - THROMBOLYTICS

•Fibrinolytic drugs

- Catalyze the conversion of precursor plasminogen into active plasmin
- Rapidly lyse or break down thrombi

•Plasmin is

- An endogenous fibrinolytic enzyme
- That degrades clots by splitting fibrin into fragments

•Plasmin itself can not be used

• Because naturally occurring inhibitors in plasma prevent its effects.

•Some drugs are more clot specific as

• They only act on fibrin bound plasminogen.

THROMBOLYTIC DRUGS

- •Streptokinase
- Urokinase
- Anistreplase

•<u>Tissue Plasminogen Activators (t-PA)</u>

- •Alteplase
- Reteplase
- Tenecteplase

STREPTOKINAS

SOURCE:

• A protein Produced by betahemolytic streptococci.

<u>MOA</u>:

- It combines with
 - Proactivator plasminogen to form a complex.

This complex catalyzes

- The conversion of plasminogen to active plasmin.
- So rapid lysis of the clot by plasmin.

PLASMA HALF LIFE:

(t 1/2) 40-80 minutes

ADVERSE EFFECTS:

- Not clot specific.
 - Hemorrhage --- most serious cerebral hemorrhage
 - Allergic reactions, rarely anaphylaxis and fever.

Clinical Uses

- Acute Myocardial Infarction
- Pulmonary Embolism (obstruction of an artery)
- Deep Vein Thrombosis
- Arterial Thrombosis (Blood clot that develops in an artery) or Embolism
- ✓ Occlusion of Arteriovenous Cannulae

UROKINASE

- A two chain serine protease
 - Containing 411 amino acid residues Isolated from cultured human kidney cells.
- An enzyme Produced by the kidney Found in the urine

MOA:

- Converts plasminogen to active plasmin.
- It is not clot specific:
 - Both protective haemostatic thrombi and target thromboemboli
 - Are broken down.

- Administered by intravenous infusion
- Rapidly cleared by the liver
- •Half-life of 12-20 minutes

CLINICAL USES:

- For the lyses of
 - >Acute massive pulmonary emboli.

ANISTREPLASE (APSAC)

- •(APSAC- Anisolyted Plasminogen Streptokinase Activator Complex)
- •A complex of purified human plasminogen & bacterial streptokinase that has been acylated
 - To protect the enzymes active site.
- •On I/V administration,
 - The acyl group spontaneously hydrolyzes.
- •Free activated streptokinase proactivator complex produces
 - Lysis of clots also degrades fibrinogen.

ADVANTAGES:

- •Rapid I/V injection may be given.
- •Greater clot selectivity .
- •More thrombolytic activity.

TISSUE PLASMINOGEN ACTIVATOR (T-PA) ALTEPLASE (RT.PA)

A tissue plasminogen activator (t.PA)

Produced by recombinant DNA technology of 527 amino acids

MECHANISM:

lt is <u>an enzyme</u>

- Which has the property of fibrin-enhanced conversion of plasminogen to plasmin
- It produces limited conversion of free plasminogen in the absence of fibrin
- When introduced into the systemic circulation
- \geq It binds to fibrin in a thrombus and
- Converts the entrapped plasminogen to plasmin
- Followed by activated local fibrinolysis with limited systemic proteolysis

PHARMACOKINETICS: Very short $t_{1/2}$ of 5 minutes **SIDE-EFFECTS: Bleeding including GIT & cerebral** hemorrhage Allergic reactions, \blacktriangleright Anaphylactoid reaction, \blacktriangleright Laryngeal edema, Rash, and urticaria clinical uses of alteplase Acute Myocardial Infarction Acute Ischemic Stroke (Permanent brain injury secondary to disruption of blood flow.) Pulmonary Embolism ITEPI ASE

TISSUE PLASMINOGEN ACTIVATOR (T-PA)

Reteplase:

- •Recombinant human t-PA.
 - •From which several amino acid sequences have been deleted.
- •Faster OOA & slighter longer DOA.
- Less expensive
- •Less fibrin specific than t-PA.

Tenecteplase:

- Mutant form of t-PA
- With a longer DOA.
- Slightly more fibrin-specific than t-PA.

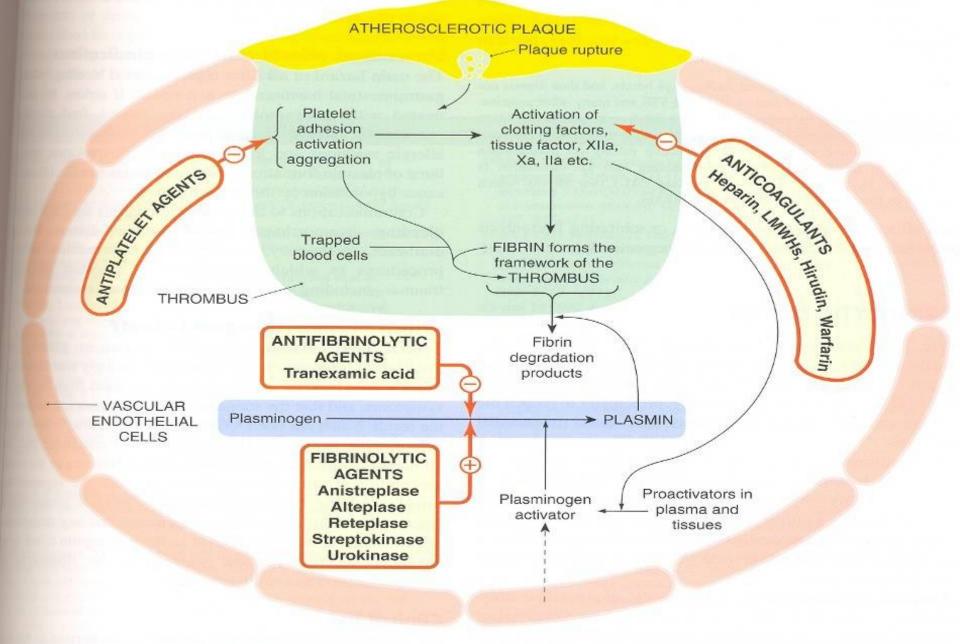


Fig. 20.10 Fibrinolytic system. The schematic shows interactions with coagulation and platelet pathways and sites of action of drugs that modify these systems. (LMHs, low-molecular-weight heparins.) For more details of platelet activation and the coagulation cascade refer to Figures 20.1, 20.2 and 20.7.

THANK YOU