Computer Fundamentals

Week 1

Computer Fundamentals

1. Binary Representation: the power of 0 and 1
2. Data Storage: how to record 0 and 1
3. Logic Table and Circuit: how to process 0 and 1

M

Binary Numbers

-It is a based on the binary representation (0,1).
-It also uses positional notation

- Use the same symbols for different orders of magnitude, but in different places, e.g., ones place, twos place, fours place.
- Each next-place (order) digit adds $2^{0}, 2^{1}, 2^{2}, 2^{3}$, etc.
- Example: In binary, 1101 means

1 - is in the ones place so multiply it by $2^{0}(1)=1$
0 - is in the twos place so multiply it by $2^{1}(2)=0$
1 - is in the fours place so multiply it by $2^{2}(4)=4$
1 - is in the eights place so multiply it by $2^{3}(8)=8$
$\Rightarrow 1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{2}+1 \times 2^{0}=8+4+0+1=13$
Binary $1101=$ Decimal 13
$1101 \mathrm{~B}=13 \mathrm{D}$

From Decimal to Binary

-Division by 2 with remainder
-Dividing each new quotient by two and writing the remainders to the right of each dividend. Stop when the quotient is 0
-Starting with the bottom remainder, read the sequence of remainders upwards to the top.

- Exp: what is decimal 13 in binary?

$$
\begin{array}{cc}
2 \lcm{13} & 1 \\
2 \lcm{6} & 0 \\
2 \lcm{3} & 1 \\
2 \lcm{1} & 1 \\
0 &
\end{array}
$$

The answer: 1101

Binary Numeral Numbers

Decimal	Binary	Binary	Decimal
0	0	0	0
1	1	1	1
2	10	10	2
3	11	100	4
4	100	1000	8
5	110	10000	16
6	111	100000	32
7		1000000	64

Computer

A computer is a machine that manipulates data according to a set of instructions called a computer program
--http://en.wikipedia.org/wiki/Computing

- Machine: electronic machine built upon electronic logic circuits
- Manipulate: the operation of logic circuits
-Data: encoded into binary data

